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Abstract 9 

The cloud overlap parameter alpha relates the combined cloud fraction between two 10 

altitude levels in a grid box to the cloud fraction as derived under the maximum and random 11 

overlap assumptions. In a number of published studies in this and other Journals it is found 12 

that alpha tends to increase with increasing scale. In this Technical Note, we investigate this 13 

analytically by considering what happens to alpha when two grid boxes are merged to give a 14 

grid box with twice the area.  Assuming that alpha depends only on scale then, between any 15 

two fixed altitudes, there will be a linear relationship between the values of alpha at the two 16 

scales. We illustrate this by finding the relationship when cloud cover fractions are assumed 17 

to be uniformly distributed, but with varying degrees of horizontal and vertical correlation. 18 

Based on this, we conclude that alpha increases with scale if its value is less than the vertical 19 

correlation coefficient in cloud fraction between the two altitude levels. This occurs when the 20 

clouds are deeper than would be expected at random (i.e. for exponentially distributed cloud 21 

depths).  22 

 23 
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 2 

1 Introduction 1 

 2 

Clouds tend to be represented in GCMs as plane-parallel and horizontally homogeneous, 3 

with the combined horizontal cloud fraction between clouds at different altitudes specified 4 

according to various overlap schemes (e.g. Smith, 1990; Tiedtke, 1993). These schemes are 5 

generally based on a combination of maximum and random overlap.  In maximum overlap the 6 

clouds are maximally overlapped in height resulting in the minimum of interaction between 7 

clouds and downward radiation. Where clouds are randomly overlapped in height the 8 

interaction with radiation is greater.  9 

 10 

Taking advantage of the fact that clouds close together in altitude are likely maximally 11 

overlapped and those significantly different in altitude are likely randomly overlapped Hogan 12 

and Illingworth (2000) introduced a cloud overlap scheme that has since been widely taken up 13 

within GCMs.  In this scheme, the mean combined cloud fraction between two altitude levels 14 

is taken to be a weighted average (with weight α) of the mean values given by maximum and 15 

random overlap assumption respectively.  16 

 17 

The value of α is generally taken to be a function of the height separation (Δz) between 18 

the two altitudes and is found to often have an inverse exponential dependence on ∆z (e.g. 19 

Hogan and Illingworth, 2000). The rate of fall is then determined by a cloud ‘decorrelation 20 

length’ L (i.e.     
  

 ). Since this initial study of Hogan and Illingworth (2000) many others 21 

have investigated how α (and L) depend on horizontal scale (e.g. Mace and Benson-Troth 22 

2002; Oreopoulos and Khairoutdinov 2003; Pincus et al. 2005; Willén et al. 2005; Barker 23 



 3 

2008a & 2008b; Shonk and Hogan 2010; Oreopoulos and Norris 2011; Oreopoulos et al. 1 

2012). Though a number of different definitions for α and methods for deriving L have been 2 

used in such studies, they generally find that α (and, hence, L) increases with horizontal scale.  3 

 4 

2. The overlap parameter α 5 

 6 

From the observed horizontal cloud fractions    and    at altitudes a and b (at a fixed 7 

scale) the horizontal cloud fractions      and        can be formed, under the maximum and 8 

random overlap schemes, as: 9 

                                                                  (1) 10 

                                                               (2) 11 

From the definition as given by Hogan and Illingworth (2000) for   these are related to 12 

the combined horizontal cloud fraction,    (jointly covered by the clouds at both altitudes) by: 13 

  ̅       ̅̅ ̅̅ ̅̅            ̅̅ ̅̅ ̅̅ ̅                                                (3) 14 

Where    ̅̅ ̅,      ̅̅ ̅̅ ̅̅  and      ̅̅ ̅̅ ̅̅ ̅  are the averages (over time) of   ,        and        respectively. 15 

For the idealised case given here the averaging period is not important. However, we do need 16 

the mean and variance in the cloud cover to be stable and similar at both heights and most 17 

published work on cloud  overlap is based on seasonal averages (e.g. Hogan and Illingworth, 18 

2000; Oreopoulos and Norris, 2011). 19 

Provided     ̅̅ ̅̅ ̅̅  and      ̅̅ ̅̅ ̅̅ ̅ are not equal to each other, which is unlikely (as this could only 20 

happen if the cloud cover fraction was always zero or one) Eq. 3 can be rearranged to give: 21 

   
  ̅        ̅̅ ̅̅ ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅
                                                     (4) 22 



 4 

As pointed out in Pincus et al. (2005), this is only one way to define  . Another method is 1 

to determine a set of values for   using Eq. 3 based on the individual (unaveraged) values of 2 

  ,        and       and, from these, find an average value for  . However, this approach 3 

leads to data being discarded, as (the values for)   are not uniquely defined when either  4 

     or     , potentially giving rise to truncated statistics. As the probability that      5 

or      decreases with increasing grid size (e.g. Astin and Girolamo; 1999) it seems 6 

prudent, when considering the scale-dependence, to use Eq. 4 to define    (in which no data 7 

are discarded). 8 

 9 

3. The horizontal scale-dependence of   10 

 11 

To investigate the scale-dependence of  , we will consider what happens when two 12 

horizontally adjacent grid boxes, which we label j and j+1 respectively, are combined to give 13 

a single larger grid box with double the area. In the following there is no significance to j or 14 

j+1 except as labels to distinguish the original two grid boxes. However, zonal and meridional 15 

anisotropies in real cloud regimes could make   directionally dependent. This wouldn’t affect 16 

the mathematics in this note, but could blur the signal when applied to real data, if arbitrary 17 

pairs of adjacent grid boxes are combined. This could be handled by giving a direction to j 18 

with, say, grid box j+1 being zonally (or meridionally) adjacent to grid box j. In either case, 19 

the cloud fractions    and    at the two altitudes (a and b) in the larger grid box are given by: 20 

   (
             

 
)

   (
             

 
)
}                                                        (5)   21 



 5 

where       is the cloud fraction in grid box y at altitude x. Again, the cloud overlap      1 

and       (at the larger scale) are formed, under the maximum and random overlap 2 

assumptions, by: 3 

                                                                   (6) 4 

                                                                 (7) 5 

The combined cloud fraction,   , at the large scale is given by: 6 

   
             

 
                                                        (8)   7 

where       is the combined cloud fraction in grid box y.  8 

To continue, let    be the value of   at the original scale and    be the value of    9 

when the  two grid boxes are merged. As in Eq. 4, the value of     is given by: 10 

    
  ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                        (9) 11 

where     
̅̅ ̅̅ ,      

̅̅ ̅̅ ̅̅ ̅  and       
̅̅ ̅̅ ̅̅ ̅̅  are the time averages of   ,        and       respectively. 12 

Assuming that α depends only on scale (and the altitude between a and b) then (using 13 

Eq. 3) Eq. 8 becomes: 14 

  
̅̅ ̅  

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
                          (10) 15 

The averages in Eq. 10 are those for grid boxes j and j+1 respectively.  If a and b are 16 

fixed altitudes then Eqs. 9 and 10 together imply that          , where m and c are 17 

constants. This doesn’t necessarily imply that a linear relationship between    and    will be 18 

observed, since data from different altitudes (likely having differing values of m and c) may 19 

be combined in published studies. 20 



 6 

For Eq. 10 we have implicitly assumed that    is the same for both grid boxes j and 1 

j+1. To simplify the mathematics, in the following we will also assume that any average is the 2 

same whether it is for grid box j or j+1 (e.g.        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅  . In Eq. 10 this is 3 

equivalent to dropping the j and j+1 dependences, which together with Eq. 9 gives: 4 

   
    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   

     ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅̅           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                       (11) 5 

We can use Eq.11 (or Eq. 10) to investigate the conditions in which       (i.e. 6 

where   would increase with scale).  As an example, consider the contrived case where the 7 

cloud cover varies between grid boxes, but is always the same at both heights a and b  (i.e. 8 

            and                , but       may not equal        ).  This says 9 

nothing about the horizontal distribution of clouds at each height. However, this would seem 10 

most likely to be associated with particular cloud regimes, such as vertically deep convective 11 

clouds. For this case: 12 

        (           )     (           )                                 (12)                            13 

Leading to: 14 

                                                                     (13) 15 

Similarly, from Eq. 5,      , and                    giving: 16 

        (
             

 
)                                                (14) 17 

 As we are assuming that the averages are the same for both j and j+1 Eq. 14 implies that 18 

    
̅̅ ̅̅ ̅̅ ̅          and              . Hence, in this case, the value of m is uniquely 19 

defined by the value of    when    equals zero (e.g. if         when      then m = 0.8 20 

and              ).  21 



 7 

It is instructive to consider this case further by studying the value of m analytically. In this 1 

case, we can uniquely define a mean, µ, and variance, σ
2
, in cloud cover that is the same at 2 

both heights, i.e., 3 

             

               
       

}                                         (15) 4 

In this case       ̅̅ ̅̅ ̅̅ ̅ is by definition (from Eq. 2): 5 

                                                                 (16) 6 

With Eq. 15, this gives: 7 

     ̅̅ ̅̅ ̅̅ ̅                                                       (17) 8 

From Eqs. 7 and 14, the average       
̅̅ ̅̅ ̅̅ ̅̅   is given by:  9 

                                  
                      (18) 10 

This leads (from Eq. 5) to: 11 

         (
             

 
)
 

                                       (19) 12 

Multiplying out gives: 13 

         
 

 
(     )

 
 

 

 
(       )

 
 

 

 
                       (20) 14 

Again, assuming that averages are the same in both grid boxes, the mean, µ, and 15 

variance, σ, in cloud cover are the same for both grid boxes j and j+1, and retain their 16 

definitions as given in Eq. 15. In this case, the labels j and j+1 are redundant in the second and 17 

third terms on the RHS of Eq. 20 and can be dropped to give: 18 

         
 

 
    

 

 
    

 

 
                                       (21) 19 



 8 

From Eq. 15 this reduces to: 1 

         
 

 
        

 

 
                                                   (22) 2 

By definition, the co-variance of         and         is given by: 3 

   (             )                                                     (23) 4 

Similarly, by definition, the (horizontal) cross-correlation coefficient, R, in cloud cover between 5 

the adjacent (smaller) grid boxes is given by: 6 

  
   (             )

√   (     )√   (       )

 
   (             )

                                     (24) 7 

Eqs, 22, 23 and 24 together give: 8 

         
 

 
        

 

 
   

 

 
      

 

 
                              (25) 9 

Putting these into Eq. 11 gives: 10 

  
    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅

    ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

       

  
 

 
          

                             (26) 11 

As an example, if the cloud fraction can be modelled as a Beta(p,q) distribution (e.g. Falls 12 

1974; Tompkins 2002) then: 13 

  
      

            
                                                (27)  14 

   
      

            
   

     

            
                                  (28) 15 

In the simplest case, where the cloud fraction in each grid box is uniformly or Beta(1,1) 16 

distributed (e.g. LeTreut and Li, 1991), Eq. 28 gives:  17 

   
 

   
   

   

   
                                                (29) 18 

(Thus, where R = 0 then              ). Hence, in this contrived case (where the cloud 19 

cover is the same at both heights) α will always increase with scale (i.e.      ) provided 20 
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the horizontal correlation coefficient, R, in cloud fraction between adjacent grid boxes is 1 

positive and less than 1.  2 

Trivially, when     there is no scale-dependence to alpha (as m = 1).  However, as 3 

R decreases to zero the degree of the scale-dependence increases and maximises where    . 4 

This is displayed in Fig. 1, which shows the relationship between between    and    for a 5 

range of values for R in the case where the cloud fraction in the adjacent grid boxes are 6 

assumed to be uniformly distributed. The scale-dependence is strongest when R = 0, in which 7 

             .  8 

So far, we have looked at the scale-dependence where the cloud fraction varies from 9 

grid box to grid box, but doesn’t vary with altitude. This implies that the vertical correlation 10 

between the cloud fractions at the two altitudes is    . Let us now consider what happens 11 

when   ̅    ̅, but       need not equal       (i.e.     . For illustration, and to simplify the 12 

mathematics we will take the extreme case where R = 0 and assume that the cloud cover 13 

fractions at heights a and b are correlated uniform distributions, with (vertical) correlation 14 

coefficient ρ.  This implies that mean cloud fraction at each height is   
 

 
.  15 

By Clarke (1961) or Nadarajah and Kotz (2008) for example, the mean (       of the 16 

maximum of two correlated normally distributed random variables with mean   
 

 
, standard 17 

deviation σ and correlation coefficient ρ is given by: 18 

     
 

 
                                                                 (30) 19 

where          . 20 

 We couldn’t find a reference for the mean of the maximum of two correlated uniform 21 

random variables so we will use Eq. 30, with k chosen to give the correct answer for      22 
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 when    . (Eq. 30 will always give the correct answer when    .) We will comment 1 

later on the accuracy of this assumption.  2 

If    and    are independent uniformly distributed random variables then     and 3 

     follows a Beta(2,1) distribution, which has mean      ̅̅ ̅̅ ̅̅  
 

   
 

 

 
.  Hence,  Eq. 30 gives 4 

the correct value for      if    
 

 
. This leads to: 5 

    ̅̅ ̅̅ ̅̅  
 

 
 

 

 
                                                     (31) 6 

Also, when     and    are independent uniformly distributed random variables their 7 

average    has the standard symmetric triangular distribution as does   . Hence     
̅̅ ̅̅ ̅̅ ̅ is the 8 

mean of the maximum of two independent triangularlly distributed random variables. In this 9 

case        
  

  
 and Eq. 30 gives the correct value if    

 

  
. This leads to:  10 

    
̅̅ ̅̅ ̅̅ ̅  

 

 
 

 

  
                                                    (32) 11 

In a similar way to R, the vertical correlation coefficient ρ is defined as:  12 

  
   (           )

√   (     )√   (     )
 

   (           )

    
       

                        (33) 13 

Based on Eq. 2, Eq. 33 gives:  14 

                                                     (34) 15 

[This is identical to Eq. 17 when ρ = 1.] For a uniform distribution     
 

  
, giving: 16 

      
 

 
 

 

  
                                                    (35) 17 

Similarly: 18 
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(             )

 

(             )

 
               (36) 1 

Multiplying out gives: 2 

           (
          

 
 

            

 
 

            

 
  

              

 
)         (37) 3 

As we are only considering the case where R = 0 (i.e. no horizontal correlation) this simplifies 4 

(Eq. 23) to: 5 

         
          

 
 

  

 
 

  

 
 

              

 
                          (38) 6 

As the averages are the same for both j and j+1: 7 

         
 

 
   

 

 
        

 

 
    

 

 
                        (39) 8 

         
 

 
   

 

 
            

 

 
                        (40) 9 

With     
 

  
 this gives: 10 

      
 

 
 

 

  
                                                    (41) 11 

Putting the above values into Eq. 11 gives: 12 

     (
                 

                
)  (

  

                
)                           (42) 13 

Though this is an approximate result, the simulated values given in Fig.  2 show that 14 

Eq. 42 can be taken as exact for all values of ρ. Thus, if     (i.e. the cloud cover at both 15 

altitudes are uncorrelated)    
 

 
   and so   will always decrease with scale (i.e.       ), 16 

except where     .   17 
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 1 

It seems likely, given the linear relationship between the values of alpha at the two 2 

scales that for every value of   there will be a unique value for   that does not change with 3 

scale being the point-of-intersection with the       line. This is illustrated in Fig.  2, where 4 

the relationship between between    and    is displayed for a range of values for    (all with 5 

R = 0). From Fig.  2 this value seems to be where           . Also, where       then   6 

will decrease with scale and where       then   will increase with scale.  7 

4. Conclusions 8 

Based on the definition of   and the scale invariance of the combined cloud fraction, if 9 

  depends only on scale then the value of alpha,   , at one scale is linearly related the value 10 

of alpha,   , at the other scale (i.e.          ) provided the two altitudes are fixed. The 11 

values of m and c depend on a number of parameters including the mean, µ, and variance, σ
2
, 12 

in cloud fraction at each altitude. However, the most important parameters are the horizontal 13 

correlation coefficient, R, between the cloud fractions in adjacent grid boxes (at a given 14 

altitude) and the vertical correlation coefficient, ρ, between the cloud fractions at the two 15 

altitudes. 16 

If R, ρ, µ and σ
2
 are found from real cloud data then this note allows the value of   to 17 

be calculated from    directly. As horizontal cloud properties, R, µ and σ
2
 can be found 18 

directly from the passive or active remote sensing of clouds. However, ρ would require 19 

knowledge of cloud vertical structure, which could come from active remote sensing (e.g. as 20 

in Kato et al. (2010) from CloudSat and CALIPSO data).  21 

Dependent on the relative values of   and ρ it is possible for   to increase, decrease or 22 

stay the same with increasing scale. However, the strength of the dependence is controlled by 23 

R. Published results tend to obscure the linear relationship between    and     by plotting 24 



 13 

them together on the same graph against height separation, rather than against one another 1 

(e.g. Oreopoulos and Norris, 2011). This also combines data from differing pairs of altitudes 2 

(a and b) together, where each pair could have a different linear relationship.  However, our 3 

results indicate that an ‘on average’ increase of   with scale implies that on average   must 4 

generally be smaller than ρ.  5 

In Astin and Di Girolamo (2006) we showed that on average      when cloud 6 

depths follow an exponential distribution. Hence, we conclude that the published increase of 7 

  with scale is a consequence of clouds being generally deeper than would be expected at 8 

random (i.e. in a Random Markov Field).  9 

Also, the scale-dependence disappears when R = 1 and is strongest when R = 0. Hence, 10 

an increase in   with scale implies that R must be positive and less than 1. Based on published 11 

data on  , or directly from cloud data it is possible to determine R if there is enough data to 12 

determine ρ, µ and σ
2
. As an illustration, Figure 1 of Oreopoulos and Norris (2011) gives 13 

     (at 75 km scale) and          (at 150 km scale) for an altitude separation of 10 km 14 

when averaged over June, July and August.  Based on this note, this would indicate that if 15 

    then R has a maximum value of 0.8 (our figure 1). However, R could equal zero, 16 

provided that       (our figure 2). As ρ is likely to be close in value to     this would seem 17 

to imply that R is closer to 0 than 0.8. This is a wide range for R, but could be made narrower 18 

if ρ is known. 19 

 20 

 21 

 22 

 23 
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 1 

Fig.  1. The dependence of    on     for cloud fractions (in adjacent grid boxes) that are 2 

uniformly distributed, where the vertical correlation coefficient in cloud cover     and the 3 

horizontal correlation coefficient in cloud cover is R (solid line). The dashed line is where 4 

there would be no scale dependence to   (i.e.      ). The circles are values given by 5 

simulation. 6 
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 1 

 2 

Fig.  2. The dependence of    on     for cloud fractions that are uniformly distributed (solid 3 

line), where the horizontal correlation coefficient in cloud cover is R = 0, and the vertical 4 

correlation coefficient in cloud cover is ρ. The dashed line is where there would be no scale 5 

dependence to   (i.e.      ).  The circles are values from simulation. 6 


