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Abstract

The Aerosol Direct Radiative Effect (ADRE) is defined as the change in the solar radiation flux, F, due 

to aerosol scattering and absorption. The difficulty in determining ADRE stems mainly from the need 

to estimate F without aerosols, F0, with either radiative transfer modelling and knowledge of the 

atmospheric state, or regression analysis of radiation data down to zero aerosol optical depth (AOD), if 

only F and AOD are observed. This paper examines the regression analysis method by using modeled 

surface data products provided by the AErosol RObotic NETwork (AERONET). We extrapolated F0 by 

two functions: a straight linear line and an exponential nonlinear decay. The exponential decay 

regression is expected to give a better estimation of ADRE with a few percents larger extrapolated F0 

than the linear regression. We found that, contrary to the expectation, in most cases the linear 
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regression gives better results than the nonlinear. In such cases the extrapolated F0 represents an 

unrealistically low water vapour column (WVC), resulting in underestimation of attenuation caused by 

the water vapour, and hence too large F0 and overestimation of the magnitude of ADRE. The nonlinear 

ADRE is generally 40-50 % larger in magnitude than the linear ADRE due to the extrapolated F0 

difference. Since for a majority of locations, AOD and water vapour column (WVC) have a positive 

correlation, the extrapolated F0 with the nonlinear regression fit represents an unrealistically low WVC, 

and hence too large F0. The systematic underestimation of F0 with the linear regression is compensated 

by the positive correlation between AOD and water vapour, providing the better result.

1. Introduction

Significant uncertainties exist in the current estimates of aerosol effects on climate (IPCC, 2013). This 

holds also for the aerosol direct radiative effect (ADRE) and aerosol direct radiative forcing (ADRF). 

The ADRE defines the attenuation of the (cloud free sky) surface solar radiation flux (F) due to aerosol 

scattering and absorption. Herein, we consider the solar radiation flux at the surface, although ADRE 

applies also for the longwave flux and above the atmosphere. In the definitions of ADRE and ADRF, 

effects relate to both anthropogenic and natural aerosol particles, while forcing refers to the impact of 

anthropogenic aerosol particles. Although, e.g., Myhre (2009) recently showed an increment of the 

consistency between observation based and global aerosol model estimates, with a reduction in the 

uncertainty of this effect, other studies (e.g., Loeb and Su, 2010) highlight that considerable 

uncertainties are still associated with ADRE, mainly due to the uncertainties in single scattering albedo 

(SSA). Satheesh and Ramanathan (2000) employed a method in which ADRE is estimated using the 

aerosol direct effect efficiency (ADREE), which is the ADRE normalized by the aerosol optical depth 

(AOD), and it is estimated by fitting a straight line into surface solar flux and AOD observations. A 
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linear dependence between aerosol attenuation and AOD has been commonly assumed when estimating 

ADRE (e.g., Kaufman et al., 2002; Bush and Valero, 2002, 2003; Dumka et al., 2006; Roger et al., 

2006; di Sarra et al., 2008; Garcia et al., 2009; Satheesh et al., 2010). Typical attenuation of radiation 

intensity, however, implies nonlinear decay, as considered by e.g. Conant et al. (2003), Markowicz et 

al. (2008) and Kudo et al. (2010). Thus, a linear fit to F and AOD data may result in an incorrect 

extrapolation of F0. 

The aim of this paper is to examine the uncertainties involved in estimating ADRE, both using 

the linear fitting method and a nonlinear approach if F and AOD data are available from surface or 

satellite measurements. For this, we use Aerosol Robotic Network (AERONET) products 

(http://aeronet.gsfc.nasa.gov/) from all available AERONET stations, which cover different aerosol 

types and surface reflectance properties and provide modelled surface solar radiation fluxes also. We 

conducted our analysis using these modeled fluxes since they represent realistically enough the aerosol-

induced relative changes in F and furthermore give an estimate for F0, which is self-consistent within 

the selected F (AOD) data set. As AERONET provides an estimation of F0, we can compare the 

estimations immediately with the baseline (AERONET). Special attention is paid to the possible effect 

of water vapour on estimating ADRE.

2. Methods and data

AERONET is a ground-based remote-sensing global network of Cimel sun photometers (Holben et al., 

1998) including the AERONET inversion code with radiative transfer code implementation. The 

inversion strategy, described in Dubovik and King (2000), provides a group of parameters, e.g. AOD, 

Ångström exponent (AE) and water vapour column (WVC) from the sun measurements and e.g. SSA, 
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asymmetry parameter (ASYM) and size distribution from the sky measurements. AOD is provided with 

wavelength channels 340, 380, 440, 500, 670, 870, 1020 and 1640 nm (all or some of these, depending 

on site of AERONET), WVC from 940 nm and e.g. SSA and ASYM from 440, 670, 870 and 1020 nm. 

The Discrete Ordinates (DISORT) provides broadband fluxes (both at the top of atmosphere and at the 

surface, with and without aerosols), calculated with the correlated-k distribution in the Global 

Atmospheric Model (GAME) code from 200 nm to 4000 nm. The ozone is based on monthly averaged 

climatology by the Total Ozone Mapping Spectrometer (TOMS). Moreover, the US standard 1976 

atmosphere model sets the atmospheric gaseous profile. The surface reflectivity is approximated by the 

Bidirectional Reflectance Distribution Function (BRDF) and observations from the Moderate-

Resolution Imaging Spectroradiometer (MODIS). More details about the AERONET description from 

e.g. García et al. (2012  )  . The uncertainty of AOD is 0.01-0.02 depending on the wavelength (Eck et al.,   

1999), the uncertainty in SSA is approximately 0.03 (Dubovik et al., 2000), and the uncertainty in 

WVC of 12 %  (Holben et al., 1998).AERONET is a ground-based remote-sensing global network of 

Cimel sun photometers (Holben et al., 1998), retrieving e.g. spectral AOD, SSA and water vapor 

column (WVC) (Dubovik et al., 2000). In addition to the retrieved aerosol properties, AERONET 

inversion product provides also modeled radiative fluxes (both at top of atmosphere and at surface) that 

are based on the AERONET measurements. We used broad-band modeled surface shortwaveSW fluxes 

from this data set. In this study, level 1.5 sky AERONET data are divided into groups by station, season 

(December-February, March-May, June-August and September-November) and by solar zenith angle 

(SZA) (3o steps in the range 0o-80o). A dataset was included in the analysis if it had at least 20 

observations and the data contained AOD 550 nm values above 0.3 and below 0.1. We chose to use 

level 1.5 data because using level 2.0 would leave out all quality-assured data with AOD 440 nm < 0.4 

(including e.g. quality assured SSA and F calculations). The drawback of this choice is that at these low 

values of AOD, there are significant uncertainties in the optical properties retrieved. This is especially 
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true for SSA, which is an important parameter. Thus, we applied all other level 2 criteria except for 

AOD (and SZA) limit, in order to enhance the accuracy of the data set selected. Moreover, we have 

imposed an additional data flagging criterion, removing those SSA points at the AOD 440 nm < 0.4, 

which are outside the average SSA ± standard deviation, defined for the AOD 440 nm > 0.4.

ADRE at the surface is the difference between the solar flux with and without aerosols: ADRE 

= ΔF = Faer- F0 ( Faer is flux with aerosols).The major challenge obviously is the determination of F0. 

The methodology for its estimation employed in this study is illustrated in Fig. 1, in which Faer 

(+symbols) is plotted as a function of AOD (from now on 550 nm) for the AERONET site in Kanpur 

station (26o N, 80o E) for the spring months March-May with SZA = 69o±1.5o (Faer values were 

normalized for the average earth-sun distance and cosine correction of Faer   the SZA was done within SZA 

ranges to its midpoints). F0 represents the case AOD = 0, but with measurements only at AOD above 

ca. 0.15, we have to extrapolate down to 0. In Fig. 1 we show two such extrapolations: a linear fit 

(dashed line) and an nonlinear decay fit (solid line) with the data.

We chose this data subset since it represent a case in which the Faer and AOD data exhibit the 

natural nonlinear behavior of radiation intensity decay. Thus the resulting intercepts of the two curves 

at AOD = 0 are quite different, 317 Wm-2 with linear extrapolation and 349 Wm-2 with nonlinear 

regression, with a difference of 32 Wm-2 when estimating ADRE. Also, for each Faer we show the 

corresponding AERONET F0 (circles), based on the retrieved WVC and surface albedo, and calculated 

with a radiative transfer model (e.g., Garcia et al., 2008; Derimian et al., 2008). We use the ADRE 

obtained by averaging these F0 (circles) values (bar at F = 325 Wm-2 on the y-axis) as the benchmark 

against which the extrapolation methods are evaluated.

Mathematically, our analysis can be summed up as a comparison between the extrapolated 
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ADREextrapol=
1
n ∑ F i

aer−F extrapol
0

 (1)

and the AERONET ADRE

ADREAERONET=
1
n ∑ F i

aer−
1
n∑ F i

0
, (2)

in where Faer
i and F0

i is Faer and F0, respectively, with i varying from one to the number of dataset, n. 

Notably, the extrapolated F0 (F0
extrapol) derived with fits represents a single value for a dataset, but in the 

AERONET, F0 is determined side-by-side with each Faer. F0
extrapol is calculated using fits as follows

F i
nonlin =x1+x2∗exp −x3∗AODi  ;F extrapol

0,nonlin =x1+x2 , (3)

F i
lin=x'1+x'2∗AODi ;Fextrapol

0,lin =x'1 , (4)

in where Fi
nonlin and Fi

lin is estimated Faerderived for each AOD with the nonlinear and linear method, 

respectively. Constants of fits are x1, x2, x3, x'1 and x'2, and Fi
0,nonlin and Fi

0,lin, thus F0
extrapol of the nonlinear 

and linear fits, are provided with the constants.

Our decision to use the modeled F from AERONET, instead of pyranometer measurements, was 

based on two different aspects. First, this allowed us to include a multiple number of sites, with very 

different and varying aerosol conditions. Second, AERONET data provided interesting ancillary 

measurements to support and better understand our analysis, WVC being the most crucial one. In 

addition, the AERONET Fs agree with pyranometer measurements with a correlation better than 99% 

and the relative difference varies from 0.98 to 1.02 (Garcia et al., 2008). Moreover, we tested the 

analysis in two sites, Alta-Floresta and Goddard Space Flight Center (GSFC), by using pyranometer 

measured fluxes F and found no significant difference of the results in these two sites, if compared to 

the corresponding analysis using the AERONET-modeled fluxes instead.
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3. Results

As further examples of determining ADRE using regression analysis, we show Faer and AOD data from 

four sites in Fig. 2. In addition, the linear (dashed line) and nonlinear decay (solid line) fits to the data 

are shown. The bar on the vertical axis represents the average (with STD) value for F0. Goddard Space 

Flight Center (GSFC) (39° N, 77° W) (SZA = 70°) (Fig. 2a) and Rio-Branco (10° S, 68° W) (SZA = 

70°) (Fig. 2b) represent cases in which the data are of sufficient quality for estimating ADRE: AOD 

values reach close zero with only minor changes in WVC, aerosol optical properties and surface 

reflectance for a given AOD, resulting in a narrow spread in the data. In these cases, since the nonlinear 

decay represents a more realistic decay of radiation intensity (based on squared values of residuals), the 

intersection of the nonlinear fit with the AOD=0 axis (y-axis) is within the STD of the baseline value. 

Dhadnah (26° N, 56° E) (SZA = 70°) (Fig. 2c) and GSFC at SZA = 22° (Fig. 2d) are examples of more 

challenging cases: in Fig. 2c only data points with AOD > 0.2 exist so that a more extensive 

extrapolation is needed, and in Fig. 2d there is significant scatter in the points.

Perhaps the most interesting feature shown in Fig. 2, which also significantly affects the quality 

of ADRE estimation, is the correlation of F0 with AOD. In Fig. 2a-d there is a negative correlation 

while in 2b the correlation is positive. The negative correlation between F0 and AOD is indirectly 

caused mainly by a positive correlation of AOD with WVC due to humid airmasses with large aerosol 

concentration. Only in some cases, where airmasses are dominated by dust aerosols, the correlation is 

negative. With increasing AOD and WVC, the WVC dims an increasing fraction of the radiation 

intensity – resulting in a smaller F0. The opposite occurs if AOD and WVC have a negative correlation. 

Increase in the AOD as a function of WVC is presumably partly due to hygroscopic growth (e.g., 

Kitamori et al., 2009), although probably a major part of the correlation can be attributed to a large 

variance in atmospheric conditions of aerosol properties and air humidity during seasons.
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The intersections of the nonlinear decay fits (solid lines in Fig. 2) with the AOD = 0 axis – 

313.5 W/m2 (Fig. 2a), 295.9 W/m2 (2b), 327.4 W/m2 (2c) and 1008.9 W/m2 (2d) – approximate the F0 

value at AOD = 0. This is clear from the figure, if one imagines straight line fits through the circles and 

extrapolates fits down to AOD = 0. This approximation is, however, not necessarily a good one for the 

mean F0, if F0 and AOD correlate (through the AOD-WVC-correlation). For the negative correlation 

cases (2a-d) the intersections of the nonlinear decay fits with the AOD = 0 axis tend to therefore over-

estimate the mean baseline F0 (307.3 W/m2 for 2a, 312.9 W/m2 for 2c, and 972.1 W/m2 for 2d) – as the 

majority of F0 values are below the extrapolated F0. Typically, for the positive correlation cases (2b, 

mean of F0 = 303.4 W/m2) the opposite occurs. As the linear fit obviously results in a lower estimation 

of F0, the linear regression method can result often in a better estimation of the mean F0, as is clearly 

the case in Fig. 2c (mean F0 = 306.7 W/m2) and Fig. 2d (mean F0 = 973.0 W/m2) – even if the nonlinear 

regression is physically more correct.

The performance of the two different regression methods and, in particular, the WVC and AOD 

correlation effect on the performance, is illustrated as scatter plots in Fig. 3. In Fig. 3a all data are 

presented in ADRE (nonlinear decay method) and ADRE (AERONET ΔFaverage, Eq. 2) form. The colour 

of the single points indicates the correlation of the WVC and AOD. In Fig. 3b the same is shown for the 

linear regression case. Evidently a majority of the cases are such that WVC and AOD have a strong 

positive correlation (red colored points). In addition, it seems that for most of these cases, the linear 

regression method (Fig. 3b) results in a better ADRE estimation than the nonlinear decay regression 

method (Fig. 3a). This means that the inaccuracy inherent in the linear regression cancels out errors 

caused by the WVC and AOD correlation. For a weak WVC and AOD correlation, the nonlinear decay 

method appears to be clearly better. (Onot shown, other parameters as surface albedo, ASYM or SSA 

do not play as a crucial role as WVC. We classified the ADRE estimates of the both methods against 

the baseline in respect of AOD, albedo, ASYM, SSA and WVC. It was evident that only WVC can 
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explain the observed differences of both methods when compared against the baseline. ).Moreover, we 

confirmed, by modeling a short wavelength range (310 nm -500 nm), that this WVC-effect vanishes, if 

some other wavelength band as e.g. the visible range of 400-700 nm containing no significant water 

vapour absorption is under consideration, instead of the broadband wavelength range of Faer  .  

Next we investigated possible geographical features of this correlation. Figure 4 shows the 

WVC and AOD correlation (in the color scales) at all the sites available from AERONETincluded our 

study, in this case for the seasons; December-February (DJF, Fig. 4a), March-May (MAM, Fig. 4b), 

June-August (JJA, Fig. 4c) and September-November (SON, Fig. 4d) season (all years available). Most 

of the points are colored either green or red, indicating an absent or a positive correlation. The strongest 

positive correlation is for the stations in Europe and eastern USA, presumably due to aerosol 

hygroscopic growth. This holds especially for the JJA and SON- seasons. The DJF and MAM- seasons 

provide weaker positive correlation, indicating that the linear method can  then provide there somewhat 

underestimated ADRE. Interestingly, the strongest negative correlation appears during the JJA-season 

in the west Sahara's region and Central-America, probably caused by a strong desert dust domination 

and low WVC in the Saharan outflow region (Marsham et al., 2008). During those particular cases, the 

linear method can significantly underestimate ADRE, as indicated by the points of largest negative 

WVC vs. AOD correlation in Fig. 3b, while the nonlinear decay provides then a better estimate. The 

blue points, representing a negative correlation (at least for this season) are all in the Saharan outflow 

region (Marsham et al., 2008), with a strong desert dust domination and low WVC for larger AOD 

cases.

Finally, the ADRE estimations of all data are grouped together in numerical form in Table 1. As 

already evident from the figures, the nonlinear decay regression method overestimates (mean = -57.2 

Wm-2) while the linear method underestimates (mean = -39.4 Wm-2) the magnitude of ADRE 

(AERONET value = -46.1 Wm-2). Overall, the linear method yields better results than the nonlinear 
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decay method.

Previous studies have shown that the AERONET WVC agrees well with radiosonde sounding 

data (e.g., Prasad and Singh, 2009; Bokoye et al., 2007). We also compared AERONET WVC 

measurements against radiosonde data from five sites (Alta-Floresta, Cuiaba-Miranda, Niamey, 

Thessaloniki and Wallops) and observed similarly high correlations between these two data sources. 

However, we wanted to assess in particular whether there exists any systematic dependence between 

WVC from these two data sources as a function of AOD, which could affect our ADRE analysis based 

on the modeled F. We found that while the ratio between the AERONET and radiosonde WVC is 

essentially constant for AODs (at 500nm) larger than about 0.1, in many sites WVC can deviate for the 

cases of smallest AOD (below 0.1). We estimated how our ADRE values (based on the F and AOD 

relation) would change if we normalized the AERONET-modeled fluxes to incorporate the WVC from 

the radiosonde measurements instead of AERONET-measured WVC. We found that the increased 

WVC uncertainty at the lowest AOD values introduces an insignificant change in our ADRE estimates.

4. Conclusions

Determining the ADRE at the Earth’s surface from radiative flux, F, measurements is not 

straightforward because it involves the estimation of the flux without aerosols F0. This requires either 

radiative transfer modelling or an extrapolation of F down to AOD = 0.

We have evaluated two such extrapolation methods: i) a linear fit and ii) an nonlinear decay fit 

to the F and AOD data. As a reference we used the AERONET ADRE data in which F0 (and F) is 

calculated with radiative transfer modelling. Radiation attenuation due to multiple scattering and 

absorption results typically in a near nonlinear decay of the intensity, and thus the nonlinear decay 

regression is expected to give a better estimation of ADRE. This would be the case if the typically 

positive correlation of WVC and AOD would not affect the dependency. F0  represents an 
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unrealistically low WVC, resulting in an underestimation of attenuation caused by the WVC, and hence 

a too large F0. This leads to an overestimation of the magnitude of ADRE. For stations and data series 

in which there is no correlation between WVC and AOD, the nonlinear decay fit is superior.

As the WVC effect was found to be of such importance, we also investigated the geographical 

correlation of WVC and AOD. The positive correlations clearly dominate, and clear negative 

correlations occur predominantly in desert dust dominated data series, such as the regions at the 

Saharan outflow. The strongest positive correlation was found in in stations in Europe and Eastern 

USA. Our results indicate that the regression method, either linear or nonlinear, can readily produce a 

significant error due to the correlation of WVC and AOD. Since for a majority of locations, AOD and 

water vapour column (WVC) have a positive correlation, the linear method gives somewhat better 

results in general than the nonlinear approach, for the reasons discussed above. However, there are 

specific regions of strong negative WVC and AOD correlation, most notably in the Saharan dust 

outflow region, where the opposite takes place and nonlinear approach results in better estimate for 

ADRE. Therefore, based on our results we recommend that when the surface ADRE is estimated by 

using pyranometer and AOD measurements, the site-specific correlation between WVC and AOD 

should be also estimated to deduce whether linear or nonlinear approach is more suitable. We moreover 

recommend to take a one step forward and additionally attempt to correct for the possible bias due to 

WVC and AOD correlation. If the data for the WVC is available, then better ADRE accuracy is likely 

achieved if the flux measurements are normalized to constant WVC amount with simple scaling 

obtained from RT modeling. 
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Table 1. The estimated ADRE(Faer) with standard deviations compared with the AERONET value. 

MAD = Mean Absolute Deviation. Units are in Wm-2, except for the correlation coefficient (CC).
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Parameter AERONET Method Estimate Est. - AERONET CC MAD

ADRE
-46.1±20.4

Exp. decay
Linear

-57.2±23.4
-39.4±16.9

-11.1
+6.7

0.75
0.89

13.4
8.9

Figure 1: Radiative flux with aerosols Faer (plusses) and without aerosols F0 (circles) as a function of 

AOD for the AERONETsite in Kanpur in March-May and with SZA = 69o±1.5o. The bar on the 

vertical axis represents the mean value of the estimated F0 (all circles). The solid and dashed lines 

represent the exponential and linear fits to the data, respectively.
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Figure 2: Same as Fig. 1, but for the June-August season in a) GSFC (SZA=70°), b) Rio-Branco (SZA 

= 70°), c) Dhadnah (SZA = 70°), d) GSFC (SZA = 22°).
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Figure 3: ADRE predicted with exponential decay (a) and linear (b) regression methods (equation 1), 
compared with AERONET values (equation 2). The color of the data points represents the correlation 
coefficient of the AOD and WVC correlation, with red color indicating positive and blue color negative 
correlation.
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Figure 4: Geographical distribution of the AOD and WVC correlation, at all AERONET stations 
considered in this study for a) December-February, b) March-May, c) June-August and d) September-
November (all available years). 
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