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Abstract.

We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measure-

ments of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B

campaign over eastern Canada. The model has some skill reproducing the observed variability with

a Spearmans rank correlation rs = 0.65 but has a positive negative bias for observations <100 ppb5

and a negative bias for observations >300 ppb. We find that observed CO variations are largely

due to fires over Ontario, as expected, with smaller and less variable contributions from fossil fuel

combustion from eastern Asia and NE North America. To help interpret observed variations of CO

we develop an Eulerian effective physical age of emissions (Ā) metric, accounting for mixing and

chemical decay, which we apply to pyrogenic emissions of CO. We find that during BORTAS-B the10

age of emissions intercepted over Halifax, Nova Scotia is typically 4–11 days, and on occasion as

young as two days. We show that Ā is typically 1–5 days older than the associated photochemical

ages inferred from colocated measurements of different hydrocarbons. We find that the frequency

distribution of differences between the age measures (∆τ ) in plumes (defined by CH3CN>150 ppt)

peaks at 3 days. This corresponds to a chemical retardation of 50%. We find a strong relationship in15

biomass burning plumes between Ā and ∆τ (r2=0.80), which is not present outwith these plumes

(r2=0.28). We argue that these observed relationships, together with a robust observed relation-

ship between CO and black carbon aerosol during BORTAS-B (r2>0.7), form the basis of indirect

evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume pho-

tochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in20

clear skies.
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1 Introduction

The open burning of biomass is an inefficient combustion process, resulting in the release of a wide

range of chemically reactive gases and particles that contribute to the production of ozone in the

troposphere (Goode et al., 2000; Koppmann et al., 2005; Akagi et al., 2011), with implications for25

national surface air quality and air quality mitigation strategies. However, the rate and extent of

photochemical ozone production in biomass burning outflow is still a matter of debate that largely

reflects the sensitivity of results to environmental conditions (Jaffe and Wigder, 2012). In this paper

we present an analysis of measurements of carbon monoxide (CO) from the BORTAS-B aircraft

campaign during July 2011 (Palmer et al., 2013), in conjunction with a 3-D chemistry transport30

model to understand the processes that determine observed CO variability and relate the ages of

emissions to the observed photochemical production of ozone.

Ozone production within biomass burning plumes intercepted during the BORTAS-B campaign

(Palmer et al., 2013) has previously been studied using photochemical age (Parrington et al., 2013;

Parrish et al., 2007). Estimating the photochemical age of a pyrogenic airmass relies on an accurate35

knowledge of the OH radical, and assumes constant trace gas emission factors from pyrogenic pro-

cesses. However, despite these weaknesses the photochemical age is still a useful metric for helping

to interpret observed trace gas variations. We introduce a complementary (weighted-mean) effective

physical age metric Ā. Using Ā we can infer age distributions within an airmass and by comparing

Ā with the photochemical age we can estimate how the physical and chemical environment of the40

plume has modified the speed of the in situ plume chemistry.

The main source of CO is from the incomplete combustion of fossil fuel, biomass, and biofuel.

There is also a source of CO from the oxidation from methane and non-methane volatile organic

compounds (NMVOCs) (Duncan et al., 2007). The main sink is from the oxidation by the hydroxyl

radical (OH), resulting in an atmospheric lifetime of weeks to months depending on latitude and45

season. We use airborne CO measurements from phase B of the Quantifying the impacts of BOReal

forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B)

project, July 2011. The overall objective of BORTAS was to better understand the production of

tropospheric ozone in respect to the chemical evolution of plumes from boreal forest fires, which

was achieved by integrating aircraft (Lewis et al., 2013; Le Breton et al., 2013; O’Shea et al., 2013),50

surface (Gibson et al., 2013; Griffin et al., 2013), sonde (Parrington et al., 2012), and satellite mea-

surements Tereszchuk et al. (2013) of atmospheric composition. Phase A of BORTAS was conducted

without aircraft in July 2010 (Parrington et al., 2012).

In the next section we briefly describe the CO data we analyse. The GEOS-Chem chemistry

transport model is described in section 3, including a description of a new age of emission calculation55

which we use to interpret the data. Our results are reported in section 4, including a statistical

analysis of the data and a model interpretation of the data. We conclude in section 5.
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2 Data and Methods

2.1 BORTAS-B Carbon Monoxide and CH3CN Data

Here we use data exclusively from the BORTAS-B aircraft campaign. The focus of the work shown60

here is the analysis of CO measurements, which were operated by the Facility for Airborne Atmo-

spheric Measurements on the BAe-146 atmospheric research aircraft using a fast-response vacuum-

UV resonance fluorescence instrument (Gerbig et al., 1999). The instrument has an averaging time

of 1 s and a precision and accuracy of 1 ppb and 3%, respectively. We use measurements of ace-

tonitrile (CH3CN, not shown), an additional tracer of biomass burning, measured by Proton Transfer65

Reaction Mass Spectrometer (Murphy et al., 2010) to isolate plumes within BORTAS-B. These

measurements have a mean precision of 37 ppt during BORTAS-B (Palmer et al., 2013). We define

plumes as CO measurements corresponding to CH3CN>150 ppt.

2.2 The GEOS-Chem Atmospheric Chemistry Model

We use the GEOS-Chem atmospheric chemistry model (www.geos-chem.org) to interpret the BORTAS-70

B CO measurement. The model has been documented extensively (e.g., Bey et al. (2001); Duncan

et al. (2007); Gonzi et al. (2011); Parrington et al. (2012)) and here we only include those details

relevant to our study.

We use v9-01-03 of the model, driven by GEOS-5 assimilated meteorological data from the NASA

Global Modelling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS). For75

global simulations we use a spatial resolution of 2◦ latitude by 2.5◦ longitude (a degradation of the

native resolution of 0.5◦×0.667◦) with 47 vertical levels with a temporal resolution of 30 minutes.

For the model runs we use to compare against BORTAS-B aircraft data and the Ā calculations

we use the the native model resolution with 47 vertical levels. We use the Global Fire Emissions

Database (GFED-3), describing biomass burning emissions (Giglio et al., 2010), which has a three-80

hour temporal resolution; fossil fuel emissions from the Emissions Database for Global Atmospheric

Research (EDGAR, Olivier et al. (1999)); and biogenic emissions from the Model of Emissions of

Gases and Aerosol from Nature (MEGAN, Guenther et al. (2006)). We report model calculations

from the summers (JJA) of 2008–2011. We initialize the model in 2007, using previous model

output, and run using a single total CO tracer for 9 months until our study period JJA 2008. During85

the summer periods we use “tagged” tracers (described below) and between the successive summer

periods we collapse these tagged tracers back to the single tracer for computational expediency.

For the CO attribution calculations, we use a “tagged” version of the model (e.g., Jones et al.

(2003); Palmer et al. (2003, 2006); Feng et al. (2009); Fisher et al. (2010)), which uses pre-calculated

monthly 3-D OH fields that correspond to a methyl chloroform lifetime of 6.3 years. Using these90

fields allows us to linearly decompose the CO originating from specific processes and geographical

regions. Figure 1 shows the geographical regions we use. For biomass burning in the northern
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hemisphere we split North America into four quadrants, consider Europe as one region, and split

Russia/Siberia into three regions (western, mid, and eastern). We show below that most of the

observed CO over eastern Canada during JJA originates from these regions. For northern hemisphere95

fossil fuel we have combined some regions that do not play a significant role the interpretation of

the BORTAS-B data. The chemical source of CO from the oxidation of methane and NMVOCs is

treated as one global tracer. In total, we have 28 tracers (including the background) that sum to the

total atmospheric CO. Wherever we compare the model against data we sample the model at the

time and location of the measurement.100

2.3 Age of Emission Model Calculation

We use the same model structure for the “tagged” CO simulation to calculate Ā. To calculate Ā, we

adapt the model to instead emit an arbitrary constant amount to a day-specific tracer wherever there

is active burning during our study period (informed by GFED-3). Once emitted the tracer is left to

disperse. We assume an atmospheric lifetime τ of 60 days for the emitted tracers, and therefore a105

constant reaction rate k. If we assume that this lifetime is determined by oxidation by the hydroxyl

radical OH, as it is for CO, it corresponds to an OH concentration of 1.9×106 molec/cm−3. The age

(A) of each tracer is determined by the number of days since the start of the run minus the tracer

number (not value). For example, after a 31-day model run, tracer number 1 has an age of 30 days

old and tracer number 20 has an age of 11 days. At the end of a 31-day simulation for July, say, we110

have 31 tracers each containing the biomass burning emissions from the corresponding day.

To account for older air being subject to more dispersion than younger air we define an effective

age of air Ā at vector position x and time t:

Ā(x,t) =

n∑
i=1

Ai(x,t)LM,i(x,t)LC,i(t)

n∑
i=1

LM,i(x,t)LC,i(t)
, (1)

which represents a weighted mean of the age of each tracer Ai(x,t), where i denotes the model115

day when a tracer was released at the surface. For example the effective age of emissions on day

ten is the weighted mean of the tracers released from days 1 to 10. Individual age tracers take into

account atmospheric mixing LM,i(x,t), which is determined by the value of the tracer after it has

been dispersed in the model, and the chemical loss of tracer LC,i(t) = exp−t/τ . More generally, we

can extend this formulation to include other sink terms such as, for example, dry and wet deposition.120

This method does not account for the magnitude of CO emitted from any fire, regardless of its size.

For this paper, calculating Ā allows us to quantify the physical age of emissions intercepted during

BORTAS-B, providing additional information to interpret the chemical signature of the sampled air

masses. It also allows us to determine whether the air masses intercepted during BORTAS-B were

representative of that summer and of a similar period from preceding years. This method also does125

not account for model transport error.
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We compare our Ā estimates against the associated photochemical ages of plumes intercepted

in BORTAS-B (Parrington et al., 2013). The photochemical age is the time taken for a tracer to

be photochemically removed from a biomass burning plume. It is based on ratios of NMVOCs

close to the emission source (here, determined by flight B626 in the BORTAS-B campaign over130

Northwestern Ontario on the 26th July 2011) and the ratio of NMVOCs at the time of observations.

The photochemical age of an air parcel is directly proportional to the constant, mean OH con-

centration integrated along its path <[OH]> from the point of emission at time tE to the time of

observation tO (Parrish et al., 2007):

ta =
1

< [OH]>

∫ tO

i=tE

[OH]dt=− 1

<kA>< [OH]>
ln

(
[A]E
[A]O

)
, (2)135

where ta denotes the photochemical lifetime of the air parcel due to OH, and <kA> represents an

average reaction rate constant for A with OH (in this case, taken from Atkinson and Arey (2003))

with a constant temperature of 273 K. [A]E and [A]O are the concentrations of an NMVOC at the

the time of emission and observation, respectively, used to determine ta.

Extending this approach by using the ratio of two NMVOCs with different atmospheric lifetimes140

against oxidation by OH allows us to calculate the photochemical age without having to know the

concentration of either gas at the point of emission:

ta =
1

< [OH]>

∫ to

i=tE

[OH]dt=− 1

< [OH]><kA−kB >

{
ln

[A]E
[A]O

− ln [B]E
[B]O

}
, (3)

where [AE ]/[BE ] represents an emission factor that can be taken from independent measurements.

Both equations rely on an accurate knowledge of OH to anchor the calculation: halving the assumed145

OH concentration doubles the photochemical lifetime and vice versa.

Both methods used to estimate age assume a mean value for OH (via a prescribed lifetime for Ā)

and reaction rate constant that does not account for changes in temperature and pressure along the

path of the air parcel. These common assumptions allow us to directly compare the results from both

methods and to determine the extent of the photochemical retardation.150

Photochemical age and Ā are equivalent if the photochemical environment is determined solely

by OH and we have perfect knowledge of this loss term. For plumes with a photochemical age

that is younger than Ā we can assume that the associated photochemistry has been retarded. For an

arbitrary gas, retardation processes include gas-phase or heterogeneous chemistry, or incoming solar

radiation extinction via aerosol or clouds; for CO emitted from pyrogenic processes it is most likely155

that associated aerosol optical depths are the culprit for decreased OH. Plumes with a photochemical

age that is older than Ā suggests a significant error in OH or with model transport.
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3 Results

3.1 Statistical Analysis of BORTAS-B CO Data

Figure 2 show the model and observed CO frequency distributions. Observed CO concentrations160

show a long tail of high concentrations with the highest of these values not reproduced by the model,

which is reflected by the mean and median concentration values. The median model minus observed

CO value is -0.1 ppb. We find the model has a positive bias for observations ≤100 ppb and a

negative bias for observations >300 ppb. The largest discrepancies between the model and the

observations generally occur at the largest values of CO. The 99th percentile value for model and165

observed CO concentrations are 670 ppb and 436 ppb, respectively. The interquartile range for

BORTAS-B CO concentration data is 87–133 ppb, which is consistent with data from the NASA

ARCTAS-B campaign (Arctic Research of the Composition of the Troposphere from Aircraft and

Satellites, Jacob et al. (2010)). The largest observed CO concentrations during BORTAS-B are larger

than those observed during ARCTAS-B (Liang et al., 2011). Figure 3 shows that the relative model170

error [model minus observation]/model is typically within ±0.5 but has a range of ±1.0. The model

overestimates observed CO concentrations between the surface and 800 hPa, reflecting the outflow

of anthropogenic and biomass burning pollution, with the largest discrepancy around 800 hPa. The

model generally has more skill in reproducing the variability of observed CO during BORTAS-B in

the below 4 km (Spearman’s rank correlation rs = 0.65) than above 4 km (rs = 0.19). In this case175

we use Spearman’s rank correlation because it is a more appropriate metric that can describe the

model ability to reproduce qualitatively observed elevated values (plumes) above a background but

not necessarily capture the value of these elevated values. The inability of the model to capture these

elevated values may reflect errors in emissions and/or atmospheric transport.

3.2 Tagged CO Model Output180

Table 1 shows the tagged model analysis sampled at the times and locations of the BORTAS-B CO

measurements. The largest source of CO and the largest source of CO variability during BORTAS

was from biomass burning in Ontario, as expected. There are also large but much less variable contri-

butions from the background (air older than JJA) and from the oxidation of methane and NMVOCs.

CO produced by CH4 oxidation typically contributes around 30% to global concentrations (Duncan185

et al., 2007).

Figure 4 shows the mean JJA model contributions of total surface CO from different geographi-

cally based sources 2008–2011, described using a horizontal resolution of 2◦ latitude by 2.5◦ lon-

gitude. The contribution from biomass burning over NW North America is broadly constant from

year to year, although the distribution of the fires varies substantially, with Alaska playing a dom-190

inant role only in 2009 during our study period. The magnitude and the distribution of fossil fuel

emissions from NE North America (predominately the NE USA) appear reasonably consistent over
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the four years, with emissions generally travelling up the eastern seaboard with eventual outflow

to the Atlantic ocean close to Halifax, Nova Scotia. Similar to North America, Siberian biomass

burning has substantial spatial variability from year to year, with their location playing a key role195

in determining their eventual impact on North America and Europe. During 2010 the largest CO

concentrations originated from East Siberia and spread across the northern hemisphere. In contrast,

during BORTAS-B in 2011 most of the fire activity was further SW and had less of an impact over

eastern Canada. Fires from mid-Siberia had a larger influence on total CO during 2008–2009, with

very little activity during 2010–2011. There is a consistently small contribution to BORTAS obser-200

vations from fossil fuel combustion from East Asia (not shown), peaking at around 400 ppb over

China but quickly dropping off to around 10 ppb by the time it has crossed the Pacific. Differences

between Figure 4 and Figure 9 from Palmer et al. (2013), also showing polar CO concentrations dur-

ing BORTAS-B, are due to different biomass burning inventories. Here, we use GFED-3 (see above)

and Palmer et al. (2013) used the Fire Locating and Modeling of Burning Emissions inventory (Reid205

et al., 2009).

Figure 5 shows that biomass burning from the NW North America is still a dominant factor in the

variability of total CO in the free troposphere. During 2010, these fires contributed around 50 ppb of

CO into the upper troposphere causing widespread pollution during July. Typically these emissions

contribute about 10 ppb of CO over Europe. Contributions from east and mid Siberia appear to be210

consistent over the four years except during 2010 when there is very little material transported into

the free troposphere. In general, the magnitude and distribution of the fossil fuel source is consistent

across the four years with weather systems lifting up surface emission to the free troposphere.

The widespread and persistent source of CO (approximately 10 ppb) from Asian anthropogenic

sources over the northern hemisphere (not shown) agrees with the ARCTAS-A study (Fisher et al.,215

2010) and ARCTAS-B (Bian et al., 2013). Relative to ARCTAS-A, BORTAS-B generally shows

a much larger contribution to the total CO from boreal biomass burning, reflecting the timing of

ARCTAS-A in April 2008 before the beginning of the main fire season. For JJA 2008–2011 we

find boreal biomass burning represents a significant contribution to the total surface CO over the

Western Arctic region defined as 50◦N–90◦N, 170◦W–40◦W, following Bian et al. (2013). Analysis220

of ARCTAS-B data showed that boreal biomass burning contributed approximately 25% of CO in

this region during July 2008 (Bian et al., 2013). We find boreal biomass burning contributes 25%–

45% of the total CO for the defined Western Arctic region for all years, peaking at >90% of the

total CO over intense burning areas. During 2008 we find our results are broadly consistent with

Bian et al. (2013) but at the lower end of their range. The discrepancy between these results is likely225

due to using different emission inventories, with Bian et al. (2013) using the Quick Fire Emissions

Database.
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3.3 Effective Physical Age of Air

Figure 6 shows the mean model statistics for Ā during July 2008–2011 at 95◦W and 50◦W, averaged

over 45◦–60◦N, representing the approximate western and eastern boundaries of the measurements230

sampled during BORTAS-B. We consider four altitude bins, corresponding to the boundary layer

(0–2 km), lower and mid troposphere (2–4 km and 4–6 km, respectively), and upper troposphere

(>6 km). At the western boundary, emissions from 2008 have a median age of seven days, 2009 has

a median age of 10 days, and 2010 and 2011 have a median age of five days. We find the older age

of emissions during 2009 is due to fewer fires along the western boundary and consequently a larger235

influence from Alaska and further afield. Air sampled at the eastern boundary is older, as expected

with the exception of the upper troposphere (>6 km) which shows similar median ages from the

western boundary to the eastern boundary. We find that the median age distributions for our study

period at the eastern boundary were between 10 and 13 days, with a corresponding interquartile

range of 7–13 days at altitudes <2 km except for 2009 when there was an older interquartile age240

range of 7–17 days. The difference in Ā between the two boundaries decreases with increasing

altitude; above 4 km, ages are indistinguishable because air is more well-mixed and influenced by

emissions outside of the domain. Emissions clearly get older as they move from the west towards

the Atlantic, with an increase in median age of approximately three days for all years except 2009,

when the age difference between the west and east boundaries is approximately one day in the lower245

troposphere and insignificant at higher altitudes. We attribute this lack of ageing in 2009 to fewer

Canadian fires during July of this year, as mentioned above. Boreal biomass burning in 2009 started

earlier in the year and was more prominent in Alaska and Siberia. Emissions tend to be older at

50◦W at lower altitudes (not shown). This may be a result from fresher emissions getting lofted

higher into the atmosphere as they travel. Figure 6 also shows that the median value of Ā (six days)250

sampled during BORTAS-B falls within the range of model emission ages at 95◦W, with the majority

of measurements taken 65◦–40◦W. We find a similar observed median value of Ā for all altitudes,

which is typically lower than the model free troposphere. This bias towards younger ages reflects

the sampling strategy of BORTAS-B that was to intercept fresh biomass biomass plumes.

Figure 7 shows an example of Ā on 20th July 2011, which is used as a case study in other BOR-255

TAS studies (e.g., Griffin et al. (2013); Franklin et al. (2014)). Figure 7(a) shows longitudinal and

latitudinal cross-section views of emissions as they are transported from the Thunder Bay region

(50◦N, 88◦W). By the time the plume is observed on the 20th July by ground-based observatories

over Toronto (43.70◦N, 69.40◦W) (Griffin et al., 2013) and Halifax (44.6◦N, 63.59◦W) (Franklin

et al., 2014) the plume is approximately 5–7 days old, corresponding to an emission on the 14th–260

15th July. Figure 7(b) shows the transported air, intercepted at 63◦W, is composed of a young plume

(4–5 days old) surrounded by older air (seven days old) over 47◦–55◦N. Previous BORTAS-B studies

have used the NOAA HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

(Draxler and Hess, 1998), driven by meteorological reanalyses data from the National Center for
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Environmental Prediction (NCEP) Global Data Assimilation Program (GDAS), to interpret ground-265

based remote-sensing data collected during BORTAS-B (Griffin et al., 2013; Franklin et al., 2014).

We find our Eulerian age of emission estimates are typically a day older than those determined by

the the HYSPLIT model during 19th–21st July 2011 when ground-based observations reported ele-

vated concentrations due to biomass burning (Gibson et al., 2013; Griffin et al., 2013; Franklin et al.,

2014).270

Figure 8 shows that Ā averaged over all BORTAS-B flights is generally consistent with the asso-

ciated median photochemical age of six days, determined using NMVOC ratios (Parrington et al.,

2013). The photochemical ages have an interquartile range of 8 to 13 days while Ā has an interquar-

tile range of 5 to 9 days. Splitting the data into individual flights reveals there are some substantial

differences between the photochemical ages and Ā. Figure 9 shows that Ā minus photochemical275

age (∆τ ) have distinct frequency distributions within and outwith plumes. Within plumes, the dis-

tribution peaks at ∆τ=2–4 days (median 1.8 days), while outwith plumes there is a relatively flat

distribution. We find no significant difference to our results if we average the photochemical ages

onto the model grid prior to the analysis. Figure 9 shows that high values of CO relate to ∆τ of 2–4

days, corresponding to a mean (median) fractional difference of 0.44 (0.40); and a weaker relation-280

ship between ∆τ outwith plumes, corresponding to a mean (median) fractional difference of 0.11

(0.10). Figure 9 also shows that ∆τ increases with Ā within plumes (r2=0.80) from close to zero at

3–4 days to >5 days for plumes older than 10 days. There is a much weaker relationship between

these two age variables outwith plumes (r2=0.28).

4 Concluding Remarks285

We used the GEOS-Chem global atmospheric chemistry model to interpret observed variations of

CO taken during the BORTAS-B aircraft campaign over eastern Canada in July-August 2011. We

reported a median model minus observed CO difference of -0.1 ppb, reflecting the long observed

tail of elevated CO concentrations that are not reproduced by the model. The model has a positive

bias below observed values of 100 ppb and a negative bias above 300 ppb. We found that the290

larger differences between the model and the observations in the mid troposphere, where we found

pyrogenic CO peaked. The model has some skill at reproducing the mean observed statistics in the

lower troposphere (Spearman’s rank correlation rs = 0.65), and less skill in the higher troposphere

(rs = 0.19). The difference in model skill at different altitudes is likely due to a) misdiagnosing sub-

gridscale vertical mixing of pyrogenic material lofted by surface heating due to fires, and b) errors295

in biomass burning emission inventories.

Using a linearly-decomposed version of the model we found that most of the observed variability

in CO concentration during BORTAS-B was due to Canadian biomass burning, as expected, with a

smaller contribution from Siberian biomass burning and NE North American fossil fuel combustion.
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We used the model to put BORTAS-B into the wider temporal context of 2008–2011. We found that300

North American biomass burning is broadly constant (45% of total CO) over this period although the

spatial distribution of fires varies substantially. The variation of Siberian biomass burning is more

extreme with large contributions to total CO over North American during some years (2008–2009)

and very little activity in other years (2010–2011), reflecting the spatial extent and geographical

position of the fires. Based on our analysis of the source contributions to North American CO over305

during the (limited) four-year period we conclude that BORTAS-B (2011) was not anomalous.

Previous work has shown that ozone production within biomass burning plumes can be described

using photochemical ageing (Parrington et al., 2013). In this paper we describe a new Eulerian

method to quantify the effective physical age of emissions Ā, taking into account mixing and chem-

ical decay of emitted air masses of varying age. We found that during BORTAS-B, values of Ā310

for airmasses intercepted over Halifax, Nova Scotia are typically 4–11 days old but occasionally as

young as two days, corresponding well to analysis of concurrent ground-based observations at the

Dalhousie ground station (DGS) in Halifax, NS (Gibson et al., 2013). We found our Eulerian age

of emission estimates are typically a day older than those determined by the the HYSPLIT model

during the 19–21 July 2011 when ground-based observations reported elevated concentrations due315

to biomass burning (Gibson et al., 2013; Griffin et al., 2013; Franklin et al., 2014). We attributed

this difference in age to our method accounting for older air masses that are not explicitly consid-

ered by HYSPLIT. We compared the values of Ā calculated using our method to the corresponding

photochemical ages, using ratios of NMVOCs (Parrington et al., 2013), and found that values of

Ā are typically 1–5 days older. We found that the median difference between the age measures in320

plumes (defined as CH3CN>150 ppt) peaks at 3–5 days, compared to a muted distribution for back-

ground CO concentrations, corresponding to a chemical retardation of 50%. We also found that in

plumes ∆τ increased with physical age (r2=0.80), which was much less pronounced outwith plumes

(r2=0.23). Based on ∆τ within and outwith plumes and on a strong relationship between CO and, for

example, black carbon aerosol during BORTAS-B (r2 >0.70, Taylor et al. (2014)) we hypothesize325

that ∆τ variations provide evidence that pyrogenic aerosols slow down the plume photochemistry

for many days downwind from the point of burning.

Previous work has showed using a photochemical model that the observed ozone tendency of

Alaskan forest fire plumes observed over the North Atlantic during 2004 was consistent with a re-

duced photolysis rate of approximately 20% that could be due to aerosol loading within/above these330

plumes (Real et al., 2007). Our analysis of photochemical age versus Ā suggests a larger retardation

to the plume photochemistry. One important counter argument to our analysis of ∆τ that could

reconcile Ā and photochemical ages is that the photochemical age could have a negative bias. The

method, described in detail by Parrington et al. (2013), relies on variation of NMVOC ratios that

have different chemical lifetimes against oxidation by OH. As we discuss, the lifetime calculation is335

anchored by an assumption of a constant OH concentration. The BORTAS-B data analysis assumed
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an OH concentration of 2×106 molec/cm3 that was chosen to be representative of a northern mid-

latitude summertime OH concentration (Spivakovsky et al., 2000). Halving (doubling) the assumed

OH concentration would increase (decrease) the photochemical age. For many flights the median

value of Ā is substantial higher than the photochemical age. As discussed in Yokelson et al. (2013),340

there are inherit limitations to using photochemistry as a proxy for the age of emissions. The pho-

tochemical age calculation also assumes a constant emission ratio of NMVOCs from the fires, and

a constant background concentration. Our method also assumes constant OH concentrations, but it

is much less sensitive to changes in OH concentration. All values of Ā we report in our domain are

well within the e-folding lifetime set by OH therefore diffusion is the dominant effect on Ā for our345

time scale. By running our analysis with a doubled and halved lifetime of CO against OH oxidation

we find that values of Ā differ by less than one day.

Our method of calculating Ā does not consider the size of the fire or the amount of CO that is

emitted. While this will not affect the Ā calculation it may complicate the interpretation of data.

If, for example, old, high-CO air masses mix with young, low-CO air masses our method will350

assign more weight to the younger air mass and a stronger attribution to the observed CO variability.

We tried to minimize this issue by using a fixed chemical decay but some residual of this issue

will unavoidably remain. Other measures of age inferred from Lagrangian back trajectories, say,

will suffer from similar problems and in some circumstances be more problematic if the mixing of

different air masses is not considered.355

Accounting for biomass burning in regional air quality budgets downwind of fires presents a num-

ber of challenges, not least due to the ability of models to predict where plume chemistry will result

in net production of O3. It is well established that this production is a function of the pyrogenic emis-

sions (themselves a function of many environmental variables), the associated vertical mixing and

transport pathways, and the photochemical environment. Using BORTAS-B we have only inferred360

that aerosols have slowed photochemical ageing of plumes but there is insufficient data to charac-

terize directly how the aerosols have affected the photochemical environment within the plume as a

function of time. Further studies of similar pyrogenic plumes should include a full suite of aerosol

and radiation instruments in addition to gas-phase atmospheric chemistry instruments. This kind of

integrative analysis will become progressively more important as we analyze more complex environ-365

ments such as megacities where there is typically a mix of biogenic, anthropogenic, and pyrogenic

material determining ozone photochemistry.

Acknowledgements. This research was supported by the Natural Environment Research Council under grant

number NE/F017391/1. DF acknowledges NERC studentship NE/K500835/1. PIP acknowledges support from

his Philip Leverhulme Prize and his Royal Society Wolfson Research Merit Award. DF and PIP designed370

the numerical calculations, performed the analysis, and wrote the paper; PIP was also the principal BORTAS

mission scientist. MP was a mission scientist on BORTAS, and provided the photochemical ages and comments

on the paper.

11



References

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and375

Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models,

Atmos. Chem. Phys., 11, 4039–4072, doi:10.5194/acp-11-4039-2011, http://www.atmos-chem-phys.net/11/

4039/2011/, 2011.

Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds., Chemical reviews, 103,

4605–38, doi:10.1021/cr0206420, http://www.ncbi.nlm.nih.gov/pubmed/14664626, 2003.380

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. a., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley,

L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model

description and evaluation, J. Geophys. Res., 106, 23 073, doi:10.1029/2001JD000807, http://doi.wiley.com/

10.1029/2001JD000807, 2001.

Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., Blake, D., Chu, D. a., da Silva, A.,385

Darmenov, a. S., Diskin, G., Fuelberg, H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.:

Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos.

Chem. Phys., 13, 4707–4721, doi:10.5194/acp-13-4707-2013, http://www.atmos-chem-phys.net/13/4707/

2013/, 2013.

Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT 4 modeling system of trajectories, dispersion,390

and deposition, Aust. Meteor. Mag., 47, 295–308, 1998.

Duncan, B. N., Logan, J. a., Bey, I., Megretskaia, I. a., Yantosca, R. M., Novelli, P. C., Jones, N. B., and
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Fig. 1. Source regions for the tagged CO simulation. Regions outlined in red denote fossil fuel tagged tracers

and regions outlined in green refer to biomass burning tagged tracers.
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ment Techniques, 6, 2155–2158, doi:10.5194/amt-6-2155-2013, 2013.535

Table 1. Contribution of CO from geographical sources averaged over all BORTAS-B flights, lumping all

other contributions <2 ppb into “Other”. Background refers to any residual CO before the beginning of the

BORTAS-B period.

Tracer Source Mean (ppb) Std Dev (ppb)

NE USA and Canada Biomass Burning 55.4 134.6

East Asian Fossil Fuel 11.9 3.4

North East American Fossil Fuel 7.9 15.4

NW USA and Canada Biomass Burning 6.2 4.5

North West American Fossil Fuel 3.4 2.2

Mid Siberia Biomass Burning 2.0 0.7

Other 7.9 4.2

Methane & NMVOCS 45.5 12.4

Background 10.7 2.3
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Fig. 2. Statistical comparison of model and observed CO from BORTAS-B. The observations have been aver-

aged over the 2◦×2.5◦ model grid. Left panel shows the frequency distributions and the right panel show the

frequency distribution of the model minus observed CO residuals. Mean and median values are shown inset of

each panel.
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Fig. 3. Relative model error in the GEOS-Chem simulation of CO during BORTAS-B as a function of altitude

described by the box and whiskers approach. The red line and grey cross denotes the median and mean values,

respectively.
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Fig. 4. Mean June-August GEOS-Chem model surface CO concentrations (ppb) from the four largest sources

over the northern hemisphere for 2008–2011. Individual contributions (Figure 1) are from NW North America

biomass burning emissions (first row), NE North America fossil fuel (second row), East Siberia biomass burning

(third row), and mid-Siberia biomass burning (bottom row).
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Fig. 5. Same as Figure 4 but at 4 km altitude. Note the different upper limit to the colour bar.
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Fig. 6. Box and whiskers plot showing the mean age of emissions for different altitudes (<2 km, 2–4 km,

4–6 km, and >6 km) at the longitudinal boundaries of the BORTAS-B domain (45◦N–60◦ N, 95◦W–50◦W)

during July 2008, 2009, 2010, 2011, and for the model sampled along the BORTAS-B flights. Within the box,

the upper, middle, and lower horizontal bars denote the first quartile, the median, and the third quartile. The

full range of data is shown by the whiskers.
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(a) (b)

Fig. 7. Age of emissions on 20th July 2011 (a) from 120◦–40◦W and 0–7 km, averaged over 45◦–55◦N;

and (b) 40◦–70◦N and 0–7 km at 63◦W, the same longitude as the Dalhousie University, Halifax, NS surface

measurements (Palmer et al., 2013). Location of Dalhousie University is shown by the black arrow.
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Fig. 8. Box and whiskers plot of the age of air observed during individual BORTAS-B aircraft flights using

photochemical age using BORTAS-B data (red) and effective age Ā using the GEOS-Chem model (blue). The

box and whiskers plot for all flights are shown on the last two right columns. Within the box, the upper, middle,

and lower horizontal bars denote the first quartile, the median, and the third quartile. The full range of data is

shown by the whiskers.
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Fig. 9. Top Panel: Frequency of effective age Āminus photochemical age (days, left axis) and CO concentration

(ppb, right axis). The number of measurements n for each classification are shown inset. Bottom Panel:

Scatterplot of ∆τ and Ā. Red dots denote CO concentrations within a plume (CH3CN> 150 ppt) and the blue

dots denote CO concentrations outwith a plume.
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