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We would like to thank the reviewer for suggestions and comments on the
manuscript. The reviewer’s detailed suggestions have been very helpful in improv-
ing the manuscript. Below, we have included the reviewers comments (in bold) along
with our reply and the associated changes/updates to the manuscript.

* These uncertainties are calculated based on a coarse resolution meteoro-
logical model, which has a spatial resolution of 2.50 longitude x 1.90 lati-
tude. In the reality, there are other additional error terms introduced due to
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fine-scale variations that cannot be captured by the coarse model. These
additional terms will be more significant depending on the regions and/or
periods you sample.

Uncertainties in the posterior meteorology estimate include uncertainties in the
model, uncertainties due to measurement errors, and uncertainties due to mete-
orological patterns that are smaller in scale than the model resolution. The latter
two uncertainties are incorporated into the posterior estimate via the R covari-
ance matrix (e.g., Hunt et al. 2007). This matrix, often referred to as the nugget
covariance matrix, is used as an input into the meteorology model-data assimila-
tion and the posterior uncertainty calculation. We estimate the elements of the R
matrix directly from the meteorological data using an adaptive approach outlined
by Li et. al. (2009). This adaptive approach estimates the collective variance due
to measurement error and uncertainties due to meteorological processes that oc-
cur at scales smaller than the model resolution. Hence, errors due to small-scale
processes are a component of the posterior meteorology and CO, estimates.
However, we cannot resolve the spatial distribution of these fine-scale errors at
sub-grid scale.

In addition, one goal of this study is to run simulations that are analogous to
commonly-used, top-down global CO, flux estimates like CarbonTracker. The
grid used in this study is comparable, if not smaller, than many existing global
CO, inversion studies. For example, CarbonTracker has a 2° latitude by 3° lon-
gitude global resolution (Peters et al., 2007, http://www.esrl.noaa.gov/gmd/ccgg/
carbontracker/). Other global inversion studies, like Mueller et al. (2008) and
Gourdji et al. (2008) used a resolution of 3.75° by 5°, and Basu et al. (2013) used
a 4° by 6° resolution. One could argue that there are advantages to estimat-
ing global CO- fluxes using a model with finer spatial resolution. With that said,
the resolution used here is analogous to that used by common top-down CO,
flux products like CarbonTracker and would be able to speak more directly to the
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types of transport errors that would be encountered in those efforts.

The mentioned model ensemble method cannot account for these fine-
scale spatial variations, given that the weights (to match the meteorological
observations) are estimated for each grid box using observations within a
radius about 1500 km.

We do not compare the model estimate in one grid box against wind or tempera-
ture observations taken 1500km away. As the reviewer points out, that approach
would be ill-advised. We have added text to the supplement (section S1) to clarify
and further explain this point.

In the LETKF, we estimate a set of weighting factors for the 64 ensemble mem-
bers such that the weighted ensemble best matches the meteorological observa-
tions. To achieve this, we first interpolate the gridded model output to the obser-
vation locations and times. We then estimate a unique weighting factor for each
individual grid box. If we estimated the weights using only model-measurement
pairs in the grid box of interest, several problems could arise. First, there may
not be many relevant observations that are sensitive to that specific grid box,
particularly over the open ocean or near the poles. In those circumstances, the
estimated weights could be inaccurate. Second, that approach could produce
vastly different weights in adjacent grid boxes, a result that is unlikely to be phys-
ically realistic. For example, the estimated weights for one model grid box over
eastern North Dakota should look somewhat similar to the weights for a grid box
over western North Dakota. If the two sets of weights were completely unrelated,
one could argue that the optimization would be an over-fit.

Instead, we use model-measurement pairs within a certain geographic radius to

compute each set of weights. This approach ensures coherence among adja-

cent grid boxes and ensures that the optimization is not an over-fit to the data.

We further taper the influence of model-observation pairs on the optimization de-

pending on their distance from the grid box in question (using a Blackman window
C12037

function as described by Oppenheim and Schafer (1989) and Liu et al. (2012)).
Hence, model-measurement pairs located within the model grid box of interest
will influence the optimization much more strongly than model-observation pairs
located 1000km away. A radius of 1500km for the Blackman window function is
comparable to values used throughout the meteorological literature. For example,
Liu et al. (2011) and Liu et al. (2012) also used a 1500km radius. Furthermore,
Miyoshi (2011) set a 1825 km radius of influence, Miyoshi and Kunii (2012) used
a 1460km radius, and Szunyogh et al. (2008) used an 800km radius.

| am not sure how nugget variance (R) is constructed and whether it neces-
sarily represents all errors due to these fine-scale variations.

Many existing meteorology studies that implement an ensemble Kalman filter
have used the published measurement error for R (e.g., Szunyogh et al., 2008;
Liu et al., 2012). In reality, R also includes a number of other errors, including er-
rors due to meteorological features that are smaller than the model resolution (as
discussed above). To capture this entire spectrum of errors, we estimate these
errors directly from the meteorological data, an advance over previous efforts that
used only the published measurement error. These calculations for R, by defini-
tion, will capture any variability in the measurements that cannot be incorporated
into the model ensemble. This variability includes both measurement errors and
errors due to fine-scale meteorological processes. This approach is detailed in
Eqg. S11 and in Li et al. (2009).

Moreover, | am not much convinced how a single inflation factor for each
model grid box works fine for all model parameters.

The use of a single inflation factor per grid box has been a common practice in en-
semble Kalman filters applied to weather models (e.g., Szunyogh et al., 2008; Liu
et al., 2011, 2012; Miyoshi and Kunii, 2012; Kang et al., 2012). In our study, we
use arelatively new technique known as adaptive inflation to estimate the inflation
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factors. This approach estimates inflation factors based upon actual model-data
residuals (Miyoshi, 2011). The traditional approach has been to choose inflation
factors subjectively based upon 'expert knowledge.’ In fact, previous studies used
zonally-constant inflation factors (e.g., Szunyogh et al., 2008; Saito et al., 2011;
Liu et al., 2011, 2012; Yang et al., 2012). Miyoshi (2011), in contrast, argues that
this zonally-constant approach is not ideal because it cannot differentiate be-
tween ocean and terrestrial regions. The statistical approach implemented here
is therefore an advancement over previous efforts because we estimate spatially-
and temporally-variable inflation factors directly from the data.

In practice, adaptive inflation can be very challenging to implement; the infla-
tion factors that best match the model-data residuals can, in some cases, cause
instabilities in meteorological model that result in incompatible combinations of
meteorological parameters. These instabilities often crash one or more of the
ensemble members. Furthermore, the approach performs poorly when observa-
tions are sparse (e.g., Miyoshi, 2011). When we estimate a single inflation factor
per box, we can leverage more observations to make a more stable inflation esti-
mate. Hence, we felt that this framework would require more development before
we could reliably estimate unique, grid-scale inflation factors for many different
meteorological parameters.

The meteorological data-assimilation community is moving toward adaptive infla-
tion techniques that can accomplish this task (e.g., Zheng et al., 2013). How-
ever, this kind of in-depth methodological development is beyond the scope of
our study.

Hence | fear that the values reported for CO2 transport uncertainty (glob-
ally) can be far away from reality. This could be one of the reasons why
Fig. 2 does not generally show high transport related uncertainties in the
coastal sides (sea/land breeze effects?).

We do see larger uncertainties in zonal winds along many coastal regions, pre-
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sumably related to sea breezes. We have added a new plot to the supplement
that illustrates these features (Fig. S17). These uncertainties are particularly
prominent across the west coast of North America where sea breezes are an im-
portant component of coastal weather. In our simulations, uncertainties in zonal
winds at the coastline do not always translate into large uncertainties in modeled
CO, concentrations. For example, uncertainties in both zonal and meridional
winds are high along the coast of British Columbia and Alaska in February (Fig.
S17). Since those regions have small CO, fluxes in winter, large uncertainties
in the winds do not translate into large uncertainties in 6-hourly modeled atmo-
spheric CO; (Fig. 2a).

The authors may wish to provide more detailed discussion regarding this
aspect and it is worthwhile to mention explicitly the significant limitations
of this approach.

We have added text to the methods section 2.2 that describes both the advan-
tages and limitations of the meteorology model-data assimilation (e.g., the model
cannot resolve the spatial patterns of meteorological features at sub-grid scale).

In the given design and set up, | would certainly consider that the flux bias
estimations in the case study 1 are overestimated values, because of unre-
alistically “too strict” constraints.

We have reformulated case study #1 in a way that no longer uses a hypothesis
test, and we no longer make definitive statements on whether the observations
would be able to ‘see’ biases in a CO, flux estimate. Instead, we visually dis-
play the 95% confidence intervals in modeled atmospheric CO, and compare
those uncertainties against the afternoon boundary layer enhancement in CO, at
various observation sites.

The current inversion approaches followed by many modeling groups take
into account the transport uncertainties to some extent and the method is
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not as simplified as the approach given here.

We have clarified this point in the revised manuscript. Most current inversion
approaches do account for transport uncertainties. However, the majority of ex-
isting inversion studies assume that the transport uncertainties are uncorrelated
in space and time. In other words, existing studies typically use a diagonal co-
variance matrix to describe errors due to atmospheric transport, measurements,
and model resolution, etc. A central question in our paper is to understand how
transport errors are correlated in both space and in time, and we find that these
correlations or covariances are substantial. An inversion study that ignores these
covariances could either underestimate uncertainties in the CO., fluxes or prop-
agate transport errors into the estimated fluxes. We have revised the setup for
case study #1 to make this point clearer within the manuscript.

| am a bit surprised to see totally different patterns between these two mean
values. | could not find very direct and convincing reasons for these differ-
ences from the manuscript. Perhaps | missed some details. In that case,
the authors may wish to bring this point clearly in the discussion part.

Monthly-scale error patterns depend upon error covariances in the 6-hourly
model output. Different regions will have greater temporal error covariances than
others. These differences in the covariances will result in different error patterns
at the 6-hourly versus monthly scale. The underlying question is why the error
covariances are so much higher over the oceans and Arctic than over regions
with large fluxes (Fig. 2).

Uncertainties in the month-long mean concentrations (Fig. 2) are most influenced
by transport errors that occur over sustained time periods. When COs is trans-
ported from source/sink regions to remote regions, that transport is likely to be
associated with synoptic time scales, and any transport errors would likely be
sustained over multi-day time periods. At these longer time scales, the surface
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fluxes are transported away from the surface grid box where they occurred and
can manifest as transport errors in regions that are remote from large fluxes.

In regions with large fluxes, surface concentrations will additionally be influenced
by grid-scale winds or boundary layer mixing. Transport errors at this grid-scale
may have a shorter decorrelation time compared to errors in large-scale flow. In
addition, sustained transport errors over regions of large biosphere flux would
be more likely to cancel out at longer time scales — due to the diurnal cycle of
biosphere CO, uptake and release (i.e., transport errors times of CO2 uptake
and release will have opposite sign.). Hence, transport errors in regions with
large fluxes would likely average out or cancel to a greater degree than those in
remote areas.

We have added additional explanation on this point to section 3.2 in the revised
manuscript.

p.23692, line 13: “.. from surface sources is strong” - “.. from surface
sources and sinks is strong”

We have updated the manuscript accordingly.

p- 23696, line 9: “At marine sites, in contrast, the minimum detectable bias

is far larger”. Why? transport uncertainties are comparatively shown lower
over coastal areas!?

Marine sites are often located relatively far from regions with large CO- fluxes. At
these marine sites, the signal-to-noise ratio is therefore smaller. We have added
a similar explanation to this section of the revised manuscript.

p.- 23696, line 11: “.. large sources are better ..” - “.. large sources and
sinks are better ..”

We have changed this text accordingly.
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