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Abstract

The space and time variabilities of methane {Ctdtal column and upper tropospheric mixing
ratios are analyzed above the Mediterranean Ba&dB) (@s part of the Chemical and Aerosol
Mediterranean Experiment (ChArMEx) programme. Sirtbe analysis of the mid-to-upper
tropospheric ClH distribution from spaceborne sensors and modgutsitis challenging, we have
adopted a climatological approach and have useda wvariety of datasets. We have combined
spaceborne measurements from the Thermal And Méared Sensor for carbon Observations-
Fourier Transform Spectrometer (TANSO-FTS) instrotmen the Greenhouse gases Observing
SATellite (GOSAT) satellite, the Atmospheric InfradR Spectrometer (AIRS) on the AURA
platform and the Infrared Atmospheric Sounder FRet@meter (IASI) instrument aboard the
MetOp-A platform with model results from the Cheali@ransport Model (CTM) MOCAGE, and
the Chemical Climate Models (CCMs) CNRM-AOCCM andDz-OR-INCA (according to
different emission scenarios). In order to minimizgstematic errors in the spaceborne
measurements, we have only considered maritimdspower the MB. The period of interest spans
from 2008 to 2011 considering satellite and MOCAdzEa and, regarding the CCMs, from 2001 to
2010. Although CHis a long-lived tracer with lifetime of ~12 yeaaad is supposed to be well
mixed in the troposphere, an East-West gradier@H is observed and modelled in the mid-to-
upper troposphere with a maximum in the WesterniMBIl seasons except in summer when,CH
accumulates above the Eastern MB. The peak-to-peaglitude of the EasWest seasonal
variation in CH above the MB in the upper troposphere (300 hPakek but almost twice greater
in the satellite measurements (~25 ppbv) thanemtiodel data (~15 ppbv). The maximum of,CH
in summer above the Eastern MB can be explained sgeries of dynamical processes only
occurring in summer. The Asian monsoon traps andtumigh amounts of CiHto the upper
troposphere where they build up. The Asian Monsanticyclone redistributes these elevated,CH

amounts towards North Africa and Middle East taliy reach and descent in the Eastern MB. In
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49 the lower troposphere, the GMariability is mainly driven by the local sourcekemission in the
50 vicinity of the MB.
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1. Introduction

During the last decades, the impact and the ra@é dbmospheric trace gases play in climate
and air pollution changes have been the sourceapbmeoncerns. In Intergovernmental Panel on
Climate Change (IPCC, 2007), the ongoing changesuofatmosphere (composition, climate, air
pollution, radiation) are reported. Among traceggasmethane (ChH, carbon dioxide (C¢), and
nitrous oxide (MO) are predominant constituents which play an ingdrrole in atmospheric
changes because they are strongly influenced byahuewtivities. In the frame of predicting the
future of the Earth’s climate (IPCC, 2007), knovgedf today’'s CQ CH, and NO sources and
sinks, spatial distribution and time variabilityassential and this study will be dedicated to,.CH

The net positive radiative impact of the humanwatgtion climate, starting from 1750, has been
evaluated to 1.6 [+0.6 to +2.4] Wn{IPCC, 2007). In the atmosphere, these long-liyesnhouse
gases, e.g., CHN,O and CQ, account for 2.63 + 0.26 Wfmand are the predominant radiative
terms. CQ, with tropospheric lifetime of 30-95 years, hasdiative efficiency of 1.410° Wm'
ppb?, but CH, and NO, with tropospheric lifetimes of 12 and 114 yeamspectively, are
intensely more efficient by 3<10* and 3.0310° Wmppb?, respectively. IPCC (2007) estimated
CH, and NO to be responsible of 0.48 [+0.43 to 0.53] and §+D.14 to 0.18] W, respectively
in the radiative forcing changes.

The Mediterranean Basin (MB) is located in a trimisal zone between subtropical and mid-
latitudes regimes (Lionello, 2012), highly sengtito climate change. To illustrate, global (or
regional) model simulations tend to show a pronedndecrease in precipitation (2000-2100),
especially in the warm season (Giorgi and Lione#608), and Lionello (2012) reported on an
observed summer West-East asymmetry in precipitabver the MB (1979-2002). In terms of
anthropogenic pollution sources, the MB is at tbafluence of three continents, Europe, Africa
and Asia. The impact of these distinct continestalrces such as from manufactures and densely
populated coastal areas (e.g. Marseille, Barceldkthgns, Tunis, Cairo, Genoa or Roma)

(Kanakidou et al, 2011; Im and Kanakidou, 2012fooest fires (e.g. South East of France, Corsica,



77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

5

Portugal, Greece) (Cristofanelli et al., 2013)ti8 sot perfectly understood, especially on the O
and CO budgets in which GHinterplays through complex reactions with nitrogeades (NOX)
(Dentener et al., 2005). Besides these regionatesupolluted air masses may originate from Asia
during the summer monsoon period (Randel and P&®6), Africa through the Hadley cell and
upper level anticyclone (Ziv et al., 2004, Liu &t @009) and North America through the westerlies
(Christoudias et al, 2012). The Expérience sur Bdar Contraindre les Modéles de Pollution
atmosphérique et de Transport d’Emission (ESCOMPdahpaign (June-July 2001) aimed to
characterize the summer time pollution events m vfctinity of Marseille, France (Cros et al.,
2004). The goal of the Mediterranean Intensive @xidStudy (MINOS) campaign (July-August
2001) in the eastern Mediterranean was to measurg-range transport of air pollution and
aerosols from South East Asia and Europe towareldiB (Ladstatter-Weilienmayer et al.,, 2003;
Scheeren et al., 2003). They have demonstratethtpertance of coastal and synoptic transport
mechanisms on the variability of constituents batevnot adapted to assess the budgets,o£O
and long-lived species.

The ChArMEx (Chemistry and Aerosol Mediterranean pé&mment) Project
(http://charmex.lsce.ipsl.fr/) is the atmospheremmistry component of a large multidisciplinary
Mediterranean regional program proposed and comdubly France. It intends, among other
objectives, to quantify processes explaining thrapiral evolution of chemical compounds and
aerosols in the troposphere above the MediterraBaam (MB). To achieve these goals over the
first phase (2010-2015), the program uses data fsatellites, ground-based, sondes, aircraft,
models and assimilation in order to evaluate 1)vémeabilities and recent trends of several species
(e.g. Q, CO, NO) and aerosols, 2) the synoptic-scale circulati@t controls their transport, and
3) the future chemical climate over the MB by 2100.

The past/present nadir-viewing instruments abkctaally measure CHn the troposphere have

been/are:
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1) the Interferometric Monitor for Greenhouse ga#eKks) instrument operating in the Thermal
Infrared (TIR) aboard the ADvanced Earth Obsenfagellite (ADEOS-1) platform in 1996-1997
(Clerbaux et al., 1998);

2) the near-IR (NIR) Scanning Imaging Absorptiore@pometer for Atmospheric Chartography
(SCIAMACHY) aboard the ENVIronment SATellite (ENVAS) platform (Buchwitz et al., 2000)
from 2002 to 2012,

3) the Tropospheric Emission Spectrometer (TESjadjpry in the TIR aboard the Aura platform
(Worden et al., 2012) from 2004 to date;

4) the Thermal And Near infrared Sensor for carlibservations — Fourier Transform
Spectrometer (TANSO-FTS) on the Greenhouse gaseer@bg SATellite (GOSAT) platform
(Yokota et al., 2009) both in the Short-Wave InfedRSWIR) and in the TIR from 2008 to date;

5) the Atmospheric InfraRed Sounder (AIRS) abodrel Aqua platform (Xiong et al., 2008)
measuring in the TIR from 2004 to date;

6) the Infrared Atmospheric Sounding Interferomgl&SI) instrument aboard the MetOp-A
and -B platforms (Hilton et al., 2012) operatingtite TIR from 2008 to date, and aboard the
MetOp-C platform expected to be launched in 2016.

Table 1 synthesizes the above mentioned informadiwh shows the nadir-viewing instrument
capability to measure tropospheric £Hhe sensitivity of the TIR to measure £id rather weak
except on areas showing a high thermal contrasiteasurface (vertical gradient of temperature
between the surface and the lowermost planetarpdary layer) as the ones encountered over the
tropics (Crevoisier et al., 2013) contrarily to thmeasurements performed in the SWIR (Yoshida et
al., 2013). In the NIR, analyses are essentiakyricted to areas over land because the retrievals
over sea are considered less reliable due to flawysurface albedo of water, which results in low
signals and thus in low signal-to-noise ratios (@ealias et al., 2011).

In parallel to the satellite data, models have #leen used in order to assess the variability,

sources and sinks, and future trends of the loreglspecies. Examples are: £¢inission and flux
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estimates at global scales (Bergamaschi et al.9;2BOusquet et al., 2011), future evolution of
long-lived species included in the internationalméspheric Chemistry and Climate Model
Intercomparison Project (ACCMIP) involving more tha0 different models (Lamarque et al.,
2013).

Numerous studies have examined the variabilitieatwiospheric compounds above the MB to
highlight the processes (sources and sinks) ageddiy coupling surface, balloon-borne, airborne,
spaceborne measurements with models results atehif scales, from mesoscales to global scales.
Constituents are for instance aerosols (Nabat.e?@l2), radionuclides (Masson et al., 2010),
ozone (Liu et al., 2009), carbon monoxide (Drorakt 2012). From these references, we note the
impact of 1) the different meteorological regimesl &) the seasonal variabilities of the emissions
of atmospheric constituents, e.g. CO emitted fromsfin summers, produces a seasonal variation
in all the constituents. It also produces a lordjital gradient between the Eastern and the Western
MB, together with a seasonal variation in the geatli For example, European anthropogenic
emissions were found to significantly influence tbastern MB surface CO concentrations, while
European biomass burning emissions were found W@ lwaly a small impact on Eastern MB
surface CO concentrations (Drori et al.,, 2012). alotolumns of CH as measured by
SCIAMACHY over land and the Eastern Mediterraneanmf 2003 to 2004 show latitudinal and
seasonal variations that cannot be attributed lwamo eruptions (Georgoulias et al., 2011).

The aim of the present paper is to assess thebidyieof CH,4 in the mid-to-upper troposphere
between the East and the West of the MediterraBeaim and to attribute the seasonal variability
of the East-West gradient to different processdmtt, synoptic and global scales depending on the
season and the altitude layer considered. We willysin detail the impact of the summer-time
long-range transport of GHrom Asia to the Eastern MB through the Asian Mmovs Anticyclone.
Since we have already underlined that measuremedt naodeling of the tropospheric GH
distribution are challenging, we will adopt a climiagical approach and will use a wide variety of

space-borne measurements and model outputs ty tleifthey give consistent results.
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154 We have collected the maximum of information avwéafrom satellite measurements and
155 model results in order to study the variabilitytadpospheric Cll over the MB and to assess the
156 processes driving this variability. We have thudtlaiwide dataset combining all these pieces of
157 information keeping in mind that 1) it is out ofetlscope of the present paper to perform a
158 validation of satellite products, 2) all these data have their own strengths and weaknesses,)and 3
159 the more data we gather, the better the statigtesnd furthermore, the dataset consistency can be
160 Dbetter assessed. Regarding space-borne measuremeifitave considered tropospheric columns of
161 CHy from IASI over the period 2008-2011, and uppeptgpheric CH profiles from AIRS and
162 GOSAT over the periods 2008-2011 and March-Noven®&t0, respectively. Regarding the
163 models, we have considered three types of chemrodkls to calculate CHariability in the mid-

164 to-upper troposphere. The MOCAGE (Josse et al.4R@@hemical transport model (CTM),
165 constrained by the ARPEGE meteorological analyskeuld a priori give Cklvertical profiles
166 more realistic than climate models over a specifiedod despite the fact that, due to the long
167 lifetime of CH,, the short spin-up period (3 months vs. 12 yedréifetime) may impact its
168 distribution. On the other hand, chemical climateodels (CCMs) as LMDz-OR-INCA
169 (Hauglustaine et al., 2004; Szopa et al., 2013nftbe Laboratoire des Sciences du Climat et de
170 I'Environnement (LSCE) and CNRM-AOCCM (Huszar et, &013) from Météo-France are run
171 over a much longer period (greater than 10 yeaim) MOCAGE and should be more adapted to
172 study the climatological variability of CHbver the MB. The LMDz-OR-INCA is mainly dedicated
173 to the tropospheric CHprofiles since it takes into account the majorfare processes that can
174 drive the CH variability in the entire troposphere dependinglominventory scenarios (see section
175 2.2.3). The CNRM-AOCCM is mainly dedicated to thpper tropospheric-stratospheric £H
176 profiles because it has a detailed descriptionhef dtratosphere and should better describe the
177 processes impacting the ¢Hariability in the upper troposphere-lower stratosre. The 3 models
178 are thus complementary in the study of the, @&tiability in the mid-to-upper troposphere oviee t

179 MB.
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The manuscript is structured as follow. In sect®nwe briefly present the spaceborne
instruments and datasets involved in this studyneig MetOp-A/IASI, AQUA/AIRS and
GOSAT/TANSO together with the models, namely MOCAGERRM-AOCCM and LMDz-OR-
INCA. The meteorology and climatology of Gkhferred from the different datasets above the MB
are discussed in section 3. The Q#ariability both in the East and in the West oé thiB is
presented in section 4. A detailed discussion ef different processes involved in the £H
variability above the MB is presented in sectionrislerlining the impact of the Asian Monsoon
Anticyclone to the distribution of the mid-to-upp@H, in the Eastern MB. Finally, section 6

concludes the paper.

2. Datasets

2.1. Satellite data

Our study analyses Ghheasurements from three different spaceborne TilRags (IASI, AIRS
and GOSAT) and consider only the pixels over thalikderanean Sea due to the larger systematic
biases over land. The sensitivity of TIR retrievalsongly depends on surface parameters:
emissivity, temperature and thermal contrast (Glamy et al., 2011). The amplitude of diurnal
cycle, and its spatial variability, is larger ovand than over the sea. Sea surface temperature
exhibits a diurnal amplitude weaker than land swefdemperature. Therefore, the vertical
sensitivity of the TIR measurements, defined asftiflenvidth at half-maximum of the averaging
kernels from the optimal estimation method (Rodg2@©0), over the sea is consistent during day
and night and concentrated in the mid-troposph@seer the land, the vertical sensitivity is, on
average, lower in the middle troposphere duringdhg than during the night, depending on the
actual value of the thermal contrast at the surface

Infrared sounders measurement errors can be rititgs, e.g. up to 10% or more for a single
CH; total column IASI pixel (Turquety et al., 2004).hds by applying temporal

(monthly/seasonally) and geographical averagejdimg more than a thousand measurements, we
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can lower the random error to less than 1%. Sydteragors, if any, will of course be unchanged.
For that reason, our analysis relies on a diffeaémhethod to highlight the CHvariability by

considering the difference between the Eastern EBE) and the Western MB (WMB), assuming
that the systematic errors are of the same orderagiitude (although partially unknown) within

each geographical box that will be defined in sec8.

2.1.1. ThelAS data

IASI, on board of MetOp-A, was launched in 2006 te European Organisation for the
Exploitation of Meteorological Satellites (EUMETSATMore specifications on platform and
instrument can be found on http://smsc.cnes.fr/IA&hd http://www.eumetsat.int/Home/
Main/Satellites/Metop/Instruments/SP_201005315108Y4 The retrieval algorithm for CHis
based on the neural network theory adapted fronguaty et al. (2004). The retrieval method is
embedded in the operational IASI Level 2 producbcpssing facility at EUMETSAT
(EUMETSAT, 2004; Schlussel et al., 2005, Augustakt 2012). From the spectral bandwidth
1230-1347 cnl, the estimated accuracy of the £tdtal column is about 2% and the estimated
precision is of the order of 10% (Turquety et 2004). The true accuracy cannot be stated without
reference to independent means of comparison, wdrielmot available so far. Consequently, we
consider a random Gaussian error of ~10% associaiideach single pixel of retrieved total
column of CH. At mid-latitudes, the vertical sensitivity of thaetal column CH is peaking in the
mid-troposphere at ~8 km from 4 to 14 km (Razawalet2009) and, in the tropics, at ~10 km from
5 to 15 km. Geophysical level 2 pre-operationahdat provided by EUMETSAT (from version 4
to version 5 from 2008 to 2011). The groducts, not yet validated, are only experimental
products, routinely generated for demonstration ewaluation. Note, the number of daily total
columns of CH averaged in a 1°x1° bin is highly variable becawdecloud-free IASI
considerations. The monthly-averaged IASI dataiwidach of the East and West areas defined in

section 3 represent an average of 30000-70000spikegdending on the month considered.
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2.1.2. The AIRSdata

AIRS is onboard the space platftorm NASA EOS Aquaunthed in 2002
(http://airs.jpl.nasa.gov/). AIRS measures apprataty 200 channels in the 7.¢6n absorption
band of CH, of which 71 channels are used to retrieve,Gkldetailed description of the retrieval
algorithm can be found in Susskind et al. (20119te\the averaging kernels provided by NASA
will be considered further (section 4.2) in orderdegrade the vertical resolution of the model
outputs. At mid-latitudes, the most sensitive lagBAIRS channels to CHis at 300 hPa (~9 km)
with a vertical sensitivity from 700 to 100 hPa ¢Kg et al., 2008), and, in the tropics, at 200 hPa
from 500 to 70 hPa consistently with the IASI TIRasurement sensitivity. Around 200-300 hPa,
considering the version V5 used in the presentyaiga(Xiong et al., 2008), the precision of AIRS
CH, is estimated to be 30 ppbv (1.7%) and validatismgi in situ aircraft measurements shows
that the accuracy of the retrieved £l 0.5-1.6%. Daily maritime profiles of GHave been
averaged in 1°x1° bins over the MB. The monthlyraged AIRS data within each of the East and
West areas defined in section 3 represent an azefa@000-10000 vertical profiles depending on

the month considered.

2.1.3. The GOSAT data

The Japanese Aerospace Exploration agency (JAXKclzed the GOSAT platform in 2009,
with the TANSO-FTS spectrometer, a nadir-viewingtinment designed for greenhouse gases
research, C®and CH, operating in the TIR and SWIR domains [0.7-14n3 (Kuze et al., 2009).
More specifications on platform and instrument banfound on http://www.gosat.nies.go.jp/. The
sensitivity of the SWIR Climeasurements at 1.6im (Yokota et al., 2009) at mid-latitudes over
the sea is very weak, thus few meaningful pixelsicdave been retrieved preventing the use of
such information in our analysis. The TIR measumsdrom Band 4 (5.5-4.3im) provide

vertical profiles of CH along 7 vertical levels (Imasu et al., 2007) bingghe optimal estimation
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method with a vertical sensitivity in the tropiasgking at 10 km (higher than at mid-latitudes) from
5 to 15 km (Saitoh et al., 2012), consistently witle vertical sensitivity of IASI (Razavi et al.,
2009) and AIRS (Xiong et al., 2008) in the tropiésselection by using Degree of Freedom of
Signal (DFS) is applied for the data having DFSugal larger than 0.6 for GHTIR data (L2
Version 0.10) were only available from 16 March2#% November 2010 from the GOSAT User
Interface Gateway at the time the analysis has Ipeeformed. These retrievals provide vertical
profiles of mixing ratio of Chl from 1000 to 100 hPa. Comparisons with aircrafasseements
show that the average difference between the GOGAR) and aircraft CH values (TIR -
aircraft) is =5 ppbv, and thesIstandard deviation is 15 ppbv (Saitoh et al., 20D2ily maritime
profiles of CH, have been averaged in 1°x1° bins over the MB.nibethly-averaged GOSAT data
within each of the East and West areas defineddtian 3 represent an average of 100-300 vertical

profiles depending on the month considered, na@@I80 times less than for AIRS.

2.2. The model data
2.2.1. The MOCAGE data

MOCAGE (MOdele de Chimie Atmosphérique a Grandeeieh (Peuch et al., 1999) is a 3D
CTM which covers the planetary boundary layer, fitee troposphere, and the stratosphere for
different applications such as: operational chemieaather forecasting (Dufour et al., 2005);
tropospheric and stratospheric research studiesey@ian et al., 2010; Ricaud et al., 2009); and
data assimilation research (EI Amraoui et al., 2@l@eyman et al., 2011). In our study, MOCAGE
is forced dynamically by wind and temperature fefdom the analyses of the ARPEGE model
(Courtier et al., 1991). The MOCAGE horizontal desion is 2°x2° and the model uses a semi-
Lagrangian transport scheme. It includes 47 lefrelsn the surface up to 5 hPa with a vertical
resolution of about 800 m around the tropopaus@;8d® m in the troposphere and 40-400 m in the
7 levels of the boundary layer. Chemistry used witMOCAGE is a combination of tropospheric

(RACM described in Stockwell et al., 1997) andtsispheric (REPROBUS described in Lefévre et
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al., 1994) chemical schemes. Initial chemical cbods are taken from climatological fields over a
spin-up period of 3 months allowing the model tacily bring chemical fields to realistic spatial
distributions. Surface emissions prescribed in M@EAare based upon yearly- or monthly-
averaged climatologies. More precisely, the,GHrface emissions are monthly averages and split
into anthropogenic sources taken from the Intergowental Panel on Climate Change (IPCC)
(Dentener et al., 2005), biomass burning (van def\ateal., 2003) and biogenic sources (Michou
and Peuch, 2002). The ¢Klimatologies are representative of year 200G ftwtal emission rate of

534 Tg(CH) yr ™.

2.2.2. The CNRM-AOCCM data

The atmospheric model embedded in CNRM-AOCCM is@néd in Huszar et al. (2013)
based on the Atmosphere-Ocean General CirculatiodeM(AOGCM) CNRM-CM5 described in
Voldoire et al. (2012). The main difference betw&MNRM-CM5 and CNRM-AOCCM resides in
the “online” coupling with a stratospheric chemystrhich is based on the REPROBUS scheme.
This scheme is applied on the whole vertical coluaxtept between the surface and the 560 hPa
level where long-lived chemical species are relaxadrds global average surface value following
the A1B scenario from IPCC (2007). The A1B scenani@nly describes a future world of very
rapid economic growth, global population that peaksid-century and declines thereafter, and the
rapid introduction of new and more efficient teclugies. Convection of species is not considered.
In this chemistry version, the 3-D distributiontbe seven absorbing gases@H CO,, O3, CH,,
N.O, CFC11, and CFC12) is then provided by the cheynimodule of CNRM-AOCCM and
interacts with the radiative calculations. Moreaistcan be found in Michou et al. (2011). In the
present version, there are about 50 chemical speare the horizontal resolution is 2.8°x2.8°.
Distribution of atmospheric constituents at thefare are zonally symmetric below 500 hPa (Fig.

10) and greenhouse gases follow the A1B scenariatmospheric chemistry and climate for the
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period of 1940-2100. In the present analysis, fiig model, we only consider the climatological

period 2001-2010.

2.2.3. The LMDz-OR-INCA data

The INteraction between Chemistry and Aerosol (INQAodel is used to simulate the
distribution of aerosols and gaseous reactive epedn the troposphere. In the present
configuration, the model includes 19 hybrid veltieaels extending up to 4 hPa, and a horizontal
resolution of 1.9° in latitude and 3.75° in longieu INCA is coupled online to the LMDz General
Circulation Model (GCM) to account, with differedegrees of complexity, for climate chemistry
interactions. In the simulations described herePDzMs coupled with the ORCHIDEE (Organizing
Carbon and Hydrology in Dynamic Ecosystems) dynagiobal vegetation model (Krinner et al.,
2005) for soillatmosphere exchanges of water aretggn(Hourdin et al.,, 2006), but not for
biogenic CQ or Volatile Organic Compounds (VOCs) fluxes. Tibge, these three models form
the LMDz-OR-INCA model. Fundamentals for the gasag#h chemistry are presented in
Hauglustaine et al. (2004) and first results with full tropospheric gaseous chemical scheme are
presented by Folberth et al. (2006). The modelunhes 223 homogeneous chemical reactions, 43
photolytic reactions and 6 heterogeneous reaciriading non-methane hydrocarbon oxidation
pathways and aerosol formation. The LMDz-OR-INC#ulation covers four future projections of
emissions for the 2000-2100 period. The Represeat@oncentration Pathways (RCP) emissions
are used (Lamarque et al., 2011). They corresponehtission trajectories compatible with the
evolution of radiative forcing equivalent in 2100 2.6, 4.5, 6.0 and 8.5 Whrelative to pre-
industrial values (labelled therein after RCP 2.6, 6.0 and 8.5). In the present analysis, fa thi

model, we only consider the climatological peri@d2-2010.
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3. Atmospheric conditions controlling the spatial dstribution of methane

Figure 1 shows the CHields calculated by MOCAGE for summer (June-JAlbgust, JJA)
2009 over the MB at 850, 500 and 200 hPa, supesspwvith the wind fields from the ARPEGE
analyses averaged over the same period. Figuree@emis the CHvertical distribution as
calculated by MOCAGE in summer 2009 along an EasesMaxis above the MB. Similarly to
Figures 1-2, the Figures 3-4 present, in winterc@eber-January-February, DJF) 2009, the, CH
fields as calculated by MOCAGE over the MB at 8500 and 200 hPa, and along an East-West
axis, respectively. On Figures 2 and 4, the MOCAGH fields are superimposed with 1) the wind
fields from ARPEGE analyses and 2) the cold paiapdpause pressure fields provided by the
National Centers for Environmental Prediction (N@/BRtional Center for Atmospheric Research
(NCAR) reanalyses, all these data being averagedtbe same period.

Considering the meteorology of the MB, we obsewe different regimes. 1) In winter (Fig. 3),
and more generally from autumn to spring (not shpvirom the boundary layer to the upper
troposphere, air masses are essentially coming &itimer Europe or Eastern Atlantic Ocean. 2) In
summer (Fig. 1), the meteorology of EMB and WMBhrisre complex and depends on the altitude
considered.

In the planetary boundary layer in summer (Figbditom), cells develop in the WMB, and air
masses come from Europe, Northern Africa and Basddlantic Ocean, whilst in the EMB, air
masses are originated from four major source ragionlong fetch of maritime European air
masses from NW throughout the whole year, ii) Na#st continental flow originating in south
Eastern Europe (Etesian winds) in summer, iii) Ba#st flow from the Arabian Peninsula
occurring in the fall, and iv) South-west flow atpthe North-African coast most frequent during
late winter and spring (Dayan, 1986). In the midudéposphere (Figs. 1 and 3, middle), whatever
the season, air masses are essentially comingtfierwest for both parts of the basin. In summer
(Fig. 1, top), upper tropospheric air masses inilMB are essentially coming from the West, but

in the EMB, they are also originated from Northdfnica and the Arabic Peninsula (Ziv et al.,
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2004; Liu et al., 2009), and even farther awaymfrasia (we will discuss this point in sections 4
and 5). Note that, in summer, the EMB and WMB als affected by the location of the
descending branch of the Hadley cell (Fig. 2). Eh@smmer climatologies are all consistent with
Millan et al. (1997), Lelieveld et al. (2002), Z&t al. (2004) and Schicker et al. (2010).
Seasonally-averaged wind fields from ARPEGE analystsow two different regimes in the
surface pressure values during the summer (Figottom) and the winter (Fig. 3, bottom) periods.
During the summer in the WMB, there is a higherspuge regime than in the EMB (Fig. 1,
bottom). In the lowermost troposphere (850 hPa)armiicyclonic cell develops in the WMB that
has an impact on the distribution of £€bly producing a local minimum (Fig. 1, bottom). &0
hPa, air masses are coming from Europe, North Afrmd the Atlantic Ocean. The ¢H
distribution shows a maximum over Europe, constbtenmith the strongest emission zones (Fig.
10), and a strong minimum over North Africa. In tméd-troposphere (500 hPa), air masses are
coming from Europe, and the Atlantic Ocean (Figmigddle). An East-West gradient is detected
with more CH on the EMB. In the upper troposphere (200 hPaj.(Ei top), air masses are
originated from the Atlantic Ocean (even North Ama&y and from North Africa and Asia
producing over the MB an obvious North-South gratiith more CH in the South (upper
troposphere) than in the North (lower stratosphatejouted to the impact of long-range transport
of pollutants (as discussed in section 5). A systersubsidence is present over the MB (Fig. 2)
whatever the longitudinal bin considered due toghesence of semi-permanent subtropical high
pressure systems which are centred over the tlogeserts. More precisely, in the WMB, the
descent is caused by the presence of a high peesslir(Fig. 1, bottom) whilst, in the EMB, it is
coming from the Hadley cell that is further disgédcover the Northern Africa producing a
downward branch in the area 30°N-35°N. The tropspauoves up from ~200 hPa in the WMB to
~175 hPa in the EMB (Fig. 2). The GHilistribution shows 1) an obvious transition at the

tropopause and 2) a minimum in the West and a maxirm the East in the low troposphere
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accentuated by the systematic descent in the BagtBrthat brings Chtenriched air masses from
the upper troposphere to the mid-to-low troposphere

In winter, the meteorological condition of the M8 much more homogeneous with westerlies
blowing whatever the pressure considered from 85B00 hPa (Figs. 3-4). North-South (and to a
lesser extent East-West) gradients in,Cidn also be detected (Fig. 3) associated to toa lo
sources of emission over Europe at 850 hPa andetstratosphere/troposphere transition at 200
hPa. The 500-hPa layer is a transition region betwhe low and the upper troposphere with
minima of CH, over North Africa and a cell of high Ghh the WMB (Fig. 3, middle). Contrarily to
summer, since the temperature of the Mediterrarg=a is greater than that of the surrounding
continents, a systematic upward motion is predeigt @) whatever the longitudinal bin considered.
The Hadley cell is further displaced to the Soudtitade < 30°N) and its downward branch does
not affect significantly the EMB. The tropopausegsure is rather stable from the WMB to the
EMB, around 260 hPa. The GHdistribution shows minimum in the lowermost troplsre and a

maximum in the middle troposphere (Fig. 4).

4. CHgvariability

4.1. CH,4 spatial distribution of the MB

Figure 5 shows the distributions of 1) the Abtal columns from IASI over the MB averaged in
summer 2009 to compare with the MOCAGE resultanretcoincidence, and 2) the @lrixing
ratios from AIRS at 260 hPa over the MB averagedsummer 2009 to compare with the
MOCAGE results at 200 hPa in time coincidence. Weasured and modelled data are selected
only for the maritime pixels within the boxes [3648°N, 1°E-12°E] and [30°N-37°N, 26°E-37°E]
to represent the WMB and the EMB (blue squaresahdigure), respectively.

Due to its long lifetime (~12 years), GHs considered as a well-mixed species in the
troposphere. Nevertheless the patial distribution over the MB in summer (JJAY20shows

some gradients both in the East-West and the Newthith directions. Indeed, in the middle
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troposphere (inferred from the sensitivity of ti#SI total columns) and in the upper troposphere
(200-260 hPa), an East-West gradient is observéteimodel and satellite data of ~60 ppbv (~4%)
in total column and ~30-150 ppbv (~2-9%) in mixnmagio. A North-South gradient is also detected
in the MOCAGE and AIRS data but not in the IASIalaet. Therefore, there is systematically a
maximum of CH from the middle to the upper troposphere in thetB&the MB compared to the
West. In the mid-to-upper troposphere, these Easst\yradients are not originated from the,CH
sources more intense in Europe than in Northerrc@for in Middle Asia (Fig. 1) but rather from
the long-range transport of Asian-origin air massed the subsidence of air masses in the EMB
(Figs. 1-2 and detailed discussion in section 5).

Quantitatively, there is a positive bias in MOCA®E IASI of less than 30 ppbv (2%) in ¢H
total column mixing ratio. The East-West gradientonsistent between IASI and MOCAGE but
the North-South modelled gradient is not detectethe IASI data set. In the upper troposphere
(200-260 hPa), MOCAGE and AIRS GHhixing ratios are very consistent with gradientsren
accentuated in the model (~150 ppbv) than in tHeSAdlata sets (~30 ppbv). A systematic negative
bias of MOCAGE compared to AIRS of ~100 ppbv ud&® ppbv (10%) in the Northern MB is
detected. We discuss in the next section the demsig of the vertical profiles of CHneasured by

the different spaceborne sensors and calculatdd®@AGE together with the associated biases.

4.2. Vertical profiles

Figure 6 shows the vertical profiles of Cbhs measured by AIRS (750-100 hPa) and GOSAT
(1000-100 hPa) and as calculated by MOCAGE (10(D+iRa) averaged over the EMB and the
WMB depending on the four seasons: winter (DJFjingp(March-April-May, MAM), summer
(JJA) and autumn (September-October-November, SXOM). There is a good agreement to within
20-30 ppbv between AIRS and GOSAT data in the s@rtdomain 750-200 hPa. GOSAT is
systematically greater than AIRS by about 20-30vdpb pressure greater than 300 hPa, whilst, for

pressure less than 300 hPa, AIRS is systematigatigter than GOSAT by 20 ppbv degrading to
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50-200 ppbv at 100 hPa. But the shape of the atr§paceborne profiles is consistent between
AIRS and GOSAT. Separately, whatever the seasorsidered, the MOCAGE low-to-mid
tropospheric CHis low biased compared to the measured profileslb0-200 ppbv. Furthermore,
the MOCAGE vertical profiles systematically shownaximum at 300 hPa, that is not present in
any of the spaceborne measurements, and a strongpde above.

In order to assess the impact of the vertical sgngiof the spaceborne measurements to the
CH, profiles, we have applied the AIRS averaging kis;srngerived from the AIRS retrieval method
(Susskind et al., 2011) and provided by NASA focleAIRS pixel, to the profiles calculated by
MOCAGE. Note that the AIRS a priori vertical prefdl are not used in our study since we are only
interested in the vertical shape of the (Giofile and not the absolute amount of £Begrading
the vertical resolution of the MOCAGE profiles byetconvolution of averaging kernels (Fig. 6)
does show a strong impact on the vertical shagbeofCH, profiles since the strong maximum at
300 hPa is no longer present. Convolved MOCAGE, @kdfiles are now consistent with AIRS
CH, profiles whatever the season considered but @msydic low bias of ~150-200 ppbv (8-10%)
between AIRS and MOCAGE convolved profiles is olsedr This might be due to the fact that no
a priori information contributes to the convolvedofde. This is also due to the overall
underestimation of CHby global models. Indeed, due to coarse horizomsblution and large
uncertainties in the estimated surface emissiognppspheric Chllifetimes, e.g. evaluated by the
multi-model intercomparison project ACCMIP, are ab6-13% lower than observation estimates
(Naik et al., 2013; Voulgarakis et al., 2013).

Along the vertical, it is almost impossible to ate the spaceborne profiles with an external
data set since, even within the Total Carbon Colum@bserving Network
(http://www.tccon.caltech.edu/) giving accurate gmwdcise column-averaged abundances of CH
(Wunch et al., 2010) because no measurement seéaméortunately available in the vicinity of the
MB. Near the surface, the amount of £I4 about 1700-1750 ppbv for MOCAGE, and is on

average less than the CKBOSAT data by about 150-200 ppbv. At this stagés worthwhile
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464 considering surface data within the MB. The NOAAtR&ystem Research Laboratory (ESRL) In
465 Situ Methane Measurements provide some surfacen@dsurements within and/or in the vicinity
466 of the MB: Lampedusa, ltaly (35.52°N, 12.62°E, 48s§, Centro de Investigacion de la Baja
467 Atmosfera (CIBA), Spain (41.81°N, 4.93°W, 845 amahd Negev Desert, Israel (30.86°N,
468 34.78°E, 477 amsl). On average, these three sithsate (not shown) a surface £ahnual mean
469 of about 1 875 ppbv in 2010, with an annual osadtaof ~20 ppbv amplitude. Consequently, the
470 amount of surface CHn the MOCAGE run for 2010 is actually low biadgggabout 150-200 ppbv
471  (8-10%) but is very consistent with the LMDz-OR-INGurface data of ~1725-1750 ppbv over the
472 Mediterranean (Fig. 10). The slight differencesasstn the EMB and the WMB according to the
473 season and height are studied in detail in the sigxisection.

474

475 4.3. The East-West seasonal variations: measured and calcul ated differences

476 The seasonal variations of the differences in, @élds between the EMB and the WMB (i.e.,
477 EMB minus WMB, labelled as “BN”) as measured by AIRS, GOSAT and IASI and asutated
478 by LMDz-OR-INCA, CNRM-AOCCM and MOCAGE are presedtm Figure 7 when considering
479 the upper troposphere (AIRS, GOSAT, LMDz-OR-INCAda@BNRM-AOCCM at 260 and 300
480 hPa) and the middle troposphere (IASI and MOCAGHItoolumn mixing ratios). In the middle
481 and upper troposphere (Fig. 7), despite the faat $paceborne measurements and modelling of
482 CH, are challenging, the modelled and measured selasamations of EW are consistent to each
483 other showing a maximum (peak) in summer and a wighgmum in winter.

484 If we consider the time evolution of the total aolu mixing ratios (namely focussing on the
485 middle troposphere), we note that both MOCAGE a8l Ishow a maximum in summer, although
486 3 times greater in MOCAGE (~60 ppbv) than in IASI2Q ppbv) in July and August. The
487 minimum in January-February is close to zero bightlly positive in October (5-10 ppbv). The
488 much stronger maximum in August calculated by MOEAEmpared to IASI Clitotal columns

489 might be attributable to the sensitivity of spaaglgomeasurements in the middle troposphere
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whilst the MOCAGE tropospheric columns cover thérertroposphere from the surface to the top
of the model atmosphere, namely 5 hPa.

In the upper troposphere (300 hPa), the spacehbostrement datasets show a\l# maximum
in summer of ~12 ppbv in August for AIRS and aVEE wide maximum of ~5 ppbv in July-
September for GOSAT. A-BV peak of ~10 ppbv in July-August is also calcudabsyy CNRM-
AOCCM although, in the LMDz-OR-INCA dataset, the\# maximum is slightly positive in
August (=2 ppbv). The minimum in the satellite deta is observed in March-April and is negative
(from =15 to —20 ppbv) consistently with the LMDRONCA dataset whilst the CNRM-AOCCM
E-W minimum is less intense (—6 ppbv in February Apdl). The peak-to-peak amplitude of the
E-W seasonal variation is almost twice greater insdaellite measurements (~25 ppbv) than in the
model data (~15 ppbv). This represents a ~1.5-2/@f&tion of CH in the EW over the entire
year. These results suggest that the differencamplitude between satellite and model in the
seasonal evolution of E-W may be due to: a) thepasison technique, the vertical resolution of the
models is much better than the vertical resolutbrihe satellite observations; b) regarding the
processes in summer, we may have less, @Hpped in the Asian Monsoon Anticyclone
redistributed towards the EMB (see section 5) i tmodels compared to the measurements; c)
regarding the processes in winter, since westegliesmainly present over the MB in the mid-to-
upper troposphere (Figs. 3 and 8), we may haveniech and/or too rapidly CHransported over
the Mediterranean Sea to the East compared to &, \i¢ading to a too smooth E-W gradient in
the models compared to the measurements.

We have also to remind that statistically the nunmdfespaceborne measurements used in our
analysis (see section 2) is ~5 times greater inl #pared to AIRS, ~30 times greater in AIRS
compared to GOSAT. Consequently, GOSAT monthly-ayed data appear noisier than AIRS
monthly-averaged data. Note that IASI total colurares not and cannot be directly compared with
AIRS or GOSAT profiles in our analysis. Neverthslealthough IASI data are not operationally

produced, the IASI E-W seasonal variation is vespsistent with the E-W seasonal variation as
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deduced from all other datasets. The monthly randoor attributed to the-BV IASI CH, is about
0.1%, much less than the observed peak-to-pealyyeariation. We estimate that the AIRS
monthly random error attributed to the\lZ CH, is twice greater than the one calculated for IASI,
and that the GOSAT monthly random error is abotitrtes greater than the ones calculated for

IASI. We discuss in the next section the origiritef summer peak in the-B/ seasonal variation.

5. Contribution of the Asian Monsoon Anticyclone

As stated in sections 3 and 4, interpreting th&VECH, seasonal variation along the vertical
requires to consider the distribution of £élver the Asian continent because of the importarice
long-range transport. From Rodwell and Hoskins @)98 is known that there is a meteorological
link between monsoons and the dynamics of the tteseid more precisely between the Asian
monsoon and the EMB summer regime. The subsideewiecover the EMB owes its location,
timing of onset and intensity to the Asian monsaamj not to the Hadley circulation. Although it
takes less than one day to reach the upper troposptithin the Asian monsoon, back-trajectory
calculation (Ziv et al., 2004) shows that it také®ut 3-4 days for an air parcel to reach and dé¢sce
the upper tropospheric EMB from the vicinity of theticyclone that develops over the Asian
monsoon. Inside the Asian Monsoon Anticyclone (AMpdllutants like CO originating from the
surface constitute about 50% of the CO concentradib 100 hPa (Park et al., 2009), with the
reminder resulting from chemical production in thgposphere. Most of the CO within the AMA
comes from India and South East Asia, with an mificant contribution from the Tibetan Plateau.
Randel and Park (2006), and Park et al. (2009) haatyzed in detail this phenomenon over Asia
by considering dynamical parameters (potentialieity) and chemical species £§8, CO and ©Q).

Numerous studies have already evaluated the ingfacansport vs. emission of pollutants and
aerosols over the MB and its temporal variabilignsidering different pollutants, chemical

compounds and aerosols (Wanger et al., 2000; laedtiest al., 2002; Pfister et al., 2004; Kallos et
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al., 2007). As stated in section 3, two main dyr@afactors affect the EMB: 1) the upper to mid-
tropospheric subsidence, and 2) the lower-level Eb@sian winds (Ziv et al., 2004). Although the
EMB is characterized by strong descent in the neidaid upper troposphere in summer, transport
from the boundary layer accounts for about 25%hef Ibcal Middle Eastern contribution to the
ozone enhancement in the middle troposphere (Lial.e2009). Elevated CO episodes in EMB
during summer can also be attributed to synoptieditons prone to favorable transport from
Turkey and Eastern Europe towards the EMB rathem thcreased emissions (Drori et al., 2012).
Upper tropospheric longitudinal gradients in the EMf CH,;, CO, hydrocarbons, including
acetone, methanol, and acetonitrile, halocarbonsan@ total reactive nitrogen (NOy) were also
attributed in August 2001 to the chemical impacttloé Asian plume (Scheeren et al., 2003).
Finally, Georgoulias et al. (2011) present somergsting results of CHrom space in the vicinity
of the Mediterranean Sea, but only over land arseréglly over the Eastern Mediterranean. The
authors found, from the total columns of Cas measured by SCIAMACHY in 2003 and 2004, an
obvious maximum in August that could not be attiglouto any volcano eruptions although this
area hosts a significant number of geological fdroma that could potentially contribute to the tota
CH, burden. Being given that the sensitivity of thel&GACHY CH 4 total columns covers the
vertical domain 1000-200 hPa from the vertical ctiee of the averaging kernels presented in
Buchwitz et al. (2005), we note that 1) this maximlocalized in August is consistent with our
study, and 2) the impact of the AMA on the Clii€lds in the mid-to-upper troposphere cannot be
ruled out.

In order to analyze the climalogical impact of &kidA onto the EMB, we have calculated (Fig.
8) the climatological six-day back-trajectoriesnfrahe point at 33° N, 35° E located in the EMB
(red filled circle on Fig. 8) based on the Brit&tmospheric Data Centre (BADC) trajectory service
(http://badc.nerc.ac.uk/community/trajectory/) fraaet July to 31st August (summer convective
period) from 2001 to 2010 every 12 hours at 5 déffié pressure levels: 850 and 700 hPa (lower

troposphere), 500 hPa (middle troposphere), andaBd200 hPa (upper troposphere). The BADC
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trajectories were derived from 40-year (ERA40) medgsis (2.5°x2.5°/pressure levels) produced by
the European Centre for Medium-Range Weather Fete (BCMWF). The position of the gravity
centre of each distribution (i.e. the maximum ia gnobability distribution function) at each level
represented every 24 hours by a star on Figuiihi8. methodology has been fikgtused over the
Dome C (Concordia) station in Antarcti¢Ricaud 2014). We have also performed the same
analysis but for the winter period froni' January to 31 March 2001-2010 (Fig. 8). Figure 8
undoubtedly shows that air parcels above the EMBnduthe Asian monsoon period of July-
August from 2001 to 2010 are originated: a) fromaAs the upper troposphere, b) from Northern
America and Northern Africa in the mid-tropospharel c) from Europe in the low troposphere.
The same Figure also shows that in winter (andta#r seasons but summer, not shown) air parcels
above the EMB are originated from the West (Europitantic Ocean, North America, Pacific
Ocean) whatever the pressure level considered &a0rto 100 hPa.

We apply the same climatological approach basedhenCNRM-AOCCM and LMDz-OR-
INCA CH4 model results over the period 2001-2010. We camgiEig. 9) the EW CH, seasonal
evolution at pressure levels from the lowermospasphere to the lowermost stratosphere (850,
700, 500, 300, 200 and 100 hPa) and different smentor LMDz-OR-INCA (RCPs 2.6, 4.5, 6.0
and 8.5) in order to check out whether the summak still persists. We also represent the fields of
CH, as specified and/or calculated in the lowermogtli¢surface level) by CNRM-AOCCM and
by LMDz-OR-INCA (4 scenarios) in summer averagee@rothe climatological period 2001-2010
over a wide area covering the MB and the Asianioent in Figure 10, whilst the CHields
calculated at 200 hPa are shown in Figure 11.

The E-W CH seasonal variations from the two models (Fig.€h)dve distinctively in the entire
troposphere, and agree very well in the lowermtstassphere. In the lower troposphere (850 and
700 hPa), the BV CH, seasonal evolution from LMDz-OR-INCA exhibits aosty semi-annual
oscillation of+10-15 ppbv peaking in winter and summer for theGCPR whilst the evolution from

the CNRM-AOCCM shows a weak annual oscillation eb $pbv amplitude, with a strong
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minimum in summer, namely out-of-phase relativéhen LMDz-OR-INCA variation. In the middle
troposphere at 500 hPa, the 4 LMDz-OR-INCA outpxhkibit a net maximum in August of ~8
ppbv with minima ranging from -2 to —12 ppbv frontt@ber to June, whilst the output from
CNRM-AOCCM again shows a strong minimum in summiealmout —4 ppbv. At this stage, it is
important to remind that the two models are Gldbatulation Models (GCMs) with an on-line
chemistry. The emissions of Gldre time-, longitude- and latitude-dependent inDAVOR-INCA

with surface maxima over the Northern continentg(FL0). In CNRM-AOCCM, there is no
emission of CH (Fig. 10) but mixing ratios of CHoetween the surface and the 560 hPa level are
relaxed towards evolving global mean surface abomcel® This explains why the two models
behave separately for pressures greater or equ#lGdPa. Note that, regarding the shape of the
E-W CH, seasonal evolution, there is no significant défexre within the different scenarios of the
LMDz-OR-INCA outputs since surface Glhow the same structures independently of the RCPs
considered (Fig. 10).

In the upper troposphere (200 and 300 hPa), theutsifrom the two models show a peak in
summer in the BW CH, seasonal evolution (Fig. 9), but this differs fréme RCPs considered for
LMDz-OR-INCA. The maximum is much more intense iNRM-AOCCM (~8 ppbv in July-
August and ~30 ppbv in June-July at 300 and 20Q t€3pectively) than in LMDz-OR-INCA (~1
and ~10 ppbv in August for RCP 4.5 but only —4 addppbv in August for RCP 8.5 at 300 and
200 hPa, respectively; one peak at —4 ppbv in AufpusRCP 6.0 at 300 hPa but no peak at 200
hPa; no peak for RCP 2.6 neither at 300 nor ati#). On average, from 500 to 200 hPa, only the
RCP 4.5 scenario from LMDz-OR-INCA shows a positmaximum in summer. At 300 and 200
hPa, the LMDz-OR-INCA summer peak is much lessnsgethan the CNRM-AOCCM summer
peak.

It is not obvious to understand why the E-W sealweaigation at 200 hPa is positive in summer
for RCP 4.5 and not for the other RCPs (except RGHNn August). The horizontal distribution of

CH, calculated by the two models at 200 hPa (Fig. drastically differs but local maxima are
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centred within the AMA. A zonally-symmetric struotushowing a strong South-North gradient in
CH, is modelled by CNRM-AOCCM with maxima in the tropi(1800 ppbv) and minima at high
latitudes (1700 ppbv) and a local maximum centrétimthe core of the AMA with values greater
than 1807 ppbv elongated towards two axis: 1) S&atst Asia and 2) Middle East and EMB. The
CH, field calculated by LMDz-OR-INCA considering thesdenarios also shows two maxima over
Northern India and over North-East Asia but theizwrtal distribution is not zonally-symmetric
due to a zonally-asymmetric GHurface field. In all the scenarios considered, @H, maxima
within the AMA range from 1710 to 1750 ppbv witlcreasing RCPs from 2.6 to 8.5. An elongated
tongue of enriched CHenters the EMB. More precisely, we can argue ith&®CPs 2.6, 6.0 and
8.5, the primary maximum of CHs located northward at 50°N, 135°E (£thlues greater than
1720, 1730 and 1750 ppbv, respectively) althougk & secondary maximum in RCP 4.5 (CH
values less than 1720 ppbv). Through long-rangaspart, this mid-latitude maximum is
transported Eastward within a band 40°N-50°N emngCH, in the WMB and producing a E-W
minimum in summer for RCPs 2.6, 6.0 and 8.5. Sitiee is a North-South gradient with a
maximum in the South for CNRM-AOCCM, GHlepleted air masses reach the WMB although
CHg-enriched air masses from the AMA reach the EMBdpoing a systematic peak in summer,
consistently with RCP 4.5.

In the lower stratosphere (100 hPa, Fig. 9), alriodel outputs are consistent with each other
showing an annual oscillation, with a wide maximunsummer (60-80 ppbv) and a wide minimum
in winter (20-35 ppbv). This is apparently surprgskeeping in mind that both models significantly
differ from the surface (see Fig. 10) to ~500 hBat, in the WMB, the 100-hPa pressure
corresponds to 420-K potential temperature bogummer (Fig. 2) and in winter (Fig. 4) whilst, in
the EMB, it corresponds to 390 K in summer and Kd@ winter, namely closer to the tropopause
in summer than in winter. Consequently, whatever tfodel considered, the E-W ¢Heasonal
variation at 100 hPa a) is always positive andhows a peak in the summer period. We note that

the summer peak in-&V seasonal evolution from the middle to the uppgpdsphere has also been
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observed and calculated by considering other dowestis like CO and £(not shown). This is the
main topic of a forthcoming paper.

In conclusion, a schematic representation of thensertime processes impacting mid-to-upper
CH, in the EMB is presented in Figure 12. In our studigatever the amount of GHt the surface
and its horizontal distribution, 1850-2000 ppbv idDz-OR-INCA consistently with the emission
sources (Asia, Northern and Eastern Europe, CeAfrada) or 1820 ppbv uniformly spread (Fig.
10), the Asian monsoon traps elevated amounts aoft@&t converge through the depression, and
are uplifted up to the upper troposphere at 200(FRRp 11) where they build up. At this level, the
AMA re-distributes elevated amounts of £kbwards Middle East, North Africa and the EMB
through long-range transport. Finally, elevated am® of CH build up in the EMB where they

descend to the middle troposphere.

6. Conclusions

The present study is part of the Chemical and Agrbiediterranean Experiment (ChArMEX)
programme. The aim is to investigate the troposph@H, time and space variations above the
Mediterranean Basin (MB) and to attribute the gy to differing synoptic and global scales
depending on the season and the altitude layend=smesl. Since the analysis of the mid-to-upper
tropospheric ChH distribution from spaceborne sensors and modgubsitis challenging, we have
used a wide variety of datasets. 1) The spacebmeesurements from Thermal Infrared (TIR)
instruments: Thermal And Near infrared Sensor farbon Observations - Fourier Transform
Spectrometer (TANSO-FTS) instrument on the Greesbaases Observing SATellite (GOSAT)
satellite, the Atmospheric InfraRed SpectrometeiR@) on the Aura platform and the Infrared
Atmospheric Sounder Interferometer (IASI) instrutnamoard the MetOp-A platform. 2) The
model results from the Chemical Transport Model MJTMOCAGE, and the two Chemical
Climate Models (CCMs) CNRM-AOCCM and LMDz-OR-INCAhg later considering different

emission scenarios, RCPs 2.6, 4.5, 6.0 and 8.5).
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Since CH is a long-lived tracer with lifetime of ~12 yeaand is supposed to be well mixed in
the troposphere, we had to adopt a climatologiqgadr@ach to highlight the weak expected
variability. Spaceborne measurements and the nredelts were selected and monthly-averaged
only over the Mediterranean Sea. The period underast spans from 2008 to 2011 for the satellite
measurements and the MOCAGE model results whdgnding the CCMs, we have averaged the
model outputs over the climatological period fro802 to 2010.

From both satellite and model results, our studyiamksly demonstrates the persistence of an
East-West gradient in GHrom the middle to the upper troposphere with aimam in the
Western MB whatever the season considered excegunmmer when larger amounts of £H
accumulate above the Eastern MB. In winter, airsesgnainly originating from Atlantic Ocean
and Europe tend to favour an elevated amount oftoigpper tropospheric CHin the West
compared to the East of the MB, with a general ugweansport above the MB. In summer, the
meteorological condition of the MB is changed, farog air from Northern Africa and Middle
East together with Atlantic Ocean and Europe, witfeneral descent above the Eastern MB.

Our analysis shows that, in the upper troposph&d® (Pa), the peak-to-peak amplitude of the
EastWest seasonal variation in Gldbove the MB is weak but almost twice greatehangatellite
measurements (~25 ppbv) than in the model data ppby).. The maximum of CHn summer
above the Eastern MB can be explained by a sefiebymamical processes only occurring in
summer. The Asian monsoon traps and uplifts highuanrts of CH to the upper troposphere where
they build up. The Asia monsoon Anticyclone redlsttes these elevated Gldmounts towards
North Africa and Middle East to finally reach andsdent in the Eastern MB. Consequently, the
seasonal variation of the difference in {¥¢tween the East and the West MB shows a maximum i
summer for pressures from 500 to 100 hPa consgiérath spaceborne measurements and model
results whatever the emission scenarios used &CMs. But only the RCP 4.5 scenario gives
systematically a positive summer peak whatevepthssure level considered, consistently with the

measurements.



29

697 From this study, we conclude that £ the mid-to-upper troposphere over the MB isnhai
698 affected by long-range transport, particularly m#e in summer from Asia. Conversely, in the
699 lower troposphere, the GHariability is driven by the local sources of esis in the vicinity of
700 the MB. Other constituents can also be affectedhisy summer mechanism e.gs @d CO (not
701 shown). In a forthcoming paper, the time evolutwdnhe CH,, Osand CO fields above the MB and
702 at the Asian scale is being studied by considetimg outputs from different CCMs in the
703 contemporary period (2000-2010) in order to stuuy future evolution of the chemical climate
704  over the MB by 2100. Finally, despite the fact th$| CH, data as delivered by EUMETSAT are
705 not operational, the seasonal variation of the -Bés$t difference in Cltotal columns is
706 nevertheless consistent with theoretical resultsragasurements from AIRS and IASI.

707
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1002 Table 1. Nadir-viewing instruments having the capabilittesmeasure Clin the troposphere.

1003 Please, refer to the text for the acronyms.

1004
Platform |Instrument |Operation time |Wavelength | References
ADEOS-1|IMG 1996-1997 TIR Clerbaux et al. (1998)
ENVISAT | SCIAMACHY | 2002-2012 NIR Buchwitz et al. (2000)
Aura TES 2004-date TIR Worden et al. (201P)
GOSAT | TANSO-FTS | 2008-date SWIR & TIRokoto et al. (2009)
Aqua AIRS 2004-date TIR Xiong et al. (2008)
MetOp-A | IASI 2008-date TIR
MetOp-B | IASI 2012-date TIR Hilton et al. (2012)
MetOp-C | IASI Expected in 2016IR
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1007

1008 Figure 1. (From bottom to top) Fields of GHhs calculated by MOCAGE and averaged for summer
1009 (JJA) 2009 at 850, 500 and 200 hPa. Superimposedhar horizontal winds from ARPEGE
1010 averaged over the same period. In order to hightigh CH, horizontal gradients, the range of the

1011 colour scale changes from top to bottom.
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1014 Figure 2. Vertical distribution of CH as calculated by MOCAGE and averaged for JJA 2608
1015 function of longitude along the red line represdnébove the Figure. Superimposed are the
1016 associated longitudinal and vertical winds from ARFE, together with the isentropes (white lines)
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Figure 3. Same as Fig. 1, but for winter (DJF) 2009.
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Figure 5. Field of total columns of CHas measured by IASI and averaged for summer (2089

(top left), and field of Chlat 260 hPa as measured by AIRS and averagedAd2QI® (top right).
(Bottom) Same as above but as calculated by MOCA®zellite data are represented in a 1°x1°
resolution whilst model data are shown in a 2°>é&btution. The two blue squares in the lower left
Figure represent the Western and Eastern MediegiraBasins where the measured and modelled
data are selected over the Mediterranean Sea. iSygosed are the horizontal winds from
ARPEGE at 200 hPa averaged over the same perigtbifiboight). In order to highlight the CH

horizontal gradients, the range of the colour schinges for each figure.
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Figure 6. (From top to bottom and from left to right) Seaslbnraveraged vertical profiles of GH

as measured by AIRS (blue lines) and GOSAT (graess), and as calculated by MOCAGE (thin

red lines) over the Eastern (dashed lines) and &kfegsolid lines) MBs in winter, summer, spring

and autumn 2010. Also shown are the seasonallyagedrMOCAGE profiles convolved with the

AIRS averaging kernels (thick red lines) for theirfeeasons over the Eastern (dashed lines) and

Western (solid lines) MBs.
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Figure 7. (Top) Seasonal evolution of the difference in €id, fields between the Eastern and

Western MB as measured by AIRS (blue line) and GD%green line) at 306 and 300 hPa,

— |ASI
— MOCAGE

respectively and as calculated by LMDz-OR-INCA [gel line) and CNRM-AOCCM (brown

line). (Bottom) Seasonal evolution of the differenn the CH total columns between the Eastern
and Western MB as measured by IASI (black line) anaalculated by MOCAGE (red line). The
LMDz-OR-INCA and CNRM-AOCCM data sets cover thenditological period 2001-2010. The

MOCAGE and IASI data sets cover the period 200812@hilst the satellite AIRS and GOSAT

data sets are representative of the year 2010.
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6-Day Backtrajectories from the Eastern Mediterranean Basin
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Figure 8. (Top) Climatological six-day back-trajectoriesrfrdhe point at 33° N, 35° E located in

the Eastern Mediterranean Basin (red filled cirdalculated from the British Atmospheric Data
Centre trajectory service (http://badc.nerc.acamimunity/trajectory/) from 1st July to 31st

August from 2001 to 2010 every 12 hours at 850 ljirez), 700 (orange line), 500 (green line), 300
(blue line) and 200 hPa (yellow line). The positadfithe gravity center of each distribution at each
level is represented every 24 hours by a start¢BgtSame as top, but calculated frothJanuary

to 37 March 2001-2010.
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Figure 9. (From top to bottom and from left to right) Seasloevolution of the difference in the
CH, fields between the Eastern and Western MB oveclihgatological period 2001-2010 at 100,
200, 300, 500, 700 and 850 hPa as calculated byNGNRCCM (green) model and LMDz-OR-
INCA according to the 4 IPCC scenarios: RPCs 2léelh 4.5 (black), 6.0 (red) and 8.5 (yellow).

See section 2.2 for more details.
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Figure 10. Fields of surface CHas calculated by the CNRM-AOCCM model (bottom) ahnel
LMDz-OR-INCA model (top and centre) according te th IPCC scenarios (RCPs 2.6 (top left),
4.5 (top right), 6.0 (centre left) and 8.5 (cermight)) averaged over the summer season (JJA) and
the climatological period 2001-2010. Superimposethe CNRM-AOCCM CH fields (bottom) is
the wind field at the surface averaged over theespeniod. Note that the range of the colour scale

changes for each figure and that the surface lGHCNRM-AOCCM (bottom) is constant.
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Figure 11.Fields of CH as calculated by the CNRM-AOCCM model (bottom) #melLMDz-OR-
INCA model (top and centre) considering the 4 IP&e€narios (RCPs 2.6 (top left), 4.5 (top right),
6.0 (centre left) and 8.5 (centre right)) at 20@ [@Weraged over the summer season (JJA) and the
climatological period 2001-2010. Superimposed ®@NRM-AOCCM CH fields (bottom) is the
wind field at 200 hPa averaged over the same peflude that the range of the colour scale
changes for each figure and that the colour saaléhie CNRM-AOCCM model (bottom) is non

linear.
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Figure 12. Schematic representation of the processes imggattie mid-to-upper tropospheric
pollutants, including Ck above the Eastern Mediterranean Basin in sumtdy-August). (1)

Trapping of lower tropospheric pollutants in thei@dsmonsoon. (2) Updraft of pollutants in the
Asian monsoon up to the upper troposphere. (3)dBuyl of pollutants within the Asian monsoon in
the upper troposphere. (4) Large-scale re-disiobutof pollutants by the Asian Monsoon
Anticyclone to the Middle East and North Africa the upper troposphere. (5) Build-up of

pollutants though descent down to the middle trppese above the Eastern Mediterranean Basin.



