1	This file describes one of two mistakes we discovered in the ACPD manuscript. Both mistakes
2	are minor and neither affect the overall findings. The other mistake is discussed in the file titled
3	"method_2_correction.pdf."
4	Subsequent to publication of the ACPD manuscript we discovered that measurements of static
5	pressure made on 14 April, 2009 (20090414) were biased. The bias is substantial and leads to an
6	inaccurate value of $n_{0.5}$ (aerosol particles per standard cubic centimeter) and N_{IC} (ice crystals per
7	standard liter). The pressure bias affected only one of the 80 pairs of $n_{\!0.5}$ and N_{IC} . The pressure bias
8	is the reason the left-most point in Fig. 3a, the two left-most points in Fig. 3b, and the bottom-most
9	point in Fig. 4a are outliers. Using an unbiased static pressure measurement, available in the King Air
10	data, we corrected the $n_{0.5}$ and N_{IC} values derived for 20090419. The correction is possible because
11	only one of two redundant static pressure systems on the King Air was affected
12	(http://flights.uwyo.edu/projects/waico09/).
13	Because of the pressure bias discussed in the previous paragraph, the following Figures and
14	Tables were corrected:
15 16	1) The $n_{0.5}$ and N_{IC} values in the Supplement (note: only one streamline, the one analyzed using 20090414 flight data, is affected);
17	2) The 20090414 crystal concentration values (derived and fitted) in Fig. 3a, Fig. 3b and Fig. 4a;
18	3) The fit parameters describing $N_{IC}(T_{low})$ in Fig. 3a;
19	4) The fit parameters describing $N_{IC}(T_{low},n_{0.5})$ in Fig. 3b (method #1);
20 21	5) The fit parameters in Table 2 (method #1 and method #2) (note: the revised Table 2 is attached below)
22	6) The fit parameters in the second row of Table 3 (note: the revised Table 3 is attached below)

Because of the pressure bias, two instances of text were also revised:

25

- 26 1) P26603 / L20 L22
- 27 The square of the Pearson correlation coefficient (r²), for this scatter plot, is relatively small and
- 28 demonstrates that temperature alone, via the fit equation, can only explain 44% of the N_{IC} variability.
- Author's Change of Manuscript: The square of the Pearson correlation coefficient (r^2) , for this scatter
- 30 plot, is relatively small and demonstrates that temperature alone, via the fit equation, can only explain
- 31 51% of the N_{IC} variability.
- 32
- 33 2) P26617Caption
- 34 Values of $Nic(T_{low})$ ($In(Nic(T_{low})) = k_1 k_2 \cdot (T_{low} T_0)$ with $k_1 = -3.93$ and $k_2 = 0.22 \circ C^{-1}$)

- 37 Author's Change of Manuscript: Values of $N_{IC}(T_{Iow})$ ($In(N_{IC}(T_{Iow})) = k_1 + k_2 \cdot (T_0 T_{Iow})$ with $k_1 = -4.04$ and
- 38 $k_2 = 0.22 \ ^{\circ}C^{-1}$)
- 39
- 40

^a Fit D10	Fit Method #1	^b Statistical Error	Fit Method #2	^c Statistical Error
		Method #1		Method #2
-9.73	-15.26	2.87	-15.03	4.11
3.33	4.94	0.88	4.86	1.30
0.0264	0.0028	0.0308	0.0038	0.034
0.0033	0.86	0.88	0.82	0.83
	^a Fit D10 -9.73 3.33 0.0264 0.0033	^a Fit Fit D10 Method #1 -9.73 -15.26 3.33 4.94 0.0264 0.0028 0.0033 0.86	^a Fit Fit ^b Statistical D10 Method #1 Error -9.73 -15.26 2.87 3.33 4.94 0.88 0.0264 0.0028 0.0308 0.0033 0.86 0.88	^a Fit Fit ^b Statistical Fit D10 Method #1 Error Method #2 -9.73 -15.26 2.87 -15.03 3.33 4.94 0.88 4.86 0.0264 0.0028 0.0308 0.0038 0.0033 0.86 0.88 0.82

43 ^a Fit coefficients from D10

44 ^b The standard deviations for coefficients fitted via method #1

45 ^c The standard deviations for coefficients fitted via method #2

$T_{ m min}$	$T_{ m max}$	<i>n</i> _{0.5}	Number of samples	r ^a	р ^ь
-34	-29	5.50	20	0.20	0.20
-29	-24	2.93	30	0.21	0.14
-24	-19	3.50	15	-0.05	0.57
-19	-14	2.57	15	0.06	0.44

47 Tab. 3 - T_{low} subsets and the $ln(N_{IC})$ vs. $ln(t_{MP})$ correlations

^a The Pearson correlation coefficient for the regression of $ln(N_{IC})$ versus $ln(t_{MP})$

^bLevel of significance, values of this parameter greater than p = 0.05 indicate an insignificant correlation