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1. Estimating a state vector through sequentially applying (Bayesian) statistical meth-
ods is a promising approach to exploit the information content of observations with
different constraint characteristics. The paper, here, combines direct flux measure-
ments with atmospheric concentration measurements. However, it is not a ‘clean’ case
since state vector of the first step are process parameters (from which surface fluxes
are calculated), while the state vector of the second step are surface fluxes. Would
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it be worthwhile to shortly discuss the theoretical, statistical background of sequen-
tial estimates? Response: The sequential Bayesian method (also known as recursive
Bayesian estimation) is a widely used approach that updates probability density func-
tion of a target variable (in this case is global terrestrial net ecosystem production)
by sequentially assimilating multiple datasets (in this case are AmeriFlux NEP and
atmospheric CO2 concentration) (Figure 1). One of the most significant advantages
of sequential Bayesian method is that as new data set emerges we simply apply the
Bayesian method one more time to the latest estimate of the target variable, without
starting over the entire data assimilation procedure. In our study, the first step is to
use AmeriFlux NEP measurements to update global terrestrial NEP (NEP1) with TEM
model. The second step uses both flask and satellite measurements of atmospheric
CO2 concentration to update NEP1 to NEP2 using transport chemistry model GEOS-
Chem. The TEM model plays a role in scaling up in situ level AmeriFlux NEP to the
globe at a 0.5 by 0.5 degree resolution. Please note that, the global terrestrial NEP
(NEP1) is constrained through constraining TEM model parameters in step 1.

2. One of the major advantages of sequential estimates is that the second step can
identify its constraint matrix with the a posteriori covariance matrix derived from the
first step. The paper, however, does not use the full covariance matrix but only the
variances. Please comment on how your approach is actually different from just us-
ing a better a priori state vector for the top-down approach. Response: A better prior
state vector is critically important for the success of top-down CO2 inversion. However,
there does not exist large-scale measurements of such prior state (terrestrial ecosys-
tem NEP). Thereby, it is a common practice to use ecosystem models to estimate the
prior state vector. To date, most of top-down CO2 inversion studies relied on prescribed
prior state vector that was estimated by an unconstrained model. For example, CO2
inversion of 16 transport models in The Atmospheric Tracer Transport Model Intercom-
parison Project (TransCom) used prior surface flux provided by CASA model, without
any efforts on constraining the CASA model (Gurney et al., 2002). Similarly, Carbon-
Tracker CO2 inversion used prior surface flux from a neutral biosphere run of CASA
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model (Peter et al., 2007). One exception is the carbon cycle data assimilation sys-
tem (CCDAS) (Rayner et al., 2005; Kaminski et al., 2013). They constrained a simple
carbon model with remote sensing data of the fraction of Absorbed Photosynthetically
Active Radition (fPAR). Then, they used the constrained model to generate the prior
state vector for their top-down CO2 inverse modeling. We did not directly use prior
state vectors from previous studies, because we believe they are not always reliable
and safe to use (as is demonstrated in this study, the default CASA model derived prior
state vector is not reliable). Following the efforts of CCDAS, we tried to obtain a better
prior state estimate for our top-down inversion by using a more sophisticated ecosys-
tem model (carbon-nitrogen fully coupled model rather than a simple carbon model)
and high precision AmeriFlux surface flux measurements (more reliable than satellite
derived fPAR). The major difference between our approach and using prior state in
other studies is that the prior state from our approach is well constrained with high
precision data. We agree that our estimation of the prior state vector does not contain
covariance information. We argue that it has a minimum effect on our posterior estima-
tion, since the surface flux spatial covariance are ignorable at the scale of 400∼500 km
(Chevallier et al., 2012). Given that our CO2 inversion is conducted at 4 by 5 degree
resolution (roughly 400 x 500 km), the bias from prior surface flux covariance ignorance
is small.

3. The state vector of the top-down approach only includes terrestrial ecosystem fluxes
(p. 22597, l.18; Figure 1). I would expect that atmospheric concentration measure-
ments also exhibit some (albeit limited) sensitivity to ocean fluxes. Ocean fluxes are
imposed. How sensitive are the estimated biosphere fluxes to ocean fluxes being po-
tentially different from the imposed values? Response: Ocean acts as an important
carbon sink, currently absorbing roughly 2 Pg C year-1 (Le Quere 2009). The reasons
why we prescribed ocean fluxes rather than optimized them are two-fold. Firstly, CO2
concentration signal in the atmosphere is primarily regulated by terrestrial ecosystem
carbon budget (controlling the seasonality) and anthropogenic CO2 emission (control-
ling the inter-annual variability) (Le Quere et al., 2013). Previous studies also showed
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that changes of ocean CO2 fluxes only contributed to less than 4% of the variability
of atmospheric CO2 concentration (Piao et al., 2008). Secondly, the oceanic carbon
fluxes used in study is highly reliable, since they are derived upon about 3 million mea-
surements of surface measurements (Takahashi et al., 2009). Other estimates based
ocean general circulation model with parameterized biogeochemistry is consistent with
Takahashi’s estimate (Wanninkhof et al., 2013).

4. What is the assumed observation error for the atmospheric CO2 measurements?
Does it include a representation error? Response: GLOBALVIEW-CO2 observation er-
rors are from data product (GLOBALVIEW-CO2 2013). The errors are roughly 0.5 ppm
including the instrumental error and errors from the GLOBALVIEW data fitting proce-
dure. The representation error (inability of transport model to represent the observed
site location) is not considered. A previous study implied that the representation error
is about 0.3 ppm (Baker et al., 2006). AIRS CO2 errors are from AIRS CO2 level-2
dataset version 5 (Susskind et al., 2011). A two (two adjacent FOVs) by two (two ad-
jacent scan lines) array of AIRS CO2 retrieval is used to determine the final retrieval of
CO2 concentration. The error represents the spatial coherence over the 2 by 2 array.
We only used the level 2 “standard product”, in which the errors are less than 2 ppm.
The CO2 retrievals with errors larger than 2 ppm are placed in level 2 “support prod-
uct”, which was not used. However, the representation error is not considered in the
AIRS CO2 level 2 products.

5. The validation of the a posteriori concentration fields and the respective discus-
sion should be refined. So far, it is mostly limited to comparing monthly averages at
6 surface sites plus the zonally averaged CONTRAIL data. How are the inland sites
selected? Are they seasonally affected by small-scale meteorological variability or are
they really representative of continental regions? Showing time series of model mea-
surement comparisons and the assumed measurement errors might help. Response:
The validation of our posterior estimates is based on: (1) independent CO2 inver-
sions from multiple transport models inter-comparison studies; (2) GLOBALVIEW-CO2
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inland sites; and (3) CONTRAIL CO2 data. Please note that our bottom-up NEP es-
timates are at a monthly step. Our CO2 inversion could at best capture the change
of atmospheric CO2 signal at a monthly time scale (but not daily or diurnal varia-
tions). Therefore, we compared the simulated and observed monthly averaged CO2
concentrations. As is suggested by the reviewer, we modified the scatter plot to be
showing the time series of GC-TEM, GC-CASA posterior CO2 concentrations against
GLOBALVIEW-CO2 observations. Figure 2 implied that GC-TEM posterior is better
than GC-CASA in terms of magnitude and seasonal variability. Six inland sites were
selected for validation purposes. We agree with the reviewer that fine-scale meteoro-
logical variability will affect the observed CO2 concentrations. However, we argue that
as we averaged the CO2 data to a monthly time scale, most of the fine-scale variability
had been eliminated.

6. Table 4: I would prefer seeing a bar chart instead of a table Response: In order to
clearly show the differences among different CO2 inversion setups, we added a new
figure in the revised manuscript to show the difference between our two CO2 inversions
(GC-TEM and GC-CASA) and CarboScope CO2 inversions (Figure 3).

REFERENCE Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning,
A. S., ... & Zhu, Z. (2006). TransCom 3 inversion intercomparison: Impact of transport
model errors on the interannual variability of regional CO2 fluxes, 1988–2003.Global
Biogeochemical Cycles, 20(1). Chevallier, F., Wang, T., Ciais, P., Maignan, F., Bocquet,
M., Altaf Arain, M., ... & Moors, E. J. (2012). What eddyâĂŘcovariance measure-
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Fig. 1. Schematic representation of sequential Bayesian approach applied in this study. Rect-
angles are variables that are optimized. Ellipsoids are data
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Fig. 2. Posterior monthly CO2 concentration in 2003 from GC-TEM (blue) and GC-CASA (red)
inversions, evaluated at GLOBALVIEW-CO2 (green) inland sites from different continents.
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Fig. 3. Posterior NEP from GC-TEM, GC-CASA and CarboScope multi-model ensembles.
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