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Abstract

Heterogeneous ice nucleation is a crucial processfdrming ice-containing clouds and
subsequent ice-induced precipitation. The imposaior ice nucleation by airborne desert
soil dusts composed predominantly of minerals idelyi acknowledged. On the other hand,
the potential influence of agricultural soil dustsice nucleation has been poorly recognized,
despite recent estimates that they may accountgddo ~25% of the global atmospheric dust
load. We have conducted freezing experiments wattious dusts, including agricultural soil
dusts derived from the largest dust source regioNarth America. Here we show evidence
for the significant role of soil organic matter (BDin particles acting as ice nuclei (IN)
under mixed-phase cloud conditions. We find thatite nucleating ability of the agricultural
soil dusts is similar to that of desert soil dudisf is clearly reduced after eithern®}
digestion or dry heating to 300°C. In addition, éth®n chemical composition analysis, we

demonstrate that organic-rich particles are morngontant than mineral particles for the ice
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nucleating ability of the agricultural soil dusts tamperatures warmer than about —36°C.
Finally, we suggest that such organic-rich partictd agricultural origin (hamely, SOM
particles) may contribute significantly to the uloky of organic-rich IN in the global

atmosphere.

1 Introduction

It has been shown that certain aerosol particléagas ice nuclei (IN), such as dust, soot,
volcanic ash and biological materials, are requiedrigger ice nucleation at temperatures
warmer than about —36°C (Pruppacher and Klett, 1892yrmer and Zawadzki, 1997; Hoose
and Mohler, 2012; Murray et al., 2012). In partaaulaboratory and modeling studies suggest
that desert soil dusts composed predominantly okrais are the most important IN sources
at temperatures between about —36°C and —15°C $eazutheir ice nucleation properties
and abundances in the global atmosphere (Hoosk, &040; Murray et al., 2012). In the
estimates from these studies, the contributiontleérodusts (e.qg., agricultural soil dusts) to the
global atmospheric IN population has not been takém account. Although a very large
uncertainty remains regarding estimates for thdrimution of agricultural emissions to the
global atmospheric dust load within the range ¢ 0% (Mahowald et al., 2004; Tegen et
al., 2004; Forster et al., 2007; Ginoux et al.,201he Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (Forstad.e2007) and a more recent study
(Ginoux et al., 2012) suggest 0-20% and 25% a®nedde estimates, respectively.

So far, some laboratory experiments with samplesieérsed in supercooled water have
shown that soils having higher contents of organatter may serve as better sources of IN
than clay minerals (Schnell and Vali, 1972; Conérale 2011; O’Sullivan et al., 2014).
Agricultural soils are known to be complex mixtukgsminerals, organic matter and so on.
However, the chemical composition of individual iagitural soil dust particles capable of
nucleating ice has remained uncertain. Also, tliesmf these earlier studies has centered on
the role of fertile soil dusts as IN at temperasunarmer than about —15°C (Schnell and Vali,
1972; Conen et al., 2011; O'Sullivan et al., 20id)ere clay minerals are less effective as IN
(Szyrmer and Zawadzki, 1997; Murray et al., 2012).

In this study, we examine heterogeneous ice nucledly aerosolized agricultural soil dusts

under conditions above water saturation at tempestwarmer than about —36°C (i.e.,

mixed-phase cloud conditions where ice crystalxisbavith liquid cloud droplets) and their
2
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chemical composition. In particular, we focus oe thlative importance of organics (i.e., soil

organic matter (SOM)) as nuclei for heterogeneoasiucleation.

2 Materials and methods

Agricultural soil dusts were prepared using surfagis (0 to 5 cm in depth) collected on 17
May 2011 from sugar beet (42.12878°N, 104.395162\®70 m above mean sea level) and
grass/alfalfa fallow (42.12266°N, 104.38585°W, D,2ii above mean sea level) fields at the
Sustainable Agricultural Research and Extension€d®SAREC) near Lingle (mean annual
temperature: 9.3°C), Wyoming, USA. The agricultuiaelds are located within the largest
dust source region in North America (Ginoux et 2012). Soil samples were air dried on an
aluminum tray in clean conditions and then dividaed particles smaller than 45 um by dry
sieving. As a reference for natural desert soiltglusve used China loess soils (CJ-1)
(Nishikawa et al., 2000), which were collected maaid area in Gansu Province, China. We
also used the Clay Minerals Society kaolinite (Kig-(Chipera and Bish, 2001; Murray et
al., 2011), for comparison. In addition to the eated samples, we prepared samples treated
with H,O, and ones heated to 300°C. The former samples pvepared by boiling gently in

a 30% HO; solution until almost all organic matter was expddo be digested (i.e., until no
visible reaction could be detected by addition adren HO;), followed by rinsing with
deionized water and drying. The latter samples vpespared by exposing to dry heat at

300°C for about 2 hours in a muffle furnace.

The overview of the setup for dust aerosol genemaéind sampling is illustrated in Fig. 1.
Dry dust particles were generated using a self-blaisk dust generator (nitrogen flow for
dust generation: ~2 L mi and then passed through a cyclone (cut-point eiem3.5 um at

2 L mint) and®*®Po neutralizers. It has been reported that whientimber-size distributions
of airborne soil dust particles vary dependinglmsource area conditions (e.g., surface wind
speed, soil characteristics) and long-range trahspgimes, the mode diameters during their
long-range transport typically range from ~2 um dow submicrometer (Formenti et al.,
2011; Kok, 2011). Here, we prepared particles withobility diameter of 600 nm selected in
a differential mobility analyzer (DMA; Model 308T;SI Inc.; sheath flow: 4.5 L mih
sample flow: 1 L miff). A condensation particle counter (CPC; Model 3018I Inc.) was
used to measure number concentrations of the &medsol particles. A Colorado State

University continuous flow diffusion chamber (CFDRggers et al., 2001; sheath flow: 8.5 L

3
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min’, sample flow: 1.5 L mifl) was used to measure number concentrations ofctNea
under conditions above water saturation (105.0+0:ékative humidity with respect to liquid
water) at temperatures warmer than about —36°CetJadch conditions, heterogeneous ice
nucleation processes including deposition nucleafice formation on the surfaces of
insoluble nuclei from ice-supersaturated water vapad condensation/immersion freezing
(ice formation during or following the condensatigrowth of aqueous droplets containing
insoluble nuclei) are expected to be activatedli{&u et al., 2010a, b; Tobo et al., 2012;
Wex et al., 2014). In particular, we expect thedprainance of immersion freezing in this
regime, since the relative humidity is high enoughactivate cloud droplet formation.
Following such a particle nucleation/growth sectithe CFDC has a droplet evaporation
section where only ice saturation exists. Sincauctldroplets cannot survive though the
evaporation section unless the relative humiditthwespect to liquid water in the particle
nucleation/growth section exceeds ~108% (Sulliviaal.e 2010a, b), only particles that form
ice crystals are counted as IN with an opticalipl@icounter at the outlet. The IN data were
collected every second and then averaged for 180s&8. The total dust aerosol particles and
IN active at given temperatures were collected dwtxar film supported by Ni grids (EM
Japan Co., Ltd.) using impactors. The dust aenpadicles were collected using a two-stage
jet impactor (Matsuki et al., 2010a, b; Tobo et 2010). We used only the second stage of
the impactor, because the 50% cutoff aerodynanaimeters of the first and second stages at
a sample flow of 1 L mit are estimated to be 1.6 and 0.2 um, respectiaely,the mobility
diameter of the particles is 600 nm (= 0.6 um). Boer IN sampling, the particles that
nucleated ice and were grown to ice crystal sizeseweollected using a single jet impactor
(Prenni et al., 2013; Tobo et al., 2013) instalédhe outlet of the CFDC. The 50% cutoff
aerodynamic diameter at a sample flow of 1.5 L himestimated to be 2.9 um. Then, the
size, morphology and elemental composition of iitligl particles were analyzed manually
after Au-coating (coating thickness: 2-3 nm) usam@uanta FEG MK2 scanning electron
microscope (SEM; FEI Company) combined with an gyelispersive X-ray analyzer (EDX;
Model 51-XMX0005, Oxford Instruments America Indfter the SEM images of individual
particles were taken, the X-ray spectra from théigdas were acquired for 20 sec of live time

at an acceleration voltage of 20 kV.



© 0 N O O b~ W

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

3 Results and discussion

3.1 Freezing experiments

In Fig. 2a, we show the number fraction of parsatapable of nucleating ice as a function of
temperature. The results show that the ice nuolegtroperties of agricultural soil dusts
obtained from sugar beet and grass/alfalfa falliehd$ in Wyoming are similar to each other.
Treatment with HO, is a commonly used technique to oxidize organittendrom soils and

to obtain the remaining minerals (Conen et al.,120Q'Sullivan et al., 2014). After D,
treatment, both agricultural soil dusts experien@dsignificant reduction in their ice
nucleating ability at temperatures warmer than &bé6°C, suggesting that they contain
specific ice nucleation active constituents that lsa removed by $D, treatment (most likely,
organic matter). To evaluate the possibility tieg ice nucleation properties of some mineral
components might be affected by®4 treatment, we conducted freezing experiments with
China loess soil dust (desert loess; a proxy faaisatural soil dusts (Nishikawa et al.,
2000)) and kaolinite (Chipera and Bish, 2001) ie #ame manner. The results indicate that
the impact of HO, treatment on their ice nucleating ability is relaly small (within the
range of error). Dry heating is also known as anége to remove and/or deactivate organic
matter in soils. For example, Fernandez et al. {198ported that soils heated at 150°C
exhibit no significant loss of organic matter, wées those heated at 490°C lose almost all the
organic matter. As for the ice nucleation propsrti®e confirmed that dry heating to 300°C

has a similar impact to 4@, digestion (Fig. 3).

In Fig. 2b, we compare the experimental data foicafjural soil dusts collected in Wyoming
with the parameterizations for various dusts basethe number of ice nucleation active sites
per unit surface area (i.e., ice nucleation actite densityns). Their surface area is estimated
assuming that all particles are spherical (thparameterizations for the samples presented in
Fig. 2a are summarized in Fig. Ala). The resulswskhat thens values for the original
Wyoming agricultural soil dusts are relatively damito those for desert and agricultural soill
dusts from various locations in the world, at lgasthe temperature range examined. After
H.O, digestion, however, the values for the Wyoming agricultural soil dusts seduced to
an almost comparable level to those for kaolinltee ns values for the kaolinite presented
here are relatively similar to those reported byridy et al. (2011) and Wex et al. (2014), but
are more than one order of magnitude lower thasethreported by Kanji et al. (2013) at
temperatures warmer than about —30°C despite tbeotithe same Clay Minerals Society

5
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kaolinite (Fig. Alb). The difference may be related different experimental technique;
however, further speculation concerning this issugeyond the remit of this study and is not
pertinent to the major conclusions drawn from tbenparison of our experimental results
obtained using the CFDC. Around —-36°C (near to lihet for homogeneous freezing
temperature of water in droplets, Koop et al., 3000 samples presented here show

relatively similarns values.

3.2 Identification of particle types

To identify particle types in the agricultural sdilists used here, we examined the elemental
composition of individual particles using SEM/EDXadysis. A major difficulty in the EDX
analysis of submicron particles is their high tarency for the primary electron beam
(Laskin and Cowin, 2001). Since the electron be@mefrates the entire particle, the EDX
spectrum from the particle projection area contaires background signal from the butvar
film supported by Ni-grids as well as the signatlté particle coated with Au. For this reason,
as illustrated in Fig. 4, we compare the EDX speutof the particle projection area with that
from the particle-free area. We found that the miyjoof the analyzed particles can be
classified as either “organics” or “minerals”. Thmajor elements of particles categorized as
organics are C, N and S (some of the elements fousthaller amounts: O, F, Na, Cl, K). It
has long been known that SOM serves as a resasfoutrients, such as N, P and S (Paul,
2007). As for the samples analyzed here, all thréighes categorized as organics contained
both N and S, but P was not found. It should aleanbted that we classify carbonaceous
particles lacking N and S (e.g., soot-like parscs shown in Fig. 4e) as “others” and not
organics. The major element of particles categdra® minerals is Si (some of the elements
found in smaller amounts: C, O, F, Na, Mg, Al, K],Ca, Mn, Fe, Ti). We consider that the
detection of the C peak in particles categorizechaxerals may be attributable to the presence
of carbonates (e.g., CaGQCaMg(CQ),). In this study, only particles containing the oraj
elements of both organics and minerals (i.e., CSNand S) are categorized as “organo-
mineral mixtures”. Therefore, the possibility remaithat Si-rich particles containing N- and
S-free organics or very small amounts of organiescategorized as minerals and not organo-

mineral mixtures.

In Fig. 5a, we summarize the results of SEM/EDXlysia for the total dust aerosol particles
(n =95) and IN active at temperatures of —36°C, €38Ad —24°Cr{ = 58, 52 and 68) in the
untreated sugar beet soil dust particles. The teshlow that mineral particles account for

6
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more than half of the total aerosol population amdanic-rich particles for about 40%.
However, the number fraction of mineral particleshe IN population decreases dramatically
with increasing freezing temperatures. Correspargiginthe fraction of organic particles
increases, accounting for nearly 90% of the IN pafgon at around —24°C. The fraction of
organo-mineral mixture particles or other partidi@sinly, soot-like and/or Na-rich particles)

is only 2-7% in both the total aerosol and IN p@pioins.

Furthermore, we estimated the fractions of organid inorganic particles in the agricultural
soil dust IN, based on the results of freezing e@rpents with the soil dusts before and after
H.O, treatment. Here, we assume that organic and inargaarticles account for 40% and
60% of the total agricultural dust aerosol parsicleespectively (this assumption is based on
the results of the SEM/EDX analysis) and that afjamic compounds can be digested and
removed via HO, treatment, but inorganic components are not aténe HO, treatment.
The calculation method is detailed in Appendix Ahe temperature-dependent changes in
the fractions of organic and inorganic IN estimdt®dn this calculation (Fig. 5b) are roughly
consistent with the results from the SEM/EDX anialyEig. 5a). If HO, treatment can cause
a certain reduction in the ice nucleating abilitly imorganic components, the possibility
remains that the results in Fig. 5b may somewhatastimate the fractions of organic IN. We
have not exhaustively analyzed the influence gdHreatment on all known minerals that
may be present in the soil dusts. Neverthelessydhbelts presented here indicate that the
reduction of the ice nucleating ability of the agitural soil dusts after #D, treatment (Fig.

2) can be explained mainly by the removal of organatter.

Based on these results, we propose organic-ridiciesr (namely, SOM particles) as the most
important component of agricultural soil dusts e nucleation in the temperature regime
examined. We note that while phosphorus is knowmetone of the major biological markers
(Pésfai et al.,, 2003; Pratt et al., 2009; Creameianl., 2013; Cziczo et al., 2013), no P-
containing particles were found in all of the azaly particles. This may suggest that there
was no measurable contribution of microorganismg.,(dungal spores, bacteria) to the
numbers of the agricultural soil dusts or IN exasdirhere, although the possibility of the
presence of some P-free microorganisms or plamtghér fragments) cannot be ruled out.
Organic matter in soils is composed of a varietynacromolecules, such as lignin, cellulose,
hemicellulose, protein, lipids, humic-like substasge.g., humic acid, fulvic acid) and so on

(Paul, 2007). So far, freezing experiments withtaerstandard humic-like substances have
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indicated that while they can act as IN under mighdse cloud conditions (Fornea et al.,
2009; Wang and Knopf, 2011; Knopf and Alpert, 20R83g et al., 2013; O’Sullivan et al.,
2014), they are much less effective as IN thanldesbil dusts (O’Sullivan et al., 2014). In
addition, although the potential importance of meleation by other macromolecules like
protein (Hartmann et al., 2013), cellulose (Hiramuet al., 2014) or fragments of pollen
grains (Pummer et al., 2012; Augustin et al., 20%8) been suggested, it still remains unclear
what materials are responsible for the major soofcBOM particles having very high ice

nucleating ability.

It is noteworthy that although agricultural soilsti collected in Wyoming have similar ice
nucleating abilities to those collected in EngldRd). 2b), the major component responsible
for ice nucleation at temperatures between abo6tG-3and —15°C has been interpreted in
different ways. Our results demonstrate that thesgmce of organic compounds (i.e., SOM
particles) has a significant influence on the iceleating ability of the Wyoming soil dusts
throughout the entire temperature range down t6G38 contrast, O'Sullivan et al. (2014)
suggested that mineral components are more imgdtan biogenic components for the ice
nucleating ability of the England soil dusts at pematures colder than about —15°C. The
suggestion by O’Sullivan et al. (2014) was basedhenresults from freezing experiments
with the soil dusts before and after wet heatin§Q@ecC. It is expected that wet heating to 90-
100°C deactivates only certain organic matter (dagat-sensitive proteins or proteinaceous
compounds, Christner et al., 2008). In fact, it hasn reported that wet heating to 90-100°C
is less effective than @, digestion in reducing the ice nucleating abilifyfertile soil dusts
(Conen et al., 2011; O’Sullivan et al., 2014). histstudy, we applied treatments designed to
remove and/or deactivate almost all organic mditer, HO, digestion or dry heating to
300°C). Thus, although the possibility remains thatsoil dusts from Wyoming and England
are very different in composition, we speculatd tha different interpretations of the major
component responsible for ice nucleation are i grbutable to the different experimental
approaches.

Our results also indicate that agricultural andedesoil dusts have similar ice nucleating
abilities and are more efficient IN than kaolindeer the wide temperature range examined
(Fig. 2b). However, since treatments to remove @ndéactivate organic matter have a small
impact on the ice nucleating ability of China lossd dust, the key ice nucleation active sites

contained in desert soil dusts are presumed toelaged to inorganic compounds. In this
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regard, a recent study reported that the feldsipapdrticular, K-feldspar) component can
explain highems values for desert soil dusts than clay mineral&i(&on et al., 2013). It is
likely that the ice nucleating ability of the fefils component is resistant to®} treatment
(O’Sullivan et al., 2014). It may also be importéaminote that dust-productive soils in China
tend to have much higher contents of feldspar thase in North America (Nickovic et al.,
2012). Since we have not evaluated the feldspatenbin dust samples used here, further
investigations are required to verify the hypoteegincerning the contribution of the feldspar
component to their ice nucleating abilities. Nelreless, our results clearly demonstrate that

the key IN type is quite different between agriatéd and desert soil dusts.

3.3 Atmospheric implications

In order to estimate the contribution of agricudusoil dusts to the IN population in the
atmosphere, we combined a global simulation of apheric concentrations of different
aerosol particle types at the 600 hPa pressutad@t{Hoose et al., 2010; Murray et al., 2012)
with experimentally derivedhs values. The calculation method for potential INner
concentrations is detailed Appendix A2. Thens values used in the calculation are based on
the parameterizations for desert soil dusts (Nigmeinal., 2012) and for agricultural soil
dusts derived from this study. In Fig. 6a, we shihe estimates of potential number
concentrations of soil dust IN, based on the atassiiew that all dusts are of natural origin
and that desert soil dusts are representativetafaladusts (Murray et al., 2012). In addition,
we provide the estimates of potential number comagans of soil dust IN by assuming that
agricultural soil dusts account for either 5% (Tregé al., 2004) or 25% (Ginoux et al., 2012)
of the total soil dust emissions (Fig. 6b). In thesses, agricultural soil dusts represent a
relatively small but non-negligible contribution tbe IN population, as compared with
natural soil dusts. Given the results of immersi@ezing experiments showing that soils
having higher contents of organic matter can saveefficient IN even at temperatures
warmer than about —15°C (Schnell and Vali, 1972np&oet al., 2011; Hill et al., 2013;
O’Sullivan et al., 2014), the contribution of agrttiral soil dusts to the IN population at
these temperatures may exceed that of naturablasts (not shown here). The influence of
biological IN on ice clouds is also a controvers@ic (Pratt et al.., 2009; Creamean et al.,
2013; Cziczo et al., 2013). In this regard, theiltssn Fig. 6b suggest that the contribution of
agricultural soil dusts to the IN population may Ieore significant than that of

microorganisms, as exemplified by certain well-knofungal spores (lannone et al., 2011,

9
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Murray et al., 2012), at least at temperatures vibedbdout —18°C and on a global scale.
However, further studies will be necessary to usiderd the contribution of various other
microorganisms or their fragments. Considering @M particles play the dominant role in
the ice nucleating ability of agricultural soil dsisit temperatures warmer than about —36°C
(Fig. 5), the results in Fig. 6b suggest the palisitthat SOM particles of agricultural origin
may contribute strongly to the global atmosphexigbpulation.

The results presented here offer a possible exjpdendor the presence of organic-rich
particles found in residues within ice clouds awé-phase precipitation. For example,
previous field studies have indicated that orgauilfate/nitrate particles account for about 5-
25% of the nuclei involved in heterogeneous icdeatmon in ice-containing clouds, whereas
mineral particles always predominate (DeMott et 2003; Richardson et al., 2007; Pratt et
al.., 2009; Creamean et al., 2013; Cziczo et @lL32. Previous filed studies have also pointed
out the possibility of heterogeneous ice nuclealipmirban anthropogenic organic particles at
temperatures as warm as —-20°C (Knopf et al., 20¥8ng et al., 2012b), although the
composition of individual IN has not been examinéidhas been suggested that certain
sulfates (e.g., ammonium sulfate) and oxidized miggexist as anhydrous salts or glassy
solids at relatively cold temperatures and hendeaaceffective IN (Abbatt et al., 2006;
Murray et al., 2010; Wang et al., 2012a). On theeohand, this theory cannot readily explain
heterogeneous ice nucleation at temperatures wataerabout —30°C (Abbatt et al., 2006;
Murray et al., 2010; Wang et al.,, 2012a). Here, speculate that SOM particles of
agricultural origin can be regarded as a possitlece for the organic/nitrate/sulfate particles
found in residues within ice clouds. This idea ma#gp be supported by recent work showing
that most organic matter contained in hailstonégirated from soils (Santl-Temkiv et al.,
2013), leading to speculation that SOM particleghtparticipate in ice nucleation as well as
be scavenged by ice-phase precipitation. Furtledd,flaboratory and modeling studies will
therefore be necessary to validate the hypothkatsSOM patrticles of agricultural origin are

indeed an important source of nuclei for atmoshes nucleation.

4 Conclusions

In this study, we highlight the role of agricultusil dusts as IN under mixed-phase cloud
conditions. Our results indicate that the ice natohg ability of agricultural soil dusts is

comparable to that of desert soil dusts, but isiced to almost the same level as clay

10
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minerals after treatments to remove and/or dedetimimost all organic matter (i.e.®b
digestion or dry heating to 300°C). Based on chahgomposition analysis of individual IN,
we demonstrate that the presence of SOM particiser than mineral particles, is largely
responsible for the ice nucleating ability of tlggieultural soil dusts at temperatures warmer
than about —36°C. In addition, we suggest the poggithat SOM particles of agricultural
origin may be regarded as a possible significant@influencing the ubiquity of organic-
rich IN and also residues found within ice cloudd &e-phase precipitation.

Appendix A
Al Estimation of the composition of ice nuclei of agricultural soil origin

Here, we explain how to estimate the fraction @famic and inorganic IN of agricultural soil
origin as shown in Fig. 5b, based on thg parameterizations obtained from freezing
experiments. The number concentration of IN activa given temperatug Niy (T), can be
described by (Murray et al., 2012):

Nin (T) = Niora @—€xpns(T) 8)) (A1)

whereNiota IS the number concentration of total particles,T) is the ice nucleation active
site density ang is the surface area of a single particle. Simjlahe number concentrations

of IN of agricultural soil originNin [agri. soil dusy(T), can be expressed as:
I\IIN [agri.soildust](T) = Ntotal[agri.soildust] (1_ eXp(_ns[agri.soildust](T) S)) (AZ)

whereNiotal [agri. soil dusfS the number concentration of agricultural soistdparticlesns [agi. soil
dusg(T) is thens value for untreated agricultural soil dust paetscpresented in Fig. Ala. When
calculatings, all soil dust particles are assumed to be sphleparticles having a diameter of
600 nm. Also, if only inorganic particles existafthe removal of organic matter by®}
treatment, the number concentration of inorganiofgricultural soil originNi inorganicj (T).

can be expressed as:
NIN [inorganid (T) = NtotaI [inorganid (1_ eXp(_ns [inorganid (T) S)) (A3)

where Niotal [inorganic] IS the number concentration of inorganic partiaésagricultural soil
origin, Ns inorganic] IS thens value for HO,-treated agricultural soil dust particles presente

Fig. Ala. To obtaiNtai finorganicj(T) in Eqd. (A3), we assume that inorganic (mostlynenal)

11
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particles account for 60% of the total agricultusall dust particles (i.e., organic:inorganic
ratio = 4:6; see the top-left pie chart in Fig. ,5bjth the choice of the ratio guided by in the
elemental composition analysis of individual 600 particles from the total population (i.e.,
the top-left pie chart in Fig. 5a):

Ntotal [inorganid =06 Ntotal [agri. soildust] (A4)

By combining Egs. (A2), (A3) and (A4), the fracteonof both inorganic and organic particles

in the agricultural soil dust IN [inorganic] (T) andfin [organic) (T), respectively, can be estimated:

N IN [inorganid (T)

fin [inorganid (T) = (A5)

N IN [agri. soildust] (T)

fin [organic](T) =1-fin [inorganid (T) (A6)

A2 Estimation of the number concentrations of ice nuclei of agricultural soil
origin

Here, we describe a possible method to estimatgltii@l mean number concentrations of IN
of agricultural soil origin under mixed-phase clazmhditions as shown in Fig. 6. According
to modeling estimates, the zonal annual mean nurdigrentrations of soil dusts (1 pm in
diameter) at the 600 hPa pressure altitude rargm .1 to 50 cii (Hoose et al., 2010;
Murray et al., 2012). If soil dusts in the glob#inasphere can be regarded as consisting of
only desert and agricultural soil dusts, then thi@at annual mean concentration of soil dusts,

Niotal [soil dusg (= 0.1 to 50 crif), may be expressed as:

N N

total[soil dust] = total[naturalsoildust] + Ntotal[agri.soildust] (A7)

where Niotal natural soil dusgiS the number concentration of natural soil dustiples. Recently,
Murray et al. (2012) estimated the zonal annualmmaanber concentration of IN of natural

soil origin, Nin natural soil dust(T), using the formula:

N IN [naturalsoildust](T) = Ntotal[naturalsoildust] (l_ eXp(_ns[desertsoildust](T) S)) (A8)

wherens [gesert soil dus{ T) IS thens value for desert soil dusts (Niemand et al., 2012)this
calculation, Murray et al. (2012) assumed thatia#its are of natural origin (i.Niotal patural soil
dust: Niotal [agri. soil dusy= 100:0) and that natural soil dusts can be regghas desert soil dusts.
The results are shown in Fig. 6a. On the other hanHig. 6b, we provide two estimates of
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the global mean number concentrations of both ahtand agricultural soil dust IN by
assum|ng that agI’ICU|tUI’a| SO” dUStS aCCOUHt %(Bltotgu [natura| soil dusij\ltotgd [agri, soil dust]: 955)
and 25% Kiotal patural soil dusifNtotal [agri. soil dusy= 79:25) and by combining Egs. (A2), (A7) and
(A8).
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Fig. AL Fit to ice nucleation active site densities forieas dusts(a) Parameterizations of

for untreated agricultural soil dusts (g(= —0.473@ + 0.3644; validity range: —36°C K<
—18°C) and for HO-treated agricultural soil dusts ([ = —0.6773 — 7.8436; validity
range: —36°C 9 < —22°C). Parameterizations mffor untreated China loess soil dust gi(
=-0.5230 - 1.5767; validity range: —36°C'kK< —18°C) and for untreated kaolinite fg(=
—0.9803 - 17.7764; validity range: —36°CK< —26°C) are also shown. Error bars represent
standard deviationgb) Comparison of thes parameterizations for kaolinite from this study,
Murray et al. (2011), Kanji et al. (2013) and We»ak (2014).
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