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Abstract 11 

Atmospheric concentration measurements are used to adjust the daily to monthly budget of 12 

fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the 13 

Airparif local air quality agency.  Five atmospheric monitoring sites are available, including 14 

one at the top of the Eiffel tower.  The atmospheric inversion is based on a Bayesian 15 

approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with 16 

boundary conditions from a global coarse grid transport model. The inversion adjusts a prior 17 

knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and 18 

an ecosystem model, respectively, with corrections at a temporal resolution of 6 hours, while 19 

keeping the spatial distribution from the emission inventory. These corrections are based on 20 

assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the 21 

daily cycle, and from day to day. 22 

The comparison of the measurements against the atmospheric transport simulation driven by 23 

the a-priori CO2 surface fluxes show significant differences upwind of the Paris urban area, 24 

which suggests a large and uncertain contribution from distant sources and sinks to the CO2 25 

concentration variability.  This contribution advocates the inversion should aim at minimizing 26 

model-data misfits in upwind-downwind gradients rather than misfits in mole fraction at 27 

individual sites.  Another conclusion of the direct model-measurement comparison is that the 28 

CO2 variability at the top of the Eiffel tower is large and poorly represented by the model for 29 
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most wind speed and directions.  The model inability to reproduce the CO2 variability at the 1 

heart of the city makes such measurement ill-suited for the inversion.  This and the need for 2 

constraining the budgets for the whole city suggests to assimilating upwind-downwind mole 3 

fraction gradient between sites at the edge of the urban area only. 4 

The inversion significantly improves the agreement between measured and modelled 5 

concentrations gradients. Realistic emissions are retrieved for two 30-day periods and suggest 6 

a significant overestimate by the AirParif inventory. Similar inversions over longer periods 7 

are necessary for a proper evaluation of the optimized CO2 emissions against independent 8 

data. 9 

 10 

1. Introduction 11 

Although the total CO2 emissions of developed countries may be well constrained from the 12 

total consumption of fossil fuel, its spatial and temporal distribution are not known with the 13 

same level of accuracy.  In so-called bottom-up emission estimates, CO2 emission is 14 

calculated as a combination of geo-referenced activity proxies (e.g. road traffic data, or 15 

number and type of buildings that relate to residential emissions, (Gurney et al., 2012)) 16 

multiplied by emission factors, accounting for the disaggregation of national annual budgets 17 

when dealing with regional or city inventories. The accuracy of the bottom-up inventories is 18 

seldom assessed and mostly relies on the difference between various estimates and on expert 19 

knowledge.  20 

Due to the high population density associated with ground transportation, residence and 21 

industry, anthropogenic CO2 emissions are large within cities (Pataki et al., 2006).  The 22 

emitted CO2 is transported in the atmosphere and results in elevated CO2 concentration above 23 

and downwind of cities.  There is therefore a potential to estimate the net CO2 flux of a city 24 

from a few atmospheric concentration measurements located within or in the vicinity of the 25 

city (McKain et al., 2012).  Over a very dense urban area, the net CO2 flux is dominated by 26 

fossil fuel emissions, but over less dense urban structures, the net ecosystem exchange (NEE) 27 

becomes significant and can partly offset fossil CO2 emissions during the growing season 28 

(Nordbo et al., 2012). Top-down net CO2 flux estimates, constrained by independent 29 

atmospheric measurements, could come in complement to, or for the assessment of, current 30 

estimates that rely on bottom-up inventories.  31 
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The technique of estimating surface CO2 fluxes from atmospheric composition measurements 1 

-and potentially from prior information- is relatively mature.  It has been used for many years 2 

to estimate the biogenic fluxes at the global (Gurney et al., 2002;Chevallier et al., 2010), 3 

continental (Broquet et al., 2013;Peylin et al., 2005) and regional (Lauvaux et al., 4 

2009;Lauvaux et al., 2012) scales. However, because of uncertainties in the atmospheric 5 

transport, insufficient measurement sampling, and inconsistencies between the mathematical 6 

framework hypothesis of most inversions (e.g. no biases, Gaussian distribution of errors, 7 

uncorrelated observation errors) and the reality, the results are not always consistent, in 8 

particular at the regional scale, as shown for instance through the recent comparison of global 9 

and continental-scale biogenic flux estimates by several global inversons (Peylin et al., 2013). 10 

Estimating the net CO2 flux of a city amplifies using similar mathematical and modelling 11 

tools amplifies the difficulties inherent to the atmospheric inversion.  The spatial 12 

heterogeneity of the source and the possibility of having very high emissions locally (e.g. a 13 

power plant) make the structure of the prior error statistics complex and the concentration 14 

plume highly variable.  Relating mole fractions to city sources further requires accurate 15 

atmospheric transport model at fine scale. Atmospheric transport in urban areas is influenced 16 

by specific meteorological processes such as higher roughness of urban canopies (Zhao et al. 17 

2014) and urban heat island effects (Nehrkorn et al., 2013). For instance, (Pal et al., 2012) 18 

reported significantly thicker boundary layer over the Paris city than in the surrounding rural 19 

area during a four day campaign that took place in March 2011, which was interpreted as a 20 

consequence of the urban heat island effect.  Another difficulty, shared with the inversion of 21 

biogenic fluxes, lays in the temporal variability of the fossil fuel emissions, which have a 22 

strong daily cycle but also day-to-day variability resulting from, for instance, temperature 23 

changes (through heating) or activity (e.g. traffic) variability. Last, measurements in and 24 

around a target city collect CO2 molecules of various origins that must be separated into city 25 

sources and remote sources and sinks through the inversion. 26 

This challenge has been addressed recently by several research projects, e.g. INFLUX 27 

(sites.psu.edu/influx, (Shepson et al., 2011)) over Indianapolis city or Megacities 28 

(http://megacities.jpl.nasa.gov; (Duren and Miller, 2012)) over Los Angeles, which have set-29 

up a network of surface, tower and airborne measurements of the atmospheric CO2 mole 30 

fractions.  Satellite data may also provide valuable information as shown by (Kort et al., 31 

2012). The results from the on-going urban CO2 measurement project at Salt Lake City 32 
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indicated that monthly emission relative changes of 15% could be detected at the 95% 1 

confidence level with the current monitoring system (McKain et al., 2012) even though this 2 

study concluded on the inability to derive absolute estimates for a given month.   3 

The CO2-MegaParis project has a similar objective for the Paris area.  This is a potentially 4 

favourable case as the city is very dense and the emissions intense over a limited surface, with 5 

a fairly flat topography in the surroundings, which makes the atmospheric transport modelling 6 

easier.  A pilot campaign early 2010 was conducted in the framework of the MEGAPOLI 7 

project.  Measurements of the mole fraction of CO2 and its isotopes have been used to 8 

estimate the relative contribution of fossil and biogenic emissions in the concentration 9 

gradients (Lopez et al., 2013).  The main campaign started in August 2010 with the 10 

installation of three CO2 and CO monitoring stations within the city and its surrounding that 11 

provided near-continuous measurements until July 2011.  These three stations complement 12 

two stations of the ICOS France network located in the Paris region outside the city that have 13 

been operational for several years.  (Lac et al., 2013) made a first analysis of the 14 

measurements and a comparison against atmospheric modelling using the Meso-NH 15 

mesoscale transport model, combined with a surface scheme that accounts for the urban 16 

environment, for a period of 5 days in March 2011.  They demonstrated the ability of the 17 

modelling framework to reproduce several features of the mixing layer height, as reported in 18 

(Pal et al., 2012), and of the mole fraction daily cycle. 19 

Large efforts have been made by AirParif, the air quality agency for the Paris area, to generate 20 

an inventory of the Paris area emissions, for various pollutants and for CO2 as well.  The 21 

AirParif emission inventory, detailed in section 2.2, provides an hourly description of the CO2 22 

emissions at ≈1 km resolution for representative weekdays and months.  We use this 23 

inventory as an input to the atmospheric transport simulations and compare the results to the 24 

atmospheric concentration measurements from the five sites.  We then attempt a correction of 25 

the inventory based on the differences between the observed and modelled mole fractions. 26 

With only 5 stations in the vicinity of the city, there is likely not enough information to 27 

constrain the spatial distribution of the emissions.  We therefore only rescale the emissions, 28 

relying on the spatial distribution provided by the Airparif inventory.  For the inversion, NEE 29 

and fossil fuel emissions are optimized separately. We focus on two 30-day periods in the fall 30 

of 2010.  This choice is driven by the expectation of rather small biogenic fluxes during this 31 

time period, which makes easier the interpretation of the measurements in terms of 32 
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anthropogenic fluxes.  Our objective is to assess whether a reliable estimate of the emissions 1 

at the daily to monthly time scales can be derived from the combination of atmospheric 2 

measurements, available inventories and information on the atmospheric transport.  A 3 

forthcoming paper will apply the methodology to a full year of observations and analyse the 4 

result for the spring and summer periods, when CO2 uptake by NEE can partially offset fossil 5 

fuel emissions (Pataki et al., 2007).  In the following, section 2 analyses the time series of 6 

measured and modelled CO2 mole fractions; section 3 describes the methodology to correct 7 

the inventory based on the measurement-model mismatches.  The results are shown in section 8 

4 while section 5 discusses the results and concludes.  9 

2. Measurements and direct simulations 10 

2.1. CO2 concentration measurements 11 

In this paper, we use CO2 mole fraction measurements that have been acquired continuously 12 

in the framework of the CO2-Megaparis and ICOS-France projects.  Three stations have been 13 

equipped with high precision CO2/CO analysers (Picarro G1302) specifically for the project 14 

objectives.  One is located in the heart of Paris, at the summit of the Eiffel tower, 300 m 15 

above the surface.  Two are located in the North and North-East of the Paris area in a mixed 16 

urban-rural environment.  They are complemented by two ICOS-France stations that were 17 

operational before the start of the project.  One is located in the South-West, about 20 km 18 

from the centre of Paris, while the other is a tall tower located further south by about 100 km.  19 

Both use gas chromatograph analysers (Agilent HP6890).  The location of the stations are 20 

given in Table 1 and shown in Figure 1.  They are very roughly located along a NE-SW 21 

direction, which defines the dominant wind directions, thus favourable for the monitoring of 22 

the CO2 increase due to the emissions of the Paris area, with a station at the edge of the urban 23 

area in both directions. The measurements are quality-controlled and binned at a temporal 24 

resolution of 1 hour.  They have been regularly calibrated against the WMO mole fraction 25 

scale (Zhao and Tans, 2006) so that measurement accuracy to the WMO-X2007 scale is 26 

estimated to be better than 0.38 ppm.  The instrumental reproducibility is better than 0.17 27 

ppm on the 5 minute average measurements available from the CO2-Megaparis stations, and 28 

the temporal averaging to the hourly-mean values used in this paper leads to precision much 29 

better than the accuracy (Zhao and Tans, 2006).   30 
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2.2. Atmospheric transport modelling 1 

Atmospheric transport modelling provides the link between the surface fluxes and the 2 

atmospheric mole fractions.  Here, we use the Chimere transport model (Menut et al., 2013) 3 

with a resolution of 2 km around the Paris city, and 10 km for the surrounding of the 4 

modelling domain (see Figure 1).  There are 118x118 pixels in the modelling grid that covers 5 

an area of approximately 500x500 km2.  There are 19 layers on the vertical, from the surface 6 

to 500 hPa.  The Chimere transport model is driven by ECMWF-analysed meteorology at 15 7 

km resolution.  There is no urban scheme in the atmospheric modelling that is used here, 8 

which may be seen as a significant limitation to our inversion set-up.  However, we conducted 9 

forward simulation comparisons between our modelling and that used in (Lac et al., 2013), 10 

which includes specific surface parameterization to account for the urban area, and we did not 11 

find significant differences on the simulated CO2 mole fractions. 12 

The model simulates the mole fractions that are driven by the surface fluxes and the boundary 13 

conditions.  The surface fluxes that are accounted for in the simulations are the sum of 14 

• Anthropogenic fossil fuel CO2 emissions within the Île-de-France region, from the 15 

AirParif inventory, as described in section 2.3 and shown in Figure 2. Île-de-France is 16 

the administrative region spreading typically within 60 km around the Paris city, the 17 

boundaries of which are shown in Figure 1.   18 

• Anthropogenic fossil fuel CO2 emissions outside the Île-de-France region, according 19 

to the Edgar database [Edgar, 2011] available at 10 km resolution.  These are only 20 

annual mean fluxes, and there is no description of the diurnal or seasonal cycle in this 21 

inventory. 22 

• Biogenic fluxes from the C-TESSEL land surface model, as described in section 2.4. 23 

The CO2 boundary conditions prescribed at the lateral and top edges of the simulation 24 

domain, and transported inside the domain by Chimere, are obtained from the Monitoring 25 

Atmospheric Composition and Climate (MACC) global inversion, v10.2) 26 

(http://www.copernicus-atmosphere.eu/).  In this simulation, the global distribution of surface 27 

CO2 fluxes has been optimized to fit the mole fractions measured at a number of stations 28 

distributed over the world, given their assigned uncertainty and prior information of the 29 

surface fluxes.  Given the relatively coarse spatial resolution of the transport model used in 30 
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the MACC inversion, CO2 boundary conditions here are temporally and spatially very smooth 1 

and have little impact on the spatial gradients simulated within the domain area. 2 

2.3. AirParif Inventory 3 

The AirParif air quality agency (http://www.airparif.asso.fr/en/index/index) has developed an 4 

inventory of emissions (for greenhouse gases such as CO2 but also for air pollutants) at 1 km 5 

spatial resolution and hourly time step for the Île-de-France region. The emissions are 6 

quantified by activity sectors.  The improvement of methodologies and emission factors lead 7 

to frequent updates of the emission estimates. 8 

Nearly eighty different source types are included in the inventory with three main classes: 9 

point sources, linear and diffuse sources.  Point sources correspond to large industries, power 10 

plants, and waste burning; linear sources are related to transportation, while diffuse sources 11 

are mostly associated to the residential and commercial sectors.  The road traffic emission 12 

estimates use a traffic model and vehicles counting devices that report the number of vehicles 13 

and their average speed over almost 40 000 km portions of roadways.  Large industries are 14 

requested to report their CO2 emissions and these are used in the inventory.  For smaller 15 

industrial sources that are not required to report their emissions, a disaggregation of the 16 

regional fuel consumption is made based on the number of employees, leading to larger 17 

uncertainties.  We have used the latest available version of the inventory, corresponding to 18 

year 2008, which has been developed for 5 typical months (January, April, July, August, and 19 

October) and three typical days (weekday, Saturday and Sunday) to account for the seasonal 20 

and weekly cycle of the emissions.  Therefore this inventory estimates typical emissions but 21 

does not attempt to reproduce the daily variations resulting from specific meteorological 22 

conditions, or specific events such as public holidays. 23 

Figure 2 shows an example of the spatial distribution of the total emissions for a weekday in 24 

October.  Typical values are a few hundred gCO2 m-2 day-1 within the city and a few tens 25 

gCO2 m-2 day-1 in the suburbs.  The main roads are clearly shown with flux enhancements of a 26 

few tens gCO2 m-2 day-1, at the 1 km2 resolution of the inventory.  Further processing of this 27 

map shows that one third of the Île-de-France emissions are within 10 km of the Paris centre, 28 

and 61% are within 20 km. 29 

There is a large temporal variation of emissions, as shown in Figure 3, mostly at the daily 30 

scale, but also at the weekly and seasonal scales.  Most components show a large daily cycle 31 

with minimum emissions at night.  During the day, the traffic related emissions show several 32 
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maxima, in the morning, midday, and late afternoon.  The daily cycles of the other activities 1 

are less pronounced but nevertheless significant. Point sources have the smallest daily cycle 2 

amplitude due to the industrial temporal profile that is relatively flat. The Paris area has few 3 

point sources and they contribute to typically 20% of the total emissions. The seasonal cycle 4 

is most pronounced for the residential emissions related to heating and cooking.  One notes 5 

that residential CO2 emissions do not go to zero during the summer months, because energy is 6 

still consumed for cooking and for heating water in summer. 7 

In the following, the AirParif inventory for year 2008 is used as a prior estimate of the fossil 8 

fuel emissions within the Île-de-France region, both for the direct transport simulations 9 

(section 2.5) and for the flux inversion (section 3).  Note that the inventory of point source 10 

emissions provides injection heights that have been used in the source term of the simulations.  11 

The AirParif inventory is provided as a function of legal time, and we have accounted for the 12 

time shift between legal time and UTC time, including the impact of daylight saving.  Note 13 

that, due to the longitude of Paris, UT time and solar times are very similar. 14 

2.4. Biogenic Fluxes 15 

The Net Ecosystem Exchange fluxes used here are provided by the land surface component of 16 

the ECMWF forecasting system, C-TESSEL (Boussetta et al., 2013). They are extracted from 17 

the ECMWF operational archives at the highest available resolution, 15 km and 3 hours.  18 

These data are interpolated in space (2 to 10 km) and time (1 hour) to be consistent with our 19 

atmospheric transport model grid and temporal resolution. 20 

Figure 4 shows the mean daily cycle of NEE for the Île-de-France area and for the 12 calendar 21 

months.  There are large diurnal and seasonal NEE cycles.  The flux is positive (emission) 22 

during the night and negative (uptake) during the day, even during the winter months, given 23 

the rather mild winter temperature prevailing over the Paris area. Nevertheless, the amplitude 24 

of the daily cycle of NEE is much larger in summer than it is in winter. The NEE values are 25 

of similar magnitude than the anthropogenic emissions with a strong anti-correlation on the 26 

daily cycle (negative NEE vs. large anthropogenic emissions during daytime; positive NEE 27 

and smaller anthropogenic emissions during the night).  During the winter, NEE is relatively 28 

small and the anthropogenic emissions clearly dominate, but daytime NEE still offsets on 29 

average ~20% of the emissions, according to the C-TESSEL model simulations.  During 30 

spring and summer, however, the daytime NEE uptake is larger in absolute value than the 31 

anthropogenic emissions as shown through a comparison of Figures 3 and 4. 32 
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As our main interest is the anthropogenic emissions, we chose to analyse a period when the 1 

biogenic flux is small, i.e. during fall and winter. The present paper focuses on two 30-day 2 

periods that start on October 21st and November 27th 2010.  During these periods, the monthly 3 

mean hourly NEE fluxes are less than 3 ktCO2 per hour over the Île-de-France area.  NEE is 4 

then small, but not negligible, compared to anthropogenic emissions during the chosen 5 

inversion periods. 6 

2.5. Direct CO2 transport simulations 7 

Figure 5, together with Figure S-1 in the supplementary, shows the time series of the CO2 8 

mole fractions together with an indication of the modelled wind speed and direction to help 9 

the interpretation of the results.  These time series are derived from observations and direct 10 

atmospheric modelling as described in section 2.2. 11 

The Trainou (TRN) station (bottom row) is far from the Paris agglomeration.  In addition, the 12 

measurement inlet is at 180 m from the surface.  It shows a diurnal cycle amplitude that is 13 

much smaller than at the other sites.  In addition, the modelled contribution from both 14 

anthropogenic and biogenic fluxes within the simulation domains is limited to a few ppm, as 15 

shown by the difference between the black and green curve. There are a few exceptions 16 

however, essentially when the wind blows from the North, i.e. from the Paris city direction, 17 

and transports fossil CO2 from the urban area to the TRN rural site.  The best examples are 18 

around Dec 8th and Dec 23rd.  For these particular cases, the measurements at TRN are 19 

significantly larger than the model results.  The underestimate by the model is not limited to 20 

these dates and there are significant discrepancies between the model and the measurements at 21 

this remote background site, in particular at the end of November and at the beginning of 22 

December. 23 

The other sites are much closer to Paris and are then more affected by the fossil CO2 24 

emissions.  At Gif-sur-Yvette (GIF) the largest mole fractions are observed when the wind is 25 

from the North-East, which is expected as the Paris city is in that direction. There is also an 26 

impact of the wind, as the largest mole fractions are measured in low wind speed conditions.  27 

During the Oct-Nov period (Figure S-1), the wind is mostly from the South and South-West, 28 

thus not from the city, and there is a relatively good agreement between the modelled and 29 

measured mole fractions.  In December, the wind direction is more variable, the fossil CO2 30 

signal appears much larger, and there are very significant differences between the 31 

measurements and the model estimates. 32 
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Gonesse (GON) is located to the North of the city, while Montgé-en-Goële (MON) is further 1 

away to the North-East.  The shorter distance to the main source may explain the larger signal 2 

at the former station.  The only cases when the modelled anthropogenic contribution is small 3 

at GON (small difference between black and green curve) is when the wind is from the North.  4 

For other wind directions, the modelled signal is strong -more than 10 ppm- and there are 5 

large differences between the measurements and the modelling results.  During December, the 6 

measurements are most often larger than the model estimates.  A similar observation can be 7 

made at MON. Surprisingly, the measurements are significantly larger than the modelling 8 

results, even when the wind blows from the North or North-East, i.e. when the Paris 9 

agglomeration contribution is negligible (Dec 3rd, Dec 6-9, Dec 22-23).  For these cases, the 10 

most likely explanation is an underestimate of modelled CO2 from the boundary conditions or 11 

from emissions within the modelling domain outside of Île-de-France.  Hereafter, we shall 12 

denote this contribution as that from “remote fluxes”.  Note that this impact from remote 13 

fluxes shows a large increase of the mole fraction for the periods discussed above. We may 14 

then hypothesize that this increase is underestimated.  The interpretation is that anthropogenic 15 

emissions from the Benelux area generate high concentrations that are underestimated in the 16 

boundary condition field that is used in our simulations. 17 

The EIF site is at the top of the Eiffel tower, 300 m above the Paris city. The wind speed for 18 

this station is larger than for the other one, simply because it is higher in altitude. One expects 19 

atmospheric mixing between the surface emissions and the inlet, so that the measurements are 20 

representative of a larger area than e.g. MON and GON.  Nevertheless there are some very 21 

significant differences between the modelled and the observed mole fractions at EIF. The 22 

differences may be huge, larger than 30 ppm, even during the afternoon, e.g on Oct 24th, Nov 23 

7th, Dec 3rd, Dec 12th. Clearly, our atmospheric modelling framework cannot properly 24 

represent the mole fraction time series at the EIF station, either because of strong local (sub 25 

grid cell) emissions, or because of atmospheric transport processes that are not properly 26 

represented, in particular concerning the vertical transport above the city.  Further analysis of 27 

the model-measurement mismatch is shown in Figure S-3.  The largest mismatches are 28 

preferentially observed during the morning and for low wind speeds, but are observed at all 29 

hours of the day and for all wind speed and directions which prevents from attributing these 30 

mismatches to a specific bias in the transport model or to a bias in the estimate of the 31 

emissions for a specific area.  32 
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The curves in Figure 5 and Figure S-1 show very large temporal variations of CO2 within a 1 

day at all stations.  Further analysis confirms that the largest variations are observed during 2 

the night, when the mixing layer is shallow.  During the night and morning, the atmosphere is 3 

often very stable so that surface emissions accumulate within the lowest atmospheric layers, 4 

the thickness of which ranges from a few meters to tens of meters.  The atmospheric mole 5 

fraction is then mostly sensitive to local fluxes and vertical mixing -an atmospheric process 6 

that is difficult to model- so that there is a large uncertainty about the modelled link between 7 

the emissions and the atmospheric mole fraction.  The night-time and morning measurements 8 

are thus not appropriate for our flux inversion, as inverting them would be too sensitive to 9 

atmospheric transport biases.  As a consequence, we focus on the concentration measurements 10 

acquired during the afternoon only, from noon to 4 p.m., when the mixing layer is usually 11 

well developed. The daily averages of these afternoon measured and modelled values are 12 

shown in Figure 5 as diamond symbols.   13 

2.6. Analyses and insight for the inverse modelling configuration 14 

Both the measurements and the modelling results show some impact of the Paris area 15 

anthropogenic emissions on the CO2 mole fractions at the 5 sites analysed here.  The mole 16 

fraction increases over the modelled large-scale value depends on the wind speed and 17 

direction and a typical order of magnitude is 10 ppm.  As expected, the signal is smaller for 18 

the rural station of TRN, which is further away from the city than the other sites.  Many of the 19 

features in the measured time series are well reproduced by the modelling framework, which 20 

gives some confidence in its usefulness to improve the emission estimates.   21 

There are also some significant differences between the measured and modelled mole 22 

fractions that cannot be justified by inaccurate emission inventories in the Paris area.  The 23 

most obvious such feature is the mole fraction underestimate at MON and GON in northerly 24 

wind conditions when these sites are little sensitive to the Île-de-France emissions.  This 25 

feature strongly suggests that remote fluxes lead to mole fraction increases that have biases 26 

with a typical magnitude that is similar to the impact of the Paris area emissions. On the other 27 

hand, as the impact from remote fluxes is large scale, one may expect that this impact is 28 

similar for monitoring stations upwind and downwind from the Paris urban area.  The model-29 

measurement error may then be strongly reduced when analysing the difference of mole 30 

fractions between two stations that are located upwind and downwind the Paris urban area, 31 

respectively.  On the other hand, the mole fraction difference between such stations that are 32 
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close to the Paris area should contain a clear signature of the emissions from this area, and a 1 

relatively weak signature from other fluxes.  It then suggests the use of downwind-upwind 2 

gradients in the CO2 mole fractions rather than the absolute value of CO2 measurements in the 3 

inversion procedure. 4 

The other significant feature in the comparison of the modelled and measured CO2 mole 5 

fractions is much larger errors at the EIF site than at the other stations. These results illustrate 6 

the difficulty in modelling the CO2 mole fraction within cities, even with a measurement inlet 7 

in altitude, well above the sources.  Note that (McKain et al., 2012) also find very large (>30 8 

ppm) model-measurement mismatches within the urban area of Salt Lake City, even when 9 

using a high-resolution model.  Similarly (Lac et al., 2013) finds large model-measurements 10 

differences at EIF despite the use of an urban parameterization in the modelling.  The inability 11 

to properly model the CO2 signal at EIF may have detrimental impact on the emission 12 

estimates derived from atmospheric inversion.  Conversely, the forward simulations show that 13 

the TRN site is little sensitive to the Paris area emissions due to its location further away from 14 

the city than the other sites.  Consequently, it cannot be used as a “downwind” site; in 15 

addition, GIF is better suited as an “upwind site” for southerly conditions as it is closer to the 16 

urban area and provides therefore a better information on the air composition as it enters the 17 

city.  These features suggest not to use EIF and TRN and rather focus on MON, GON and 18 

GIF to estimate the Paris area emission from their measured mole fractions. 19 

The main objective of the “gradient” inversion method is thus to focus on the monitoring 20 

stations that are at the edge of the urban area and to estimate the city scale emissions by 21 

removing most of the upwind signal from the measured and modelled concentrations.  The 22 

upwind signal is driven by remote fluxes both from the boundary conditions and by fluxes 23 

within the model domain but outside the city whose estimates bear very large uncertainties.  24 

The inversion method also attempts to select the downwind measurements that are affected by 25 

the emissions from a large part of the city, in an attempt to minimize the impact of 26 

aggregation errors.  Ideally, we would select only the wind direction when one station lies 27 

directly downwind from another, with the Paris city in between.  However, given the very 28 

limited network of stations surrounding Paris, we have to broaden significantly the range of 29 

acceptable wind directions. 30 

Based on this analysis, the emission estimate procedure only uses the measurements from 31 

GON, MON and GIF and is based on the CO2 mole fraction gradients between the upwind 32 
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and downwind stations, a method which requires the selection of favourable wind conditions.  1 

The mathematical framework is described in the next section while the inversion results are 2 

presented in section 4. 3 

3. Flux inversion 4 

3.1. Principles 5 
We follow a linear Bayesian inversion approach with Gaussian error statistics to determine 6 

the optimal surface fluxes (anthropogenic emissions and biogenic fluxes) and their 7 

uncertainties from a prior estimate of the fluxes and their uncertainties and from the mole 8 

fraction measurements.  9 

We call x the state vector that gathers the scaling factors for the 6-hourly flux maps, xB its 10 

prior estimate, H the matrix operator that relates state parameters and mole fraction gradients 11 

according to the atmospheric transport model, y the observed mole fractions gradients, 𝐲𝐅  the 12 

simulated impact on these mole fraction gradients of the lateral boundary conditions and of 13 

the fluxes that are not accounted for in the state vector, B the uncertainty covariance matrix of 14 

xB, and R the error covariance matrix of y.  These components are detailed in the next section. 15 

The optimal solution is given by (Tarantola, 2005): 16 

 𝐱𝐀=𝐱𝐁 + 𝐁!𝟏 + 𝐇!  𝐑!!  𝐇 !𝟏  𝐇!  𝐑!!   𝐲− 𝐲𝐅 − 𝐇  𝐱𝐁   (1)  17 

and its posterior error covariance matrix is 18 

 𝐀 = 𝐁!𝟏 + 𝐇!  𝐑!!  𝐇 !𝟏 (2) 19 
Note that A does not depend on the actual measurement values, but varies, among other 20 

factors, with their temporal and spatial sampling. 21 

3.2. State vector: x 22 

Both the anthropogenic and biogenic prior fluxes described in Section 2 show a large diurnal 23 

cycle that impacts the model simulations of CO2, and that is uncertain.  It then appears useful 24 

to invert this cycle together with the flux daily mean values.  However, as discussed earlier, 25 

only CO2 measurements during the early afternoon can reliably be used to estimate the fluxes 26 

and their information about the daily cycle is rather poor.  We limit the number of 27 

independent periods to 4 corresponding to the local times between 0-6 h, 6-12 h, 12-18 h, and 28 

18-24 h, respectively.   29 
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For the fossil fluxes, we use a scaling factor for each individual day in the state vector, which 1 

makes the number of corresponding variables amount to 30×4=120 for the 30-day period of 2 

the inversion. These scaling factors apply to the prior flux estimates derived from the AirParif 3 

inventory and are noted λ0−6
i , λ6−12

i , λ12−18
i , λ18−24

i with i between 1 and 30.   4 

Similarly, we optimize scaling factors of the prior NEE flux from C-TESSEL.  The simulation 5 

domain shown in Figure 1 is split into 3×3 large boxes, and we choose the same 6-hour 6 

periods than for the anthropogenic fluxes to optimize scaling factors of NEE.  However, we 7 

do not attempt a daily retrieval of NEE, and considered a single scaling factor for optimizing 8 

monthly NEE each 6-hour window over a 30-day inversion period.  The number of variables 9 

to optimize NEE is therefore 3×3×4=36.  In the following, these NEE scaling factors are 10 

shown as 𝛼!!!! , 𝛼!!!"
! ,𝛼!"!!"! , 𝛼!!"!!"

!  where X is one of the 9 large boxes. One of the 9 11 

boxes covers the Île-de-France region while the other ones are in the surrounding.  In the 12 

Inversion results sections, we analyse the inversion of NEE for the centre box (X=C) together 13 

with those for the anthropogenic emissions.  The surrounding boxes provide some ability to 14 

the inversion system to control part of the errors from remote NEE, but one cannot expect to 15 

get reliable estimate of the NEE in these areas given the weak observational constraint on this 16 

remote NEE. 17 

The state vector x for the linear inversion has therefore 120+36 = 156 variables that represent 18 

the scaling factors to the modelled fluxes.  The prior value of each of these scaling factors in 19 

xB is 1. 20 

3.3. Measurements gradients:  y 21 

y contains the measurements gradients that are used to constrain the flux inversion.  As 22 

explained above, we only use hourly measurements that have been acquired during the 23 

afternoon from noon to 4 p.m. local time.  In addition, the corresponding measurements need 24 

to have a sensitivity to local, unresolved, fluxes that is insignificant in comparison to that of 25 

larger scale fluxes.  This condition is not met when the wind speed is low.  We therefore use 26 

for the inversion only the measurements filtered for wind speeds larger than a given threshold 27 

at both sites used to compute the gradient.  The results presented in this study are obtained 28 

with a threshold of 2 m s-1.  The wind speed estimate used for such a selection is the one 29 

analysed by the ECMWF at the location, height, and time of the observation.  This criterion 30 

retains about 70% of the potential measurements. 31 
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In Equation (1) the downwind-upwind differences in mole fraction measurements y are 1 

corrected for the contributions that are not accounted for in the state vector (yF). yF are the 2 

modelled mole fraction accounting for the boundary conditions and anthropogenic fluxes 3 

outside Île-de-France (prescribed from the Edgar database).  This contribution is shown as a 4 

blue line in Figure 5 and Figure S-1. 5 

When the wind is from the South-West (upwind direction between 160° and 260°), GIF is 6 

considered as upwind from the urban area, and the corresponding y elements are the 7 

differences between the mole fractions measured at either MON or GON and that measured at 8 

GIF.  Similarly, when the wind is from the North-East (upwind direction between 0 and 9 

135°), MON is used as an upwind reference to the GIF or GON mole fraction measurements.  10 

For other wind directions, the measurements are not assimilated. 11 

3.4. Prior flux uncertainties and error correlations: B 12 

Although we invert the scaling factors of fossil CO2 emissions for each day and each 6-hour 13 

period, the uncertainties in these factors are correlated.  We therefore attempt to assign 14 

correlations for the prior uncertainties based on several considerations: (i) the monthly budget 15 

for the AirParif inventory is generally stated to have an uncertainty of 20% which is used 16 

here; (ii) we assume small positive correlations between the different 6-hour windows; (iii) 17 

we assume stronger correlations from day to day for a given 6-hour window; (iv) the a priori 18 

uncertainty of individual 6-hour emission should have a typical order of 50%. 19 

Based on these considerations, we set, rather arbitrarily, prior error correlations to 0.4 for two 20 

adjacent time periods (e.g. 12-18 and 18-24) and to 0.2 for non-adjacent time period (e.g. 6-12 21 

and 18-24).  For successive days, we use an exponential de-correlation with a characteristic 22 

time Tcor.  The correlation between the prior uncertainties of the fossil CO2 emissions scaling 23 

factors is then the product of this exponential and the time-periods correlation.  For instance, 24 

the correlation between λ0−6
5  and λ6−12

9  is 0.4 exp −4 /Tcor( ) .  The results shown in this paper 25 

have been mostly obtained with a temporal correlation Tcor of 7 days, but other values, from 1 26 

to 30 days, have been also tested.  We have verified that such a B matrix is positive-definite.  27 

The desegregation of the assumed 20% uncertainty for the monthly emission totals, based on 28 

these temporal correlations, results in a standard deviation of uncertainties for individual 6-29 

hour period of 33% (Tcor=30 days) to 50% (Tcor=7 days). 30 
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For the biogenic flux scaling factors, we set a relative prior uncertainty (standard deviation) 1 

close to 0.70 with some variations according to the box size (the variance varies inversely to 2 

the surface of the box), based on the numbers derived at 0.5° resolution in (Broquet et al., 3 

2011).  We do not assign any spatial / temporal correlation between the various biogenic 4 

scaling factors, i.e. between the 9 boxes or the 4 time periods.  Similarly, there is no 5 

correlation in B between the prior uncertainties on the biogenic and anthropogenic fluxes. 6 

3.5. Operator matrix: H 7 

The operator matrix H provides the link between the surface fluxes and the mole fraction 8 

measurements.  It combines the spatio-temporal distributions of the fluxes, both for the 9 

AirParif inventory and the C-Tessel biogenic fluxes, that are assumed and not modified 10 

through the inversion, the atmospheric transport by the Chimere model, the sampling of the 11 

atmosphere at the instrument locations and the selection of gradients according to the criteria 12 

developed in section 3.3.  Note that the AirParif inventory has a 1 hour temporal resolution.  13 

The direct simulation (H x) uses the description of the emissions at this temporal resolution.  14 

Each element of the state vector corresponds to a natural or anthropogenic surface flux for a 15 

larger time period.  We use the atmospheric transport model to compute the impact to the 16 

mole fraction of each surface flux (156 in total) corresponding to an element of the control 17 

vector.  The 4D mole fraction fields from each of these simulations are then sampled at the 18 

place and time of the atmospheric observations used to compute the downwind-upwind 19 

gradients corresponding to the observation vector. These simulated mole fraction gradients 20 

provides the elements of each column of the H matrix.  21 

3.6. Observation error: R 22 

The measurements provided by the instrument are precise, certainly better than 0.3 ppm. 23 

However, the observation error in R also includes any source of misfit between the model and 24 

the data that is not accounted for in the state vector such as the representation error, the 25 

impact of the error in the spatial distribution of the fluxes, and the atmospheric transport 26 

modelling error.  These are difficult to assess (Broquet et al., 2013) although one expects 27 

significant values given the very heterogeneous urban environment that is discussed here.  28 

Due to the complexity and misunderstanding of the processes underlying the observation 29 

error, that may lead to positive or negative correlations, we ignore observation error 30 

correlations in the construction of R, which is thus diagonal. 31 
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We use two statistical diagnostics of the misfits in the observation space described by 1 

(Desroziers et al., 2005) to infer typical observation error variances: (i) the agreement 2 

between the sum of the uncertainty from the prior estimate of the control parameters and of 3 

the observation error with the RMS of the prior misfits to the assimilated data; and (ii) the 4 

agreement between the observation error with the mean of the product of prior and posterior 5 

misfits to the assimilated data.  Based on this analysis, we set a 3 ppm observation error for 6 

the mole fraction gradients that are used for the inversion. 7 

We can note that this value is significantly smaller than the model-measurement differences 8 

as shown in Figure 5. This is due to the fact that the observation errors related to uncertainties 9 

in the large scale impact of the remote fluxes are strongly correlated between the 10 

measurement sites at a given time. Therefore, they vanish when considering gradients in the 11 

model fractions rather than values at individual sites such as in Figure 5.  This is further 12 

discussed in section 4.2. 13 

4. Inversion results 14 

In the following, we present the result of the inversion described in the previous section.  We 15 

first analyse the modelled mole fractions, prior and posterior, against the measurements.  We 16 

then analyse the retrieved fluxes, both NEE and fossil fuel. 17 

4.1. Mole fraction gradients 18 

Figure 7 and Figure S4 show the time series of the afternoon-mean mole fraction gradients. 19 

Some days are missing either because either station is unavailable or because the wind 20 

direction does not fulfil the selection criteria developed in section 3.3.  The prior value is 21 

almost always positive, because the reference is chosen upwind the Paris agglomeration.  22 

There are a few exceptions, like on Dec 22nd at GON, MON being used at the upwind 23 

reference according to the wind direction.  As GON is in the northern part of the Paris 24 

agglomeration, one expects a smaller signal than for southerly wind conditions.  Further 25 

investigation demonstrated that this unexpected behaviour is linked to a large spatial gradient 26 

of the CO2 concentration generated by anthropogenic emissions over the Benelux accounted 27 

for in the Edgar inventory and transported by the Chimere model (yF in equation 1).  28 

Interestingly, the observations confirm the sign and the order of magnitude of the gradient 29 

that is modelled with our setup that uses crude anthropogenic emissions outside Île-de-France. 30 
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Another negative gradient is observed at GIF-MON for northerly wind conditions on Dec 3rd.  1 

This is very unexpected and we could not find a valid explanation for this particular case. 2 

In general, the observations are smaller than the prior, and the posterior is in between.  3 

Indeed, the inversion result leads to concentration gradient that are closer to the observations.  4 

As a result, some of the posterior gradients are negative (see end of the period at GIF in 5 

Figure 7). 6 

Figure 8 and Figure S4 show scatter plots of measured versus modelled mole fractions 7 

gradients.  The first row of the plots on each of these figures shows the modelled mole 8 

fractions from the domain boundaries and the fossil CO2 emission outside Île-de-France 9 

(black lines in Figure 5, yF in equation 1) against the measurement. This constitutes the 10 

modelled contribution to the mole fraction that is not optimized by the inversion. The values 11 

on the Y-axis show the modelled impact of the remote fluxes on the upwind-downwind mole 12 

fraction gradient.  As expected, this impact is small compared to the measured gradient shown 13 

on the X-axis. 14 

The second row shows simulated CO2 induced by prior NEE and fossil CO2 fluxes (i.e. those 15 

that are optimized through the inversion) against measured mole fractions corrected for the 16 

large scale values (i.e. yF, shown on the Y-axis of the first row).  Although there is a large 17 

spread, the correlation is significant, which shows that the transport model and the prior flux 18 

set up have altogether some ability to reproduce the observed CO2 mole fraction variability.  19 

For the Oct-Nov period (in supplementary), the biases are large for all site gradients (2.1 to 20 

4.8 ppm) whereas, for the Nov-Dec period, they are even larger at GIF-MON (7.1 ppm) but 21 

rather small in comparison at both other sites. The standard deviation of the measurement-22 

model difference varies with the sites and period, between 2.0 and 5.8 ppm.  This is 23 

significantly smaller than the standard deviation for the mole fractions (Figures 6 and Figure 24 

S2) that vary between 3.6 and 6.6 ppm.  These smaller values confirm the choice made of 25 

attempting an inversion based on the mole fraction gradient rather than the individual 26 

observations. 27 

After the inversion, the agreement is significantly improved as shown in the third row. Note 28 

however that the standard deviation for the MON site (when GIF is used as a reference) is 29 

slightly degraded from the prior value of 2.0 ppm.  After the inversion, the correlation 30 

between optimized and observed CO2 gradients for all three stations is larger than 0.90.  For 31 

the other time period shown in the supplementary material (Figure S-5), the correlation 32 



 19 

statistics are not as good.  However, this is due to a lower variability of the gradients, and the 1 

posterior standard deviations are 2.3, 2.7 and 2.3 ppm for the three sites, and are then similar 2 

as the values shown in Figure 7. 3 

Overall, the statistics improve significantly between the prior and the posterior, and there is a 4 

good agreement between the measured and modelled mole fraction gradients. This raises 5 

confidence in our ability to model the impact of the Paris CO2 emissions on the atmospheric 6 

concentrations for various wind conditions. 7 

4.2. Daily flux estimates 8 

Figure 9 shows the daily anthropogenic fluxes inferred by the inversion procedure.  Here, we 9 

have aggregated the 4 6-hour periods as well as their uncertainty, accounting for the error 10 

correlations between the periods.  Although the inversion controls scaling factors, we show 11 

here the resulting fluxes expressed in MtCO2 per day. There is a clear weekly cycle on the 12 

prior emissions that are smaller during the week-ends.  One may also note a shift in prior 13 

emission between Oct 29th and Nov 1st that corresponds to a change of month and therefore 14 

the switch to a different dataset in the AirParif inventory.  The Airparif inventory includes a 15 

profile for October.  For November and December, Airparif recommends the use of the 16 

January emission profile. 17 

The uncertainty reduction is significant for all the days of the two time periods and a typical 18 

order of magnitude is a factor of 2.  The emission uncertainty is reduced even for days with 19 

no usable measurements, when the wind direction is not within any of the two ranges defined 20 

in section 3.3, due to the temporal correlation of the uncertainties and thus of the corrections 21 

applied to the prior (section 3.4).  The deviations of the flux estimate from the prior follow the 22 

gradient observation deviation from the model (see Figure 7).  These deviations are mostly 23 

negative, although they are positive for a few days during both time periods.  For the Nov-24 

Dec period, the posterior emission estimates are within the bounds of the prior uncertainty 25 

range.  On the other hand, the posterior estimate is much lower than the prior flux during the 26 

second half of the Oct-Nov period (Figure 9, top).  Interestingly this period (Nov 1st to Nov 27 

20st, 2010) was very mild [Meteo France, 2010] which suggests that the heating sector 28 

emissions were well below the AirParif inventory values for that period.  During this season, 29 

according to the AirParif inventory, the heating sector, commercial and residential, amounts 30 

to more than 50% of the emission, so that the total emission is highly sensitive to temperature.  31 

Note that AirParif recommends the use of the January inventory for both November and 32 
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December.  As the temperatures are generally milder during October than January, one may 1 

expect that the inventory is larger than the true fluxes during October, which is then consistent 2 

with the negative correction to the fluxes during that period. 3 

Figure 9 was generated using a 7 day correlation time for the emission uncertainties. We also 4 

tested similar inversions using different error correlation times (Tcor) in the range of the 5 

synoptic to seasonal time scales that drives the emission variability to assess the result 6 

sensitivity to this parameter.  With a 1 day error correlation time, rather than 7 days used in 7 

our standard configuration, there are days with little or no flux constrain by the observations, 8 

while there is no smoothing of the day-to-day variability correction, resulting in an even 9 

larger spread of the retrieved fluxes (not shown). At the other extreme, a 30-day correlation 10 

time leads to much smoother results. Most of the daily-optimized flux estimates remain within 11 

the prior uncertainty range.  12 

4.3. Monthly budgets 13 

Figure 10 shows the monthly mean flux estimates for the Île-de-France region for the various 14 

6-hour periods.  It shows the results of the inversion for the anthropogenic emissions, the 15 

NEE of the central box that covers Ile de France, as well as the total.  Note that the total 16 

estimate is necessarily the sum of the biogenic and anthropogenic fluxes.  Conversely, the 17 

uncertainty range of the total is not a simple sum as it accounts for the correlations between 18 

NEE and fossil CO2 emission errors in the A matrix linked to the difficulty in distinguishing 19 

NEE and fossil fluxes from the measurements. 20 

The inversion has little impact on the fluxes for the 0-6h and 18-24h periods.  On the other 21 

hand, the impact is strong for the 6-12h and 12-18h periods.  This is because we only use 22 

afternoon observations that are sensitive to the emissions from the morning and afternoon 23 

periods only.  The assigned correlations in the setup of the B matrix transport some constrain 24 

to the other time windows.  Although the inversion based on the mole fraction gradients uses 25 

few independent observation, because of the additional data selection based on the wind 26 

direction, the impact on the flux estimates is significant.  27 

Figure 10 shows that the uncertainty reduction is much larger for the fossil fuel than for the 28 

NEE.  This is the result of the inversion based on the gradient downwind-upwind from the 29 

city which are mostly sensitive to the fluxes in between.  The contribution from the NEE to 30 

the measurement is then small.  Nevertheless, the correlations on the anthropogenic and NEE 31 

uncertainties are small (±0.15 or less) These numbers indicate that the observation sampling 32 



 21 

provides significant information to distinguish NEE from fossil CO2 fluxes in the inversion.  1 

Although a given measurement cannot trace the origin of the mole fraction excess, the 2 

assigned biogenic and anthropogenic flux errors have different spatial and temporal patterns 3 

which are exploited by the inversion system to attribute the mole fraction signal to specific 4 

sectors.  However, this attribution relies on the a-priori spatial and temporal distribution of the 5 

fluxes that are affected by uncertainties.  Thus, the theoretical ability of the system to 6 

disentangle natural and anthropogenic fluxes may not be realized in practice. 7 

5. Discussion and Conclusions 8 

This paper is a first attempt at estimating the Paris area emissions from measurements of 9 

atmospheric CO2 mole fractions and prior flux knowledge.  There is obviously room for 10 

improvement in several aspects of the inversion system: the number and spatial distribution of 11 

the monitoring stations, the atmospheric transport model including the use of an urban 12 

scheme, the modelling of concentration at the simulation domain boundaries, the definition of 13 

the emissions outside Île-de-France, the definition of the control vector, etc.  However, first 14 

conclusions of broad implications beyond this first attempt can be drawn, that should guide 15 

further inverse modelling developments for Paris and other cities. 16 

 17 

The analysis of the CO2 time series shows significant differences between the measured and 18 

modelled mole fractions upwind the Paris city. These differences indicate that the simulated 19 

mole fraction at the domain boundaries may be off by several ppm.  The errors in this 20 

simulation is of similar magnitude as the signal from the Paris area emissions.  Although the 21 

number of cases is limited, it seems that the boundary concentrations are significantly 22 

underestimated when the wind is from the North or North-East (Benelux).  These 23 

uncertainties on the domain boundaries generate large scale errors in the modelled mole 24 

fraction and suggest applying the inversion not on the measurements themselves, but rather on 25 

upwind-downwind gradients as was done in this paper.  Indeed, the measurement-model 26 

agreement is much better for the gradients than it is for the direct values.  It confirms that the 27 

large-scale pattern of CO2 mole fraction, which is not related to the Île-de-France fluxes, is 28 

not properly modelled.  The information provided by our five-site network does not allow 29 

optimizing the structure of the CO2 boundary conditions, which is directly prescribed by a 30 

coarse scale global inversion. Exploiting the distant sites currently operational in Europe 31 

would unlikely improve this situation. In this context, the inversion based upon gradients as 32 
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presented in section 4 appears necessary.  It relies on the assumption that, due to atmospheric 1 

diffusion, the signature of remote fluxes upwind the city is sufficiently homogeneous in 2 

space, horizontally and vertically, and time over the path through the city from upwind to 3 

downwind sites both located within the afternoon PBL.  As a consequence, the main part of 4 

such a large-scale signal is removed through the differences between two sites.  The validity 5 

of this hypothesis is confirmed by the much better agreement between measured and 6 

modelled mole fractions as shown through the comparison of Figure 6 and Figure 8.  Both 7 

measurements and atmospheric transport simulations indicate, however, that the CO2 mole 8 

fraction signal generated by distant sources outside the Chimere model domain has some 9 

spatial structures (see e.g. the variability of modelled values in Figure 8-top) which needs to 10 

be accounted for. 11 

The drawback of using the gradient-based inversion method is a reduction in the number of 12 

observations, in particular with the current monitoring network that only samples a fraction of 13 

possible wind directions. Nevertheless, although the number of observations is very much 14 

reduced, our inversion system based on the gradient reports significant uncertainty reductions. 15 

It must also be noted that we assumed a 7-day error correlation time for the anthropogenic 16 

emissions, so that our system shows flux uncertainty reductions, even on days with no valid 17 

observation as the flux is constrained by observation of the previous or following days. 18 

The setting of temporal error correlation on prior fluxes is therefore essential for the 19 

inversion.  Although the results in this paper are mostly derived with a 7-day correlation 20 

length, this is a somewhat arbitrary choice, and the results are significantly affected when 21 

using different values.  In particular, a much shorter value (1 day) leads to very large 22 

variations in the posterior daily emissions. Further work should be devoted to the assignment 23 

of objective correlation lengths based on the processes that lead to emission uncertainties.  24 

Climatic conditions in general, and more specifically temperature during the cold season, 25 

influence the emission with a time scale that is consistent with synoptic events, i.e. close to a 26 

week; the impact of specific events such as holidays, commemorations or strikes have a much 27 

shorter time scale, while inventory biases linked to e.g. the emission factors have an impact 28 

on the fluxes on time scales of months or even larger. 29 

 30 

Our analysis also indicates model-measurement discrepancies at the EIF site that are much 31 

larger than at other sites.  On the one hand, this is somewhat surprising as measurement inlet 32 
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in altitude should insure a larger spatial representativeness than at the surface sites and less 1 

sensitivity to local, poorly represented, emissions.  Usually, tall tower-based measurements 2 

are preferred to those at the surface for the estimate of biogenic fluxes.  On the other hand, 3 

EIF is located close to the centre of the Paris city and is therefore affected by stronger local 4 

emissions than the other sites used in this paper. City fluxes are highly heterogeneous while 5 

the model used in this paper has a 2 km spatial resolution, does not include information on the 6 

3D structure of the urban canopy, and uses limited information on the CO2 source injection 7 

heights.  Such model may then be insufficient to properly account for atmospheric processes 8 

that link the local surface fluxes to the concentrations at the top of the Eiffel tower. Previous 9 

results obtained at MeteoFrance by (Lac et al., 2013) using a high (2 km) resolution 10 

meteorological model that includes urban parameterizations, and validated against local 11 

meteorological measurements, also show high model-data misfits at EIF, similar to those 12 

found in the present paper.  (McKain et al., 2012) also show a poor skill at representing the 13 

mole fraction at urban sites, so that the information content of the measurements is not 14 

applied for an estimate of the absolute emissions, but rather for a on long term relative 15 

change. These findings can be related to our difficulties for modelling urban CO2 at EIF using 16 

a 2 km resolution transport model are typical of the current generation of models. The use of 17 

urban sites such as EIF for atmospheric inversion will likely necessitate long term research by 18 

the inverse modelling and transport modelling communities. 19 

 20 

At present, our mesoscale atmospheric transport model cannot reconcile the measurements at 21 

the top of the tower with those at the surface in the vicinity of the city, given our set of 22 

surface fluxes and inversion settings.  This cast doubts on the quality of the modelling at the 23 

other sites.  Indeed, if the atmospheric transport model does not properly simulate the 24 

atmospheric vertical transport between the surface and an inlet at 300 m in altitude, it likely 25 

misrepresents the link between surface fluxes and atmospheric mole fractions. Conversely, 26 

the large modelling errors at EIF may be related to its urban location (and to the strong 27 

influence of local urban sources) and this would raise concerns regarding the ability to exploit 28 

urban measurements, and therefore to solve for the spatial distribution of the fluxes within the 29 

urban area. 30 

 31 
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The largest differences between the measured and modelled concentrations occur for low 1 

wind speeds.  For this reason, we have chosen a 2 m s-1 wind speed threshold below which the 2 

measurements are not used in the inversion.  A larger threshold rejects further observations, 3 

and reduces the range of flux corrections through the inversion.  The choice of the threshold is 4 

somewhat arbitrary and we have refrained from using a large one to clearly demonstrate the 5 

impact of a few situations with low wind-speed.  There are several hypotheses for the poor 6 

modelling at low wind speed, including larger representativity errors of subgrid patterns, or 7 

larger errors in vertical mixing modelling.  However, such issues are continuous and there is 8 

no indication that the modelling errors disappear between e.g. 2 and 3 m s-1.  Thus, further 9 

rejection of low wind-speed observations may hide the deficiencies in the atmospheric 10 

transport without improving the flux inversion. 11 

 12 

We also stress that our analysis is based on measurements during the late fall period.  This is a 13 

favourable case for the inversion of fossil fuel CO2 emissions as there is less interference with 14 

the biogenic fluxes (Pataki et al., 2007).  During spring and summer, the NEE is much larger 15 

(in absolute value) and also more uncertain.  In fact, during May, the biogenic sink is likely 16 

larger than the anthropogenic emissions within Île-de-France as shown by Figure 3 and Figure 17 

S4.  The gradient inversion method is designed to also minimize this interference of biogenic 18 

flux with the constraint on anthropogenic fluxes.  Indeed, the theoretical posterior 19 

uncertainties indicate little correlations between the retrieved NEE and anthropogenic 20 

emissions.  There is however vegetation within the urban area that may generate a significant 21 

sink during the growing season.  A successful anthropogenic emission inversion would 22 

benefit from additional efforts for describing the biogenic fluxes and the use of additional 23 

tracers such as 14C to separate the signature of fossil fluxes and biogenic emissions.  One 24 

future direction is thus to use a more realistic NEE model over the Paris area, that could be 25 

calibrated upon local eddy covariance observations (e.g. the method used in (Gerbig et al., 26 

2003)) and satellite land cover and vegetation activity. 27 

 28 

The prior estimate of the Île-de-France CO2 emissions does not account for the human 29 

respiration.  Yet, within dense urban areas, human respiration can be a significant fraction of 30 

the fossil fuel emissions (Ciais et al., 2007) (Widory and Javoy, 2003).  Respiration by human 31 

beings is a source of CO2 of typically 1 kgCO2 day-1 (Prairie and Duarte, 2007) which, 32 
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assuming a total population of 11.7 millions for the Île-de-France, leads to 4.2 MtCO2 per 1 

year, or 8% of the AirParif fossil fuel inventory.  Although small, this flux is far from 2 

negligible compared to fossil fuel emissions. While the CO2 mole fraction measurements are 3 

sensitive to the human respiration flux, our control vector only accounts for the fossil fuel 4 

emissions and NEE fluxes.  Although it does not have point sources, the spatial distribution of 5 

the human respiration is broadly similar to that of the fossil fuel emissions, so that the 6 

inversion will attribute the human respiration mole fraction signal to the fossil fuel rather than 7 

the NEE fluxes.  We therefore expect an overestimate of the fossil fuel emission by typically 8 

8% in our inversion that neglects human respiration.  A larger percentage may be expected in 9 

summer and a smaller in winter due to the seasonal cycle of the fossil fuel emissions that has 10 

a larger relative amplitude than that of the human respiration.  Improvement of our inversion 11 

system should explicitly account for the human respiration, based on the spatial distribution of 12 

the population. 13 

 14 

One often stated objective of the top-down inversion of fossil fuel CO2 emissions is to 15 

provide an independent verification of the bottom-up estimates, i.e. the inventories (Levin et 16 

al., 2011;McKain et al., 2012;Duren and Miller, 2012).  However, information about the 17 

spatial and temporal distribution of the emissions has to be used for inverse modelling to limit 18 

aggregation errors on the overall budget.  In our case, the number of monitoring stations is far 19 

too small to independently invert the spatial distribution of the emissions.  We have been able 20 

to rely on the comprehensive distribution from AirParif.  With a larger number of monitoring 21 

stations, it may be possible to estimate some information about the flux spatial distribution, 22 

but atmospheric transport is not a reversible process and some accurate information about the 23 

spatial distribution will likely be needed, so that the atmospheric inversion cannot be seen as 24 

independent from the inventories, but rather as a mean to verify or refine them.  In addition, 25 

as long as the accuracy on the atmospheric transport makes does not allow using night-time or 26 

morning measurements, it will not be possible to monitor the daily cycle of the emissions.  27 

Thus, the computation of daily or monthly fluxes requires some robust information about the 28 

daily cycle that should rely on inventories.  Thus, again, our top-down emission estimate is far 29 

from independent from the bottom-up inventory. 30 

 31 



 26 

Although the inversion procedure provides a posterior uncertainty estimate, one should 1 

interpret this uncertainty with caution.  Indeed, the mathematical framework used here relies 2 

on a number of hypotheses, some of which are crude approximations of the reality, such as 3 

the spatial and temporal correlations in the flux uncertainties or the unbiased atmospheric 4 

transport modelling.  The impact of these assumptions has not been quantified.  Although we 5 

have no “truth” to benchmark the inversion results, and there are not even enough 6 

measurement sites to perform ‘leave-one-out’ tests, one can perform some sanity checks on 7 

the results.  One sanity check is the comparison of the measured and modelled mole fractions 8 

(Figure 8 and Figure S4).  The analysis of these figures confirms the ability of our inversion 9 

to improve the measurement-model agreement.  Nevertheless, we note that the posterior 10 

misfit (≈2.5 ppm) is still a significant fraction of the signal that is analysed (10-20 ppm).  The 11 

crucial question is whether the atmospheric modelling error is random or a bias and we have 12 

no element to answer that question.  The other sanity check consists in analysing the validity 13 

of the retrieved daily fluxes (Figure 9).  In this respect, the daily fluxes show day-to-day 14 

variations that are suspicious, although not refutable at this stage.  A result that points in 15 

favour of the flux inversions shown here is the significant reduction from the prior during a 16 

period with temperatures above the seasonal normal, and the negative correction of the 17 

emissions during November from the prior value that is based on an inventory simulating 18 

January emissions.  A single such event is certainly not sufficient to validate the inversion 19 

system, however.  We shall apply the same inversion setup to more than a year of 20 

measurements and analyse the results with respect to the temperature anomaly or other short-21 

term event that may have a significant influence on the Île-de-France CO2 emissions. More 22 

measurement sites are needed to better evaluate the skill of the inversion. The deployment of 23 

a network of 5 sites around Paris within the framework of the CarboCount-City project will 24 

help in this direction. In addition, inlet at different altitudes will be installed on the Eiffel 25 

tower station for a better assessment of the CO2 vertical distribution and transport within the 26 

urban area. These will be most useful for the longer-term objective of improving the 27 

atmospheric transport modelling within the city, which may allow the EIF measurements to 28 

be used by the inversion system.   29 
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Tables and captions 1 

 2 

Table 1 : Information about the CO2 measuring stations that are used in this paper. 3 

 4 

Location Acronym Latitude 

[°] 

Longitude 

[°] 

Height 

AGL 

[m] 

Distance 

from Paris 

centre [km] 

Eiffel Tower EIF 48.8582 2.2946 300 4 (W) 

Montgé-en-Goële MON 49.0284 2.7489 9 35 (NE) 

Gonesse GON 48.9908 2.4446 4 16 (N) 

Gif sur Yvette GIF 48.7100 2.1475 7 23 (SW) 

Trainou Forest TRN 47.9647 2.1125 180 101 (S) 

 5 

6 
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 1 
 2 

Figure 1 : Map of the study area showing the location of the continuous CO2 measurement 3 

stations that are used in this paper (red dots).  The black lines show the model grid with a 2 4 

km resolution at the centre, and 10 km on the sides.  The red line shows the limits of the Île-5 

de-France region. 6 

 7 

 8 

 9 

Figure 2 : Typical day-total CO2 emissions of Île-de-France, according to AirParif year 2008 10 

inventory, for a weekday in October.  The point sources are not included in this map.  The 11 

emissions are provided for the area outlined in red in Figure 1.  The resolution is 1 km.  The 12 

grid is 0.2° in latitude and 0.4° in longitude. 13 
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 1 
 2 

Figure 3: Temporal variation of the main CO2 emission sectors according to the AirParif 3 

inventory for the whole Ile de France region.  The figure shows, for 5 typical months and 3 4 

typical days (Weekday, Satuday, Sunday), the hourly CO2 emissions. The black line is the 5 

total emission (left scale) while the four coloured lines are for different sectors (right scale). 6 

 7 

 8 

 9 

 10 

Figure 4: Mean diurnal cycle of the biogenic flux (Net Ecosystem exchange) for the 12 11 

calendar months and for the same area as in Figures 2 and 3 which is outlined in red in Figure 12 

1.  The values were derived from an average of the C-Tessel simulations. 13 

  14 
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 1 

Figure 5: Time series of the measured (red) and modelled (green) CO2 mole fraction [ppm] 2 

for the five sites used in this paper (See Table 1). The black line is the modelled mole fraction 3 

that is transported from the domain boundaries, with additional contribution from 4 

anthropogenic emissions outside the Île-de-France region (Edgar fluxes).  The green line 5 

shows the modelled mole fraction that includes the same contributions, plus the biogenic 6 

fluxes within the modelling domain and the anthropogenic emissions within the Île-de-France 7 

region.  Red are the observations.  Note that there are some time periods when no 8 

measurements are available due to either calibration processes or, more rarely, failure of the 9 

monitoring instrumentation.  For such periods, modelling results are not shown. The symbols 10 

show the mean of the afternoon measurement/model values that are used for the inversion.  11 

The blue arrows indicate the wind speed and direction at noon.  A length equivalent to 1 day 12 

on the X-axis is for a wind speed of 10 m/s.  Grey shaded areas indicate Sundays.  This figure 13 
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is for the 30 days period starting on 2010/11/27.  Figure S1 in the supplementary shows the 1 

same figure for the other period. 2 

 3 

 4 

 5 

Figure 6 : Scatter plot of the measured and modelled CO2 mole fractions at the 5 monitoring 6 

stations within and in the vicinity of the Paris city.  The model vs measurement bias, standard 7 

deviation and correlations are provided within each subplot.  This figure is for the 30 days 8 

period starting on 2010/11/27.  Figure S2 in the supplementary shows the same figure for the 9 

other period. 10 

 11 

  12 
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 1 

 2 

Figure 7 : Time series of the mole fraction differences between a station (Y-axis label) and 3 

another one used as a reference (either GIF or GON) and selected based on the wind direction 4 

(see section 3.3).  The symbols show the mean afternoon concentrations (12AM-4PM) for the 5 

measurements (red), the prior (green) and the posterior (blue) estimates.  As in Figure 5, the 6 

arrows indicate the wind speed and direction.  A similar figure for the other time period is 7 

shown in the supplementary material. 8 

  9 
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  1 

Figure 8 : Scatter plot of the measured and modelled concentration gradients for 3 downwind 2 

stations; either GIF or MON are used as an upwind reference  The first row shows the mole 3 

fraction simulated using the boundary conditions and the anthropogenic emissions outside Île-4 

de-France (yF in equation 1) against the measurements. The second row shows the 5 

concentration estimates derived from the prior values for the biogenic fluxes and 6 

anthropogenic fluxes against the corrected measurements (i.e. y - yF in equation 1).  The last 7 

row is the same but using the posterior estimates.  This figure is for the Nov-Dec period.  A 8 

similar figure for the other time period is shown in the supplementary material. 9 

 10 

  11 
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 1 

 2 

 3 

 4 

 5 

Figure 9 : Daily flux estimates of the anthropogenic emission for the 30 days of the period.  6 

The blue line and shading shows the prior flux according to the AirParif inventory together 7 

with its assumed uncertainty.  Yellow shading indicate Sundays; note the weekly cycle with 8 

lower values during Saturdays and Sundays.  The red symbols and bars show the posterior 9 

estimates with their uncertainty range. Both 30-day periods are shown. 10 

  11 
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 1 

 2 

 3 

Figure 10 : Total flux estimates over the full 30 day period, for the 4 6-hour periods.  Red is 4 

for the anthropogenic emissions, green is for the biogenic fluxes while blue is for the total.  5 

The prior estimates are shown as open rectangles while the posterior are shown as filled 6 

rectangles. Both 30-day periods are shown independently. 7 

 8 

9 
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Supplementary material 1 

 2 

 3 

Figure S- 1: Same as Figure 5 but for the 30 days period starting on October 21st. 4 

  5 
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 1 
 2 

Figure S- 2 : Same as Figure 6 but for the 30 day period starting on October 21st. 3 

 4 

 5 

Figure S- 3 : Measurement-Model difference in CO2 mole fraction at the EIF site as a function 6 

of time, wind speed and direction.  The position of the symbols indicates the wind direction 7 

(top-right is for a wind from the North-East) and speed (the circles indicate a wind of 10 8 

m s-1).  The wind speeds have been bounded at 12 m s-1. 9 

  10 
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 1 

 2 

Figure S-4 : Same as Figure 7 but for the 30-day period starting on October 21st.  3 

 4 

 5 

 6 
Figure S-5 : Same as Figure 8 but for the 30-day period starting on October 21st. 7 


