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Abstract

A daytime underflight of CALIPSO with the Facility for Airborne Atmospheric Measure-
ments has been performed on 20 September 2012 in the Amazon region, during the
biomass burning season. The scene is dominated by a thin elevated layer (aerosol op-
tical depth 0.03 at 532 nm) and a moderately turbid boundary layer (aerosol extinction
coefficient ~ 110Mm'1). The boundary layer is topped with small broken stratocumu-
lus clouds. In this complex scene, a comparison of observations from the airborne and
spaceborne lidars reveals a few discrepancies. The CALIPSO detection scheme tends
to miss the elevated thin layer, and also shows several gaps (~ 30 %) in the boundary
layer. The small clouds are not correctly detected in the atmospheric volume descrip-
tion flags, and are therefore not removed from the signals; this causes the CALIPSO
aerosol subtype to oscillate between smoke and polluted dust and may introduce dis-
torsion in the aerosol retrieval scheme. The magnitude of the average extinction coeffi-
cient estimated from CALIPSO level 2 data in the boundary layer is as expected, when
compared to the aircraft lidar and accounting for wavelength scaling. However, when
the gaps in aerosol detection mentioned above are accounted for, we are left with an
overall estimate of aerosol extinction for this particular scene that is of the order of two
thirds of that determined with the airborne lidar.

1 Introduction

Biomass burning is the second largest source of anthropogenic aerosols on Earth
(Houghton et al., 2001). The Fourth Assessment Report of the Intergovernmental
Panel on Climate Change reports a global radiative forcing (RF) contribution of roughly
+0.04 + 0.07Wm™2 for biomass burning aerosols (Forster et al., 2007), whereas the
Fifth Assessment Report estimates this contribution to be +0.2Wm™2 (Stocker et al.,
2013). Textor et al. (2006) showed that there are still significant uncertainties in the
aerosol vertical distribution in global models, whereas this information is critical in
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assessing the magnitude and even the sign of the direct RF. Of particular interest are
the distribution of lofted layers (Mattis et al., 2003; Mdiller et al., 2005; Baars et al., 2012)
and the identification of complex scenes involving both aerosols and clouds (Chand
et al., 2008). The large amount of heat released by forest fires can generate strong up-
drafts and deep convection in their vicinity, with a rapid transport of aerosols to upper
layers (Freitas et al., 2007; Labonne et al., 2007; Sofiev et al., 2012). These aerosols,
in turn, have an impact on cloud formation, convection, and precipitation patterns (An-
dreae et al., 2004; Koren et al., 2008).

Since 2006 the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP),
on-board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite, has provided an invaluable global dataset on the vertical structure
of the atmosphere (Winker et al., 2010, 2013). Several studies have appeared recently,
with the goal of evaluating CALIPSO products using ground-based lidar (Kim et al.,
2008; Pappalardo et al., 2010; Tesche et al., 2013; Lopes et al., 2013), AERONET
(Mielonen et al., 2009; Schuster et al., 2012; Omar et al., 2013), other satellite sensors
(Kittaka et al., 2011; Redemann et al., 2012; Tsamalis and Chédin, 2013), research
aircraft (Burton et al., 2013; Amiridis et al., 2014), or comprehensive multi-platform
experiments (Kacenelenbogen et al., 2011; Amiridis et al., 2013).

CALIOP has two operational wavelengths: 532 nm and 1064 nm, and at the first one
it has dual polarisation capability (Winker et al., 2010). Accurate nighttime calibration of
the principal channel at 532 nm is obtained via molecular normalisation at stratospheric
levels, and the calibration is then transferred to the other channels (Powell et al., 2009).
As for most lidars, daylight acts as a disturbance to the signal returns, and hence re-
duces the signal-to-noise ratio (SNR), with the consequence that CALIPSQO’s nighttime
data have a superior quality to the daytime data. Scenes with a large planetary albedo,
as e.g. those with cloud cover, will be dominated by a larger amount of daylight entering
the detectors, and thus will present an even poorer SNR.

CALIOP’s data analysis package automatically identifies aerosol and cloud layers,
and this information is stored as the vertical feature mask (VFM) and atmospheric
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volume description (AVD) flags (Liu et al., 2009). For aerosol layers, one of six aerosol
subtypes is adopted (clean marine, dust, polluted continental, clean continental, pol-
luted dust, and smoke), and they determine the extinction-to-backscatter ratio (lidar
ratio) based on a look-up table (Omar et al., 2009). Using the lidar ratio assumption,
extinction and backscatter profiles are computed using the Hybrid Extinction Retrieval
Algorithms (HERA) (Young and Vaughan, 2009; Young et al., 2013). This is an iterative
method that solves the lidar equation for a two-component atmosphere, with an inte-
gration that starts at the top of the atmosphere and works its way down to the surface.
However, the outward solution of the lidar equation can lead to mathematical instability
and divergence (Fernald, 1984; Marenco, 2013), and this may well be a shortcoming.

In this paper we examine an underpass of the CALIPSO satellite by the Facility for
Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft, during a day-
time flight in the Amazon basin during the biomass burning season. Although limited,
this dataset gives a good insight on some critical aspects that may be associated with
CALIPSO retrievals, the characterisation of aerosol types, and the potential impact on
radiation budget estimates.

2 Aircraft observations

In September and October 2012 the South AMerican Biomass Burning Analysis
(SAMBBA) campaign was carried out in Brazil, and several observations were made
during 20 science flights using both in situ and remote sensing techniques (Angelo,
2012). An ALS450 lidar system, manufactured by Leosphere, was used on-board the
aircraft, looking down at nadir (see, e.g., Marenco et al., 2011). Significant aerosol
loading has been found during most of the flights, and in the majority of cases it has
been ascribed to smoke originated from forest fires, as confirmed by a variety of mea-
surements. In-situ observations with wing-mounted optical particle counters (PCASP
and CDP; see, e.g., Liu et al., 1992; Lance et al., 2010) showed a predominance of
fine mode particles. Moreover, measurements with the on-board AL 5002 VUV Fast
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Fluorescence CO Analyser showed high carbon monoxide concentrations. No strong
depolarisation signal has been observed in the aircraft lidar returns, except when ob-
serving optically thick layers where multiple scattering is non-negligible (clouds and
very thick smoke). A general remark was the persistence of aerosols above the bound-
ary layer, with thin plumes up to altitudes of 5~7000 m, presumably due to lifting via
deep convection.

On 20 September a complex flight was carried out, taking off from Porto Velho, Brazil,
and overflying the Amazon for three hours and 45 min (flight number B737, see Fig. 1).
Most of the flight was devoted to characterising a large natural wildfire, but towards the
end a 24 min long underpass of CALIPSO was performed. This paper focuses on the
latter part of the flight (Run 19), when clouds and aerosol layers have been mapped
with the airborne lidar looking down from 6500 m.

3 Results

Figure 2a shows the range corrected signal measured from the airborne lidar at
355 nm. A thin elevated aerosol layer is highlighted at 4500-5000 m with some other
thinner layers underneath it but well above the boundary layer. The elevated layer has
actually been observed by lidar during all the high altitude portions of this flight. At the
top of the boundary layer, a series of small broken clouds can be noticed (stratocumu-
lus), displayed in dark red since their lidar returns are very large and saturate the colour
scale. The size of the clouds can be estimated from the airborne lidar: their along-track
horizontal extent ranges from ~ 0.3 to 5 km (median 1.2 km), except for a wider cloudy
area at the northern end that has a horizontal extent of 20 km. Cloud cover is estimated
to be 36 % (fraction of aircraft lidar profiles where a cloud is detected). Low returns are
found in the boundary layer (blue colour): one could be mislead into thinking that they
could be indicative of a clean layer; however, the opposite is true. The low returns are
triggered by attenuation through a moderately turbid layer, and are indicative of aerosol
load. The information on the aerosol distribution can be better visualised in Fig. 2b, in
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terms of extinction coefficient, which can be interpreted in a more straightforward way.
The aerosol signal shows an overall horizontal homogeneity over the area under study,
but a weak gradient can be observed for the elevated layer (thicker at the southern end,
and nearly undiscernible in the north).

It is interesting to compare this atmospheric structure to the CALIPSO returns, dis-
played in Fig. 2c in terms of the 532 nm attenuated backscatter (level 1 dataset). One is
surprised to notice that none of the aerosol layers detected by airborne lidar is evident,
and indeed only the cloud returns are apparent. We will show, however, that informa-
tion about the atmospheric layers is not lost, but when it is displayed in this manner it
is drowned in shot noise.

Figure 2d shows the result of the inversion into backscatter and extinction coefficient,
respectively, as computed with the CALIPSO algorithms (level 2 dataset, version 3.02).
This product is supposed to yield aerosol properties only, after the removal of cloud
signals from the lidar returns. The following observations can be made:

— An elevated layer at 4000—4500 m is observed at the southern end. However, this
layer is not observed at the latitudes where the aircraft has detected it;

— Boundary layer aerosols are detected, but with some gaps that do not find a jus-
tification in comparison with the airborne dataset (gaps represent ~ 30 % of the
boundary layer during the underflight);

— Large horizontal variations of the backscatter and extinction coefficient are ob-
served, which seems in contradiction with the feeling of general horizontal homo-
geneity over the region, shown in the airborne data.

The first two points can be understood in relation with CALIOP team presentations
(Vaughan et al., 2009) and a comment in Pappalardo et al. (2010), where it is stated
that not all structures in the CALIPSO level 1 attenuated backscatter profiles get a rep-
resentation in terms of level 2 products, since the identification of features depends
on their optical and geometrical properties as well as the signal-to-noise ratio. The
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signal-to-noise ratio could be for instance reduced by cirrus above the aerosol layer
(Kim et al., 2008); we have verified the dataset, however, and cirrus is not seen at the
latitudes of the underflight with the research aircraft. A thin high cirrus (not shown here)
is observed instead at the Southern latitudes, where the elevated layer is actually found
in the level 2 data as well.

Note that the aerosol layers in the CALIPSO level 2 dataset generally show good
quality indices for this scene. For all aerosol layers shown here, the extinction quality
control flag is zero, meaning quality assured retrieval (unconstrained and not requir-
ing iterative adaptation of the lidar ratio), and the extinction uncertainty is less than
0.5km™~". Moreover, the cloud-aerosol discrimination (CAD) scores, Fig. 3a, suggest
that there is little doubt about the layer classification as aerosol. The more negative the
CAD score (the closer to —100) and the higher the confidence that the observed layers
should be treated as aerosols. All CAD scores for this scene fall below —93, except for
the layer displayed in orange colour for which CAD = -74. Cloud contamination of the
profiles is therefore apparently negligible, as also highlighted in the feature type given
in the atmospheric volume description (AVD) flag, as shown in Fig. 3b.

It has to be reminded however that this absence of clouds in the level 2 product at
5 km resolution is apparent and misleading. Indeed, low-level clouds were detected by
the airborne lidar, Fig. 2a, and are also evident in the level 1 dataset, Fig. 2c. Sur-
prisingly, the clouds were detected in the vertical feature mask (VFM), Fig. 3c, which
is a high-resolution (single shot) version of the AVD product. Also, if one examines
the AVD product on horizontal averaging, Fig. 3d, the detection of subgrid features at
the single-shot level suggests the presence of a highly variable cloud field. Moreover,
when looking at the CALIPSO wide-field camera (WFC) the underlying cloud field is
evident, see Fig. 2f. Detected clouds are normally removed from the level 2 product
before the computation of aerosol signals (Vaughan et al., 2009); however, if clouds
are imperfectly removed significant discrepancies can be expected.

Concerning the large variablity of the backscatter and extinction coefficient, men-
tioned above, some insight can be given by the aerosol subtype, displayed in Fig. 3e.
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Part of the observed layers are correctly attributed as smoke, but for some layers the
CALIPSO retrieval scheme “thinks” that it is in the presence of polluted dust. For each
aerosol subtype, a different lidar ratio is assumed, as displayed in Fig. 3f: 70sr for
smoke and 55 sr for polluted dust (Omar et al., 2009; Lopes et al., 2013). The actual
lidar ratio used in the retrieval may in principle be different than the initial one, due to
the iterative adaptation applied in HERA in order to prevent divergent solutions; how-
ever, for this scene such an adaptation has not been applied. It is rather evident, by
comparison with Fig. 2d, that the classification of what is a homogeneous smoke layer
into different aerosol subtypes is connected to the large inhomogeneity in the retrieved
backscatter and extinction coefficients. The smoke plume is surprisingly classified as
smoke and as polluted dust. As a matter of fact, each layer is solved independently
and finally this surprising result is found. In addition to the variable lidar ratio, this could
point to a possible mathematical instability of the outward integration scheme adopted
in HERA.

According to Omar et al. (2009, Fig. 2) the polluted dust type can only occur if the
aerosol displays a depolarisation signal. An approximate particle depolarisation quan-
tity is used, derived from the level 1 volume depolarisation, and this approximation
could lead to overestimation of the actual particle depolarisation and to correspond-
ing classification uncertainties. Recent validation results using airborne High Spectral
Resolution Lidar (HSRL) co-located measurements show that CALIPSO’s dust layers
correspond to a classification of either dust or dust mixtures by the HSRL, and that
the polluted dust type is overused due to an attenuation-related depolarization bias
(Burton et al., 2013). In our case, depolarisation returns from the FAAM lidar show that
aerosols observed in the Amazon basin during SAMBBA are non-depolarising; these
observations seem confirmed in the CALIPSO level 1 depolarisation product, although
signal-to-noise ratio is poor (not shown here).

Examining the level 2 particle depolarisation product, presented in Fig. 2e and which
is considered more accurate than the level 1 approximate, we find however high de-
polarisation values. Even recomputing depolarisation according to Tesche et al. (2013)
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does not substantially alter the picture, and therefore particle depolarisation is in this
case not thought to be dominated by the software bug highlighted in that paper. A large
aerosol depolarisation signal is mainly found in the altitude range dominated by the
broken low-level clouds, suggesting that the incorrect removal of the cloud signal has
“leaked” depolarisation into the aerosol product, causing its misclassification as pol-
luted dust. Moreover, this is a daytime observation and shot noise is certainly a major
source of uncertainty.

In Fig. 4a all the extinction coefficient profiles are shown for the scene under study,
as derived from the CALIPSO level 2 profile product. This information is equivalent to
Fig. 2d, and shows the very large variation in the retrieved profiles discussed above,
and which could point to an instability of the outward inversion scheme. The mean pro-
file, resulting from spatially averaging the profiles in Fig. 2d, is shown in green colour in
Fig. 4b. The extinction profile derived from the mean aircraft lidar range corrected signal
is indicated in red. The aircraft extinction profile shown in Figs. 2b and 4b was deter-
mined using the Marenco (2013) method, and has been converted from 355 to 532 nm
by multiplying the extinction profile by 0.6. This conversion factor was determined from
the Porto Velho AERONET site (8°50’ S, 63°56’ W, located at ~ 200 km), where aerosol
optical depth (AOD) interpolated for the 355 and 532 nm wavelengths yields 0.55 and
0.33, respectively. The range in Fig. 4b indicates the effect of an assumed +50 % un-
certainty on the far end reference to the lidar equation. As this uncertainy is large for
the lowest layers, a verification has been done using AERONET as a constrain; the
red thick line indicates the lidar profile that matches the AERONET aerosol optical
depth. Note that the constrained retrieval is compatible with the unconstrained one,
but the constraint helps reduce the uncertainty. In the boundary layer, the mean of the
CALIPSO level 2 profiles is generally in good agreement with the aerosol extinction
coefficient derived with the aircraft lidar after wavelength conversion.

We have also attempted another approach to the CALIPSO extinction retrieval, start-
ing directly from the level 1 dataset shown in Fig. 2c. The first step has been cloud
screening: all vertical profiles containing a large peak in the attenuated backscatter
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have been removed. The remaining profiles (524 out of 671, i.e. 80 %) have been in-
tegrated together to determine a mean attenuated backscatter for the scene, and this
profile has been smoothed with a 6-point running average (resulting vertical resolution:
180 m). Then the signal has been inverted into aerosol extinction coefficient using the
Marenco (2013) method, where the reference has been set in the 500-1200 m height
interval, and the lidar ratio has been assumed to be 70 sr. The result of this procedure
is shown in blue, and we can notice that it offers a reasonable agreement with the
latitudinally averaged level 2 data, when uncertainties are accounted for.

Note that, for both the airborne and the spaceborne lidar, the retrieval constrained
with AERONET falls well within the stated uncertainty lines obtained without a con-
strain. As expected with this method when unconstrained, uncertainty is large near the
ground but it decreases when moving upwards.

4 Conclusions

Whereas the present dataset is limited and no general conclusions have to be drawn
from it, we believe that it is a useful comparison and that it may help identify some
critical points and develop further verification experiments.

In this paper we have highlighted a particular type of scene which yields retrieval
problems in CALIPSO: the case of broken clouds embedded in a regional haze field,
observed in daytime. Problems arise possibly due to the large amount of ambient day-
light, limiting CALIOP’s signal-to-noise ratio. Reflection of light by the clouds has the
effect to increase the upwelling radiation and thus amplify this effect, to the point that
CALIOP’s detection sensitivity is reduced below specifications, and an aerosol layer is
missed. Problems arise as well because of uncertainties in the cloud-aerosol discrim-
ination and aerosol subtype and lidar ratio selection algorithms: in this case, depolari-
sation by the clouds may have mislead the algorithms into believing that dust is present
over the Amazon, whereas the region is dominated by smoke. Moreover, the retrieved
aerosol extinction shows an excessive spatial variability, which can be put in relation
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with the variability of the lidar ratio but also to the numerical instability of this type of
lidar signal inversion (forward inversion scheme).

As determined with the aircraft instrument, the observed aerosols did not present
a large horizontal inhomogeneity. A thin elevated aerosol layer (600 m deep, FWHM)
was observed at an altitude of ~ 5km, with an aerosol optical depth of 0.03; a 2.2 km
deep boundary layer was also observed, featuring an aerosol extinction coefficient of
110Mm~', and topped with broken clouds (stratocumulus). The air layer between the
boundary layer top and the elevated layer also showed aerosol content. From the ob-
servations gathered during SAMBBA, evidence exists that the aerosol layers are smoke
from biomass burning, and that they do not depolarise backscatter lidar returns.

The first remark is that CALIPSO does not detect the thin elevated layer. According
to the aircraft dataset, this layer has a peak backscatter coefficient of 0.8 Mm™"'sr™' at
532 nm (horizontally averaged profile). This has to be compared to Winker et al. (2009,
Fig. 4) and Vaughan et al. (2005, Fig. 2.4), where the CALIPSO detection sensitivity
for the 532 nm backscatter coefficient at 5 km altitude in daytime is set at 1.5, 0.8, and
0.35Mm™~'sr™" for a horizontal resolution of 5, 20, and 80 km, respectively: according
to these specifications, the layer should have been detected at the coarser resolutions.
Note that the daytime sensitivity thresholds for feature detection are larger than the
nighttime ones; this is an effect of the background radiation due to daylight, which acts
as a disturbance to the lidar system. The clouds underneath may have played a role
in this failure to detect, as they increase the diffuse daylight background, reducing
CALIOP’s SNR and hence detection sensitivity.

The second remark is that the CALIPSO dataset displays a very variable aerosol
subtype. We believe that the presence of broken clouds at the top of the boundary
layer misleads the CALIPSO automated processing scheme: if the clouds are incor-
rectly removed, an apparent aerosol depolarisation is detected and the aerosol layer
receives a classification as polluted dust, and thus a reduced lidar ratio and a lower
extinction. On fine absorbing aerosols being misclassified as dust or polluted dust, see
also Kacenelenbogen et al. (2011); Tesche et al. (2013). Note that in Tesche et al.
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(2013) this is has been observed in a similar situation (in the presence of clouds), but it
is explained as the result of a software bug. The incorporation of the WFC radiance in
the cloud detection scheme is being contemplated for a future CALIPSO data version,
and the case illustrated here suggests that this could lead to a potential improvement
of the final product. The subgrid features already detected by the AVD product, Fig. 3d,
also look promising for cloud identification.

The third remark is that the boundary layer extinction coefficient determined in the
CALIPSO dataset yields a consistent average field, when compared to the aircraft li-
dar and accounting for the longer wavelength. However, taking into account that the
boundary layer aerosol detection misses its extent by ~ 30 %, we have to conclude
that the overall estimate of aerosol extinction from the level 2 data for this particular
scene is about two thirds of what is expected. The CALIPSO extinction dataset also
shows a large spatial variability in both the horizontal and vertical directions, which is
not reflected in the aircraft dataset. We believe that this is due to the variable aerosol
subtype, and subsequently to the different lidar ratios used, as well as to possible math-
ematical instabilities introduced by the outward integration scheme set in HERA.

Finally, we note that CALIPSO observations can be reprocessed from the level 1 data
(attenuated backscatter data), using published methods for backscatter lidar; this has
also been done in Kacenelenbogen et al. (2011), although in that article an outward
integration scheme is used. A reprocessing of this kind can not be easily automated
and requires interaction by an expert for tasks such as integration, cloud filtering, se-
lection of a reference layer and a lidar ratio, etc., but in specific scenarios it can help
get insight into the aerosol vertical distribution and it permits choosing to use a stable
mathematical solution (inward inversion).

Space-borne lidar is a great advance for science, and in the last seven years
CALIPSO has given researchers a very useful dataset, mapping global aerosols in
3-D at high resolution. It is therefore important to identify critical issues, so as to en-
able improving the data products. Scenes, such as the one highlighted here, are not
infrequent, and misrepresentations such as the one highlighted will yield an incorrect
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evaluation of the regional radiative forcing and of the aerosol indirect effect. We have
also tried to indicate a few ideas for improving the exploitation of the CALIPSO dataset.
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Fig. 2. Latitude-height contour plots of quantities determined with the airborne and the space-
borne lidars: (a) airborne lidar range corrected signal; (b) airborne lidar extinction coefficient,
converted to 532 nm; (¢) CALIPSO 532 nm attenuated backscatter (level 1 data); (d) CALIPSO
532 nm extinction coefficient (level 2 data); and (e) CALIPSO 532 nm particle depolarisation
ratio (level 2 data). Panel (f) displays the CALIPSO wide-field camera image in the 620-670 nm
wavelength band (level 1 data, 1km x 1 km native science dataset).
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Fig. 3. Latitude-height contour plots of some additional quantities determined from the
CALIPSO level 2 dataset: (a) CAD score confidence level; (b) feature type, as provided in
the AVD flags; (c) feature type, as provided in the VFM flags; (d) horizontal averaging in km,
as used for retrievals; (e) aerosol subtype classification; and (f) Lidar ratio assumed for re-
trievals. An ‘S’ in the horizontal averaging indicates that subgrid features have been detected at
single-shot resolution. CAD score confidence levels are as follows: low, CAD > —-20; medium,
—79 < CAD < -20; high, —99 < CAD < -80; complete, CAD = —-100.
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Fig. 4. Profiles of aerosol extinction coefficient derived by lidar: (a) individual vertical profiles
given in the CALIPSO level 2 dataset. Thick black line: average profile for the latitude inter-
val sampled by the aircraft. (b) Green line: average extinction profile from the CALIPSO level
2 data, for the latitude interval sampled by the aircraft; blue lines: profiles derived from the
CALIPSO level 1 dataset; red lines: profiles derived from the aircraft dataset and converted to
532 nm. The range of values indicated for the red and blue lines indicates the uncertainty due
to the far end reference used for signal inversion, and the thick lines indicate the profiles con-
strained with AERONET. Note: for the purpose of constraining to AERONET, the lidar profile is
prolonged with the dotted line (constant extinction) below the reference height.
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