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Abstract 1 

In order to improve our understanding of air quality in Southeast Asia, the anthropogenic 2 

emissions inventory must be well represented. In this work, we apply different anthropogenic 3 

emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-4 

Chem) version 3.3 using MOZART gas-phase chemistry and GOCART aerosols to examine 5 

the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for 6 

Southeast Asia in March and December 2008. The anthropogenic emission inventories 7 

include the Reanalysis of the TROpospheric chemical composition (RETRO), the 8 

Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity 9 

emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity 10 

Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate 11 

Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and 12 

SEAC4RS emissions. Biomass burning emissions are from the Fire Inventory from NCAR 13 

(FINNv1) model. WRF-chem reasonably predicts the 2-m temperature, 10-m wind, and 14 

precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is 15 

overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same 16 

magnitude as observations, but tends to underpredict NO2 column over the equatorial ocean 17 

and near Indonesia. Simulations using different anthropogenic emissions produce only a slight 18 

variability of O3 and CO mixing ratios, while biomass burning emissions add more 19 

variability. The different anthropogenic emissions differ by up to 30% in CO emissions, but 20 

O3 and CO mixing ratios averaged over the land areas of the model domain differ by ~4.5% 21 

and ~8%, respectively, among the simulations. Biomass burning emissions create a 22 

substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing 23 

the March biomass burning period to December with low biomass burning emissions. The 24 

simulations show that none of the anthropogenic emission inventories are better than the 25 

others for predicting O3 surface mixing ratios. However, the simulations with different 26 

anthropogenic emission inventories do differ in their predictions of CO surface mixing ratios 27 

producing variations of ~30% for March and 10-20% for December at Thai surface 28 

monitoring sites.  29 

  30 
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1 Introduction 1 

Southeast Asia, which includes the Indochina peninsula and the Indonesian archipelago, can 2 

have significant air quality problems. Understanding the contribution of different sources of 3 

tropospheric ozone (O3) and its precursors, carbon monoxide (CO) and nitrogen oxides (NOx 4 

= NO + NO2), for Southeast Asia provides valuable information on maintaining good air 5 

quality for both human well-being and ecosystems. Previous studies examining air pollutants 6 

and their sources via regional model simulations have focused primarily on China (e.g. Wang 7 

et al., 2005; Geng et al., 2011), East Asia (Han et al., 2008; Tanimoto et al., 2009), and India 8 

(Adhikary et al., 2007; Kumar et al., 2012; Ghude et al., 2013).  Here, we examine the effect 9 

of different emission inventories on modeled surface O3 and CO for Southeast Asia, a region 10 

generally ignored in previous studies.  11 

Previous studies have indicated that both local anthropogenic and biomass burning emissions, 12 

as well as emissions upstream are important for local O3 air quality in Asia. In East Asia, 13 

Tanimoto et al. (2009) noted relatively small changes in decadal O3 trends at sites near the 14 

Japanese coast, but a larger increase in measured O3 at a remote mountainous site in Japan. 15 

Using a regional chemistry transport model, Tanimoto et al. (2009) attributed half of the 16 

observed increase at the mountainous site to increasing anthropogenic emissions in Asia. The 17 

results from this study suggested that the actual growth in emissions between 1998-2007 was 18 

significantly underestimated. Using a nested eastern Asia domain within a global chemistry 19 

transport model, Wang et al. (2011) found that local sources of O3 precursors produced much 20 

of the O3 in the region; however, O3 transported from Europe, North America, India and 21 

Southeast Asia also impacted O3 concentrations in eastern China depending on the season. 22 

Liu et al. (2008), using a regional air quality model, determined that fossil fuel and biomass 23 

burning emissions from East Asia increased surface CO and O3 in Taiwan by 70-150% and 24 

50-100%, respectively, compared to model results that excluded background emissions. They 25 

attributed up to 20% of the surface CO and O3 in Taiwan to biomass burning emissions from 26 

Eastern China. Both the aerosol optical depth and O3 concentrations in the Pearl River Delta 27 

were also found to be affected by biomass burning emissions occurring upstream in Southeast 28 

Asia (Deng et al., 2008).  29 

Southeast Asia is subject to the effluent of pollution from the main continent, yet the region 30 

itself is rapidly growing and has increasing anthropogenic and biomass burning emissions, 31 

which are especially high during the dry season (November-April). To simulate O3 production 32 
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and concentrations in Southeast Asia, realistic estimates of emissions from both local and 1 

regional sources, including fossil fuel use, other anthropogenic activities, and biomass 2 

burning, must be available. Emission inventories for Asia have been developed by several 3 

groups (e.g., Akimoto and Narita, 1994; Streets et al., 2003; Ohara et al., 2007; Zhang et al., 4 

2009; Kurokawa et al., 2013) for both chemistry-climate and air quality studies. For example, 5 

the REanalysis of the TROpospheric chemical composition (RETRO) and the Emission 6 

Database for Global Atmospheric Research (EDGAR) emissions inventories (Olivier et al., 7 

2005; Schultz et al., (2007)) are global emissions inventories developed for chemistry-climate 8 

studies. Streets et al. (2003) developed a 2001 emission inventory for the ACE-Asia (Asian 9 

Pacific Regional Aerosol Characterization Experiment) and TRACE-P (Transport and 10 

Chemical Evolution over the Pacific) field campaigns that took place in the East Asian and 11 

Western Pacific region during spring 2001. Zhang et al. (2009) developed a 2006 emissions 12 

inventory for Asia to support the Intercontinental Chemical Transport Experiment-Phase B 13 

(INTEX-B) field campaign. The INTEX-B field campaign emphasized China emissions 14 

because they dominate the Asia pollutant outflow to the Pacific. Ohara et al. (2007) developed 15 

the Regional Emission inventory in Asia (REAS) for 1980-2020 in order to conduct air 16 

quality studies for recent past, present day, and near future time periods. More recently, 17 

Kurokawa et al. (2013) released REAS version 2.1, providing updated emissions for each year 18 

from 2000 to 2008 for Asian countries east of ~55°E. The MACCity emissions inventory 19 

(Granier et al., 2011), which is an outcome from two European Commission projects (MACC 20 

and CityZen), is a 1980-2010 global emissions inventory for chemistry-climate studies. Most 21 

recently the Southeast Asia Composition, Clouds and Climate Coupling by Regional Study 22 

(SEAC4RS) emissions inventory (Lu and Street, 2012) for 2012 emissions has been released 23 

for field campaign support. Four emission inventories, RETRO, INTEX-B, MACCity and 24 

SEAC4RS, will be described in more detail in section 3. 25 

While previous studies (e.g. Ohara et al., 2007) have compared different emission inventories, 26 

a comparison of simulated surface CO and O3 mixing ratios resulting from different emission 27 

inventories, yet using the same model framework, has not been done. Here, the Weather and 28 

Forecasting Model coupled with Chemistry (WRF-Chem) is used to examine the variability of 29 

predicted O3 and CO surface mixing ratios when five different anthropogenic emission 30 

inventories (RETRO, INTEX-B, MACCity, SEAC4RS and a modified SEAC4RS) are used 31 

as inputs. By conducting this comparison using the same model, differences in results due to 32 

model meteorology are mitigated. We focus this study on Southeast Asia, an area that has 33 
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received little attention, yet has substantial anthropogenic and biomass burning emissions. As 1 

part of our study, we examine the effect of biomass burning emissions on surface O3 and CO 2 

by the contrasting results from a low biomass-burning period (December) with a high 3 

biomass-burning period (March).   4 

We begin this manuscript by describing the model configuration (Section 2) and emission 5 

inventories (Section 3) applied in the model simulations. We then evaluate the model results 6 

(Section 4) with available datasets. In Section 5, we compare the surface O3 and CO 7 

predictions among the different simulations in order to quantify the variability produced by 8 

the different emission inventories. 9 

2 Model Description and Configuration 10 

We use the Weather Research Forecasting Model (Skamarock et al., 2008) coupled with 11 

Chemistry (WRF-Chem version 3.3) to investigate the variation of O3 and CO predictions 12 

among different anthropogenic emissions inventories for Southeast Asia. The WRF-Chem 13 

model is a new-generation regional air quality model (Grell et al., 2005; Fast et al., 2006) that 14 

shares the meteorology and chemistry routines, the same land surface schemes, time-transport 15 

schemes, vertical mixing parameterizations, and time steps for transport and vertical mixing. 16 

For this study, one model domain was configured to cover the entire area of Southeast Asia 17 

(SEA) and a part of China and India (Figure 1). The model was run with a horizontal grid 18 

spacing of 36 km and 51 vertical levels from the surface to 10 hPa. The vertical grid spacing 19 

stretched from ~60 m near the surface to ~700 m near the tropopause. The initial and 20 

boundary conditions were from NCEP Final Analysis (FNL) 1° × 1° data for meteorological 21 

variables, which include winds, potential temperature, pressure, and water vapor. These 22 

variables and condensed water (i.e., cloud particles), and chemistry species were integrated 23 

forward in time using a Runge-Kutta integration method. The moisture variables and 24 

chemistry species were advected using a monotonic scheme (Wang et al., 2009). Grid 25 

nudging (Stauffer and Seaman, 1990) was employed for the horizontal wind, temperature and 26 

water vapor for all vertical levels to ensure the accuracy of the large-scale meteorology during 27 

the month of simulation. The nudging coefficients for all variables were set to be 0.0003 s-1, 28 

and nudging was performed every 6 hours, consistent with the timing of the FNL data. 29 

The model set-up used the following modules and parameterizations. Cloud physics was 30 

represented by the Thompson et al. (2004) parameterization, which predicts the mass mixing 31 
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ratio for rain, snow, and graupel and mass and number of cloud water and cloud ice. The 1 

Grell-3 scheme, based on the Grell and Devenyi (2002) scheme, was used for the 2 

parameterization of sub-grid convection. The planetary boundary layer was parameterized 3 

with the Mellor-Yamada-Janjic (MYJ) scheme (Janjic, 2002) and the Noah land surface 4 

model (Chen and Dudhia, 2001) was used to provide heat and moisture fluxes over land. For 5 

heating rates, the Goddard scheme (Chou and Suarez, 1994) was used for short wave radiation 6 

and the Rapid Radiative Transfer Model (Mlawer et al., 1997) was used for long wave 7 

radiation. Feedbacks between aerosols and the radiation scheme were not included in any 8 

simulations.  9 

The model is integrated for a 6 ½ week period. The first 2 weeks are for spinning up the 10 

model from the initial conditions to a state that is primarily affected by the emissions. Initial 11 

and boundary conditions for the chemical species were provided by the global chemistry 12 

Model for Ozone and Related Chemical Tracers, version 4 (MOZART4; Emmons et al., 13 

2010) 6-hourly output. MOZART4 includes 84 gas-phase species, 12 bulk aerosol 14 

compounds, 39 photolysis and 127 gas-phase reactions. In our WRF-Chem simulations, gas-15 

phase chemistry was represented by the MOZART chemistry mechanism and aerosols by the 16 

GOCART representation (Chin et al., 2000). A kinetic pre-processor and Rosenbrock solver 17 

(Sandu et al., 2006) was applied. The photolysis rates were computed using fast-TUV (Tie et 18 

al., 2003), which modifies the photolysis rates based on the presence of aerosols and clouds in 19 

each model grid cell. Dry deposition of gases and aerosols followed the Wesely (1989) 20 

resistance method. Wet deposition of soluble gases was calculated using the method described 21 

by Neu and Prather (2012). 22 

Emissions from biomass burning, undisturbed vegetation, and anthropogenic sources were 23 

included in the simulations. The Fire Inventory from NCAR (FINN) model (Wiedinmyer et 24 

al., 2010) provided daily, 1 km resolution, global estimates of trace gas and particulate 25 

emissions from open burning including wildfires, agricultural fires, and prescribed burning 26 

for all the simulations conducted. Biofuel use and trash burning were not included in the 27 

FINN emission estimates. Biogenic emissions were computed online by the Model of 28 

Emissions of Gases and Aerosols from Nature (MEGAN) Version 2.04 (Guenther et al., 29 

2006), which uses WRF-predicted temperature and downward radiation for its calculations. 30 

The anthropogenic emission inventories used as inputs to the WRF-Chem simulations are 31 

described in Section 3.1.  32 
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3 Emissions 1 

In this study we perform WRF-Chem simulations with four different anthropogenic emission 2 

inventories, consisting of RETRO, INTEX-B, MACCity and SEAC4RS, and an inventory 3 

combining MACCity and SEAC4RS emissions. The simulations also include biogenic 4 

emissions (MEGAN v2.04) and biomass burning (FINNv1) emissions, which were the same 5 

in all simulations. Different groups have compiled the different anthropogenic emission 6 

inventories for different years: RETRO for 2000, INTEX-B for 2006, MACCity for 2010 and 7 

SEAC4RS for 2012. The emission inventories have in common several sectors contributing to 8 

the emissions (Table 1), but there are some sectors not included in one or two inventories that 9 

are detailed below. Due to these differences, the total emissions and associated uncertainties 10 

for the region are variable. The five emission inventories were applied to 1) evaluate surface 11 

CO and O3 predictions with monitoring station observations, and 2) determine the extent the 12 

model predictions are limited by variations in the emissions inventories. 13 

3.1 Description of the Anthropogenic Emission Inventories 14 

The RETRO project aimed at analyzing the long-term changes in the atmospheric budget of 15 

trace gases and aerosols over the time period from 1960 to 2000. The RETRO anthropogenic 16 

emissions (Schultz et al., 2007) are derived from a preliminary version of the TNO 17 

(Netherlands Organization for Applied Scientific Research) emissions, for the 1960–2000 18 

time period with spatial resolution of 0.5° x 0.5°. The anthropogenic emissions in the RETRO 19 

inventory include mainly combustion sources (Granier et al., 2011), but solvent use and other 20 

industrial processes are included (Table 1). Schultz et al. (2007) report several uncertainties 21 

associated with the RETRO emissions. These uncertainties include omission of specific 22 

sectors (e.g. railway traffic or cement manufacturing), underestimation of CO combustion 23 

emissions and NOx ship traffic emissions, and the lack of weekly and diurnal profiles of 24 

emissions. For the Southeast Asia region the RETRO seasonal cycle is based on the LOTUS-25 

EUROS European monthly pattern (Schaap et al., 2005; which is derived from a critical 26 

review of the monthly variation by emission sector), but has a reduced amplitude. Kurokawa 27 

et al. (2013) show that there is very little seasonal cycle for anthropogenic emissions of NOx 28 

and black carbon over India, which is a region similar to Southeast Asia in terms of climate. 29 

The RETRO inventory provided regional information for the emissions of a variety of non-30 

methane volatile organic compounds (NMVOCs) including ethane, propane, butanes, 31 

pentanes, hexanes and higher alkanes, ethene, propene, ethyne, other alkenes and alkynes, 32 
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benzene, toluene, xylene, trimethyl benzenes and other aromatics, organic alcohols, esters, 1 

ethers, chlorinated hydrocarbons, formaldehyde and other aldehydes, ketones, organic acids, 2 

and other VOCs.  3 

As part of the INTEX-B field campaign, which was conducted by the National Aeronautics 4 

and Space Administration (NASA) in spring 2006, anthropogenic emissions were developed 5 

for the specific year and season as the field campaign (Zhang et al., 2009). The emissions are 6 

estimated for eight major chemical species, sulfur dioxide (SO2), NOx, CO, NMVOCs, PM10, 7 

PM2.5, black carbon (BC) and organic carbon (OC), with a spatial resolution of 0.5° x 0.5°.  8 

To represent the individual VOCs represented in the MOZART mechanism, the NMVOC 9 

emissions are speciated based on the ratios of the individual VOC to the total NMVOCs 10 

derived from the RETRO inventory. That is, the individual VOC fraction from the RETRO 11 

inventory is multiplied with the total INTEX-B NMVOC to get the individual VOC 12 

emissions. The INTEX-B emissions contain four major sectors (Table 1), power generation, 13 

industry, residential, and transportation. The uncertainty of the INTEX-B emissions for the 14 

Southeast Asian countries is estimated to be similar to the TRACE-P emissions uncertainty 15 

(Zhang et al., 2009), e.g. +/-37% for NOx emissions and +/-185% for CO emissions. The 16 

INTEX-B emissions uncertainties for China are smaller (+/-31% for NOx and +/-70% for 17 

CO). 18 

The MACCity emissions (Granier et al., 2011) are an outcome of two European Commission 19 

projects, MACC (Hollingsworth et al. 2008) and CityZen (http://cityzen-project.eu) and are 20 

an extension of the ACCMIP historical emissions dataset (Lamarque et al., 2010). The goal of 21 

the MACCity emissions inventory is to support the IPCC-AR5 (Intergovernmental Panel for 22 

Climate Change Assessment Report 5), providing historical emissions from a variety of 23 

emission sectors (Table 1) on a decadal basis from 1960 to 2020, as well as for future 24 

emissions scenarios based on RCPs (Representation Concentration Pathways; van Vuuren et 25 

al., 2011). Anthropogenic emissions have been interpolated on a yearly basis between the 26 

base years 1990, 2000, 2005 and 2010. The MACCity emissions are estimated for 19 27 

chemical species: CO, ethane, ethene, propane, propene, butane and higher alkanes, butene 28 

and higher alkenes, methanol, other alcohols, formaldehyde, other aldehydes, acetone, other 29 

ketones, total aromatics, ammonia, NOx, SO2, BC, and OC, with spatial resolution of 0.5° x 30 

0.5°. Because the 2000 MACCity emissions inventory does not have substantial biases 31 

compared to other emissions inventories, it is expected that the 2010 MACCity emissions 32 
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inventory has uncertainties similar to those discussed by Lamarque et al. (2010) who did not 1 

find significant biases in their comparison of 2000 MACCity emissions with published 2 

emission estimates (e.g. RETRO and EDGAR). However, they estimate that these emissions 3 

have an uncertainty of about a factor of 2 based on Bond et al. (2004, 2007) and Smith et al. 4 

(2010). The uncertainty of the 2010 emissions was not reported. In this study, we use the 5 

2010 emissions estimates from MACCity, which are based on the RCP8.5 scenario.  6 

The SEAC4RS emissions inventory (Lu and Street, 2012) is a regional anthropogenic 7 

emission dataset prepared for the NASA SEAC4RS field campaign and for the Asia region, 8 

represents an update of the TRACE-P emissions (Streets et al., 2003). These emissions are 9 

appropriate for year 2012 and include four emissions sectors: residential, industry, power and 10 

transportation (Table 1). There are 10 major chemical species, CH4, CO, NOx, NMVOC, CO2, 11 

SO2, PM10, PM2.5, BC and OC, with spatial resolution of 0.1° x 0.1°. Not only does this 12 

emissions inventory provide a finer resolution than the other inventories applied in this study, 13 

the SEAC4RS emissions data include an update of the Asia emission estimates using new 14 

energy use data and updated emission factors (both reflecting the year 2012), as well as the 15 

development of a new emission inventory for Southeast Asia using a technology-based 16 

methodology, which is the first detailed emission update for the region since TRACE-P. 17 

Similar to the INTEX-B inventory described above, the total NMVOC emissions were 18 

speciated to the individual VOC species of the MOZART-4 mechanism using fractions 19 

derived from the RETRO inventory.  20 

In addition to the four inventories described above, we have conducted a simulation with a 21 

combined MACCity/SEAC4RS emissions inventory, which replaces MACCity with the 22 

SEAC4RS emissions over Asia yet includes the MACCity ship emissions, which include 23 

international shipping, domestic shipping and fishing. Note, that in the RETRO and INTEX-B 24 

inventories, ship emissions represent only international shipping. The ship emissions for 25 

RETRO, INTEX-B, and MACCity are listed in Table 2. In the MACCity emissions inventory, 26 

ship emissions account for 15% of the NO emissions and 0.8% of the CO emissions. To 27 

ensure consistency in the MACCity/SEAC4RS simulation, the SEAC4RS emissions have 28 

been regridded from 0.1° x 0.1° resolution to 0.5° x 0.5°. This regridding causes differences 29 

between the SEAC4RS-only and MACCity/SEAC4RS emissions outside the shipping regions 30 

in the model domain. 31 
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While both the RETRO and MACCity emission inventories have monthly temporal 1 

variability, the INTEX-B and SEAC4RS inventories are annual totals. A monthly profile was 2 

created from the RETRO emissions. The MACCity seasonal variation is very similar to 3 

RETRO for CO emissions, but does differ somewhat for NO emissions. The change of NO 4 

emissions from February (when we start the simulation) to March differs between these two 5 

inventories with little change in high NO emissions for the MACCity inventory and a 5% 6 

decrease in NO emissions for the RETRO inventory. While this is a small difference, the 7 

change in NO emissions could affect O3 production downwind of NO sources. To obtain the 8 

monthly profile for INTEX-A and SEAC4RS emissions, the fraction of the annual emissions 9 

assigned to each month (FracMonthly) was calculated from the ratio of the RETRO monthly 10 

emissions (RETROMonthly) to the RETRO annual emissions (RETROAnnual). The monthly 11 

fraction was then multiplied by the annual emissions of both the INTEX-B and SEAC4RS 12 

inventories to estimate the monthly emissions. This procedure is described by the following 13 

equations:  14 

                𝑅𝐸𝑇𝑅𝑂_𝐴𝑛𝑛𝑢𝑎𝑙 =    𝑅𝐸𝑇𝑅𝑂_𝑀𝑜𝑛𝑡ℎ𝑙𝑦!"
!!!         (1) 15 

                                    𝐹𝑟𝑎𝑐!"#$!!"(𝑖) =
!"#!$!"#$!!"(!)
!"#!$!""#$%

           (2) 16 

                                  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛!"#$!!"(𝑖) =   𝐹𝑟𝑎𝑐!"#$!!"(𝑖)  ×  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛!""#$%      (3) 17 

where the EmissionMonthly is the monthly emissions for the INTEX or SEAC4RS inventory and 18 

EmissionAnnual is the annual emissions from the  INTEX or SEAC4RS inventory.  19 

3.2 Emission Comparison 20 

The monthly emissions from the five different anthropogenic emissions inventories and the 21 

biomass burning emissions calculated by the FINN model for CO and NOx are compared for 22 

both March and December in Figures 1 – 4. The sum of these emissions over the entire model 23 

domain is listed in Table 2. In March, the biomass burning sources dominate the emissions of 24 

CO. The biomass burning occurs primarily over the Indochina peninsula and Southeast China 25 

where CO biomass emissions dominate the inventory. In March in Southeast Asia, ~70% of 26 

the total CO emissions is from biomass burning and only ~30% is from anthropogenic 27 

emissions. This partitioning is true for all the emission inventories applied in this study. In 28 

December, the biomass burning emissions are much smaller.  29 
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Anthropogenic emissions of CO vary between emissions inventories, with RETRO and 1 

MACCity emissions having higher values, particularly in northeast India and southeast China. 2 

Over the entire domain, the anthropogenic NOx emissions are quite similar between RETRO, 3 

INTEX-B, MACCity, and MACCity/SEAC4RS emissions, but are much smaller in the 4 

SEAC4RS inventory, since this inventory alone does not include ship emissions. By 5 

comparing RETRO emissions to MACCity/SEAC4RS emissions, the total anthropogenic 6 

emissions in Southeast Asia decreased by ~30% for CO and ~13% for NO between 2000 and 7 

2012 with 2010 ship emissions.  8 

Comparison of the total CO emissions from the various inventories across Southeast Asia 9 

(Table 2) show that in March, the RETRO inventory is within +/- 5% of the INTEX-B and 10 

MACCity inventories, but is ~20% greater than the MACCity/SEAC4RS and SEAC4RS 11 

inventories. In December, the CO MACCity/SEAC4RS inventory is 35% lower than the 12 

RETRO emissions inventory. The SEAC4RS NO emissions are substantially less (~45%) 13 

than the other inventories in both March and December because of the lack of ship emissions 14 

in the SEAC4RS inventory. NO emissions in the INTEX-B and MACCity inventories are 15 

similar to each other and ~10% lower than the RETRO emissions. In December, the INTEX-16 

B, MACCity and MACCity/SEAC4RS NO emissions are similar and are ~25% lower than 17 

the RETRO inventory.  18 

The CO and NO emissions used in our study are larger than the REAS v1 emissions (Ohara et 19 

al., 2007) for our modeling domain (Table 2). The REAS v1 estimate in Table 2 comes from 20 

the Emissions of atmospheric Compounds & Compilation of Ancillary Data (ECCAD) web 21 

site (http://eccad.sedoo.fr) to obtain emission estimates for the same region as our model 22 

domain, which encompasses small regions of India and China that are not included in the 23 

Southeast Asia region denoted by Ohara et al. (2007). For our model domain the REAS v1 24 

annual emissions are 91.4 Tg year-1 for CO and 4.81 Tg year-1 for NOx. For the Southeast 25 

Asia region, Ohara et al. (2007) report in their Table 6 annual CO and NOx emissions of 54.5 26 

and 3.77 Tg year-1, respectively, but these exclude international aviation, international 27 

shipping and open biomass burning. The REAS v1 emissions are even greater than the 28 

TRACE-P, EDGAR 3.2, and IIASA CO emissions (34.0, 42.6, 39.8 Tg CO year-1, 29 

respectively) but are more similar to TRACE-P, EDGAR 3.2, and IIASA NOx emissions 30 

(3.06, 3.91, 3.94 Tg NOx year-1, respectively) for Southeast Asia (Ohara et al., 2007) as well 31 

as REAS v2.1 (Kurakawa et al., 2013), which were 36.2 Tg CO year-1and 3.00 Tg NOx year-1. 32 
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Thus, the emissions used here are larger than the REAS emissions inventories as well as other 1 

previous inventories. 2 

 3 

4 Data Used for the Model Evaluation 4 

To evaluate the ability of the WRF-Chem model to represent the meteorology and chemical 5 

composition over Southeast Asia during March and December 2008, the model results are 6 

evaluated with observations. The data used for the model evaluation is described here.  7 

4.1 Meteorology Data Description 8 

The predicted meteorology from the WRF simulations, which is the same for all model 9 

simulations, was evaluated by comparing 2-m temperature, 10-m winds, and precipitation 10 

with existing observations. The observations used for this evaluation include the Modern-Era 11 

Retrospective Analysis For Research And Applications (MERRA) products, the Tropical 12 

Rainfall Measuring Mission (TRMM) satellite data, and data from the Global Precipitation 13 

Climatology Center (GPCC).  14 

The MERRA product (Rienecker et al., 2011) is generated using Version 5.2.0 of the GEOS-5 15 

DAS (Goddard Earth Observing System Model Data Assimilation System) with the model 16 

and analysis each at about 0.5° × 0.6° resolution. MERRA has complete analysis of over 30 17 

years (from 1979 to present) of data. The 2-m temperature and 10-m winds produced by the 18 

MERRA analysis system are hourly. However, the provided monthly-averaged data were 19 

used here to evaluate the WRF results.  20 

The main objective of TRMM satellite (Huffman et al., 1997), which is a joint mission 21 

between the National Aeronautics and Space Administration (NASA) and Japan Aerospace 22 

Exploration Agency (JAXA), is to monitor rainfall in the tropics. We compare the WRF-23 

Chem monthly surface rainfall to the TRMM product that is a combination of instruments, 24 

including the Precipitation Radar and TRMM Microwave Imager, allowing us to compare 25 

model results with the high-resolution data from the Precipitation Radar filled in by data from 26 

the TRMM Microwave Imager. The precipitation gauge analysis is used to correct any biases 27 

in the satellite data (Huffman and Bolvin, 2012).  28 

Monthly precipitation from the GPCC dataset (Rudolf et al., 2005a,b) is obtained from global 29 

station data that is gridded onto a 1° x 1° global domain. The GPCC monthly precipitation 30 
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product is based on anomalies from the climatological mean at each station. The anomalies 1 

are spatially interpolated by using a modified version of the robust empirical interpolation 2 

method SPHEREMAP. The method constitutes a spherical adaptation (Willmott et al., 1985) 3 

of Shepard’s empirical weighting scheme (Shepard, 1968; Schneider et al., 2011). 4 

4.2 Chemistry Data Description  5 

Observations from four measurement platforms are used to evaluate the WRF-Chem 6 

predictions of CO, O3 and NO2: a ground-based monitoring network in Thailand, ozonesondes 7 

in the Southeast Asia region, Version 6 Measurement of Pollution In the Troposphere 8 

(MOPITT) satellite instrument, and the Ozone Monitoring Instrument (OMI) satellite 9 

instrument. The ground-based chemistry observations in Thailand are provided by the Thai 10 

Pollution Control Department (PCD). The Thai PCD monitors the hourly surface 11 

concentrations of five chemical species: O3, CO, NO2, SO2 and PM10 at six locations (Figure 12 

5g). The measurement sites in Thailand are located in urban areas and therefore are dominated 13 

by urban (especially motor vehicles) emissions. These data are measured by using the 14 

“reference method” or “equivalent methods”. Almost all O3 observation instruments are from 15 

Teledyne Advanced Pollution Instrumentation Model 400 (http://www.teledyne-16 

api.com/products/400e.asp). The instrument has a lower detection limit of 0.6 ppbv and a 17 

precision of 1%. Almost all CO observation instruments are from Teledyne Advanced 18 

Pollution Instrumentation Model 300 (http://www.teledyne-api.com/products/300e.asp), 19 

which has a lower detection limit of 40 ppbv and a precision of 0.5%. The PCD 20 

measurements periodically have missing data, but the missing data are only ~15% of the time.  21 

The SHADOZ ozonesonde network (Thompson et al., 2012) was initiated to provide vertical 22 

profiles of O3 in the tropics for satellite data verification, model evaluation, and insights into 23 

tropical chemistry and dynamics. SHADOZ has collected more than 3000 O3 profiles from 14 24 

sites in tropical and subtropical regions using balloon-borne electrochemical concentration 25 

cell (ECC) O3 detectors flown with standard radiosondes.  It is estimated that the accuracy 26 

and precision of the O3 measurement is 5%, but biases can be found with individual stations. 27 

Ozonesondes from three stations, Kuala Lampur, Malaysia, Hanoi, Vietnam, and Watukosek, 28 

Java (Figure 5g), are used in the model evaluation presented in this manuscript. Total O3 29 

column at these stations can be 5-10% lower than total O3 measured by the OMI satellite 30 

instrument (Thompson et al., 2012). 31 
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Satellite observations are quite valuable for model evaluation, but require careful 1 

interpretation to be used quantitatively.  In many cases (as in MOPITT CO and OMI NO2) the 2 

retrieved mixing ratios or column densities can be expressed as a linear combination of the 3 

true atmospheric profile (x) and a priori information (xa), balanced according to the averaging 4 

kernels (A) (I is the identity matrix):  5 

xret = Ax + (I- A)xa         (4) 6 

The averaging kernels represent the sensitivity of the retrievals to the actual concentration 7 

profiles, and vary in time and space depending on the temperature profile, the thermal contrast 8 

between air and surface temperatures, the concentration profile and surface emissivity.  9 

The new versions of MOPITT data (Versions 5 & 6; Deeter et al. 2011; 2012; 2013; Worden 10 

et al. 2010), which we used in this paper, have improved near surface CO retrievals over 11 

Version 4. The V6 MOPITT uses both near-infrared and thermal-infrared observations 12 

simultaneously to enhance the retrieval sensitivity of CO in the lower troposphere. This 13 

feature is important to air quality analyses and studies of CO sources. The V5 MOPITT 14 

surface-level CO validation shows biases on the order of a few percent, and V6 is very similar 15 

(Deeter et al., 2012).   16 

The OMI Level-3 Global Gridded NO2 data product, archived at the NASA Goddard Earth 17 

Sciences Data and Information Service Center (GES DISC), has a spatial resolution of about 18 

13 km x 24 km at nadir in normal operational mode. OMI measures the backscattered 19 

radiation over the 0.27–0.5 µm wavelength range to obtain the total column of trace species, 20 

such as NO2, O3, formaldehyde, SO2 and aerosols. The tropospheric NO2 column retrieval 21 

algorithm follows Bucsela et al. (2006) who use the DOAS methodology, air mass factors, 22 

and typical NO2 profiles from chemical transport models to obtain the vertical column 23 

density. The OMI tropospheric NO2 column data have been shown to have a good correlation 24 

with INTEX-B aircraft measurements (Boersma et al., 2008). Good agreement of OMI 25 

tropospheric NO2 column has also been found with MAX-DOAS ground-based measurements 26 

(Kramer et al., 2008). However, some recent studies have suggested that the OMI retrieval 27 

has a positive bias of 0–30% (e.g., Boersma et al., 2009; Zhou et al., 2009). To evaluate NO2 28 

from model results, we compare the tropospheric column of NO2 from the OMI Level-3 29 

Global Gridded NO2 data product with WRF-Chem NO2 columns that have been adjusted 30 

using the averaging kernel and a priori information (following equation 4) provided with the 31 

data product (e.g., Emmons et al., 2004). 32 
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5 Model Results and Evaluation  2 

5.1 Meteorology Evaluation 3 

Monthly-averaged 2-m temperature, wind speed and direction are compared to the MERRA 4 

reanalysis dataset. In general, the model-predicted temperature agrees well with the MERRA 5 

output (Figure 5) for the March 2008 simulation, although some regions, e.g. Indochina 6 

peninsula, have 2-3°C lower temperatures than the monthly-averaged reanalysis output. The 7 

WRF-predicted wind speed pattern is similar to the MERRA output for March. However, the 8 

wind speed is over-predicted in the South China Sea by ~2 m s-1. The wind direction agrees 9 

quite well with MERRA output (Figure 5e,f). For December 2008 (not shown), the simulated 10 

2-m temperature, 10-m wind speed and wind direction, in general, also agree well with the 11 

MERRA output; however, the temperature is slightly under-predicted over land and the wind 12 

speed is over-predicted over the South China Sea. The low bias in temperature and high bias 13 

in wind speed can impact the prediction of chemical species mixing ratios. For example, the 14 

chemical reactions likely will proceed at a slightly lower rate (because of their dependence on 15 

temperature) resulting in formation of products further away from the source. Additionally, 16 

biogenic emissions may be underpredicted, since these emissions increase with increasing 17 

temperatures and a low bias in temperature can lead to lower emissions. 18 

WRF reasonably predicts the precipitation pattern in March (Figure 6a-c) when compared to 19 

TRMM and GPCC data. Low precipitation is observed over the coast of Burma, the northern 20 

part of the South China Sea, and the tip of the Indochina peninsula, and high precipitation is 21 

predicted near the equator over the oceans, Malaysian peninsula, and Indonesia. However, the 22 

WRF results overestimate precipitation near the equator by 10 to 100 mm for March. In 23 

December (Figure 6d-f), WRF also over-predicts the magnitude of precipitation over the 24 

water, but shows reasonable agreement north of 10N especially over land. The precipitation in 25 

this region is dominated by rain from convection, which controlled by mesoscale processes. 26 

The WRF simulations presented here have a 36 km horizontal resolution, and at this 27 

resolution, the model relies on a cumulus parameterization to produce the rain. Due to the 28 

coarse model resolution for a region with plenty of tropical convection, a situation which is 29 

notoriously difficult to represent in models, the poor prediction of precipitation near the 30 

equator is not unexpected. Koo and Hong (2010) also found oceanic convection to be 31 
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overpredicted by the WRF model. However, over land, where the chemical predictions of this 1 

study are evaluated, the WRF precipitation has better agreement with observations. As a 2 

consequence of the higher precipitation predicted by WRF, WRF-chem may overpredict the 3 

removal of soluble trace gases (e.g. nitric acid), thereby affecting the photochemistry in the 4 

region.   5 

5.2 Evaluation of Chemistry 6 

5.2.1 Ensemble Surface Means and Variations 7 

To show the distribution of the monthly-mean surface mixing ratios for CO, O3, and NOx in 8 

March and December, the WRF-Chem results from all five simulations (with different 9 

emissions inventories) have been averaged giving an ensemble mean (Figure 7). In general, 10 

surface-level CO and NOx mixing ratios have highest values over the land regions and lowest 11 

values over the ocean near the equator. By comparing the model results from March (high 12 

biomass burning emissions) to those from December (low biomass burning emissions), the 13 

influence of biomass burning emissions can be seen for all three species. CO mixing ratios are 14 

> 500 ppbv over Burma and northern Thailand during March compared to 200-500 ppbv 15 

during December.. Monthly-averaged O3 mixing ratios, which reach 70-90 ppbv, are largest 16 

during March over the regions where biomass burning is occurring and downwind of these 17 

emissions. With a shorter lifetime, high NOx mixing ratios of 4-30 ppbv are confined to 18 

regions close to the NOx sources.   19 

The variation, which is defined as the standard deviation of the five simulations, in the 20 

predicted monthly-averaged surface mixing ratios of CO, O3, and NOx across the five 21 

simulations is highlighted in Figure 8. Because we conducted each simulation with the same 22 

meteorology and biomass burning emissions, the primary cause for the variations are the 23 

differences in the anthropogenic emissions. CO mixing ratios vary across simulations by 24 

<20%, but variations of ~30-60% are found near Bangladesh and Indonesia for both March 25 

and December. O3 mixing ratios have up to 30% variation near the tip of the Malaysian 26 

peninsula and near Indonesia, but have much smaller variability elsewhere. Mixing ratios of 27 

NOx have the most variation among the simulations. The 70-100% variations for NOx, 28 

especially over the South China Sea, are from the differences in ship emissions from each 29 

inventory. There are also high NOx variations in several cities as seen by the locally high 30 
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values in Figure 8e,f, due to different emission strengths in each inventory and to missing 1 

emission sectors in some inventories (e.g. shipping emissions in the SEAC4RS inventory).  2 

5.2.2 CO Evaluation 3 

The 6-hourly daytime (00, 06, 12 UTC) CO mixing ratios from WRF-Chem with each of the 4 

five inventories are compared to observations from the six ground-site measurements: Chiang 5 

Mai (CM) in northwest Thailand, Khonkaen (KK) in eastern Thailand, Nonthaburi (NTB) in 6 

the Bangkok metropolitan region, Sarabuti (SRB) just north of Bangkok, Chonburi (CB) 7 

southeast of Bangkok, and Suratthani (SRT) in the southern peninsula (Figure 5g). These sites 8 

are located in urban environments with background conditions ranging from high biomass 9 

burning in northern Thailand to more marine conditions in southern Thailand. For March 10 

when biomass burning emissions are a large source of CO, the WRF-Chem simulations agree 11 

well with the monthly-mean mixing ratio for Chiang-Mai in northwest Thailand and Chonburi 12 

in southeast Thailand (Figure 9), with moderate correlation coefficients (Table 3) of r2 = 0.48 13 

to 0.51. However, WRF-chem generally underpredicts CO at the other stations, especially 14 

Nonthaburi. In December, the predicted 6-hourly daytime surface CO for all simulations is 15 

much less than the observations, with the exception of the Chonburi site. The large 16 

underprediction is reflected by the bias calculation (Table 4). Part of the underprediction is a 17 

result of the coarse model resolution (36 km), which cannot capture the highly variable 18 

emissions and high CO concentrations in an urban setting where the measurement site is 19 

located. However, the underprediction of CO could also be due to low anthropogenic 20 

emissions (discussed further in Section 5), a high planetary boundary layer height, which 21 

would cause dilution of surface mixing ratios, and/or missing chemistry in the model such as 22 

heterogeneous chemistry. Mao et al. (2013) suggest uptake of HO2 to aerosols undergo 23 

reaction with transition metal ions to convert HO2 to H2O, removing hydrogen oxides from 24 

the atmosphere. They show that this proposed mechanism decreases OH at the surface, as 25 

simulated by the GEOS-Chem model, and consequently increases CO mixing ratios by 20-30 26 

ppbv. While a 20-30 ppbv increase in CO over Thailand will not remove the high CO bias in 27 

our simulation, this heterogeneous chemistry may explain some of the underprediction of CO. 28 

When comparing the CO concentrations from the different WRF-chem simulations with the 29 

measurements in Thailand, we find the different WRF-chem results to be quite similar. An 30 

examination of the correlation coefficients (Table 3) reveals that these values are quite similar 31 

from simulation to simulation. This can be due in part to the fact that none of the emission 32 



 18 

inventories are specific to the modeled time period. However, a paired difference test 1 

(Kruskal and Wallis, 1952) shows that there are statistical differences for CO among the 2 

different emission inventories at Khonkaen, Saraburi, Nonthaburi, and Chonburi for both 3 

March and December and for Chiang Mai for December. The variability in the biases of the 4 

modeled CO mixing ratios (Table 4) also suggests that the different emission inventories are 5 

causing the different CO mixing ratios between the model simulations. Because the 6 

simulation using RETRO emissions, especially for March has larger biases than the other 7 

simulations, the more recent CO emission inventories either better represent the emissions in 8 

general or are more similar to what the emissions were for 2008.  9 

The modeled CO surface mixing ratios are compared to the MOPITT V6 gridded Level 3 10 

near-surface CO retrievals to evaluate the modeled spatial distribution (Figures 10 and 11). 11 

The MOPITT V6 data (Deeter et al. 2011; 2012; 2013; Worden et al. 2010), which we used in 12 

this paper, has improved near surface CO retrievals. This improvement is accomplished by 13 

using near-infrared and thermal-infrared observations simultaneously to enhance the retrieval 14 

sensitivity of CO in the lower troposphere. WRF-Chem is able to capture well the patterns of 15 

high CO over Southeast Asia and Southern China in March (Figure 10), but overpredicts CO 16 

over northern Thailand and Burma.  These regions of high CO coincide with the location of 17 

biomass burning, indicating the FINN fire emissions are too high in this region.  The 18 

predicted CO mixing ratios are similar in magnitude to MOPITT over the Malay and southern 19 

IndoChina peninsulas. For December when biomass burning is less important, the general 20 

spatial pattern of CO is represented by WRF-Chem for all the simulations (Figure 11). The 21 

modeled CO in December is generally higher than MOPITT, particularly in the regions of the 22 

highest mixing ratios in southern China and easternmost India.    23 

5.2.3 O3 Evaluation 24 

Scatter plots of the 6-hourly daytime O3 mixing ratios compared to the measurements at the 25 

six ground sites show that O3 is generally overpredicted for each of the different emission 26 

inventories for both March and December (Figure 12) by up to 100 ppbv. Locations that 27 

showed good agreement for CO (e.g. Chiang Mai in March) have very poor agreement for O3. 28 

Despite the large scatter of model results for O3 (Figure 12), the correlation coefficients are 29 

generally 0.5 and higher (Table 5) indicating that the model captures the O3 trend well, but 30 

has a high bias. WRF-Chem O3 biases (Table 6) range from -1 to 40 ppbv with MACCity and 31 

MACCity/SEAC4RS having the highest bias at Chiang Mai. In December (Figure 12), the 32 
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model-observation is generally better than in March, although WRF-Chem tends to 1 

overpredict O3, especially at Khonkaen and Saraburi in northeastern and central Thailand. In 2 

general, the comparison of the model results among the different emission inventories show 3 

fairly similar results for O3 mixing ratios, correlation coefficients, and biases. The correlation 4 

coefficients among simulations mostly vary by <0.1, suggesting that the different 5 

anthropogenic emission inventories produce very little variation in modeled O3. A paired 6 

difference test (Kruskal and Wallis, 1952) of these surface O3 mixing ratios shows that there 7 

are not any statistical differences for O3 among the different emission inventories. Likewise, 8 

variation among the monthly-mean O3 biases among the different simulations are < 15 ppbv 9 

and mostly < 7 ppbv. The higher O3 bias in March compared to December, especially in 10 

Chiang Mai where there are large biomass burning sources (Amnuaylojaroen and Kreasuwun, 11 

2012), suggests that biomass burning emissions are more uncertain than anthropogenic 12 

emissions.  13 

The O3 vertical profiles resulting from the WRF-Chem simulations are compared to 14 

SHADOZ ozonesondes and MOZART4 model results at 3 locations, Hanoi, Vietnam, 15 

Watukosek-Java, Indonesia and Kuala Lumpur, Malaysia (Figure 13). Both Hanoi and 16 

Watukosek-Java are near the WRF-Chem model domain boundaries (Figure 5g). At 17 

Watukosek-Java in March, the WRF-Chem prediction is low below the 700 hPa level and too 18 

high above 600 hPa (Figure 13a), while the MOZART4 prediction is more similar to 19 

observations near the surface. In December, the WRF-Chem results agree well with the 20 

observations at Watukosek-Java from the surface to 300 hPa (Figure 13c). Above 300 hPa, 21 

the model overpredicts the O3 mixing ratios until it reaches the stratosphere. At Kuala 22 

Lumpur, the WRF-Chem results have very good agreement with O3 observations for March 23 

(Figure 13b), while the MOZART4 results are high compared to the observations below the 24 

600 hPa level. In December at Kuala Lumpur, the observations are higher than the model 25 

results in the free troposphere (Figure 13d).  The free troposphere mixing ratios are likely 26 

from outside the domain where MOZART4 results are used as boundary conditions. The O3 27 

measurements from Hanoi, a subtropical location, show multiple layers of O3 in the free 28 

troposphere with lowest O3 values of 20 ppbv occurring at 200 hPa for the March time period 29 

(Figure 13e). The WRF-Chem and MOZART4 results are not able to replicate the layering 30 

structure, but the WRF-Chem results do have high O3 values from 900 to 600 hPa, while 31 

MOZART4 O3 remains below 60 ppbv throughout the troposphere. Neither model is able to 32 

predict the 20 ppbv minimum O3 at 200 hPa. There is very little difference between the WRF-33 
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Chem results from the simulations with different emission inventories for Hanoi and 1 

Watukosek-Java, except for near the surface at Watukosek-Java in March. At Kuala Lumpur, 2 

there is much more variation between model results with different emission inventories. O3 3 

from the SEAC4RS emissions inventory simulation is less than the O3 from the other 4 

simulations and has the worst agreement with observations at Kuala Lumpur. This difference 5 

could be because the SEAC4RS emissions inventory lacks ship emissions. When the 6 

SEAC4RS emissions are combined with MACCity emissions, the O3 mixing ratios are more 7 

similar to the other simulations.  8 

5.2.4 NO2 Evaluation 9 

The spatial distribution of the WRF-Chem and OMI tropospheric column NO2 are shown in 10 

Figures 14 and 15 for March and December, respectively. In general, the WRF-Chem 11 

simulation is able to capture the NO2 pattern well over land in March with high NO2 columns 12 

over China, Burma, Vietnam, Laos and Thailand and low values over the southern and 13 

southeast region of the model domain. The WRF-Chem NO2 column is generally less than the 14 

OMI NO2 column. In March, the OMI NO2 column values over land are >2x1015 molecules 15 

cm-2 with peak values of ~5x1015 molecules cm-2 over the Pearl River Delta, while WRF-16 

Chem predicts 1x1015 molecules NO2 cm-2 or more. The WRF-chem peaks of ~5x1015 occur 17 

in northern Thailand and Burma and not over the Pearl River Delta. On the other hand, the 18 

WRF-Chem model underpredicts NO2 column in the southeastern region of the model 19 

domain. For March, the WRF-Chem NO2 column mostly reflects the biomass burning 20 

emissions pattern (Figure 3), while for December WRF-Chem is more similar to the 21 

anthropogenic emissions (Figure 4). The OMI NO2 column does not show the high NO2 over 22 

northern Thailand and Burma where the model has high biomass burning emissions in March. 23 

To explain this difference, WRF-Chem fire emissions could be too high, or OMI may miss 24 

the high NO2 because of clouds interfering with the instrument’s view. In situ measurements 25 

would allow us to evaluate better the performance of the model.   26 

The largest variation among the model simulations is in the region near Indonesia and is a 27 

result of both low NO2 mixing ratios from the MOZART boundary conditions and different 28 

estimates for shipping emissions among the different inventories (Table 2, Figures 3 and 4). 29 

Both the RETRO ship emissions, which are 75-80% smaller than INTEX-B and MACCity 30 

ship emissions, and the SEAC4RS only simulation, which does not have ship emissions 31 

contribute to the variation. When the MACCity ship emissions are combined with the 32 
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SEAC4RS emissions (MACCity/SEAC4RS), the agreement with OMI NO2 column is much 1 

better than the SEAC4RS only simulation. For example, the MACCity/SEAC4RS simulation 2 

agrees better with OMI NO2 column than the SEAC4RS only simulation. The NO2 column 3 

model-observation comparison for December (Figure 15) shows that WRF-Chem slightly 4 

underpredicts the NO2 column, especially over the mainland. All five simulations predict 5 

relatively low NO2 column over Burma with values of ~1x1014 molecules cm-2 while OMI 6 

NO2 column reports values of 5-10x1014 molecules cm-2. Figure 4 shows that NO emissions 7 

in Burma are lower than the surrounding regions. The comparison to satellite data suggests 8 

that perhaps these emissions are too low.	 9 

6 Discussion 10 

There are several aspects of the simulations that contribute to the underprediction of CO at the 11 

surface and the overprediction of O3 at the surface. One is that the model simulation is for 12 

2008 while the emission inventories are appropriate for other years (RETRO for 2000, 13 

INTEX-B for 2006, MACCity for 2010, and SEAC4RS for 2012). While the grid spacing of 14 

36 km is better than global chemistry transport models, it is likely that small-scale features, 15 

e.g. urban regions and orography are not adequately represented in this simulation. For 16 

example, Chiang Mai is in a mountain valley where pollutants can easily accumulate. Another 17 

possible error could arise from the fire emissions. One issue with coarse resolution modeling 18 

of biomass burning emissions is that multiple fires in one model grid cell are aggregated into 19 

a single, bigger fire area. This aggregated information is used by the plumerise model in 20 

WRF-Chem, which may erroneously apply too much thermal buoyancy associated with the 21 

fires, resulting in emissions placed too high above the ground. For example, WRF-Chem 22 

results without the plumerise feature of biomass burning emissions, as illustrated by the 23 

March monthly-averaged CO vertical profiles at Yangon, Burma (Figure 16), show that 24 

injection into the lowest model level gives vertical profiles more consistent with MOZART 25 

results, which injects fire emissions into the lowest model level. Thus, in the simulations with 26 

the plumerise feature, O3 precursor species (NMVOCs and NOx) may be placed in an 27 

environment where O3 production is more productive than if the precursors were placed near 28 

the surface. While these results indicate a substantial difference in CO mixing ratios in the 29 

lowest 500 hPa of the atmosphere, observations of CO vertical profiles are needed to help 30 

evaluate the model predictions. In addition, trash burning emissions are not included in this 31 

study, yet have been shown to have a significant contribution to the air quality (Hodzic et al., 32 
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2012). In reality, Southeast Asia has complex emission sources that not only include biomass 1 

burning and anthropogenic activities, but also biofuel and trash burning. To improve 2 

simulations of CO in the future, these other emissions should be included.   3 

Another possible cause of the CO underprediction and O3 overprediction at the surface is that 4 

the anthropogenic emissions are too low. Global estimates of CO sources (Kopacz et al. 2010) 5 

based on satellite, aircraft, and surface observations suggest that CO emissions over Southeast 6 

Asia are underestimated by nearly a factor of two. For the INTEX-B emissions, Zhang et al. 7 

(2009) reported an uncertainty of 185% and 37% for CO and NO emissions, respectively. We 8 

conducted sensitivity simulations with higher CO emissions by a factor of 2 and higher NO 9 

emissions by 40%. Additional sensitivity simulations were performed with only CO emissions 10 

greater by a factor of 2 (NO emissions remained the same as the original inventory).  The 11 

sensitivity simulations were performed for March when biomass burning is a major 12 

contribution to the results. The results were compared to the six ground sites shown in Fig. 13 

5g. The higher emissions improve agreement for both O3 and CO concentrations at the 6 14 

monitoring sites. For example, the O3 prediction from the increased emission simulations, on 15 

average, improved the correlation term by ~18% and reduced the bias from 24 ppbv to 8 16 

ppbv. The high emissions simulations decreased, on average, the correlation for CO surface 17 

mixing ratios by 23-34%, but reduced the average bias from 250-264 ppbv to 184-224 ppbv. 18 

Interestingly, the high emissions simulations produced too much CO at Chiang Mai (CM) by 19 

over 400 ppbv, yet the O3 bias at CM was reduced to 2-4 ppbv (from 38-40 ppbv). This 20 

suggests that either the CO emissions from biomass burning are too high, or co-emitted VOCs 21 

should have higher emissions. The SRB site, downwind of Bangkok, went from too little CO 22 

(bias = -150 ppbv for INTEX-B) to too much CO (bias = 173 ppbv for INTEX-B high 23 

emissions simulations) with only a 2 ppbv decrease in bias of O3. CO at SRT changed very 24 

little, because SRT is located away from urban and biomass-burning regions. At the same 25 

time, KK, NTB and CBR all have a better correspondence to observations as shown by the 26 

decreased bias. However, WRF-Chem still underpredicts CO at these sites. The higher 27 

emissions slightly improved the prediction of NO2 mixing ratios increasing the correlation 28 

coefficient by 18% but not changing the bias on average. By comparing the simulation with 29 

increased CO and NO emissions to the simulation with only increase CO emissions, the 30 

results for O3 and CO are very similar indicating that increased CO emissions caused the 31 

decrease in O3 concentrations.  32 
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Our WRF-Chem simulations did not include heterogeneous chemistry, which can affect OH 1 

concentrations (Mao et al. 2013) and therefore CO oxidation. Kumar et al. (2014) also found 2 

decreased OH and O3 mixing ratios when heterogeneous chemistry was included for a 3 

simulation of a dust event over India. For this high dust-loading example of the effect of 4 

heterogeneous chemistry, O3 decreased by 10-20 ppbv.   5 

The underprediction of NO2 in all the WRF-chem simulations suggests that the anthropogenic 6 

NOx emissions are underestimated over the Southeast Asia. These errors in anthropogenic 7 

emission estimates are likely due to uncertainties in including all the CO or NOx sources from 8 

the different emission sectors and estimating the emission factors from the different sources. 9 

The variation in NO shipping emissions, as seen by the comparison of the simulation using 10 

only the SEAC4RS emissions without shipping emissions with the simulation using 11 

MACCity-SEAC4RS emissions, does produce substantial variation among model predictions 12 

of NO2 (Figure 14) and O3 (Figure 13). Therefore, it is important to include the shipping 13 

sector as part of the emissions inventory. 14 

This paper did not include the REAS emissions inventory. For Southeast Asia the REAS v2.1 15 

CO emissions are similar to the TRACE-P (Streets et al., 2003) and INTEX-B (Zhang et al., 16 

2009) emission inventories for years 2000 and 2006, respectively. The REAS v2.1 NOx 17 

emissions are also similar to the TRACE-P emissions inventory for 2000, but are lower than 18 

the INTEX-B inventory for year 2006 (Kurakawa et al., 2013). We would then expect the 19 

REAS v2.1 inventory to produce similar results for CO surface mixing ratios as the INTEX-B 20 

emissions inventory did, but have lower NOx mixing ratios, if the year 2006 REAS inventory 21 

is used. The 2008 REAS v2.1 emissions are 10-20% greater than their 2006 emissions. These 22 

increased emissions would likely give results for CO and O3 surface mixing ratios that are 23 

<10% greater than the mixing ratios simulated in this study. To confirm this, additional WRF-24 

Chem simulations should be done with the REAS emissions inventory.   25 

The goal of this paper is to examine the differences in predicted CO and O3 mixing ratios at 26 

the surface when different anthropogenic emission inventories are used. Table 6 lists 27 

monthly-average O3 and CO mixing ratios on land for March and December for all of 28 

simulation cases. During the biomass-burning season (March), the average CO differs by less 29 

than 5 ppbv (<1% difference) among the different emission inventories, while average O3 30 

ranges from 146 to 160 ppbv (9% difference) among the different emission inventories. In 31 

December when anthropogenic emissions are greater than biomass burning emissions, the 32 
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differences in average CO and O3 among the different emission inventories is very small (2 1 

ppbv for CO and 7 ppbv for O3). These small variations, which are also seen in the mean bias 2 

calculations for the ground-based sites (Tables 3 and 5), suggest that the choice of the 3 

emission inventory does not have a substantial effect on CO and O3 surface concentrations, 4 

despite the different emission inventories having a ~30% variation for CO and 10% variation 5 

for NO emissions.  6 

By comparing the March average mixing ratios to the December average mixing ratios (Table 7 

6), the importance of biomass burning emissions on O3 and CO variability is revealed. In 8 

March, CO is 16% greater than CO in December for all simulations except that with RETRO 9 

emissions. The average O3 in March is ~30% greater than average O3 in December.  These 10 

differences are much greater than those induced by the anthropogenic emissions in Southeast 11 

Asia. Thus, biomass burning emissions produce more variability in WRF-Chem simulation 12 

results than the different anthropogenic emission inventories. 13 

7 Conclusion 14 

This study presents WRF-Chem results to show the variability of emissions on surface O3 and 15 

CO mixing ratios in Southeast Asia. The predicted meteorological fields are evaluated with 16 

reanalysis output (MERRA), satellite data (TRMM) and ground-based observations (GPCC) 17 

for 2-m temperature, wind, and precipitation. Surface CO and O3 mixing ratios are compared 18 

to ground-based monitoring observations in Thailand. Surface CO is also compared to 19 

MOPITT satellite data. O3 vertical profiles are compared with SHADOZ ozonesonde data, 20 

and the NO2 tropospheric column is evaluated with OMI satellite data.  21 

In general, the temperature and winds showed good agreement with MERRA output, although 22 

there was a slight underestimate of temperature and slight overestimate of wind speed. 23 

Precipitation was reasonably predicted for regions north of 10°N in comparison to TRMM 24 

and GPCC data, but was overestimated near the equator. By using a grid spacing of 36 km, 25 

the precipitation was generated mostly by the cumulus parameterization in the model resulting 26 

in a less reliable prediction of rain and convective mass fluxes between the boundary layer 27 

and mid- to upper troposphere. Surface O3 mixing ratios were generally higher than 28 

observations and surface CO mixing ratios were lower than observations. Although the 29 

emission inventories were for years other than that simulated here, the differences in surface 30 

O3 and CO mixing ratios among the simulations with different inventories were small. Thus, 31 

the model biases are likely not the result of the emission inventory trends used here, but more 32 



 25 

likely caused by the omission of sources such as trash burning and biofuel use and 1 

uncertainties not fully captured in the current emission inventories. Sensitivity simulations 2 

with doubled CO emissions showed that the model-observation agreement improved 3 

substantially for CO and O3. Thus, further study of the role of different emission sectors on 4 

CO and O3 can help elucidate where the major weaknesses are in the emission inventories. In 5 

addition, analysis of the contribution of CO, NOx, O3, and VOCs from outside the Southeast 6 

Asia region on the region’s air quality should be compared with the contribution of the local 7 

emissions. 8 

Simulations using different anthropogenic emissions created only a slight variability of O3 9 

and CO mixing ratios, while biomass burning emissions added more variability. The different 10 

anthropogenic emissions have up to 30% difference in CO emissions but only a small change 11 

of O3 and CO mixing ratios of ~4.5% and ~8%, respectively, among the simulations. A 12 

statistical analysis showed that the different model results are statistically different for CO 13 

mixing ratios at the Thai monitoring sites, and none are statistically different for O3 except in 14 

southern Thailand during March. By comparing March (when biomass burning is at its peak) 15 

surface mixing ratios to December values, it is found that biomass burning emissions 16 

substantially increase both O3 and CO mixing ratios by ~30% and ~16%.   17 

Southeast Asia is a region with complex terrain and emission sources at small scales.  Thus, 18 

one important test to improve the regional-scale simulations of air quality in Southeast Asia 19 

would be to use model grid spacing of the order of 10 km or less. A higher grid resolution 20 

should also reduce errors in the injection height of biomass burning emissions. However, a 21 

high-resolution simulation needs emission inventories at equally high resolution. Inclusion of 22 

other types of emissions, e.g. trash emissions, in the current inventories could also improve 23 

the representation of the atmospheric chemistry in Southeast Asia. Lastly, particulate matter 24 

(aerosols) was not addressed in this study. Not only should their contribution to air quality be 25 

evaluated, but their impact on gas-phase photochemistry should be addressed.  26 
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 1 

Figure 1. CO emissions for March 2008 from different emission inventories a) 2 

MACCity/SEAC4RS, b) Biomass Burning, c) RETRO-MACCity/SEAC4RS, d) INTEXB-3 

MACCity/SEAC4RS, e) MACCity-MACCity/SEAC4RS, and f) SEAC4RS-4 

MACCity/SEAC4RS. 5 
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 1 

Figure 2. CO emissions for December 2008 from different emission inventories a) 2 

MACCity/SEAC4RS, b) Biomass Burning, c) RETRO-MACCity/SEAC4RS, d) INTEXB-3 

MACCity/SEAC4RS, e) MACCity-MACCity/SEAC4RS, and f) SEAC4RS-4 

MACCity/SEAC4RS. 5 
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 1 

Figure 3. Nitrogen oxides emissions for March 2008 from different emission inventories a) 2 

MACCity/SEAC4RS, b) Biomass Burning, c) RETRO-MACCity/SEAC4RS, d) INTEXB-3 

MACCity/SEAC4RS, e) MACCity-MACCity/SEAC4RS, and f) SEAC4RS-4 

MACCity/SEAC4RS. 5 
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Figure 4. Nitrogen oxides emissions for December 2008 from different emission inventories 2 

a) MACCity/SEAC4RS, b) Biomass Burning, c) RETRO-MACCity/SEAC4RS, d) INTEXB-3 

MACCity/SEAC4RS, e) MACCity-MACCity/SEAC4RS, and f) SEAC4RS-4 

MACCity/SEAC4RS. 5 
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 1 

Figure 5. March 2008 monthly-averaged a) 2-m temperature (°C) from MERRA, b) 2-m 2 

temperature (°C) from WRF, c) 10-m wind speed (m s-1) from MERRA, d) 10-m wind speed 3 

(m s-1) from WRF, e) 10-m wind direction from MERRA, and f) 10-m wind direction from 4 



 40 

WRF. g) Locations of ground-based CO and O3 measurements (red dot) and ozonesonde sites 1 

(green triangle) are marked. 2 

 3 

 4 

 5 

Figure 6. Accumulated precipitation (mm) a) GPCC, March, b) TRMM, March and c) WRF, 6 

March d) GPCC, December e) TRMM, December f) WRF, December. 7 
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 1 

Figure 7 Monthly-mean, surface mixing ratios for a) and b) CO, c) and d) O3 e) and f) NOx 2 

predicted by WRF-Chem using the averaged from 5 emission inventories for March (left) and 3 

December (right panels) 2008.  4 
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 1 

Figure 8 Variations, surface mixing ratios for a) and b) CO, c) and d) O3 e) and f) NOx 2 

predicted by WRF-Chem using the averaged from 5 emission inventories for March (left) and 3 

December (right panels) 2008. 4 

 5 

 6 
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 1 

 Figure 9. Scatter plots of 6-hourly daytime CO from WRF-Chem using different emissions 2 

inventories (red dots are RETRO emissions, teal dots are SEAC4RS, orange dots MACCity, 3 

green dots INTEX-B, and blue dots are combined MACCity and SEAC4RS) and ground-4 

based observations for March and December. 5 
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 1 

Figure 10 Carbon Monoxide from WRF-Chem and MOPITT in March a) MOPITT b) WRF-2 

Chem Simulation with RETRO emission inventory, c) WRF-Chem Simulation with INTEX-3 

B emission inventory, d) WRF-Chem Simulation with MACCity emission inventory, e) 4 

WRF-Chem Simulation with SEAC4RS emission inventory, e) WRF-Chem Simulation with 5 

MACCity/SEAC4RS emission inventory. 6 
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 1 

Figure 11 Same as Fig.10 but for December 2 
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 1 

Figure 12. Scatter plots of 6-hourly daytime O3 from WRF-Chem using different emissions 2 

inventories (red dots are RETRO emissions, teal dots are SEAC4RS, orange dots MACCity, 3 

green dots INTEX-B, and blue dots are combined MACCity and SEAC4RS) and ground-4 

based observations for March and December 5 
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     1 

Figure 13. O3 vertical profiles from WRF-Chem, MOZART4, and ozonesondes at three 2 

SHADOZ ozonesonde locations for a) Watukosek-Java, Indonesia in March, b) Watukosek-3 

Java, Indonesia in December, c) Kuala Lumpur, Malaysia in March, d) Kuala Lumpur, 4 

Malaysia in December, and e) Hanoi, Vietnam in March. Note that there are no SHADOZ 5 

data at Hanoi during December 2008. 6 
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 1 

Figure 14 March 2008 monthly NO2 total column a) OMI b) WRF-Chem + RETRO c) WRF-2 

Chem + INTEX-B d) WRF-Chem + MACCity e) WRF-Chem + SEAC4RS f) WRF-Chem + 3 

MACCity-SEAC4RS 4 
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 1 

 2 

Figure 15 Same as Figure 19 but for December. 3 

 4 
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 1 

Figure 16. March monthly-averaged CO vertical profiles at Yangon, Burma. WRF-Chem 2 

results with the plumerise feature of biomass burning emissions are given for the 3 

MACCity/SEAC4RS emissions case (blue line), SEAC4RS emissions (dark green line), 4 

MACCity emissions (red line), INTEX-B emissions (green line), and RETRO emissions (dark 5 

red line). The MOZART global model results are shown as the gold line. WRF-Chem results 6 

without the plumerise feature (i.e. biomass burning emissions injected into the lowest model 7 

level) are shown as the purple line. 8 

  9 
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Table 1 Emission sectors used in the model simulations from each emission inventory 1 

RETRO INTEX-B MACCity SEAC4RS 

1. Power 
Generation 

2. Residential 
3. Industrial 

combustion 
4. Industrial 

processes 
5. Extraction 

distribution 
of fossil fuels 

6. Solvent use 
7. Road 

transport 
8. Other mobile 

sources 
9. Waste 

treatment and 
disposal 

10. Agriculture 
and Landuse 
change 

 

1. Power plant 
2. Industry 
3. Residential 
4. Transportation 

1. Energy production 
and distribution 

2. Industry(combustion 
and non-combustion) 

3. Land transport 
4. Maritime transport 
5. Aviation 
6. Residential and 

commercial 
7. Solvents 
8. Agriculture 
9. Agricultural waster 

burning on fields 
10. Waste 

 

1. Residential 
2. Industry 
3. Power 
4. Transport 

 2 

  3 
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Table 2. Summation of CO emissions and NO emissions (mole km-2 hr-1) from all grids in the 1 

model domain for each month. 2 

Emission Inventory 

E_CO (mole km-2 hr-1) E_NO (mole km-2 hr-1) 

March December March December 

RETRO – 2000 410,840 496,860 30,590 39,320 

INTEX-B – 2006 396,170 406,240 27,410 29,640 

MACCity – 2010 436,750 454,250 27,440 28,280 

MACCity/SEAC4RS 319,420 320,310 29,810 30,910 

SEAC4RS – 2012 305,542 300,369 16,610 17,290 

Biomass Burning – 2008 717,940 58,780 10,220 700 

RETRO-Ship 3,404 3,364 5,097 5,186 

INTEX-B-Ship 5,888 5,785 3,273 3,301 

MACCity-Ship 3,569 3,717 3,980 5,138 

REAS v1a – 2000 282,120 13,828 

aREAS v1 emissions are from the ECCAD web site (http://eccad.sedoo.fr) and are the annual 3 
emissions converted to hourly emissions assuming constant emissions for the year over the 4 
WRF-Chem model domain.  5 

 6 

  7 
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Table 3. Monthly-average correlation coefficients (r) of daytime (00, 06, 12 UTC) CO. 1 

Emission 

Inventories 

CM KK SRB NTB CBR SRT 

Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec 

RETRO 0.49 0.13 0.35 0.10 0.27 0.15 0.40 0.31 0.48 0.15 0.52 0.03 

INTEX-B 0.51 0.14 0.42 0.20 0.17 0.17 0.33 0.38 0.44 0.17 0.58 0.03 

MACCity 0.50 0.14 0.45 0.10 0.11 0.19 0.26 0.33 0.43 0.19 0.55 0.003 

SEAC4RS 0.48 0.15 0.42 0.04 0.09 0.18 0.21 0.33 0.42 0.18 0.52 0.01 

MACCity/ 

SEAC4RS 

0.48 0.15 0.41 0.07 0.12	 0.14 0.26 0.33 0.44 0.14 0.54 0.004 

 2 

 3 

Table 4. Monthly-average biases of daytime (00, 06, 12 UTC) CO. 4 

Emission 

Inventories 

CM KK SRB NTB CBR SRT 

Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec 

RETRO -104 -147 -396 -581 -219 -‐314 -721 -770 -‐253 23 -267 -89 

INTEX-B -16 -114 -316 -529 -150 -‐283 -662 -747 -‐203 46 -234 -109 

MACCity -18 -112 -292 -530 -116 -‐263 -636 -733 -‐195 60 -238 -112 

SEAC4RS -22 -107 -324 -548 -‐129 -‐267 -645 -734 -‐197 58 -234 -120 

MACCity/ 

SEAC4RS 

-47 -157 -35 -601 -165 -‐328 -674 -785 -‐218 10 -243 -93 

 5 

 6 

 7 
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Table 5. Monthly-average correlation coefficients of daytime (00, 06, 12 UTC) O3. 1 

Emission 

Inventories 

CM KK SRB NTB CBR SRT 

Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec 

RETRO 0.69 0.84 0.68 0.34 0.56 0.50 0.47 0.71 0.11 0.52 0.49 0.16 

INTEX-B 0.74 0.89 0.72 0.33 0.70 0.48 0.45 0.72 0.05 0.56 0.44 0.09 

MACCity 0.68 0.78 0.71 0.33 0.69 0.48 0.44 0.68 0.02 0.55 0.43 0.08 

SEAC4RS 0.70 0.79 0.73 0.42 0.75 0.56 0.41 0.71 0.001 0.49 0.45 0.14 

MACCity/ 

SEAC4RS 

0.70 0.78 0.73 0.37 0.76 0.52 0.48 0.78 0.02 0.54 0.45 0.08 

 2 

 3 

 4 

Table 6. Monthly-average biases of daytime (00, 06, 12 UTC) O3. 5 

Emission 

Inventories 

CM KK SRB NTB CBR SRT 

Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec Mar Dec 

RETRO 36.48 8.28 23.83 19.36 7.77 13.58 12.15 3.07 17.82 6.96 9.52 31.29 

INTEX-B 37.76 4.05 32.62 18.26 15.31 12.42 18.54 2.67 23.64 5.58 14.57 29.56 

MACCity 39.67 6.19 30.24 15.68 14.62 8.69 18.53 -1.34 24.88 3.04 15.76 30.36 

SEAC4RS 38.53 3.75 31.45 20.14 17.29 13.98 27.90 4.61 24.38 6.33 11.26 29.15 

MACCity/ 

SEAC4RS 

39.72 5.31 32.45 19.92 16.59 13.37 18.19 -0.25 24.95 5.52 15.38 32.22 

 6 

 7 
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Table 7. Monthly-average surface O3 and CO mixing ratios at land-based grid points in 1 

Southeast Asia.  2 

Emission Inventories CO (ppb) O3 (ppb) 

March December March December 

RETRO 571 596 146 122 

INTEX-B 575 497 156 119 

MACCity 574 495 160 122 

SEAC4RS 574 494 159 122 

MACCity/SEAC4RS 575 495 154 115 

 3 


