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Abstract 1 

We have extensively analysed the interdependence between cloud optical depth, droplet 2 

effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds 3 

using ground-based observations. In particular, this analysis uses cloud optical depths 4 

retrieved from untapped solar background signals that are previously unwanted and need to be 5 

removed in most lidar applications. Combining these new optical depth retrievals with radar 6 

and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate 7 

Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric 8 

thickness increase and follow a power-law relationship with cloud optical depth regardless of 9 

the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 10 

20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, 11 

droplet effective radius shows a negative correlation with optical depth in drizzling clouds 12 

and a positive correlation in non-drizzling clouds, where, for large optical depths, it 13 

asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both 14 

droplet effective radius and optical depth, making it possible to use simple thresholds of 15 

optical depth, droplet size, or a combination of these two variables for drizzle delineation. 16 

This paper demonstrates a new way to enhance ground-based cloud observations and drizzle 17 

delineations using existing lidar networks.   18 
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1 Introduction 1 

The response of global mean surface temperature to emissions of greenhouse gases from 2 

human activities remains highly uncertain (e.g. Hawkins and Sutton 2009). One of the 3 

primary sources of the uncertainty is how low-topped boundary-layer clouds will respond to 4 

the temperature perturbation and subsequently amplify or dampen climate change (e.g. Bony 5 

and Dufresne 2005; Bony et al. 2006). To improve representations of cloud properties and 6 

their interactions with radiation and water budget in models, sustained efforts have been made 7 

to observe and study marine low-topped clouds (e.g., Martin et al., 1994; Kubar et al., 2009; 8 

Bretherton et al., 2010; Wood, 2012). However, similar efforts have not been made for mid-9 

latitude continental stratus and stratocumulus clouds, despite their strong links to local 10 

weather and climate (Del Genio and Wolf, 2000; Kollias et al., 2007), and their high 11 

occurrences compared to other cloud types over land (Sassen and Wang, 2008). 12 

Ground-based observations for mid-latitude continental clouds are primarily provided by 13 

ARM Climate Research Facility (Stokes and Schwartz, 1994), the NASA Aerosol Robotic 14 

Network (AERONET; Holben et al., 1998), the European project Cloudnet (Illingworth et al., 15 

2007) and its descendant ACTRIS (Aerosols, Clouds, and Trace gases Research 16 

InfraStructure Network). At the ARM Oklahoma site, low stratiform clouds have been 17 

investigated in a variety of studies, from short-period field campaigns along with airborne 18 

and/or spaceborne measurements (Sassen et al., 1999; Dong et al., 2002; Dong and Mace, 19 

2003) to long-period climatologies (Lazarus et al., 2000; Sengupta et al., 2004; Dong et al., 20 

2006; Xi et al., 2010). These studies concentrated on variations of liquid water path (LWP), 21 

cloud base height, cloud fraction, and cloud radiative forcing. Surprisingly, little attention is 22 

given to the interdependence between cloud macrophysical, microphysical and optical 23 

properties.  24 

The relationship between cloud optical depth and droplet size is of particular interest, because 25 

their correlation patterns are highly related to the stages of warm cloud developments (Suzuki 26 

et al., 2010) and have been used for drizzle delineation (Nauss and Kokhanovsky, 2006; 27 

Suzuki et al., 2011). Using satellite and airborne observations, positive correlations have been 28 

observed in non-drizzling clouds and negative correlations in drizzling clouds (Nakajima et 29 

al., 1991; Nakajima and Nakajima, 1995; Kobayashi and Masuda, 2008), though negative 30 

correlations are not always significant (Harshvardhan et al., 2002).  31 
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Compared to ARM fixed sites, AERONET and ACTRIS have the advantage of widespread 1 

site locations in mid-latitude continents, but these two networks are not necessarily as fully 2 

equipped as ARM sites. AERONET cloud-mode observations provide information on cloud 3 

optical depth and effective radius (Chiu et al., 2010; 2012), and therefore can be used to 4 

investigate the relationship between cloud microphysical and optical properties. ACTRIS 5 

provides sophisticated information on cloud boundary, water content and drizzle from active 6 

lidars and radars, which can be greatly enhanced by additional cloud optical depth retrievals 7 

to initiate the studies in the interdependence of cloud properties. 8 

With enhancing observations of cloud optical depth in mind, this paper introduces a novel 9 

retrieval method for all-sky clouds, using the previously untapped solar background light 10 

measured by ground-based lidars. Because the active laser pulse is rapidly attenuated in thick 11 

liquid clouds, lidar applications have been limited to optically thin clouds and not used to 12 

study stratiform clouds that frequently have optical depth greater than 3. To alleviate this 13 

limitation, Chiu et al. (2007) retrieved optical depth of thick clouds using solar background 14 

light, received along with the active laser pulse but currently treated as the major source of 15 

noise in lidar applications (e.g., Campbell et al., 2002; Welton and Campbell, 2002; Dupont et 16 

al. 2011). However, since the relationship between solar background light and cloud optical 17 

depth is not monotonic (as explained in Sect. 2), Chiu et al. (2007) relied on prior knowledge 18 

of the cloud type and a manual discrimination process to provide retrievals for broken cloud 19 

scenes, an approach which is not ideal for long-term operations.   20 

To address this issue, the aims of this paper are 1) to develop and evaluate an objective 21 

discrimination method that works in all-sky conditions; 2) to apply the new retrieval method 22 

to lidar measurements collected at the ARM Oklahoma site where ancillary datasets are 23 

available for intercomparisons; and 3) more importantly, to investigate the interdependence of 24 

cloud macrophysical, microphysical and optical properties. Note that there is an obvious 25 

advantage to using an instrument with a narrow field of view (FOV), typically less than 1 26 

mrad. Compared to conventional cloud optical depth retrieved from hemispheric-viewing 27 

radiometers, lidar provides properties of overhead clouds that potentially correlate better to 28 

liquid water path retrieved from microwave radiometers that have a 6° FOV. Additionally, the 29 

comparable 0.5° FOV of cloud radar, whose measurement is a good indicator of drizzle 30 

presence, significantly mitigates the issue of FOV mismatch when examining the 31 

interdependence of cloud properties for non-drizzling and drizzling clouds. 32 
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In section 2, we review the retrieval principle and introduce the new discrimination method. 1 

In section 3, we evaluate the performance of our new cloud optical depth against others 2 

retrieved from radiance and irradiance measurements. In section 4, we characterise properties 3 

of stratiform clouds over the ARM Oklahoma site during 2005–2007, and examine the 4 

interdependence of cloud properties for non-drizzling and drizzling clouds.  Finally, key 5 

findings and implications of this work are summarised in section 5. 6 

 7 

2 Retrieval Methodology 8 

Prior to July 2006, the micropulse lidar (MPL) at the ARM Oklahoma site was operated at a 9 

wavelength of 523 nm and provided unpolarized measurements at 30 sec intervals. Since July 10 

2006, the lidar operated at 532 nm with polarized measurements at 3–10 sec temporal 11 

resolution. The FOV is 50 µrad. Solar background light is estimated from the averaged signal 12 

at lidar range gates between 45 and 55 km where the molecular backscatter is negligible, and 13 

is calibrated against principal plane measurements from AERONET to account for lidar filter 14 

degradation and window cleanliness.  15 

Note that for sites where collocated AERONET measurements are unavailable, one can 16 

calibrate solar background light by capitalising on the optical depth of thin clouds retrieved 17 

from active lidar signals. Specifically, radiance can be calculated through radiative transfer 18 

using thin cloud properties as input, and then be further used to calibrate the corresponding 19 

measured solar background light. Details of this alternative calibration approach can be found 20 

in Yang et al. (2008).    21 

2.1 Retrieving cloud optical depth from calibrated solar background light 22 

Solar background light received by a lidar is a function of cloud optical depth, cloud effective 23 

radius, cloud fraction, surface albedo, and solar zenith angle. Figure 1a shows that calibrated 24 

solar background light increases with cloud optical depth for optically thin clouds due to 25 

increasing scattering of solar radiation into the FOV, and decreases for optically thick clouds 26 

due to increasing attenuation, resulting in a non-monotonic relationship. For a given optical 27 

depth at lidar wavelengths, a larger effective radius and brighter surface will result in more 28 

observed solar background light. Since the FOV of lidars is small, the cloud cover for each 29 

profile is assumed to be either 0 for clear-sky or 1 for cloudy situations. This assumption is 30 

generally valid, although it becomes problematic near cloud edges when integrating signals 31 
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from both clear and cloudy sky, which was particularly prevalent in early observations when 1 

the lidar integration time was 30 sec.  2 

Cloud optical depth is retrieved by comparing the observed calibrated solar background light 3 

with lookup tables, computed from the discrete-ordinate-method radiative transfer model 4 

(DISORT; Stamnes et al., 1988) with an assumed cloud effective radius and surface albedo 5 

over a range of solar zenith angle up to 70°. We assume that cloud effective radius follows a 6 

Normal distribution with a climatological mean (e.g., 8 µm for the ARM Oklahoma site) and 7 

a standard deviation of 25% based on the uncertainty found in effective radius retrievals (c.f., 8 

Table 3 and 5 in Chiu et al., 2012). Surface albedo is estimated using collection 5 products 9 

from MODIS Terra/Aqua combined data at 500 m resolution with an uncertainty of 10% 10 

(Schaaf et al., 2002). We also include a 5% uncertainty in the calibrated solar background 11 

light, regarded as typical for radiance measurements (Holben et al., 1998). With the 12 

uncertainties for all input parameters defined, we perturb these parameters 40 times with 13 

values randomly drawn from Normal distributions and retrieve cloud optical depth; the final 14 

cloud optical depth is reported as the mean and standard deviation of these 40 retrievals. The 15 

choice of 40 repetitions is arbitrary, but it affects retrievals insignificantly by 2% compared to 16 

results from 1000 repetitions (Chiu et al., 2012).  The overall retrieval uncertainty in cloud 17 

optical depth is ~10%. Note that with an uncertainty of 10% rather than 5% in calibrated solar 18 

background light, the overall retrieval uncertainty in cloud optical depth will increase to 17–19 

25%.  20 

Since the relationship between zenith radiance and cloud optical depth is not monotonic, the 21 

aforementioned retrieval process results in two possible solutions at a given radiance; one 22 

corresponds to optically thin clouds, the other corresponds to optically thick. To remove this 23 

retrieval ambiguity, Chiu et al. (2007) applied a manual screening. Here we have developed 24 

an objective discrimination method using lidar backscatter measurements. We calibrated lidar 25 

backscatter signals in clear-air periods using the known molecular scattering at the lidar 26 

wavelength. Since the lidar energy was monitored and the lidar optics were assumed to not 27 

vary significantly, calibration coefficients from a suitable clear-air period were then 28 

extrapolated into cloudy periods. Figure 1b shows an example of the vertical profiles of 29 

calibrated attenuated backscatter signals for optically thin and thick clouds. For thick clouds, 30 

the attenuated backscatter signal drops dramatically above the apparent cloud top; the mean 31 

logarithm (base 10) of the lidar signal from the cloud top to the layer 1 km above is around –32 
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7.5. In contrast, for optically thin clouds the mean logarithm value above cloud tops is around 1 

–6.0. The difference between these two mean values is significant, suggesting that this 2 

parameter can be used to discriminate between optically thin and thick clouds; however, a 3 

proper threshold needs to be determined objectively, as described next. For convenience, the 4 

mean of the lidar attenuated backscatter signal from the apparent, or detectable, cloud top to 5 

the level 1 km above is denoted as βct,1km hereafter.  6 

The threshold of βct,1km for discriminating cloud optical depth was determined through cases 7 

selected objectively using retrievals from shortwave narrowband irradiance measurements 8 

(Min and Harrison, 1996), available in the ARM Archive. These cases represent clear or 9 

optically thin clouds, selected when the irradiance-based cloud optical depths were smaller 10 

than 5 for at least 60 consecutive minutes. The threshold of optical depth 5 was chosen 11 

because the zenith radiance typically peaks at this optical depth, and because the lidar signal 12 

tends to be completely attenuated beyond this value. For ARM unpolarized lidar 13 

measurements, Fig. 2 shows that βct,1km values range between –8.2 and –5.6, and 94% of cases 14 

have values of βct,1km greater than –7.0. For ARM polarized measurements, the threshold 15 

βct,1km of –6.8 leads to a similar fraction 95% of clear-sky cases. Since this threshold does not 16 

vary much over time, we then used βct,1km thresholds of –7.0 and –6.8 for unpolarized and 17 

polarized measurements, respectively, throughout the entire analysis. 18 

Finally, since our lookup tables were based on liquid water clouds, ice clouds were excluded 19 

using the lidar depolarization ratio and cloud base height. Based on 5-year ground-based lidar 20 

and radiosonde measurements, Naud et al. (2010) suggested a depolarization ratio threshold 21 

of 11% for differentiating ice from liquid. We found that this threshold generally worked 22 

well, but occasionally missed ice clouds when cloud bases were high or clouds were not 23 

sufficiently thick. To mitigate these issues, a second criterion involving cloud base height was 24 

applied. Based on airborne lidar measurements, Hogan et al. (2004) conducted a global 25 

investigation of stratiform supercooled liquid water clouds and showed that less than 10% of 26 

supercooled liquid water clouds occurred at temperatures colder than –20°C. This temperature 27 

threshold approximately corresponds to an altitude of 7 km at the ARM Oklahoma site during 28 

summer seasons; any clouds located higher than 7 km were excluded and not retrieved in this 29 

study. When lidar depolarization ratio was not available, we used merged sounding data and 30 

excluded cases with apparent cloud tops (identified by lidar) above the freezing level. Note 31 

that these exclusion criteria are simple yet imperfect, particularly when clouds are thick and 32 
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lidar cannot detect the true cloud top.  Therefore, we further excluded time periods when 1-1 

min ice water path (IWP) were greater than zero, based on retrievals from the Cloudnet 2 

algorithm that uses empirical relationships between ice water content, radar reflectivity and 3 

temperature (Hogan et al., 2006). 4 

 5 

2.2 Calculating cloud effective radius and discriminating drizzling clouds 6 

Once cloud optical depth is retrieved, cloud effective radius can be estimated by combining 7 

liquid water path (LWP) with two commonly used approaches. The first assumes a constant 8 

effective radius in the vertical (Stephens, 1978) and the second assumes a constant cloud 9 

droplet number concentration and a linear increase of liquid water content in the vertical 10 

(Wood and Hartmann, 2006). Using simultaneous retrievals of cloud optical depth and 11 

effective radius at the ARM Oklahoma site, Chiu et al. (2012) found that the second 12 

assumption led to a better agreement with LWP measured by microwave radiometers (MWR) 13 

in all sky conditions. Thus, we estimated cloud effective radius reff by: 14 

reff =
9
5
!
LWP
!w"

, (1) 15 

where ρw is the density of water, and τ is cloud optical depth. LWP retrievals are available in 16 

the ARM Archive MWRRET product with an uncertainty of 20–30 g m–2 and a 20-s time 17 

resolution, based on Turner et al. (2007) using 2-channel microwave radiometers.  18 

To investigate how the interdependence of cloud macrophysical and microphysical properties 19 

on τ differs between non-drizzling and drizzling clouds, we used the ARM Active Remotely 20 

Sensed Clouds Locations product (ARSCL; Clothiaux et al., 2000) for estimating cloud 21 

geometric thickness and for diagnosing drizzling clouds. Combining measurements of cloud 22 

radar, micropulse lidar, and ceilometer, ARSCL provides cloud boundary heights and 23 

reflectivity at 10-s resolution and 45-m vertical resolution. Cloud geometric thickness was 24 

derived from the lowest cloud base (typically detected by lidar) and the cloud top height 25 

(detected by radar). We restrict our analysis to single-layer warm clouds by selecting cases 26 

with geometrical thicknesses less than 1.5 km, minimising cases of multi-layer precipitating 27 

clouds that are hard to separate by radar reflectivity and could be erroneously identified as 28 

single-layer. When clouds were sufficiently thick and no significant radar returns were 29 
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detected, no valid geometric thickness could be obtained and thus such clouds were omitted in 1 

our analysis.  2 

Additionally, drizzle discrimination was based on radar reflectivity (Z) at the lowest cloud 3 

base. Similar to Suzuki et al. (2011), we identify clouds as ‘non-drizzling’ if Z is less than –15 4 

dBZ, and ‘drizzling’ if Z is greater than –15 dBZ.  According to the relationship5 

R = 0.0788 !Z 0.75  (rain rate R in mm h–1 and Z in mm6 m–3) derived from data in Mann et al. 6 

(2013), this threshold of –15 dBZ corresponds to ~0.006 mm hr–1.   7 

 8 

3 Evaluation of optical depth retrievals 9 

We evaluate our retrievals against a number of benchmarks. The first benchmark is retrievals 10 

using zenith radiances from AERONET cloud-mode observations that provide unambiguous 11 

cloud optical depth by capitalising on the surface reflectance contrast between 440- and 870-12 

nm wavelengths (Chiu et al., 2010). This benchmark works for all-sky conditions, but 13 

retrievals are available only when clouds block the Sun so AERONET sunphotometers 14 

operate in cloud-mode rather than normal aerosol-mode. Cloud-mode retrievals (level 1.5) are 15 

available on the AERONET web page.  16 

The second benchmark is retrievals from irradiance measurements at 20-s temporal 17 

resolution, available in the ARM Archive. This method uses direct and diffuse transmittance 18 

at 415 nm to estimate cloud optical depth with a default effective radius of 8 µm (Min and 19 

Harrison, 1996a). With additional LWP retrievals from MWR, the estimated optical depth and 20 

initial effective radius are updated iteratively by minimizing least-squares errors in radiance 21 

along with an adjoint radiative transfer method (Min and Harrison, 1996b; Min et al. 2003). 22 

Because irradiances are measured from a hemispheric FOV, this method works best for 23 

relatively overcast homogenous clouds. 24 

The third benchmark is retrievals using LWP in the ARM Archive MWRRET product (see 25 

Sec. 2.2) and Eq. (1) with an assumed effective radius of 8 µm, a typical value for the 26 

Oklahoma site (Kim et al., 2003). However, since the true cloud effective radius is not 27 

necessarily 8 µm, we further estimate the potential range of cloud optical depth by varying 28 

effective radius from 6 µm to 14 µm. Clearly, retrieval comparison to the third benchmark is 29 

intended to qualitatively evaluate cloud optical depth variations, rather than a quantitative 30 

measure.  31 
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In Sect. 3.1, we present intercomparison results from case studies, including broken cloud and 1 

overcast cloud scenes. Additionally, since irradiance-based retrievals work best for 2 

homogenous scenes, we focus on overcast stratiform clouds during 2005–2007 in Sect. 3.2. 3 

3.1 Case study 4 

Figure 3 shows time series of lidar backscatter signals and cloud optical depths on 19 April 5 

2005 at the ARM Oklahoma site. The penetrated signal at 17 UTC and the completely 6 

attenuated signal at 20.5 UTC indicate the presence of clear-sky and thick clouds, 7 

respectively. These indications of cloud presence by active lidar signals in Fig. 3a correspond 8 

well to optical depth retrievals in Fig. 3b. Figure 3b also shows that retrievals from calibrated 9 

lidar solar background light agree with those from AERONET cloud mode and from 10 

microwave observations for intermittent and broken cloud situations during 17–18 UTC.  11 

Examining two more cases on 10 April and 2 May 2007 when both non-drizzling and 12 

drizzling periods are apparent, Figs. 4 and 5 show consistent agreements between our 13 

retrievals and the benchmark retrievals. Note that ~20% of clouds during 14–18 UTC in Fig. 14 

5 are multi-layered. Since drizzle classification is based on cloud-base reflectivity, these 15 

multilayer clouds are excluded in the following analyses to ensure that LWP, geometric 16 

thickness, optical depth and drizzling characteristics refer to the same lowest cloud layer. In 17 

short, the overall agreement between independent retrievals suggests that the calibration of 18 

solar background light and the newly developed method for distinguishing thin and thick 19 

clouds work well for all-sky conditions. 20 

3.2 Stratiform clouds during 2005–2007 21 

This section reports results of intercomparison between retrievals from lidar solar 22 

background, AERONET cloud-mode observations, and from narrowband irradiance 23 

measurements for relatively homogenous and overcast cloud cases. To objectively select 24 

appropriate low-level stratiform water clouds, combined measurements from cloud radar, 25 

micropulse lidar, and ceilometer in the ARSCL product were used to identify 1-hr time 26 

periods with cloud fraction greater than 0.95 and cloud top heights lower than 5 km. Since our 27 

analysis includes several datasets at various temporal resolutions, we average data points over 28 

a 1-min time period. We took a simple linear average for LWP retrievals and radar 29 

reflectivity, but used a logarithm averaging technique for lidar-based cloud optical depth 30 

because transmittance is a concave function of cloud optical depth. In other words, we 31 

averaged the natural logarithm of cloud optical depth, and then transformed the average back 32 
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to obtain the 1-min mean. Additionally, to use the same dataset for investigating 1 

interdependence of cloud macrophysical, microphysical and optical properties in Sect. 4, we 2 

further excluded time periods if the effective radius was outside the range between 3 and 100 3 

µm. This exclusion process lead to a final sample size of 5,200-min of data points during 4 

2005–2007 that represents ~35% of daytime stratiform cases. 5 

Figure 6 shows histograms of 1-min averaged cloud optical depth and a scatterplot of 6 

retrievals from lidar solar background noise against those from flux measurements. Both 7 

datasets reveal an occurrence peak at optical depth of 15–20, but an evident discrepancy 8 

occurs in the optical depth bin of 0–5. The reason for the lack of small optical depth in lidar-9 

based retrievals is partly because their corresponding LWP values have been always zero or 10 

negative and therefore are excluded, implying that it remains challenging for 2-channel 11 

microwave radiometers to detect very optically thin clouds.  12 

The mean cloud optical depth from lidar measurements is 35, larger than that retrieved from 13 

irradiances by 2 optical depths. A high correlation coefficient of 0.94 is obtained, as shown by 14 

the majority of data points in Fig. 6b lying close to the 1:1 line. In addition, the root-mean-15 

squared difference between the two is 8 (24% relative to the mean of irradiance-based 16 

retrievals), partly attributed to cases that have much larger lidar-based retrievals than those 17 

from irradiances. Particularly for cases where irradiance-based retrievals are less than 5, we 18 

have found that these points are associated with intermittent cloudy conditions having LWP 19 

between –10 and 80 g m–2. Therefore, the discrepancy in cloud optical depth for these data 20 

points is likely because lidar has a narrow FOV to capture larger variations that tend to be 21 

smeared out in irradiance-based retrievals due to a hemispheric FOV of shadowband 22 

radiometers.  23 

Similarly, Fig. 7 shows a scatterplot for evaluating retrievals against the AERONET cloud-24 

mode product. The mean cloud optical depth from lidar measurements is 30, smaller than 25 

cloud-mode retrievals by 3 optical depths. The correlation coefficient is 0.95, while the root-26 

mean-squared difference between the two is 8 (24% relative to the mean of cloud-mode 27 

retrievals). 28 

 29 
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4 Interdependence of stratiform cloud properties 1 

4.1 Macrophysical properties versus optical depth 2 

Using the same stratiform cloud cases shown above, we investigate how cloud macrophysical 3 

and microphysical properties vary with optical depth in non-drizzling and drizzling stratiform 4 

clouds, categorised by a reflectivity threshold of –15 dBZ as described in Sec. 2.2. Fig. 8a 5 

shows that non-drizzling clouds occur more frequently at optical depths of 10–20, while 6 

drizzling clouds have a relatively uniform frequency distribution throughout the entire optical 7 

depth range. Using an adiabatic cloud model for non-drizzling clouds, Boers and Mitchell 8 

(1994) showed that LWP, cloud geometric thickness H and optical depth τ follow LWP ∝ H2, 9 

τ ∝ H5/3, and thus LWP ∝ τ6/5. Not surprisingly, Fig. 8b shows that LWP indeed increases 10 

approximately linearly with τ for both cloud categories. LWP in non-drizzling clouds is 11 

proportional to τ1.09±0.01 with 95% confidence intervals; the exponent is slightly smaller than 12 

the predicted value of 1.2 under an adiabatic assumption. LWP in drizzling clouds is 13 

generally 20–40% larger than those in non-drizzling clouds.   14 

Similar to LWP, Fig. 8c shows that H also increases with τ. Using 1-min averaged ARM data 15 

from these stratiform cloud cases, the relationship between H (in m) and τ can be 16 

approximated by:  17 

H = 308±15( ) !! 0.25±0.01 for non-drizzling clouds; and    (2) 18 

H = 513± 51( ) !! 0.16±0.03 for drizzling clouds,   (3) 19 

corresponding to correlation coefficients of 0.95 and 0.79, respectively. These relationships 20 

indicate that the geometric thickness in drizzling clouds is at least 10% larger than that in 21 

non-drizzling clouds at a given τ. We have also found that these relationships vary little when 22 

taking hourly means rather than 1-min averages. Using the adiabatic approximation as 23 

explained above, the exponents in non-drizzling and drizzling clouds from ARM data are both 24 

much smaller than the predicted value of 0.6.  25 

Cloud geometric thickness derived from Eqs. (2) and (3) is compared to the results for marine 26 

stratocumulus off the coast of California during the First ISCCP Regional Experiment. Based 27 

on Minnis et al. (1992), their relationship between H and τ can be re-written as: 28 

H = 58 !! 0.56 ,  (4) 29 
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where H was retrieved from hourly-averaged surface ceilometer and acoustic sounder 1 

measurements; τ was estimated from Geostationary Operational Environmental Satellite 2 

visible and infrared radiances. The relationships obtained here suggest that the geometric 3 

thicknesses in continental stratiform clouds can be thicker than marine stratocumulus by at 4 

least 35% for cloud optical depths less than 80. 5 

4.2 Cloud effective radius versus optical depth 6 

Unlike LWP and H, Fig. 8d shows that cloud effective radius has a different dependence on 7 

optical depth between non-drizzling and drizzling clouds. The strong positive correlation of 8 

0.8 between cloud effective radius and optical depth in non-drizzling clouds is consistent with 9 

many studies using airborne and spaceborne remote sensing measurements (e.g., Han et al., 10 

1994; Nakajima and Nakajima, 1995; Harshvardhan et al., 2002), but the asymptotic radius 11 

from the ARM data is ~10 µm, smaller than the so-called critical radius (~15 µm) reported in 12 

literature for marine low clouds (Nakajima and Nakajima, 1995; Kobayashi and Masuda, 13 

2008; Painemal and Zuidema, 2011). Additionally, these non-drizzling clouds show reff 14 

proportional to τ0.11±0.01. The exponent of 0.11 is smaller than the value of 0.2 derived from 15 

satellite and aircraft measurements for the eastern Pacific stratocumulus (Szczodrak et al. 16 

2001), and the theoretical value of 0.2 derived under the assumption of adiabatic and constant 17 

cloud droplet number concentration Nd (Lohmann et al., 2000), meaning that the condition at 18 

the ARM Oklahoma site may be slightly sub-adiabatic and/or Nd variation with height is not 19 

negligible.  20 

For drizzling clouds, Nakajima and Nakajima (1995) showed that cloud effective radius 21 

decreased from 20 µm to 10 µm with an increase in τ from 5 to 20. Similarly, our result shows 22 

a negative correlation (–0.75) with a 99% confidence level for drizzling clouds. The negative 23 

correlations between cloud effective radius and optical depth in drizzling clouds can be 24 

explained by precipitation influence, which possibly reduces cloud optical depth through the 25 

removal of droplets (Boers and Rotstayn, 2001). Further analyses reveal that a number of 26 

drizzling clouds with small optical depths indeed have large effective radii greater than 50 27 

µm, often found at the end of a precipitation system passing over. These cases, however, 28 

occurred less frequently compared to those with small effective radii, resulting in the mean 29 

cloud effective radii fluctuating between 12–18 µm with large standard errors at small optical 30 

depths.  31 
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Since the correlation between τ and reff is positive in non-drizzling clouds but negative in 1 

drizzling clouds, the difference in reff between two types of clouds decreases with increasing 2 

cloud optical depth, which is as a result of Fig. 8b. Across all optical depth bins, Fig. 8b 3 

shows that LWP in drizzling clouds is consistently ~85 g m–2 larger than that in non-drizzling 4 

clouds. Compared to cases with small τ, this extra LWP in drizzling clouds distributes to more 5 

droplets in cases with large τ, leading to a smaller increase in reff (as shown in Eq. (1) having 6 

a denominator τ). 7 

In short, the difference between non-drizzling and drizzling clouds at a given cloud optical 8 

depth mainly ranges between 2–7 µm with a mean of 5 µm (Fig. 8d), similar to the finding 9 

from satellite observations in marine stratocumulus (Kubar et al., 2009). This mean size 10 

difference between two cloud categories is clear in Fig. 9a, showing that the distribution of 11 

non-drizzling clouds peaks at 6–8 µm with a mean of 8 µm, and the distribution of drizzling 12 

clouds peaks at 10–12 µm with a mean of 13 µm.   13 

4.3 Interdependence derived from the ARM Min product 14 

To examine whether this interdependence is sensitive to the choice of cloud optical depth 15 

product, we repeated the same analysis using the ARM Min product as shown in Fig. 10. 16 

Firstly, similar to results derived from lidar-based retrievals, LWP in non-drizzling clouds is 17 

proportional to τ1.01±0.01 with 95% confidence intervals. LWP in drizzling clouds are also 18 

larger than those in non-drizzling clouds, although the difference between two varies in a 19 

larger range between 30 and 150 g m–2. Secondly, cloud geometric thickness can be 20 

approximated by: 21 

H = 249±12( ) !! 0.30±0.01 for non-drizzling clouds; and  (5) 22 

H = 447±33( ) !! 0.20±0.02 for drizzling clouds.  (6) 23 

Although the exponents and prefactors of Eq. (5) and (6) are different from Eq. (2) and (3), 24 

the geometric thicknesses derived from the ARM Min and lidar-based retrievals are similar as 25 

shown in Fig. 10c. Finally, while the negative correlation between τ and reff in drizzling 26 

clouds holds in Fig. 10d, the more robust positive correlation in non-drizzling clouds found in 27 

Fig. 8d and satellite observations disappears due to a relatively flat reff of ~ 8 µm across all 28 

optical depth bins. 29 
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In short, the relationships of LWP and H with τ are not sensitive to the choice of cloud optical 1 

depth product, but this is not true for the correlation between τ and reff. This highlights the 2 

potential importance of having comparable FOVs among various instruments for 3 

investigating τ – reff correlation, although properly addressing this issue may require more 4 

thorough simulation experiments. 5 

 6 

4.4 Implication on drizzle delineation 7 

Taking a different view, now we use the same dataset as shown in Fig. 9 to investigate how 8 

LWP, H and τ vary with reff.  Figures 9b–d show that properties between non-drizzling and 9 

drizzling clouds differ the most in the reff range of 7–11 µm, although this could be a result of 10 

a relatively smaller sample size outside this reff range. Specifically, Fig. 9d shows optical 11 

depth of non-drizzling clouds increases with reff and changes little at reff beyond 7 µm. The 12 

relatively small change in τ is also found in the reff range of 7–15 µm for drizzling clouds; this 13 

is similar to the finding in satellite observations (Kobayashi and Masuda, 2008), but their data 14 

showed such behaviour only when reff was larger than a critical value of ~15 µm. Since 15 

Kobayashi and Masuda (2008) used 21-day measurements from the Tropical Rainfall 16 

Measuring Mission satellite and sampled tropical marine warm clouds, the difference in the 17 

critical effective radius (7 µm vs 15 µm) may be due to the regional variability of 18 

precipitating clouds. Additionally, the definition of this critical effective radius is rather loose 19 

and its value can strongly depend on how and at which altitude cloud effective radii were 20 

estimated. The difference in the resulting critical value of effective radius between 21 

airborne/spaceborne measurements and the ARM data can be partly due to a fact that 22 

retrievals from the former is mainly determined by droplets at cloud tops, while the latter is 23 

determined by the entire cloud layer (Platnick 2000; Chiu et al., 2012).  24 

Results from Figs. 8d and 9d imply that it is plausible to delineate drizzling clouds using a 25 

simple threshold; for example, we can roughly classify clouds as drizzling when cloud 26 

effective radius exceeds a critical value r* of 10 µm (Fig. 8d) or when cloud optical depth 27 

exceeds 40 (Fig. 9d). Similarly, based on satellite retrievals and ground-based radar 28 

measurements, Nauss and Kokhanovsky (2006) proposed a more sophisticated delineation 29 

function, given as:    30 

r* = A
!

, (7) 31 
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where coefficient A is 920 µm and the critical value r* varies with cloud optical depth τ. To 1 

evaluate how well these methods discriminate between non-drizzling and drizzling clouds 2 

(i.e., a binary classification), we computed the Heidke skill score (HSS) from a contingency 3 

table (Table 1), defined as: 4 

HSS =
2 A !D"B !C( )

A+C( ) C +D( )+ A+B( ) B+D( )
. (8) 5 

HSS not only measures the proportion of correct classifications (including both correct hits 6 

and negatives), but more importantly, also takes into account the expected skill obtained by 7 

chance in the absence of any skill (Barnston, 1992). In general, a HSS of 0 indicates no skill, 8 

while 1 represents perfect skill.  9 

Figure 11 summarises HSS using three different methods. Firstly, using a simple fixed cloud 10 

effective radius as the delineation threshold (red lines), the optimal threshold that maximises 11 

HSS is 10 µm, agreeing with results in Fig. 8d. Secondly, applying a fixed threshold of cloud 12 

optical depth (blue lines), the optimal threshold is ~42 and HSS is similar in the optical depth 13 

range between 40 and 45. Note that the maximum of HSS using the optimal optical depth 14 

threshold is not as good as that from an effective radius threshold of 10 µm. Thirdly, a 15 

dynamic threshold of cloud effective radius derived by Eq. (7) apparently yields a higher HSS 16 

(~0.52), compared to the previous two simple methods; the optimal coefficient A is 380 µm, 17 

rather than 920 µm found in satellite observations (Nauss and Kokhanovsky, 2006) for 18 

convective systems over Central Europe taken during the extreme summer floods in 2002. It 19 

is expected that the coefficient A varies with cloud type, site location, and more importantly, 20 

the threshold of rain rate used to define drizzle (~0.006 mm h–1 in our cases).  21 

Since HSS is dependent on the frequency of occurrence of an event, we further test our 22 

delineation thresholds using Symmetric Extremal Dependence Index (SEDI) that is 23 

independent of occurrence frequency and thus works for both common and rare events (Ferro 24 

and Stephenson 2011). SEDI is defined as: 25 

SEDI =
lnF ! lnH + ln 1!H( )! ln 1!F( )
lnF + lnH + ln 1!H( )+ ln 1!F( )

, (9) 26 

where  27 

H =
A

A+C
 and F = B

B+D
. 28 
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Similar to HSS, a SEDI value of 0 indicates no skill, while 1 represents perfect skill. As Fig. 1 

12 shows, the optimal cloud effective radius and cloud optical depth thresholds are ~10 µm 2 

and ~40, respectively. When considering a dynamic threshold, the optimal coefficient A of 3 

340 µm is found. Overall, the optimal thresholds from SEDI are similar to those derived from 4 

HSS.  5 

In short, depending on the availability of measurements, one can use a cloud optical depth of 6 

40 as the simplest way for drizzle delineation in the absence of LWP and radar measurements, 7 

although this threshold may depend on ambient aerosol loading. If co-incident LWP 8 

measurements are available, the dynamic threshold of cloud effective radius given in Eq. (7) 9 

with a coefficient A of 340–380 µm is a better approach to delineating drizzle for mid-latitude 10 

continental stratiform clouds. 11 

 12 

5 Summary 13 

To better represent clouds in weather and climate models, long-term global measurements can 14 

provide direct constraints and improve our knowledge of cloud and precipitation formation, 15 

and their interactions with radiation and aerosol.  In particular, low warm clouds strongly 16 

influence global climate through their impacts on Earth’s radiation and water energy cycle. 17 

While marine low clouds have been extensively studied, continental warm clouds received 18 

relatively little attention partly due to the fact that the majority of satellite retrievals work best 19 

over oceans. 20 

Using ground-based measurements at the ARM Oklahoma site during 2005–2007, we 21 

conducted an extensive analysis for mid-latitude continental low-level clouds. To retrieve 22 

cloud optical depth, we developed a novel method that capitalised on unexploited solar 23 

background light that is currently treated as noise and has largely inhibited lidar applications 24 

in all-sky conditions and during daytime. This new technique works well; when compared to 25 

other benchmarks, the mean bias of cloud optical depth is around 2 and the root-mean-26 

squared errors is 8 (23% relative to the mean optical depth). Since lidars have a field-of-view 27 

much closer to those of microwave radiometers than conventional hemispheric-viewing 28 

radiometers, it is more appealing to use lidar-based cloud retrievals to understand the linkage 29 

between cloud macrophysical, microphysical and optical properties. 30 
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A number of key features are found in the relationships between LWP, geometric thickness 1 

H, droplet effective radius reff and cloud optical depth τ. Firstly, LWP and H follow a power-2 

law relationship with positive exponents with τ; LWP and H in drizzling clouds are generally 3 

20–40% and at least 10% higher than those in non-drizzling clouds, respectively. Similar to 4 

LWP, reff also increases with τ following a power-law for non-drizzling clouds, but this does 5 

not hold for drizzling clouds. In the presence of drizzle, a negative correlation is found 6 

between reff and τ; reff also tends to be 5 µm larger than droplet sizes in non-drizzling clouds.   7 

While several aircraft and satellite observations have suggested reff on the order of 15 µm may 8 

be a good indicator to distinguish between non-drizzling and drizzling marine clouds, we 9 

found that a threshold of ~10 µm works better for ground-based observations. The difference 10 

in threshold between various observational platforms is likely attributed to the fact that 11 

satellite retrievals are mainly determined by properties at cloud tops, and on the contrary, 12 

ground-based retrievals utilise the full cloud profile. If co-incident LWP measurements are 13 

available, a dynamic threshold of cloud effective radius given in Eq. (7) with a coefficient A 14 

of 340–380 µm is a better approach to delineating drizzle for mid-latitude continental 15 

stratiform clouds. 16 

We have demonstrated a novel retrieval method using untapped solar background signals in 17 

lidar measurements, which greatly extends lidar applications from cirrus to all types of 18 

clouds, and provides a new approach to distinguishing between non-drizzling and drizzling 19 

clouds. With collocated radar and LWP measurements, the new retrieval can also be used to 20 

compare and contrast drizzle and drizzle-free cloud properties. This new method can be easily 21 

adapted to the exiting lidar networks if collocated sunphotometer measurements are available, 22 

including the high-density ceilometer networks in the United Kingdom, France and Germany 23 

that have been established for monitoring volcanic plumes (Heese et al., 2010). Combined 24 

with the ability of lidars to resolve vertical distributions of aerosol properties below cloud 25 

layers, collocated and simultaneous measurements of aerosol and cloud are also possible, 26 

which can help advance our understanding of aerosol-cloud interactions.  27 
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Table 1.  Contingency table used to evaluate drizzle delineation methods. A–D represent the 1 

number of hits, false alarms, misses and correct negatives, respectively.   2 
 

Reference observations 

New method Yes No 

Yes A B 

No C D 

 3 

  4 
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 1 

Figure 1.  (a) Plot of calibrated solar background light in lidar measurements versus cloud 2 

optical depth at 523-nm wavelength and solar zenith angle (SZA) of 45° for cloud effective 3 

radius of 4, 8 and 16 µm.  (b) Vertical profiles of logarithm (with base 10) lidar attenuated 4 

backscatter signals measured on 15th June 2007 at the ARM Oklahoma site at 19 UTC for 5 

optically thick clouds, and at 23.5 UTC for optically thin clouds.  6 

  7 



 28 

 1 

Figure 2.  Histogram of βct,1km (the mean logarithm (with base 10) lidar backscatter from the 2 

cloud top to 1 km above) and the corresponding cumulative probability (solid line) accounted 3 

from the larger end of βct,1km for clear sky at the ARM Oklahoma site in 2005.  The dashed 4 

line represents the 94% cumulative probability.  5 
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Figure 3.  (a) Attenuated backscatter signals from micropulse lidar on 19 April 2005. (b) Time 2 

series of cloud optical depth retrieved from microwave radiometer (MWR), lidar solar 3 

background signals from micropulse lidar (MPL), AERONET cloud-mode observations,  and 4 

ARM Archive Min retrievals (using narrowband irradiance measurements). MWR-based 5 

retrievals (grey lines) are based on an assumed cloud effective radius of 8 µm; gray error bars 6 

denote lower and upper limits for MWR values, respectively corresponding to a change in 7 

droplet effective radius from 6 to 14 µm.  8 

 9 
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Figure 4. (a) Time series of radar reflectivity profiles on 10 April 2007. (b) Cloud-base 2 

reflectivity indicating the presence of drizzle. (c) Time series of cloud optical depth retrieved 3 

from microwave radiometer (MWR), lidar solar background signals from micropulse lidar 4 

(MPL) and ARM Archive Min retrievals. Grey error bars denote lower and upper limits for 5 

MWR values, respectively corresponding to a change in droplet effective radius from 6 to 14 6 

µm. Note that AERONET cloud-mode observations were unavailable for this day 7 
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 1 

Figure 5. Same as Fig. 4, but for 2 May 2007. Heavy precipitation occurs at 18.5–20.5 UTC. 2 

  3 
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 1 

Figure 6.  (a) Histograms of occurrence count and (b) a scatter plot for intercomparison of 2 

cloud optical depths retrieved from solar background signals received by micropulse lidar 3 

(MPL) and those from the ARM Min product.  Colours represent the number of occurrence 4 

count, and the black solid line represent the 1:1 line. 5 
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 1 

Figure 7.  Scatterplot for intercomparison of cloud optical depths retrieved from solar 2 

background signals received by micropulse lidar (MPL) and those from the AERONET 3 

cloud-mode product. The error bars represent one standard deviation of retrievals, while the 4 

black dashed line represents the 1:1 line. 5 

 6 
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Figure 8.  (a) Occurrence histogram of cloud optical depth (τ); plots of (b) liquid water path, 2 

(c) geometric thickness (H in m) of cloud layer and (d) cloud effective radius versus optical 3 

depth for low-level stratiform clouds, using 1-min averaged retrievals at the ARM Oklahoma 4 

site during 2005–2007. A cloud-base radar reflectivity threshold of –15 dBZ is used for 5 

drizzle classification: a cloud is drizzling if its cloud-base reflectivity exceeds the threshold, 6 

otherwise, non-drizzling. Error bars represent one standard error. Three power-law 7 

relationships are co-plotted in (c); dotted lines are based on ARM data, while the dashed line 8 

is adapted from the satellite-based finding reported in Minnis et al. (1992). (b)–(d) omit bins 9 

of cloud optical depth with a sample size smaller than 25. 10 
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 1 

Figure 9.  Same as Fig. 8, but with plots of cloud properties versus cloud effective radius. (b)–2 

(d) omit bins of cloud effective radius with a sample size smaller than 25. 3 
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  1 

Figure 10. Same as Fig. 8 but using cloud optical depths from the ARM Archive Min Product. 2 

Note that the power-law relationships between cloud geometric thickness and optical depth by 3 

dashed and dotted lines in (c) are derived from data in Fig. 8 for visual comparisons. 4 
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Figure 11.  Heidke skill scores for three drizzle delineation methods. The first (red) uses cloud 2 

effective radius as delineation threshold, while the second (blue) uses cloud optical depth 3 

instead. The third (black) uses a dynamic threshold as a function of both cloud optical depth 4 

and effective radius with a coefficient A (see Eq. (7) in text for details).  5 
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Figure 12.  Same as Fig. 11, but using Symmetric Extremal Dependence Index to optimise 2 

thresholds for drizzle delineation.  3 

 4 


