Response to Referee 1:

We would like to thank the referee for the review of this manuscript and their constructive
comments. Our response to each comment is below with the referee’s comments highlighted in
italic typeface. Relevant changes that we included in the manuscript are highlighted in bold typeface.
We also attached the revised manuscript where all changes are highlighted in bold typeface.

This is an excellent manuscript that describes a very useful new development. The approach is well
introduced and the results are well presented.

Response: We are grateful for the overall positive assessment.

Nevertheless, | would appreciate, if the manuscript could address more in depth the basic idea
(combining scientific and economic aspects in the context of network design) and novelty of the
approach (the novelty should be better highlighted), and discuss advantages (beyond computational
efficiency) and disadvantages of the new approach in comparison to existing approaches. Else the
manuscript — from my point of view -would be too close to a technical report.

Response: The main focus of this manuscript is to introduce a new approach for network design
based on backward Lagrangian particle dispersions modelling and to apply this concept for designing
optimal observational networks for the Australian continent. Some economic aspects are taken into
account, but only for the test case. They are not part of the general concept. We will highlight this in
a revised version of the manuscript and also emphasize the novelty of our approach. Further, we will
include a paragraph that discusses the advantages and disadvantages of our approach in more
detail.

“...The novelty of our approach is to derive the atmospheric transport matrix, which is required to
relate surface fluxes to concentration observations, from a Lagrangian particle dispersion model
run in backward mode. Running the model in backward mode is more efficient in the network
design case, because the number of sources exceeds the number of receptors by far. In addition
to the transport matrix, we require only the error statistics of the data but not their actual values,
in order to calculate the optimal network. This allows us to extend or create a network of stations
where no data are available. However, as with all network design methods based on inversion
modelling our approach is dependent on specific choices made in the set up of the estimation
problem such as the resolution at which fluxes are estimated or how the error statistics are
represented. The error statistics are usually provided in the form of a covariance matrix, which is
difficult to obtain, but it has a large impact on the network design (Rayner, 2004). ...”

I disagree with the first sentence of the abstract. The new approach suggests to select a priori from
all possible locations of stations those, which are economically easy to realize. This is a subjective
choice. This prior selection improves the computational efficiency of the network design, but by
definition, the new method does not attempt to generate a — scientifically - optimal network any



more. Also this method does not provide the opportunity to generate the optimal network including
economic aspects, because the prior selection is subjective.

Response: The new approach does not suggest (or require) selecting possible locations of stations
beforehand in general. Our approach works with both potential stations based on a gridded surface
and with locations pre-selected according to certain criteria. We agree that a network designed by
using possible locations of stations on a gridded surface might result in a larger reduction of the cost
function, but it is up to the user to decide what kind of optimal network he wants to create and what
prior information he wants to include. In this manuscript, we demonstrate the network design for
Australia as a test case and here we decided to use pre-selected possible locations of stations for
various reasons as stated in the manuscript. This does not mean that the resulting network is not an
optimal one; it is optimal with regards to the set-up and prior information used.

We agree that the prior selection of stations is subjective in some way and we are not claiming that
we performed a comprehensive economical evaluation of potential stations and their maintenance
costs, which would be beyond the scope of this paper. We merely demonstrate that it is possible to
use existing infrastructure from other existing measurement sites to guarantee that the proposed
location of a new station by the network design is accessible and that electricity for example is
supplied. This will ultimately result in a more realistic (and cost efficient) network than by just using
potential stations based on gridded surface.

We will add a statement in the manuscript to highlight that our proposed method does not require
the selection of possible locations of stations a priori. In fact, the second part of this paper (Nickless
et al., 2014), which focuses mainly on sensitivity analysis, demonstrates the network design for
South Africa using stations only based on a gridded surface.

“...When applying our new approach to Australia as a test case, we are using a list of candidate
stations instead of evaluating optimal locations on a regular grid. This is more efficient than
treating every grid point as a potential location. It also has the advantage, that we can easily take
existing infrastructure into account, which will consequently result in a more realistic and cost
effective network extension. We explore the regular grid approach in the companion paper
(Nickless et al., 2014). Although we aim to design a cost effective network by pre-selecting
potential stations, we do not intend to perform a comprehensive economic evaluation of those
stations. This would require specific information with regards to actual costs in setting up
measurement equipment and in maintaining a site. Costs may also differ greatly between
different sites and a thorough cost analysis would be required, which is beyond the scope of this
paper. However, the approach that we introduce here for the network design is generic, allowing
for the optimisation of a number of properties of the network (including cost efficiency). It is also
possible to implement the network design in two stages: (1) perform a general search based on a
regular grid and (2) perform a specific search accounting for the costs associated with setting up
new sites...”

Given the financial costs of building and maintaining new stations, the computational costs of
network design seem marginal. | would therefore suggest to consider combining the two approaches,
first a general search based on a gridded surface, and on top of this the specified search accounting



for the economical costs of maintaining existing or adding new towers. Only such an approach would
combine the search for a scientifically optimal network and accounting for economic costs.

Response: The focus of this paper is not on setting up an optimization scheme that accounts for
exact economic costs of erecting new stations or maintaining existing stations. As stated in the
manuscript (page 7579) we do not have enough information with regards to actual costs in setting
up equipment and maintaining a site. Costs may differ greatly between different sites and a
thorough cost analysis would be required. The suggestion by the referee of doing a general search
based on a gridded surface and then on top of this a specified search accounting for economical
costs is an interesting approach that we might investigate in future work. However, this is beyond
the scope of the current paper.

“... It is also possible to implement the network design in two stages: (1) perform a general search
based on a regular grid and (2) perform a specific search accounting for the costs associated with
setting up new sites...”

In case of the Australian example there is already information available, and the twostep approach
may seem redundant. However, given Australia is only the example to introduce the new method, in
general we cannot assume such rich prior experiences.

Response: In case of the Australian example we only suggest that it is more cost efficient to use
existing infrastructure than setting up a new site from scratch, without quantifying actual costs. The
introduced method for the network design is generic and it is up to the user on how he wants to
design his own optimal network and what information he wants to include.

I don’t appreciate the idea of using the measurement uncertainty as proxy for economical costs. This
approach would make it impossible to account for both aspects independently and exact. As long as
they are treated separately, their respective contributions to the prior and posterior cost-function
could be analysed independently.

Response: We agree with the referee that it is not ideal to use the measurement uncertainty as a
proxy for logistical issues. However, as discussed in the manuscript it is quite challenging to set up a
cost function that includes exact actual costs which in our case are not even available.

We will revise the corresponding section in the manuscript and make it clear that one should include
the actual costs if available.

“...However, if information with regards to costs in setting up and maintaining a site is available,
then this should be included in the cost function so that one can account for the exact economic
costs.} This will be investigated in a future study...”

I do not suggest combining the two approaches (general and selected search) or explicitly adding the
economical costs in the current manuscript, but | would like to suggest addressing these aspects in



more depth in the introduction and discussion. This would contribute to highlight the current paper
as a relevant step towards a general approach, which objectively combines scientific improvements
and economical costs.

Response: We agree with the referee, that a number of properties of the network can be optimised.
We will revise the introduction and discussion section and address the combination of the two
approaches as suggested.

“...When applying our new approach to Australia as a test case, we are using a list of candidate
stations instead of evaluating optimal locations on a regular grid. This is more efficient than
treating every grid point as a potential location. It also has the advantage, that we can easily take
existing infrastructure into account, which will consequently result in a more realistic and cost
effective network extension. We explore the regular grid approach in the companion paper
(Nickless et al., 2014). Although we aim to design a cost effective network by pre-selecting
potential stations, we do not intend to perform a comprehensive economic evaluation of those
stations. This would require specific information with regards to actual costs in setting up
measurement equipment and in maintaining a site. Costs may also differ greatly between
different sites and a thorough cost analysis would be required, which is beyond the scope of this
paper. However, the approach that we introduce here for the network design is generic, allowing
for the optimisation of a number of properties of the network (including cost efficiency). It is also
possible to implement the network design in two stages: (1) perform a general search based on a
regular grid and (2) perform a specific search accounting for the costs associated with setting up
new sites...”

Please explain specific terms, e.g., “surface flux” — this term is frequently used but is not explained, or
“BIOS2 model runs” is mentioned in the abstract and should be explained.

Response: The term surface flux refers to the flux of carbon dioxide and comprises contributions
from the biosphere and fossil fuel combustion. We will clarify this in the manuscript. BIOS2 is a
modelling framework built around a land surface model. We will add this information in the abstract
of the manuscript.

“...A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian
inverse modelling framework to calculate the relationship between weekly surface fluxes,
comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration
observations for the Australian continent...”

“... Prior uncertainties are derived on a weekly time scale for biosphere fluxes and fossil fuel
emissions from high resolution model runs using the Community Atmosphere Biosphere Land
Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS), respectively...”

The analysis that shows only marginal influence of external contributions could be explained a bit



Response: The influence from outside the modelled domain and its implications on the observed
concentrations and their uncertainties will be explained in more detail in a revised version. We will
extend section 2.3 and clarify how we assess the contribution from the boundary concentrations on
the observed concentrations.

Some of the changes we made are below (see also attached revised version where all changes are
highlighted).

“...The inflow from the boundary can affect the concentrations measured at a certain point. These
so called boundary effects can be included in our modelling approach in two different ways: (a) if
they are significant then we have to explicitly solve for them or (b) if they are small enough we can
treat them as contribution to noise. If we decide to solve for the boundary concentrations on top
of all the surface fluxes, then the modelled concentrations are given as

\vec{c}_{\text{mod}} = \vec{c} {\text{mod}_ \text{f}} + \vec{c}_{\text{mod} \text{b}}
where $\vec{c}_{\text{mod}_\text{b}}$ is the modelled contribution from the boundaries.

The contribution from fluxes outside the modelled domain can be treated via their effect on
boundary concentrations $\vec{c} {\mathrm{B}}S. In order to assess the influence of the
boundary concentrations on the observed concentrations $c$ we need to determine the strength
of the connection between the two. This can be done by calculating the Jacobian which provides
the sensitivities of observed concentrations to boundary concentrations. The boundary
contribution can then be written as:

\vec{c} {\text{mod} \text{b}} = \mathbf{M}_{\mathrm{B}} \vec{c} _{\mathrm{B}}

where $\mathbf{M}_{\mathrm{B}}$ is the Jacobian. Depending on the elements of
S\mathbf{M}_{\mathrm{B}}$ we might need to include the boundary conditions in the network
design...”

“...We can use the following simple test to assess the effect of the boundary concentrations on the
network design:

\mathbf{C}_{\mathrm{b}} = \mathbf{M}_{\mathrm{B}} \mathbf{C}_{\mathrm{l}}
\mathbf{M}_{\mathrm{B}}*{\mathrm{T}}

where $\mathbf{C}_{\mathrm{1}}$ is the identity matrix. The diagonal elements of
S\mathbf{C}_{\mathrm{b}}$ provide us with the uncertainty contribution of the boundary
concentrations to the uncertainty of the observations. If they are small compared to the assumed
observational uncertainty, then the uncertainty contribution of the boundary concentrations can
also be considered small and we do not need to include them explicitly in the network design
process. This means that we could use Eq.(2) again and treat the boundary effects as contribution
to noise instead...”

References:



Nickless, A., Ziehn, T., Rayner, P. J., Scholes, R. J., and Engelbrecht, F.: Greenhouse gas network
design using backward Lagrangian particle dispersion modelling — Part 2: Sensitivity analyses and
South African test case, Atmos. Chem. Phys. Discuss., 14, 11301-11342, doi:10.5194/acpd-14-11301-

2014, 2014.



Response to Referee 2:

We would like to thank the referee for the review of this manuscript and their constructive
comments. Our response to each comment is below with the referee’s comments highlighted in
italic typeface. Relevant changes that we included in the manuscript are highlighted in bold typeface.
We also attached the revised manuscript where all changes are highlighted in bold typeface.

Ziehn and Coauthors evaluate the ability of different atmospheric CO2 observation networks to
constrain the CO2 fluxes of the Australian continent, by calculating the a-posteriori uncertainty
achived by the different candidate networks in a regional atmospheric transport inversion. For the
design of observational infrastructure, this is an important tool. The study provides interesting insight
for Australia, but may also be helpful for groups considering other parts of the world. Method and
findings are presented in a clear fashion. Possible limitations are discussed. | clearly recommend this
paper for publication.

Response: We are grateful for the overall positive assessment.

The only part | did not find convincing is the argumentation around Eq (14) (and the correspondiong
paragraph in Sect 4). While | fully agree to the conclusion that the boundary influence on the
presented results is small, | do not see at all how that can be concluded from Eq (14). Rather, to my
knowledge, the reason why the boundary influence on the a-posteriori uncertainties is small, is that
the local fluxes are related to concentration gradients within the regional domain, such that the
signals from the boundary largely cancels out. If the Authors decided to keep Eq (14) it would need
substantially more explanation.

Response: The uncertainty in the boundary can affect the concentrations measured at a certain
point. These boundary effects can be included in our modelling approach in two different ways: (a)
we can solve for them, or (b) we can treat them as contribution to noise. In the current study we
decided for the latter case. If the contribution from the boundary uncertainty to the observed
uncertainty is only minimal then we can safely ignore it. This is assessed with Eq. (14), which
provides an estimate of the uncertainty contribution of the boundary concentrations.

We will revise section 2.3 including the corresponding paragraph in section 4 and clarify how we
assess the contribution from the boundary concentrations on the observed concentrations by using
Eg. (14). Some of the changes we made are below (see also attached revised version where all
changes are highlighted).

“...The inflow from the boundary can affect the concentrations measured at a certain point. These
so called boundary effects can be included in our modelling approach in two different ways: (a) if
they are significant then we have to explicitly solve for them or (b) if they are small enough we can
treat them as contribution to noise. If we decide to solve for the boundary concentrations on top
of all the surface fluxes, then the modelled concentrations are given as

\vec{c}_{\text{mod}} = \vec{c}_{\text{mod}_\text{f}} + \vec{c}_{\text{mod} \text{b}}



where $\vec{c}_{\text{mod}_\text{b}}$ is the modelled contribution from the boundaries.

The contribution from fluxes outside the modelled domain can be treated via their effect on
boundary concentrations $\vec{c}_{\mathrm{B}}S. In order to assess the influence of the
boundary concentrations on the observed concentrations $c$ we need to determine the strength
of the connection between the two. This can be done by calculating the Jacobian which provides
the sensitivities of observed concentrations to boundary concentrations. The boundary
contribution can then be written as:

\vec{c} {\text{mod} \text{b}} = \mathbf{M}_{\mathrm{B}} \vec{c} _{\mathrm{B}}

where $\mathbf{M}_{\mathrm{B}}$ is the Jacobian. Depending on the elements of
S\mathbf{M}_{\mathrm{B}}$ we might need to include the boundary conditions in the network
design...”

“...We can use the following simple test to assess the effect of the boundary concentrations on the
network design:

\mathbf{C}_{\mathrm{b}} = \mathbf{M}_{\mathrm{B}} \mathbf{C}_{\mathrm{l}}
\mathbf{M}_{\mathrm{B}}*{\mathrm{T}}

where $\mathbf{C}_{\mathrm{l}}$ is the identity matrix. The diagonal elements of
S$\mathbf{C}_{\mathrm{b}}$ provide us with the uncertainty contribution of the boundary
concentrations to the uncertainty of the observations. If they are small compared to the assumed
observational uncertainty, then the uncertainty contribution of the boundary concentrations can
also be considered small and we do not need to include them explicitly in the network design
process. This means that we could use Eq.(2) again and treat the boundary effects as contribution
to noise instead...”

I’d further suggest to somewhat re-arrange sections 2 and 3, because both are on Methods. | suggest
to either combine them into one section, or to rename section 3 into "Methodology: Network design
for Australia". Further, | would move section 2.2 (plus the first paragraph of Sect 3.2) into an
appendix as it is unexiting technical detail not specific to network design and not actually relevant to
understanding the paper. Moreover, there are some repetitions that could be removed (e.g., part of
page 7569 paragraphs 1 and 2).

Response: We agree with the referee that section 2 and 3 can be combined in one section and we
will do this in the revised version. However, we do not agree that section 2.2 is only technical detail
not specific to network design. In fact, section 2.2 is a key part of the methodology that we introduce
in this manuscript. It shows how the particle counts from any Lagrangian particle dispersions model
run in backward mode can be used to derive the source-receptor relationship for a point source. We
believe that section 2.2 is compact and relevant enough to be part of the main paper. We will
revise paragraphs 1 and 2 on page 7569 to remove any repetition.

We combined section 2 and 3. Please see also attached revised version where all changes are
highlighted in bold typeface.



p7559 [ 10: GLOBALVIEW is not a measurement program. Consider to replace "consists" by
"summarizes data"

Response: We agree with the referee and this will be corrected as suggested in a revised version.

p7560 1 9: The word "cost function" (here and further down) is used for two separate items (Eqs
(17)/(18) versus Eq (3)). It would be better to use different wording.

Response: We agree that this might be confusing for the reader and we will highlight the difference
in the two cost functions (inversion versus optimization) in a revised version of the manuscript.

“...The network design is usually performed in two steps: (1) running an atmospheric transport
model for a given network in backward mode to evaluate the cost function for the surface flux
inversion and (2) running an optimization algorithm to minimize the cost function for the network
design...”

“...Cost function for the network design..”

p7569122: Is 4 weeks enough? How long does it take the air to travel across Australia?

Response: We consider four weeks to be long enough. In general, the time period should be large
enough to capture the range of relationships between the sources and the observations. In our case
we assume that sources change every week (weekly fluxes). Diffusion is considered to be fast
enough, so that the influence of a surface flux from a previous week has only a small influence on a
current observation. We will also add this explanation to the manuscript.

“...We assume that sources change every week and flux uncertainties are therefore calculated on
a weekly basis...”

p7571 19: Mention whether or not the ocean fluxes are adjusted in the inversion. I actually think the
should, because otherwise the a-posteriori uncertainties of the land fluxes will be unrealistic.

Response: Ocean uncertainties are usually quoted as a factor of ten smaller per m* than the land
uncertainties (i.e. Chevallier (2007)). However, because of the size of the ocean they do matter in
global inversion studies. In our case, the modelled domain contains only a small ocean part.
Nevertheless, the contribution of the ocean fluxes to the posterior covariance matrix and the
optimal location of stations is investigated for a South African test case in part 2 of this paper
(Nickless et al. (2014)).

“...0cean flux uncertainties are not considered in this study, because they are usually by a factor
of ten per unit area smaller than the land flux uncertainties (Chevallier, 2007). Due to the small
amount of ocean grid cells in our modelled domain the impact of the ocean flux uncertainties is
expected to be small. Nevertheless, the contribution of the ocean fluxes to the posterior



covariance matrix and the optimal location of stations is investigated in Part 2 (Nickless et al.,
2014) for a South African test case...”

Sect 3.3: You later only use Eq (18). | think a rationale needs to be given for this choice. How different
would the results be when using Eq (17)?

Response: The reason for using Eq(18) instead of Eq(17) is that we are interested in the uncertainty
reduction of the total flux estimate instead of considering individual fluxes independently from one
another. This will be clarified in a revised version of the manuscript. Both cost functions result in an
optimal network and the difference of using one cost function over the other is investigated in a
companion paper (Nickless et al., 2014).

“...In this study we use Eq.(19) because our focus is on the uncertainty reduction of the total flux
estimate. The impact on the optimal network by using one cost function over the other is
investigated in Part 2 (Nickless et al., 2014)....”

p 7572 | 14-17: Put to appendix as well.

Response: We decided to remove those lines from the manuscript.

p7573127 .. p757414: Put to Methods.

Response: The corresponding paragraph will be removed and merged into the methods section in a
revised version of the manuscript.

p7580 1 2: "estimates" probably means "uncertainties".

Response: Yes. This will be corrected in a revised version of the manuscript.

Typos:
p 75651 1: "overbar"
p7580 1 24: "modelled"

Response: The spelling mistakes will be corrected in a revised version of the manuscript.

References:

Nickless, A., Ziehn, T., Rayner, P. J., Scholes, R. J., and Engelbrecht, F.: Greenhouse gas network
design using backward Lagrangian particle dispersion modelling — Part 2: Sensitivity analyses and



South African test case, Atmos. Chem. Phys. Discuss., 14, 11301-11342, doi:10.5194/acpd-14-11301-
2014, 2014.

Chevallier, F.: Impact of correlated observation errors on inverted CO2 surface fluxes from OCO
measurements, Geophys. Res. Lett., 34, L24804, doi:10.1029/2007GL030463, 2007.
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Abstract

This paper describes the generation of optimal atmospheric measurement networks for deter-
mining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dis-
persion model is used in reverse mode together with a Bayesian inverse modelling frame-
work to calculate the relationship between weekly surface fluxes, comprising contributions
from the biosphere and fossil fuel combustion, and hourly concentration observations for
the Australian continent. Meteorological driving fields are provided by the regional version
of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km reso-
lution at an hourly time scale. Prior uncertainties are derived on a weekly time scale for
biosphere fluxes and fossil fuel emissions from high resolution model runs using the Com-
munity Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data
Assimilation System (FFDAS), respectively. The influence from outside the modelled do-
main is investigated, but proves to be negligible for the network design. Existing ground based
measurement stations in Australia are assessed in terms of their ability to constrain local flux
estimates from the land. We find that the six stations that are currently operational are already
able to reduce the uncertainties on surface flux estimates by about 30 %. A candidate list of
59 stations is generated based on logistic constraints and an incremental optimization scheme
is used to extend the network of existing stations. In order to achieve an uncertainty reduction
of about 50 % we need to double the number of measurement stations in Australia. Assuming
equal data uncertainties for all sites, new stations would be mainly located in the northern and
eastern part of the continent.

1 Introduction

Inverse modelling has been used extensively over the last two decades in carbon cycle research
to estimate surface fluxes of carbon dioxide (CO32) on multiple temporal and spatial scales
(i.e. [Enting and Mansbridge, |1989; Rayner et al. |1999; Rodenbeck et al., 2003; |Chevallier
et al., 2010), employing mainly flask and in situ data. These observations include measurements
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from surface stations, tall towers, air planes and ships. More recently total column data (i.e.
from the Total Carbon Column Observing Network (TCCON), Wunsch et al., 2011) have also
been included in inversion studies (Chevallier et al., [2011). The main focus in most studies
has been on deriving CO; fluxes from atmospheric CO4y concentration observations through
the inversion of an atmospheric transport model at the global scale for large land regions or
a coarse grid (Peylin et al., [2013)).

A global network of ground based measurement stations has been developed over the years to
monitor atmospheric CO4 concentrations. The GLOBALVIEW (GLOBALVIEW-COs) 2008))
data product, for example, summarises data for over 100 stations using mainly flask samples.
Flask measurements can be made with high accuracy and precision and the GLOBALVIEW
product states uncertainties of 0.5 to 1 ppm depending on the station’s location. However, flask
samples are usually only provided weekly or fortnightly which results in a poor temporal res-
olution and sampling selected for background conditions. This is partly compensated for by
continuous in situ measurements which are becoming increasingly available from a number of
stations world wide. Nevertheless, the sampling network is still too sparse with many gaps (i.e.
in the tropics) to derive CO4 sources and sinks at a local scale due to the under-determined
nature of the inverse problem (i.e. number of sites is smaller than the number of grid cells)
(Kaminski et al., [1999). Many inversion studies therefore focus on the estimation of fluxes for
large regions of the continental or sub-continental scale. A unique solution of the inverse prob-
lem can be obtained by including prior information on the CO4 surface fluxes, which can be
derived for example from high resolution model simulations that include the terrestrial bio-
sphere and ocean fluxes (Kaminski et al.| [1999).

Another issue that arises from the existing network of sampling stations is that they are mainly
located at remote sites away from strong sources and sinks so that they can sample clean (well
mixed) air. Key stations such as Mauna Loa, Hawaii (Keeling et al., [1976) or Cape Grim, Aus-
tralia provide valuable long term time series of atmospheric COy concentrations which are
crucial for monitoring global atmospheric trends (Francey et al.,|[2013)), but they are not ideally
placed to detect local changes. In fact, their focus is sampling under baseline conditions, so that
any influence from local land sources is minimized.
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In order to derive reliable estimates of CO5 sources and sinks at a local scale the exist-
ing network of CO2 measurement stations needs to be extended. Network design studies
focus on optimal extensions of the existing network by considering potential stations where
no data are available yet. The network design is usually performed in two steps: (1) run-
ning an atmospheric transport model for a given network in backward mode to evaluate
the cost function for the surface flux inversion and (2) running an optimization algorithm
to minimize the cost function for the network design.

One of the first network design studies for CO, was performed by Rayner et al.|(1996) where
they used Bayesian synthesis inversion and simulated annealing to optimize the location of at-
mospheric COy and §'3C measurements to constrain the global carbon budget. The network
was optimized for the uncertainty variance in global ocean uptake using the GISS tracer trans-
port model at a very coarse resolution (24 x 36 gridpoints). |Rayner et al.| (1996) also added
one station at a time successively placed at every model grid point to identify the global min-
imum for one extra station. This is known as incremental optimization, described in detail by
Patra and Maksyutov| (2002), who preferred this method over simulated annealing for its com-
putational efficiency and to provide a continuous evolution of the observation network. Patra
and Maksyutov| (2002) demonstrated that both methods perform equally well using a semi-
Lagrangian model at the global scale with the resolution set to 2.5° x 2.5°. Flux uncertainties
were calculated for 11 ocean and 11 land regions using a base network of 115 stations from the
GLOBALVIEW data set and a list of 446 pre-selected potential stations. Incremental optimi-
sation was also used by [Law et al.| (2004) to identify where sites are best located to minimize
the uncertainties on annual mean flux estimates for 12 subregions of Australia. The inversions
were performed using response functions for 116 regions globally with the focus on Australia
represented by 44 grid points which were treated as potential new locations for the network
extension.

In this study we aim to improve the methodology used in Law et al.[(2004) in order to
assess how the existing network of CO5 observing stations in Australia can be extended to
minimize uncertainties in CO» flux estimates for Australia. The novelty of our approach
is to derive the atmospheric transport matrix, which is required to relate surface fluxes
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to concentration observations, from a Lagrangian particle dispersion model run in back-
ward mode. Running the model in backward mode is more efficient in the network design
case, because the number of sources exceeds the number of receptors by far. In addition
to the transport matrix, we require only the error statistics of the data but not their actual
values, in order to calculate the optimal network. This allows us to extend or create a net-
work of stations where no data are available. However, as with all network design methods
based on inversion modelling our approach is dependent on specific choices made in the
set up of the estimation problem such as the resolution at which fluxes are estimated or
how the error statistics are represented. The error statistics are usually provided in the
form of a covariance matrix, which is difficult to obtain, but it has a large impact on the
network design (Rayner) 2004).

When applying our new approach to Australia as a test case, we are using a list of
candidate stations instead of evaluating optimal locations on a regular grid. This is more
efficient than treating every grid point as a potential location. It also has the advantage,
that we can easily take existing infrastructure into account, which will consequently re-
sult in a more realistic and cost effective network extension. We explore the regular grid
approach in the companion paper (Nickless et al., [2014). Although we aim to design a
cost effective network by pre-selecting potential stations, we do not intend to perform a
comprehensive economic evaluation of those stations. This would require specific informa-
tion with regards to actual costs in setting up measurement equipment and in maintaining
a site. Costs may also differ greatly between different sites and a thorough cost analysis
would be required, which is beyond the scope of this paper. However, the approach that we
introduce here for the network design is generic, allowing for the optimisation of a number
of properties of the network (including cost efficiency). It is also possible to implement the
network design in two stages: (1) perform a general search based on a regular grid and (2)
perform a specific search accounting for the costs associated with setting up new sites.

In contrast to many previous studies that were mainly using flask measurements from GLOB-
ALVIEW, we consider continuous measurements at an hourly time scale for existing and poten-
tial stations. This allows us to derive CO3 fluxes at a high spatial and temporal resolution.
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This paper (Part 1) develops the generic framework for the network design and in-
troduces the Lagrangian particle dispersion model which we run in backward mode to
obtain the source-receptor relationship. We then apply this concept to the Australian con-
tinent as a test case. In a first step, we evaluate the existing network of COs ground based
measurement stations in terms of its ability to provide reliable flux estimates. In a second step,
we demonstrate how the existing network in Australia can be extended in an optimal way.

A companion paper (Part 2, Nickless et al., 2014) focuses mainly on sensitivity anal-
ysis of parameters and choices necessary for running the optimal network design and
their consequences on the results. This will be demonstrated for a South-African test case,
where the optimal network is created on a regular grid using continuous measurements
from five new instruments.

2 Methodology

The network design is based on a combination of Bayesian inverse modelling methodology
applied to an atmospheric transport model and the optimization of a cost function. For
a given network the cost function is calculated from the posterior statistics of an inversion
to infer CO5 surface fluxes from CO5 concentration measurements. The optimization
will then find the optimal network by minimizing the cost function through altering the
given network by adding or removing new stations.

The observed concentration (c) at a particular station at a particular time can be ex-
pressed as the sum of different contributions:

c=ct+cp+c (D

where c; is the contribution due to surface fluxes within the modelled domain, c;, the con-

tribution from outside the region of interest (boundary inflow) and c; is the contribution

from the initial conditions. For the network design the initial conditions are neglected,

because they are very well constrained by the observations and their contribution to the

flux uncertainty is therefore thought to be small. The contribution from the boundaries
6
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has to be assessed and if the influence on the flux uncertainties is not negligible, then the
boundary conditions have to be included in the network design process as well.

2.1 Surface flux inversion

We use a Bayesian synthesis inversion scheme (Tarantola) [1987; Enting, 2002) which al-
lows us to infer CO- surface fluxes from CO2 measurements. A simple linear expression
can be used to model the relationship between the surface fluxes and concentrations:

Cmod = Cmod; = Tf ()

where cpoq is the vector of the modelled concentrations and f the vector of the (unknown)
surface fluxes. T is the transport or sensitivity matrix which needs to be determined. At
this stage we do not include any influence from outside the domain and therefore assume
that the modelled concentrations cpeq are equal to the the concentrations cy,0q, Which are
derived from the surface fluxes only. If we assume a Gaussian error distribution for the
surface fluxes and concentrations we can obtain the maximum likelihood estimate for f
by minimizing the cost function:

J(f) = % ((cmoa = €)TCZ " (emoa — €) + (F = £0)TCFL(f — o) 3)
where C. is the error covariance matrix of the observations, vector f; contains prior
flux estimates, vector f represents predicted fluxes and C¢ is the prior error covariance
matrix of the surface fluxes. The cost function therefore ensures that we simultaneously
minimize the mismatch between modelled concentrations and measurements and the mis-
match between prior flux estimates and predicted fluxes.

The solution of the optimization problem expressed through the cost function in Eq. (3) pro-
vides optimal surface fluxes based on the observations provided and also posterior uncertainties
for the CO3 fluxes expressed through the posterior covariance matrix C¢. For the network de-
sign approach we are only interested in the latter, because our aim is to find a network (set of
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observations) that minimizes the CO2 flux uncertainties. The posterior covariance matrix can
be calculated by either of the two equivalent expressions (Tarantola, [1987):

-1
Cs = (T"C;'T+Cpl) @
= Cy, — C, T" (TCy, T" +C,) " TCy, (5)

As noted by Hardt and Scherbaum| (1994)), the calculation of the posterior flux uncertainties
does not depend on a particular value of the surface fluxes or concentration observations. It only
depends on the transport model, the prior flux uncertainties and observational uncertainties.
This has the advantage that we can evaluate potential stations for which we do not have real
observations yet and without the need to generate synthetic data.

2.2 Lagrangian Particle Dispersion Model (LPDM)

The relationship between surface fluxes and atmospheric concentrations is embodied in the
transport matrix T. A common approach in deriving T is to use a Lagrangian stochastic parti-
cle dispersion model. The conventional approach is to run the model in forward mode, where
particles are released at the surface (source) and tracked until they have passed the measure-
ment station (receptor), which means that all particles need to be tracked even if they do not
pass through the receptor. However, if the number of sources exceeds the number of receptors,
then it is more efficient to run the Lagrangian model in reverse or backward mode, where the
particles are released at the receptor and tracked backwards in time to any potential surface
source. The source-receptor (s-r) relationship can then be used to derive the transport matrix T.

Here we use the Lagrangian Particle Dispersion Model (LPDM) (Uliasz, [1994) which we run
in reverse mode for each potential and existing measurement station we would like to include in
the network design process. Particles are released (from the known or proposed measurement
height) every 20s for a total of four weeks for different seasons of the year and the particles
position is recorded at 15 min intervals. Particles that are near the surface are counted for each
grid cell to determine the surface influence or sensitivity. This can be used to generate a footprint
for each station, which shows the area of influence and also to calculate the s-r relationship
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which forms the transport matrix T. Here, we follow Seibert and Frank| (2004) to derive the
elements of that matrix.

According to Seibert and Frank| (2004)) the s-r relationship for a point source (one grid cell
source) is given as:

ox ATV < Cin )
6(]zn Htot Pin ’

(6)

where Y is a mass mixing ratio (receptor) and ¢;,, is a mass flux density (source). The abbrevia-
tion o Stands for the total initial mass released at the receptor in a time interval, c;,, is the mass
concentration and p;,, the air density. The index in indicates the ith grid element and the nth
time interval of length AT. The overbar indicates temporal averaging over the time interval
AT and V; is the volume of grid element 3.

The LPDM output does not provide mass concentrations (i.e. ¢;,,) for a grid cell, but the
number of particles near the surface. However, the number of particles in a given grid cell is
directly related to their contribution in mass. Therefore, we do not need to assign a mass to
the particles, but instead we can express the mass of the particles as a function of the number
of particles, and after cancelling terms the particle count can be used directly to express the
source-receptor relationship in the following way:

Nin X CinV; (7)
Niot o figor (8)
with IV;,, the number of particles in a grid element (source) at each time interval AT and N the

total number of particles released during a time interval. Using the number of particles instead
of their mass concentration in Eq. (6)), we get:

ox _ AT (Nm)
a%n Pin Niot ’

)
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Note that our s-r relationship now becomes independent of the grid cell volume V;. The
density of air can be calculated as:

AP
Pin = — (10)
9

where AP is the pressure difference in the surface layer and g is the gravity of Earth.

We also apply a conversion from mass mixing ratio to volume mixing ratio. This is simply
done by multiplying with the ratio of the molecular mass of air to the molecular mass of carbon,
which is our quantity of interest. The elements of the matrix T are now calculated as:

= == %108 11
Bim AP \ Nt J12 7707 (1)

with Y expressed in ppm. For the network design we are interested in weekly fluxes of car-
bon divided into day and night time contributions, which reflects the way a flux inversion is
usually done. This means that we have to provide the particle count N, as the sum over one
week (AT = 1 week for day and night, divided at 6 a.m. and 6 p.m. Australian Eastern Time).
Therefore, the mass flux density ¢;,, in Eq. has units of kg Cm~2 week ! (day/night).

We set the surface layer height to 50 m which corresponds to approximately 600 Pa (A P).
If we consider well mixed conditions, then the s-r relationship should be independent of the
thickness of the surface layer as long as the layer is not too deep (Seibert and Frankl 2004).
This is further investigated in the companion paper (Nickless et al.,[2014).

2.3 Influence from outside the modelled domain

The inflow from the boundary can affect the concentrations measured at a certain point.
These so called boundary effects can be included in our modelling approach in two differ-
ent ways: (a) if they are significant then we have to explicitly solve for them or (b) if they
are small enough we can treat them as contribution to noise. If we decide to solve for the
boundary concentrations on top of all the surface fluxes, then the modelled concentrations
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are given as

Cmod = Cmod; T Cmod, (12)

where cpoq, is the modelled contribution from the boundaries.

The contribution from fluxes outside the modelled domain can be treated via their effect
on boundary concentrations cg. In order to assess the influence of the boundary concen-
trations on the observed concentrations c we need to determine the strength of the con-
nection between the two. This can be done by calculating the Jacobian which provides the
sensitivities of observed concentrations to boundary concentrations. The boundary con-
tribution can then be written as:

Cmod, = Mgcg (13)

where My is the Jacobian. Depending on the elements of M we might need to include
the boundary conditions in the network design.

The elements of the Jacobian for the boundary conditions can be calculated by accounting for
the number of particles that disappear from the model domain during the simulation. LPDM can
be set up to write out the location and time when particles leave the domain and one can decide
on a spatial and temporal resolution (Lauvaux et al.,[2012)). Here, we consider four boundaries
(north, south, east and west) and we calculate the sensitivity of hourly observed concentrations
to weekly boundary concentrations. In this way the Jacobian My for each site has 32 columns
(4 boundaries x 4 weeks x 2 (day/night)) and 672 rows (hourly observations over four weeks)
with its elements calculated as:
0Cg Np

— 14
9Cx ~ N 14

where Ny is the number of particles leaving the domain at one of the four boundaries during

one week (day/night) and N is the total number of particles released during one hour. Ideally,

we need to calculate Mp for each station and then use a criterion to assess whether or not the

boundary conditions affect that station. Note that we are neglecting the influence of the top
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boundary of the domain on the observations. This is likely to be both small and homogeneous
(hence indistinguishable from the initial condition).

We can use the following simple test to assess the effect of the boundary concentrations
on the network design:

C, = MgC M (15)

where C; is the identity matrix. The diagonal elements of C;, provide us with the uncer-
tainty contribution of the boundary concentrations to the uncertainty of the observations.
If they are small compared to the assumed observational uncertainty, then the uncertainty
contribution of the boundary concentrations can also be considered small and we do not
need to include them explicitly in the network design process. This means that we could
use Eq. (2) again and treat the boundary effects as contribution to noise instead.

The reason for assessing the effects of the boundary conditions first instead of using
Eq. (I2) as a standard case is that if we need to include them in the inversion, then we
would have to solve for the boundary concentration cp in addition to all the surface fluxes.
This not only means that we need to combine the transport matrix T and the Jacobian Mgy
into a new expanded transport matrix which has a much larger dimension, but we would
also need to provide prior estimates and uncertainties for the boundary concentrations.
These are hard to assign. The optimal network should seek to reduce the uncertainty of
the surface fluxes, and the improvement of the tracer transport in the global circulation
models should be left as a separate problem. Since it is quite challenging to provide sensi-
ble estimates for the prior uncertainties of the boundary concentrations we would like to
include them only if required (i.e. if it changes the outcome of the network design).

2.4 Network design for Australia

For the network design we run LPDM in backward mode for each station that we would

like to include in this study. We start by assessing the stations in the base network in terms

of their ability to reduce the uncertainties on net CO5 flux estimates. We then add new

stations from the candidate list to the base network using an optimisation scheme. Finally,
12

IodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



we compare this optimal network with a network that was designed from scratch (i.e. we
assume no existing stations).

2.4.1 Ground based measurement stations

Australia has nine established ground based measurement stations (see Fig.[Th and Table[I)) run
by CSIRO or the University of Wollongong. We exclude Cape Ferguson and Otway because
they currently provide only flask data and we also exclude Tumbarumba because it is not op-
erational at this time. The remaining six stations provide continuous CO2 measurements and
form our base network. From the location of the six stations (Fig.[Tj) it is obvious that Australia
as a whole is not very well covered since the site locations were not determined with the goal
of estimating Australian CO; fluxes. Rather the sites consist of (a) Global Atmosphere Watch
(GAW) locations, focussed on measuring baseline air, (b) TCCON locations, (c) locations of
the institutions running the sites and (d) locations linked to specific projects. In order to esti-
mate CO4 fluxes from the terrestrial biosphere we require stations that are able to pick up the
signal from local sources. For the existing network this will depend on the wind direction and
we will show later to what degree the base network is already able to reduce the uncertainties
on Australian COs flux estimates.

In order to improve the accuracy of CO5 flux estimates for Australia we need to add new
stations to the base network. The optimal location of new stations is determined by minimising
a cost function (see Sect. [2.4.3)) which is calculated for a number of potential locations. There
are several ways of setting up a list of potential stations or candidate stations. The simplest way
is to assign the stations according to a regular grid. However, this might lead to a very large
number of potential stations of which many may be located in inaccessible areas.

To design a more realistic and cost efficient network, we can include logistic constraints such
as the availability of supporting infrastructure as a limiting factor in the selection of stations
for the candidate list. For example, one could use the location of airports or wind farms in
Australia. There is also a large number of telecommunication towers along main roads which
could potentially be used. Here, we use the location of the Australian Bureau of Meteorology
weather watch radar stations (NRL|[2014) as potential stations. This guarantees that all stations
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are accessible by road and maintained. The list of all 59 potential stations can be found in
Table [2] with their location shown in Fig. [Tp.

2.4.2 Driving data and prior uncertainties

LPDM requires meteorological driving fields which are provided in this study by the re-
gional version of the Australian Community Climate and Earth System Simulator (ACCESS-
R) (NMOC, 2013)) at 12 km resolution for the Australian region at an hourly time scale. Driving
data include the 3-D wind field, temperature and turbulent kinetic energy (TKE) at 39 vertical
levels up to 18 km in height as well as surface pressure. These fields are provided for one exam-
ple month (4 weeks) for Southern Hemisphere (SH) winter (July) and summer (January).

We also need to derive prior surface flux uncertainties for Australia and an estimate of
the observational uncertainties (i.e. accuracy of concentration measurements). In terms of
the prior surface flux uncertainties we consider contributions from the biosphere and from
fossil fuel combustion. We assume that sources change every week and flux uncertainties
are therefore calculated on a weekly basis.

The biosphere flux uncertainties (expressed as the standard deviation) are estimated using the
following simple relationship (Chevallier et al., 2010):

ongp = min(4g Cm~2 day ', NPP) (16)

where NEP is the net ecosystem productivity (net carbon flux) and NPP the net primary pro-
ductivity. NPP is derived for the Australian continent from BIOS2 model simulations (Haverd
et al, [2013) at a daily time scale (Fig. 2 and c). BIOS2 is a modelling framework, that uses
the Community Atmosphere Biosphere Land Exchange (CABLE) model (Wang et al., [2010)
at 5 km resolution (0.05° x 0.05°). We then aggregate the high resolution fluxes to the resolu-
tion that we use for the network design (1.8° x 1.8°) and estimate the uncertainties for NEP
according to Eq. for each week divided into day and night time (Fig.[2b and d).

Fossil fuel uncertainties are derived from the Fossil Fuel Data Assimilation System (FF-
DAS) (Rayner et al., [2010; |Asefi-Najafabady et al., 2014). We use ten realisations from
FFDAS version II at 0.1° x 0.1°, aggregate them to our network design resolution and
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then calculate the uncertainties from the ten realisations. Due to the fact, that fossil fuel
fluxes are derived on the basis of power plant locations and night lights they are very local-
ized and vary a lot in magnitude (Fig.[3a). When we aggregate those high resolution fluxes
to our 1.8° x 1.8° network design resolution we “smooth out”” most of the very large fluxes
(Fig. 3c). Consequently, the variation between the ten realisations of the aggregated fluxes
also becomes smoother which leads to only small uncertainties (Fig.[3d). As a result, fossil
fuel flux uncertainties are much smaller (< 0.3 g C m—2 week ') than the uncertainties
from the biosphere fluxes and their influence will also be small. Figure 3b shows the uncer-
tainties for the ten realisatiosn based on the original 0.1° x 0.1° resolution, which are much
larger for individual grid cells than the uncertainties calculated for the aggregated fluxes.
If we would perform inversions for only a small region of Australia using a much higher
resolution, then the fossil fuel uncertainties would become much more important and, de-
pending on the resolution, they might even dominate the overall surface flux uncertainties.
However, due to computational limitations we decided not to increase the resolution for
the network design in this study. The influence of the spatial surface flux resolution on the
outcome of the optimal network design is investigated in Part 2 (Nickless et al., 2014).
Finally, we estimate the prior error covariance matrix of the land surface fluxes as:

Cfo = diag (lf o (bg2 + uaz)) (17

where vector ¢ contains the land fractions, vector b2 the variance for the biosphere fluxes and
vector u,2 the variance for the fossil fuel emissions for each grid cell and each week (separated
into day and night time). The operator “diag” returns a diagonal matrix with the vector elements
as the diagonal, which means that we assume no correlations among different fluxes. The effect
of correlation length between different fluxes is investigated in Part 2 (Nickless et al., 2014).
Multiplying by the land fractions guarantees that the prior uncertainties for coastal grid cells
are scaled accordingly and ocean only grid cells are set to zero. This is important, because in
the network design we want to focus on the reduction of uncertainty for the land fluxes only.
Ocean flux uncertainties are not considered in this study, because they are usually by a
factor of ten per unit area smaller than the land flux uncertainties (Chevallier}, 2007). Due
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to the small amount of ocean grid cells in our modelled domain the impact of the ocean
flux uncertainties is expected to be small. Nevertheless, the contribution of the ocean fluxes
to the posterior covariance matrix and the optimal location of stations is investigated in
Part 2 (Nickless et al.,[2014) for a South African test case.

Observational uncertainties are set to 2 ppm for all existing and potential stations (except in
one sensitivity test). Again, the uncertainties are specified in terms of their standard deviation
and we assume no correlations among the uncertainties of different observations. In this way
C. also becomes a diagonal matrix.

2.4.3 Cost function for the network design

We must optimize some scalar quantity derived from the posterior covariance. Rayner et al.
(1996) noted the sensitivity of the optimal network to this choice. Common options are the
average uncertainty of individual fluxes (the trace of the covariance, cost function Jcy) or the
uncertainty of the integrated flux (the sum of all elements, cost function Jce):

> ¢y (18)
=1

19)

where n is the number of elements in the diagonal of the matrix C¢. In this study we use
Eq. (I9) because our focus is on the uncertainty reduction of the total flux estimate. The
impact on the optimal network by using one cost function over the other is investigated in
Part 2 (Nickless et al.,2014).

If we start the optimisation from the base network, then the transport matrix always includes
the s-r relationship for our six stations in the base network (see Table[I]). We can then add the s-r
relationship for the three remaining existing stations and/or for the stations from the candidate
list and construct C. In order to find the set of stations that minimizes our cost function we
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apply the incremental optimization, where we add only one station at a time from the candidate
list to the base network and calculate Cy. We choose the station that gives us the smallest
cost function value and add it to the network and also remove it from the candidate list. We
than repeat the process until our optimal network has reached a certain maximum size or the
candidate list is empty.

We assume that observations (COs concentration measurements) will be available from all
stations from the candidate list and the base network at an hourly time scale. The s-r relationship
we calculate with LPDM therefore represents the sensitivity of hourly observations to weekly
fluxes.

We evaluate the different networks in terms of the uncertainty reduction defined as:

jCe

Ur=1—-
JCeprior

(20)

where jCe is the optimal cost function value and Jce prior the cost function value based on the
prior uncertainties. Instead of Jce prior We could also use Jce base Which is the cost function value
for the base network.

3 Results and discussion

After running LPDM for all existing and potential stations we calculate the influence func-
tion or sensitivity matrix for each of the stations. We can also sum over the influence func-
tions for the whole month and this provides us with the surface footprint for each station.
Figure[da and b present the footprint for Cape Grim as an example for an existing station
from the base network for July and January respectively. It can be seen that the area that
is observed by Cape Grim differs by a large amount between the two seasons. In SH sum-
mer, Cape Grim samples mainly clean air coming from the Southern Ocean. The influence
from the land is very small. However, in SH winter the dominant wind direction varies and
Cape Grim is sampling air that may also be influenced by surface fluxes from the south-
eastern part of Australia. The surface footprint for a potential station in Alice Springs is
17
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presented in Fig. dc and d for both seasons. Due to its central location, a station in Alice
Springs would be able to detect the influence of potential surface fluxes from a large part
of the Australian continent. However, from the surface footprint alone we cannot estimate
how much a station at Alice Springs would help us to reduce the uncertainties on net CO-
fluxes.

We then use Eq. (15) to decide whether or not we have to include the boundary condi-
tions in our inversions explicitly or if we can treat them as contribution to noise. In order
to do this, we investigate existing and potential stations close to the north, south, east and
west coast of Australia (i.e. Darwin, Aspendale, Arcturus and Geraldton). All diagonal
elements of C,, turn out to be small for those stations, which means that the uncertainty
contribution of the boundary concentrations to the uncertainty of the observations can be
considered negligible. Therefore, we decided not to include the boundary concentrations
in the network design process. Note, that this would change for a smaller domain or one
where the large-scale concentrations were more uncertain.

3.1 Base network

Currently, there are six ground based measurement stations in Australia that measure CO2 con-
tinuously. As discussed earlier some of these stations were designed to measure well-mixed air
(i.e. Cape Grim) or background concentrations for detecting fugitive emissions (i.e. Arcturus).
However, the surface footprint of Cape Grim for example indicates that our existing stations
are also able to pick up the influence from the land depending on the dominant wind direction.
Here, we test how useful our existing stations are in terms of estimating CO3 fluxes from CO;
concentration measurements. In a first experiment, we assume that all stations provide the same
quality of measurements and we set the data uncertainty to 2 ppm for each station. In a sec-
ond experiment, we assign a lower uncertainty to measurements from Cape Grim and a higher
uncertainty to measurements from Aspendale and Wollongong.

Table [3]shows the ranking and uncertainty reduction for the first experiment for all stations in
the base network for the two seasons individually and together. We use Jc. as a cost function,
which means that we include all elements of the posterior covariance matrix. Incremental op-
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timization is used to determine the ranking of the stations and their overall contribution to the
uncertainty reduction. We start with an empty network and then add the station which provides
the greatest reduction in uncertainty. We repeat this until all six stations have been added to the
network, which then forms the base network.

The results vary for the two seasons. We get a larger reduction of uncertainty in SH winter
(July) than in SH summer (January) due to the difference in dominant wind direction and due to
the fact that the prior biosphere flux uncertainties are also larger in July (see Fig. [2). However,
for both seasons individually and together, Darwin, Wollongong, Arcturus and Aspendale rank
as the four most important stations in our base network. These stations are already able to reduce
the uncertainties on CO2 flux estimates by more than 27 %. Gunn Point and Cape Grim are the
least important stations. However, this is misleading if one is only assessing the ranking as
presented in Table[3] In fact, Gunn Point alone provides about the same reduction in uncertainty
as Darwin (12.47 % vs. 12.81 %), because these two stations are located very close together.
Due to the fact that the uncertainty reduction for Darwin is slightly larger than the one obtained
from Gunn Point, Darwin is added first to the network which makes Gunn Point “redundant”.
Cape Grim on the other hand provides the smallest reduction in uncertainty even when assessed
on its own in an empty network, because Cape Grim samples the “cleanest” air of all the six
stations.

The ranking of the existing stations in the base network also depends on the observa-
tional error assigned to those stations. As has been noted elsewhere (e.g. [Rayner et al.}
2010), this uncertainty includes not only the error in the actual measurement but the dif-
ficulty in simulating it within the model used in the inversion. In a sensitivity experiment,
we set the the observational uncertainty for Cape Grim to 1 ppm, because this is Aus-
tralia’s primary ground based measurement station and we expect a high accuracy for the
data. We increase the observational uncertainty for Aspendale and Wollongong to 3 ppm,
because these two stations are located close to large sources of fossil fuel emissions. We
keep the uncertainty at 2 ppm for all remaining stations. The new ranking of the exist-
ing stations can be found in Table [d] It can be seen, that Cape Grim now becomes one of
the most important stations in the base network. In contrast, Aspendale and Wollongong,
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which were ranked high in the first experiment, become less important. This highlights the
sensitivity of the network design to the observational uncertainty assigned to each station
with consequences for interpreting the results from the network design.

The small uncertainty reduction that we achieve in SH summer suggests that the current
network is not suitable for estimating biosphere fluxes for Australia for that season. Overall,
the six existing ground based measurement stations are able to reduce the uncertainties on COq
flux estimates for Australia by nearly 30 % in both experiments for the two seasons together.
This is an interesting result, since most stations were not primarily designed to measure the
contributions from land fluxes.

3.2 Extended network

We extend the base network by one station at a time using the incremental optimization for
each season individually and for both seasons together. We add a total of six new stations from
the candidate list and the results are presented in Table [5] The results show different network
extensions for the two seasons with only one station (Moree) in common. The base network
already provides a substantial reduction in flux uncertainties for the SH winter season (43 %)
and the six new stations allow for a further 18 %. Stations are mainly added in the northern part
of the Australian continent (see Fig.[Sh). In the SH summer season, the base network can only
provide an uncertainty reduction of 10 %, but with the new stations added we can achieve an
additional 30 %. The six new stations are mainly added in the north-eastern part of Australia
(see Fig.[5p), filling the gaps between existing stations.

If we focus on the results for the network considering both seasons together, the first four
stations added to the base network are the same as for the SH summer case, although in a slightly
different order. This is in agreement with the fact that new stations are able to provide a greater
reduction in uncertainty for the SH summer than for the SH winter. The two additional stations
(Longreach and Tennant Creek) in the extended network for both seasons are located in the
central-eastern part of the country (see Fig. [Sk).

Adding six new stations to the base network would lead to a doubling in the number of
ground based measurement stations in Australia and we would be able to achieve a reduction
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on the prior uncertainties of CO3 flux estimates of more than 50 %. It is worth pointing out, that
Tumbarumba (ranked third in the optimization see Table [5)) is actually not a new station from
the candidate list. Tumbarumba is an established station that is currently not operational (see
Table [I). Tumbarumba used to measure CO2 continuously and the network design indicates
that it has great value for estimating local land fluxes.

3.3 New network

Another interesting scenario is to perform the network design by starting from an empty network
(i.e. assume we do not have existing ground based measurement stations). In this way we will
be able to create the most efficient network and be able to compare it with the extended network
from the previous section that is based on our existing stations.

The ranking of the stations added to the network by the incremental optimisation is shown
in Table [6] Again, the networks vary depending on the season due to the difference in wind
direction and prior biosphere flux uncertainties, but also show some similarities. Mornington
Island and Moree for example are the highest ranked stations for each season individually and
combined. In the SH summer season Tumbarumba turns out to be even more important. Stations
at Mornington Island and Moree would be able to reduce the CO4 flux uncertainties by more
than 27 % (summer and winter). In comparison with the base network, we can see that these two
stations alone would be able to provide the same reduction in uncertainty as the four highest
ranked existing stations (Darwin, Wollongong, Aspendale and Arcturus) together. If we wanted
to achieve the same performance as the extended network consisting of 12 stations (six existing
stations plus six new stations), we would only require nine stations when designing the network
from scratch. The distribution of the stations in the new network (which is not based on the
existing stations) does not look that much different from the extended network (see Fig. [Sd-
f), however the optimisation has more freedom to place stations closer to regions where prior
uncertainties are largest.
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3.4 Comparison with previous study

In a previous study, Law et al.| (2004) found that if we wanted to erect a new measurement
station in Australia it should ideally be located in the north-west or central part of the continent.
This is in contrast to our results, which suggest that it would be most beneficial to add a new
station in the north-eastern part of Australia. Both studies use a similar metric for the optimal
network design, namely the reduction in flux uncertainty over the Australian continent, but there
are also many differences in the methodology and set-up between the two studies. For example,
Law et al.| (2004) uses response functions for the inversion and Australia is divided into only
12 subregions for which average annual mean uncertainties are calculated. The base network in
Law et al.[ (2004} consists of only two stations (Cape Grim and Cape Ferguson). In this study
the base network comprises six stations with two stations located in the north of the continent.
However, even if we start the network design from the same base network as in [Law et al.
(2004), the first station added to the network will still be located in the north-east.

The largest impact on the difference in the new stations’ locations might be due to the for-
mulation of the prior flux uncertainties. In [Law et al.| (2004} the prior flux uncertainties are
either assumed to be constant (i.e. set to 1 kg C m~2 yr—') for all regions or variable based on
the largest monthly flux for each region. In both cases, the largest prior flux uncertainties are
assigned to the north-west or central part of Australia. It is therefore, not surprising, that a new
station would then also be located in the same region. In our study, the prior flux uncertainties
are scaled with NPP. The largest uncertainties can be found in the productive north-eastern part
of the continent and this is where we would add the first new station. Again, this highlights that
the location chosen for new stations (or network) critically depends on the prior knowledge (i.e.
prior flux uncertainties) provided.

3.5 Logistic constraints for potential stations

Potential stations in this study were selected based on existing locations of stations in the Aus-
tralian Bureau of Meteorology National Radar Loop (NRL} 2014). Although this ensures that all
potential sites are accessible and maintained, we cannot differentiate between the sites in terms
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of actual costs associated in setting up the equipment to measure CO3 concentrations. For ex-
ample, some sites may require the erection of a tall tower whereas other sites may already have
one that could potentially be used for additional equipment. Costs for maintaining a certain site
may also differ by a large amount due to the site’s distance away from the nearest major town or
airport or its location being offshore. It is very challenging to include all this information, which
might not even be available at the time, into the cost function. Weights need to be assigned for
all penalty terms and that may require tuning, which is time consuming. One way to circumvent
this problem would be to change a station’s observational uncertainty as a proxy for logistical
issues. For example, we could use a smaller observational uncertainty for a station that is easily
accessible and cost efficient to run and a higher observational uncertainty for a station that is
located offshore and does not provide a tall tower already. In this way the cost function does
not need to be changed and we can use all available information for a potential site by changing
only one quantity. However, if information with regards to costs in setting up and main-
taining a site is available, then this should be included in the cost function so that one can
account for the exact economic costs. This will be investigated in a future study.

4 Summary and conclusions

Running a Lagrangian particle dispersion model in reverse mode provides an efficient way
of obtaining the relationship between concentration observations (receptor) and ground fluxes
(source). Here, we used LPDM and the Bayesian framework to obtain the transport matrix
(source-receptor relationship) for existing ground based measurement stations and a list of can-
didate stations. An incremental optimization scheme was then used to design an optimal net-
work of ground based measurement stations for Australia. Existing stations were assessed and
ranked in terms of their ability to reduce CO5 flux uncertainties for the whole continent. New
observational networks were designed based on existing stations and starting from an empty
network.

We found that the influence from outside the domain (boundary concentrations) has only
a small impact on the network design, and we therefore did not include uncertainties related to
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boundary concentrations in this study. In addition to biosphere flux uncertainties, which were
derived from high resolution BIOS2 model runs, we also considered uncertainties for fossil
fuel emissions. These uncertainties were derived from ten realisations from FFDAS at 0.1°
resolution. However, the fossil fuel fluxes are very localized with a range of many orders of
magnitude. When we aggregated those fluxes to the 1.8° resolution used for the network design,
we smoothed out most of the large fluxes and their variability across the ten realisations.

The assessment of existing ground based measurement stations in Australia showed that they
would be able to reduce surface flux uncertainties by about 30 %, which indicates the value of
making in situ measurements (taken from all wind directions) at sites that are designed primarily
for baseline measurements, such as Cape Grim.

If we want to halve the uncertainties on Australian flux estimates we need to double the num-
ber of existing stations, that are currently operational. Assuming all sites give measurements of
the same quality and can be modelled equally well, the two most important new stations would
be located in the north (Mornington Island) and in the east (Moree) of the continent. This also
shows that new stations do not necessarily need to be located far inland in order to pick up
the influence from local sources. In fact, a new station at Mornington Island would be located
offshore, but still be able to observe the influence from the Australian biosphere. It is also worth
noting that Tumbarumba, an existing station that is currently not operational, has great value for
the estimation of local sources. In terms of costs associated with erecting a new site, it might be
more efficient to put an already existing site back into operation.

Although we included logistic constraints in setting up the candidate list of stations, we did
not include actual costs (i.e. to erect the station or for maintenance) in the network design.
A relative measure of the ease of taking and modelling measurements at any given location
can be accounted for in the network design through using a variable data uncertainty across
measurement locations. This would be a valuable extension to this study, given the sensitivity
found in the one test case undertaken in which data uncertainties were modified. We also plan
to extend the study to optimise a network for estimating both CO2 and CH,4 fluxes since some
in-situ instruments are designed to measure both species.
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Table 1. Location of existing greenhouse gas measurement stations in Australia. Stations that are cur-
rently operational and provide in situ data for CO5 are highlighted in bold typeface.

No. Station Location (lat, lon)  Operation Period CO, measurements
1 Arcturus —23.86, 148.47 2010-present in situ, flask
2 Aspendale —38.01, 145.01 2003—present in situ
3 Cape Ferguson —19.30, 147.10 1991—present flask
4  Cape Grim —40.70, 144.70 1976—present in situ, flask
5 Darwin —12.42, 130.89 2005—present in situ, total column
6 Gunn Point —12.20, 131.00 2011—present in situ, flask
7 Otway —38.31, 142.49 2005-2012 in situ, flask, flux
8  Tumbarumba —35.39, 148.09 2004-2008 in situ, flux
9  Wollongong —34.41, 150.88 2008—present in situ, total column
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Table 2. Location of potential greenhouse gas measurement stations using the location of the Bureau of

Meteorology weather watch radar stations.

No. Station Location (lat, lon) No. Station Location (lat, lon)

10 Adelaide Airport —34.95,138.53 40 Lemon Tree Pass —32.73, 152.03
11 Albany —3495,117.80 41  Letterbox —34.26, 150.87
12 Alice Springs —23.82,133.90 42 Longreach —23.43, 144.29
13 Berrimah —12.46,130.93 43 Mackay —21.12, 149.22
14  Bowen —19.87,148.08 44  Marburg —27.61, 152.54
15  Brisbane Airport —27.39,153.13 45 Melbourne Laverton —37.85, 144.75
16  Broeadmeadows —37.69, 14495 46  Mildura —34.23, 142.08
17  Broome —17.95,122.23 47 Moree —29.50, 149.85
18  Buckland Park —34.62,138.57 48 Mornington Island —16.67, 139.17
19  Cairns Airport —16.88, 14575 49 Mt Gambier —37.75, 140.78
20 Cape Range —22.10,114.00 50 Mt Kanighan —25.97, 152.58
21  Captains Flat —35.66, 149.51 51 Mt Stuart —19.35, 146.78
22 Canarvon —24.88,113.67 52  Perth —31.95,115.84
23  Ceduna —32.13,133.70 53  Port Hedland —20.38, 118.63
24 Charleville —26.42,146.27 54  Rockhampton —23.38, 150.47
25  Coffs Harbour —30.32,153.12 55 Saddle Mtn —16.82, 145.68
26 Dampier —20.65,116.69 56  Sellicks Hill —35.33, 138.50
27  Darwin Airport —12.42,130.87 57  Sydney Airport —33.93, 151.17
28  East Sale —38.12, 147.13 58 Tennant Creek —19.63, 134.18
29  Esperance —33.82,121.83 59 Tindal —14.51, 13245
30 Eucla —31.68,128.89 60 Townsville —19.25, 146.77
31  Geraldton —28.80,114.70 61 Wagga —35.17, 147.47
32 Giles —25.03,128.30 62 Weipa —12.67,141.92
33 Gladstone —23.85,151.27 63  West Takone —41.18, 145.58
34 Gove —12.28,136.82 64  Williamtown —32.80, 151.83
35  Grafton —29.62,152.97 65  Willis Island —16.30, 149.98
36 Halls Creek —18.23,127.66 66 Woomera —31.16, 136.80
37  Hobart Airport —42.83,147.51 67 Wyndham —15.45, 128.12
38  Kalgoorlie —30.79, 12145 68  Yarrawonga —36.03, 146.03
39  Kurnell —34.02, 151.23
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Table 3. Ranking and uncertainty reduction (Ug) for the existing stations in the base network in terms of
their ability to reduce the uncertainties on COs flux estimates for two seasons (SH summer and winter)
represented by January and July. The data uncertainty for all stations is set to 2 ppm. The station number

IodeJ UOISSNOSI(]

is provided in brackets.

Rank Station Jul Ur Station Jan Ur Station Jul + Jan Ur
1 Darwin (5) 20.04%  Aspendale (2) 3.55%  Darwin (5) 12.81 %
2 Wollongong (9) 31.22% Wollongong (9) 5.97%  Wollongong (9)  20.40%
3 Arcturus (1) 36.42%  Arcturus (1) 8.08%  Aspendale (2) 24.18 %
4 Aspendale (2) 40.02% Darwin (5) 9.14%  Arcturus (1) 27.53,%
5 Gunn Point (6) 41.72%  Cape Grim (4) 9.82%  Cape Grim (4) 28.64 %
6 Cape Grim (4) 43.07%  Gunn Point (6) 10.29%  Gunn Point (6) 29.66 %
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Table 4. Ranking and uncertainty reduction (Ug) for the existing stations in the base network in terms of
their ability to reduce the uncertainties on CO4 flux estimates for two seasons (SH summer and winter)
represented by January and July. The data uncertainty is set to 1 ppm for Cape Grim, to 3 ppm for
Aspendale and Wollongong and to 2 ppm for all remaining stations. The station number is provided in

IodeJ UOISSNOSI(]

brackets.

Rank Station Jul Ur Station Jan Ur Station Jul 4 Jan Ur
1 Darwin (5) 20.04 % Cape Grim (4) 2.72% Darwin (5) 12.81 %
2 Cape Grim (4) 33.03%  Arcturus (1) 5.05% Cape Grim (4) 21.38 %
3 Arcturus (1) 38.65%  Aspendale (2) 6.44%  Arcturus (1) 25.44 %
4 Wollongong (9) 40.80%  Wollongong (9) 7.65% Wollongong (9) 27.17%
5 Gunn Point (6) 42.53% Darwin (5) 8.71 %  Gunn Point (6) 28.28 %
6 Aspendale (2) 43.18% Gunn Point (6) 9.18%  Aspendale (2) 29.21 %
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Table 5. Ranking and uncertainty reduction (Ug) for the new stations added to the base network for two
seasons (SH summer and winter) represented by January and July. The data uncertainty for all stations

IodeJ UOISSNOSI(]

is set to 2 ppm. The station number is provided in brackets.

Rank  Station Jul Ur Station Jan Ur Station Jul 4 Jan Ur
1 Longreach (42) 48.28% Moree (47) 17.67% Mornington Island (48) 35.39 %
2 Gove (34) 52.03% Mornington Island (48) 24.96% Moree (47) 40.27 %
3 Tennant Creek (58) 55.01% Tumbarumba (8) 31.35% Tumbarumba (8) 43.57 %
4 Moree (47) 57.74% Wyndham (67) 35.52% Wyndham (67) 46.79 %
5 Geraldton (31) 60.11% Tindal (59) 38.08% Longreach (42) 49.16 %
6 Townsville (60) 61.52%  Cairns Airport (19) 40.04 % Tennant Creek (58) 50.87 %
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Table 6. Ranking and uncertainty reduction (Ur) for the new stations starting from an empty network
for two seasons (SH summer and winter) represented by January and July. The data uncertainty for all

IodeJ UOISSNoSI(]

stations is set to 2 ppm. The station number is provided in brackets.

Rank  Station Jul Ur Station Jan Ur Station Jul + Jan Ugr
1 Mornington Island (48) 23.34% Tumbarumba (8) 9.67%  Mornington Island (48) 17.37%
2 Moree (47) 34.14 % Mornington Island (48) 17.71% Moree (47) 27.50 %
3 Longreach (42) 40.29 % Moree (47) 25.62%  Yarrawonga (68) 33.87 %
4 Tennant Creek (58) 45.40%  Wyndham (67) 30.39% Wyndham (67) 38.57 %
5 Melbourne Laverton (45) 49.56 %  Yarrawonga (68) 33.54% Charleville (24) 42.03 %
6 Charleville (24) 52.35% Tindal (59) 36.17% Captains Flat (21) 44.41 %
7 Geraldton (31) 54.53%  Cairns Airport (19) 38.26 % Tennant Creek (58) 46.71 %
8 Gove (34) 56.71 %  West Takone (63) 40.24 %  Cairns Airport (19) 48.59 %
9 Wollongong (9) 58.66 %  Alice Springs (12) 42.25% Tindal (59) 50.32 %
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Figure 1. Location of the existing greenhouse gas measurement stations in Australia (a) and potential
sites using the location of the stations in the Bureau of Meteorology’s National Radar Loop (b). Station
names are provided in Table T] for existing sites and Table 2] for potential sites. Existing stations that are
not included in the base network are marked in light blue.
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Figure 2. Net primary productivity for 1 July (a) and 1 January (c) in g C m~2 day ! from BIOS2 model
simulations at 0.05° resolution and derived uncertainties (one standard deviation) for the net ecosystem
productivity for the first week in July (b) and the first week in January (d) in g Cm~2 week ! at 1.8°
resolution. Note that the week is devided into day and night time. One week contains 84 h day time or
night time.
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Figure 3. One realisation of fossil fuel fluxes (a) as obtained from the Fossil Fuel Data Assimilations
System (FFDAS) at 0.1° resolution in g C m~2 week ~!. Uncertainties (b) are calculated as one standard
deviation from ten realisations. Aggregated fluxes (1.8° resolution) for one realisation are shown in (c)
and uncertainties for the aggregated fluxes from ten realisations shown in (d) in g C m~2 week~!. Note
that the week is devided into day and night time. One week contains 84 h day time or night time.
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Figure 4. Surface footprint for Cape Grim in July (a) and January (b) and for a potential station in Alice
Springs in July (c¢) and January (d). The footprint is the sum over the influence functions for one month
and shows the number of particles that are in touch with the surface.
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Figure 5. Location of the new stations added to the base network for January (a), July (b) and both
seasons together (c) and location of the new stations added to an empty network for January (d), July
(e) and both seasons together (f). New stations are marked with orange circles and existing stations are
marked with blue circles.
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