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Abstract

The Aerosol Direct Radiative Effect (ADRE) is defined as the change in the solar radiation flux, F, due
to aerosol scattering and absorption. The difficulty in determining ADRE stems mainly from the need
to estimate F without aerosols, F°, with either radiative transfer modelling and knowledge of the
atmospheric state, or regression analysis of radiation data down to zero aerosol optical depth (AOD), if
only F and AOD are observed. This paper examines the regression analysis method by using modeled
surface data products provided by the AErosol RObotic NETwork (AERONET). We extrapolated F° by
two functions: a straight linear line and an exponential nonlinear decay. The exponential decay
regression is expected to give a better estimation of ADRE with a few percents larger extrapolated F°

than the linear regression. We found that, contrary to the expectation, in most cases the linear
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regression gives better results than the nonlinear. In such cases the extrapolated F° represents an
unrealistically low water vapour column (WVC), resulting in underestimation of attenuation caused by
the water vapour, and hence too large F° and overestimation of the magnitude of ADRE. The nonlinear
ADRE is generally 40-50 % larger in magnitude than the linear ADRE due to the extrapolated F°
difference. Since for a majority of locations, AOD and WVC have a positive correlation, the
extrapolated F° with the nonlinear regression fit represents an unrealistically low WVC, and hence too
large F°. The systematic underestimation of F° with the linear regression is compensated by the positive

correlation between AOD and water vapour, providing the better result.

1. Introduction

Significant uncertainties exist in the current estimates of aerosol effects on climate (IPCC, 2013). This
holds also for the aerosol direct radiative effect (ADRE) and aerosol direct radiative forcing (ADRF).
The ADRE defines the attenuation of the (cloud free sky) surface solar radiation flux (F) due to aerosol
scattering and absorption. Herein, we consider the solar radiation flux at the surface, although ADRE
applies also for the longwave flux and above the atmosphere. In the definitions of ADRE and ADRF,
effects relate to both anthropogenic and natural aerosol particles, while forcing refers to the impact of
anthropogenic aerosol particles. Although, e.g., Myhre (2009) recently showed an increment of the
consistency between observation based and global aerosol model estimates, with a reduction in the
uncertainty of this effect, other studies (e.g., Loeb and Su, 2010) highlight that considerable
uncertainties are still associated with ADRE, mainly due to the uncertainties in single scattering albedo
(SSA). Satheesh and Ramanathan (2000) employed a method in which ADRE is estimated using the
aerosol direct effect efficiency (ADREE), which is the ADRE normalized by the aerosol optical depth

(AOD), and it is estimated by fitting a straight line into surface solar flux and AOD observations. A
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linear dependence between aerosol attenuation and AOD has been commonly assumed when estimating
ADRE (e.g., Kaufman et al., 2002; Bush and Valero, 2002, 2003; Dumka et al., 2006; Roger et al.,
2006; di Sarra et al., 2008; Garcia et al., 2009; Satheesh et al., 2010). Typical attenuation of radiation
intensity, however, implies nonlinear decay, as considered by e.g. Conant et al. (2003), Markowicz et
al. (2008) and Kudo et al. (2010). Thus, a linear fit to F and AOD data may result in an incorrect

extrapolation of FO.

The aim of this paper is to examine the uncertainties involved in estimating ADRE, both using
the linear fitting method and a nonlinear approach if /' and AOD data are available from surface or
satellite measurements. For this, we use Aerosol Robotic Network (AERONET) products
(http://aeronet.gsfc.nasa.gov/) from all available AERONET stations, which cover different aerosol
types and surface reflectance properties and provide modelled surface solar radiation fluxes also. We
conducted our analysis using these modeled fluxes since they represent realistically enough the aerosol-
induced relative changes in F and furthermore give an estimate for /7, which is self-consistent within
the selected F (AOD) data set. As AERONET provides an estimation of F’, we can compare the
estimations immediately with the baseline (AERONET). Special attention is paid to the possible effect

of water vapour on estimating ADRE.

2. Methods and data

AERONET is a ground-based remote-sensing global network of Cimel sun photometers (Holben et al.,
1998) including the AERONET inversion code with radiative transfer code implementation. The
inversion strategy, described in Dubovik and King (2000), provides a group of parameters, e.g. AOD,

Angstrém exponent (AE) and water vapour column (WVC) from the sun measurements and e.g. SSA,
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asymmetry parameter (ASYM) and size distribution from the sky measurements. AOD is provided with
wavelength channels 340, 380, 440, 500, 670, 870, 1020 and 1640 nm (all or some of these, depending
on site of AERONET), WVC from 940 nm and e.g. SSA and ASYM from 440, 670, 870 and 1020 nm.
The Discrete Ordinates (DISORT) provides broadband fluxes (both at the top of atmosphere and at the
surface, with and without aerosols), calculated with the correlated-k distribution in the Global
Atmospheric Model (GAME) code from 200 nm to 4000 nm. The ozone is based on monthly averaged
climatology by the Total Ozone Mapping Spectrometer (TOMS). Moreover, the US standard 1976
atmosphere model sets the atmospheric gaseous profile. The surface reflectivity is approximated by the
Bidirectional Reflectance Distribution Function (BRDF) and observations from the Moderate-
Resolution Imaging Spectroradiometer (MODIS). More details about the AERONET description from
e.g. Garcia et al. (2012). The uncertainty of AOD is 0.01-0.02 depending on the wavelength (Eck et al.,
1999), the uncertainty in SSA is approximately 0.03 (Dubovik et al., 2000), and the uncertainty in
WVC of 12 % (Holben et al., 1998). We used broad-band modeled surface shortwave fluxes from this
data set. In this study, level 1.5 sky AERONET data are divided into groups by station, season
(December-February, March-May, June-August and September-November) and by solar zenith angle
(SZA) (3° steps in the range 0°-80°). A dataset was included in the analysis if it had at least 20
observations and the data contained AOD 550 nm values above 0.3 and below 0.1. We chose to use
level 1.5 data because using level 2.0 would leave out all quality-assured data with AOD 440 nm < 0.4
(including e.g. quality assured SSA and F calculations). The drawback of this choice is that at these low
values of AOD, there are significant uncertainties in the optical properties retrieved. This is especially
true for SSA, which is an important parameter. Thus, we applied all other level 2 criteria except for
AOD (and SZA) limit, in order to enhance the accuracy of the data set selected. Moreover, we have
imposed an additional data flagging criterion, removing those SSA points at the AOD 440 nm < 0.4,

which are outside the average SSA + standard deviation, defined for the AOD 440 nm > 0.4.
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ADRE at the surface is the difference between the solar flux with and without aerosols: ADRE
= AF = F*- F’( F*" is flux with aerosols).The major challenge obviously is the determination of F.
The methodology for its estimation employed in this study is illustrated in Fig. 1, in which F*
(+symbols) is plotted as a function of AOD (from now on 550 nm) for the AERONET site in Kanpur
station (26° N, 80° E) for the spring months March-May with SZA = 69°+1.5° (F*" values were
normalized for the average earth-sun distance and cosine correction of F* was done within SZA
ranges to its midpoints). 7 represents the case AOD = 0, but with measurements only at AOD above
ca. 0.15, we have to extrapolate down to 0. In Fig. 1 we show two such extrapolations: a linear fit
(dashed line) and an nonlinear decay fit (solid line) with the data.

We chose this data subset since it represent a case in which the F* and AOD data exhibit the
natural nonlinear behavior of radiation intensity decay. Thus the resulting intercepts of the two curves
at AOD = 0 are quite different, 317 Wm™with linear extrapolation and 349 Wm™ with nonlinear
regression, with a difference of 32 Wm™ when estimating ADRE. Also, for each F*“ we show the
corresponding AERONET F? (circles), based on the retrieved WVC and surface albedo, and calculated
with a radiative transfer model (e.g., Garcia et al., 2008; Derimian et al., 2008). We use the ADRE
obtained by averaging these F’ (circles) values (bar at = 325 Wm™ on the y-axis) as the benchmark
against which the extrapolation methods are evaluated.

Mathematically, our analysis can be summed up as a comparison between the extrapolated

ADRE
_ 1 aer 0
ADREexrmpol - ; Z Fi - Fextrapo/ (1)
and the AERONET ADRE
— 1 aer 1 0
ADREAERONET_;ZFi _;ZFI' s (2)

in where F*; and F'; is F*“ and F", respectively, with i varying from one to the number of dataset, .
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Notably, the extrapolated F” (F'uuqp0r) derived with fits represents a single value for a dataset, but in the

AERONET, Fis determined side-by-side with each F*. F’,.;..,0 is calculated using fits as follows

nonlin _ . Ononlin _

Fi =X +x2*exp(_x3*AODi)’Fextmpnl_XI+XZ > (3)
lin __, ’ .0lin o

Fi =X +x 2* AOD[’Fextmpol X, (4)

in where F/""and F/™is estimated F*"derived for each AOD with the nonlinear and linear method,
respectively. Constants of fits are xi, x2, X3, x" and x’, and F*""" @ F 25 thus F'paper 0f the nonlinear
and linear fits, are provided with the constants.

Our decision to use the modeled F from AERONET, instead of pyranometer measurements, was
based on two different aspects. First, this allowed us to include a multiple number of sites, with very
different and varying aerosol conditions. Second, AERONET data provided interesting ancillary
measurements to support and better understand our analysis, WVC being the most crucial one. In
addition, the AERONET F's agree with pyranometer measurements with a correlation better than 99%
and the relative difference varies from 0.98 to 1.02 (Garcia et al., 2008). Moreover, we tested the
analysis in two sites, Alta-Floresta and Goddard Space Flight Center (GSFC), by using pyranometer
measured fluxes /" and found no significant difference of the results in these two sites, if compared to

the corresponding analysis using the AERONET-modeled fluxes instead (see Supplement Appendix A).

3. Results

As further examples of determining ADRE using regression analysis, we show F* and AOD data from
four sites in Fig. 2. In addition, the linear (dashed line) and nonlinear decay (solid line) fits to the data
are shown. The bar on the vertical axis represents the average (with STD) value for F?. GSFC (39° N,
77° W) (SZA = 70°) (Fig. 2a) and Rio-Branco (10° S, 68° W) (SZA = 70°) (Fig. 2b) represent cases in

which the data are of sufficient quality for estimating ADRE: AOD values reach close zero with only
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minor changes in WVC, aerosol optical properties and surface reflectance for a given AOD, resulting in
a narrow spread in the data. In these cases, since the nonlinear decay represents a more realistic decay
of radiation intensity (based on squared values of residuals), the intersection of the nonlinear fit with
the AOD=0 axis (y-axis) is within the STD of the baseline value. Dhadnah (26° N, 56° E) (SZA = 70°)
(Fig. 2c) and GSFC at SZA = 22° (Fig. 2d) are examples of more challenging cases: in Fig. 2c only
data points with AOD > 0.2 exist so that a more extensive extrapolation is needed, and in Fig. 2d there
is significant scatter in the points.

Perhaps the most interesting feature shown in Fig. 2, which also significantly affects the quality
of ADRE estimation, is the correlation of F” with AOD. In Fig. 2a-d there is a negative correlation
while in 2b the correlation is positive. The negative correlation between F? and AOD is indirectly
caused mainly by a positive correlation of AOD with WVC due to humid airmasses with large aerosol
concentration. Only in some cases, where airmasses are dominated by dust aerosols, the correlation is
negative. With increasing AOD and WVC, the WVC dims an increasing fraction of the radiation
intensity — resulting in a smaller F’. The opposite occurs if AOD and WVC have a negative correlation.
Increase in the AOD as a function of WVC is presumably partly due to hygroscopic growth (e.g.,
Kitamori et al., 2009), although probably a major part of the correlation can be attributed to a large
variance in atmospheric conditions of aerosol properties and air humidity during seasons.

The intersections of the nonlinear decay fits (solid lines in Fig. 2) with the AOD = 0 axis —
313.5 W/m? (Fig. 2a), 295.9 W/m? (2b), 327.4 W/m?* (2¢) and 1008.9 W/m? (2d) — approximate the F”
value at AOD = 0. This is clear from the figure, if one imagines straight line fits through the circles and
extrapolates fits down to AOD = 0. This approximation is, however, not necessarily a good one for the
mean F, if ¥ and AOD correlate (through the AOD-WVC-correlation). For the negative correlation
cases (2a-d) the intersections of the nonlinear decay fits with the AOD = 0 axis tend to therefore over-

estimate the mean baseline £ (307.3 W/m? for 2a, 312.9 W/m? for 2¢, and 972.1 W/m? for 2d) — as the
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majority of F” values are below the extrapolated F”. Typically, for the positive correlation cases (2b,
mean of F’ = 303.4 W/m?) the opposite occurs. As the linear fit obviously results in a lower estimation
of F, the linear regression method can result often in a better estimation of the mean F”, as is clearly
the case in Fig. 2¢ (mean F’ = 306.7 W/m?) and Fig. 2d (mean F’ = 973.0 W/m?) — even if the nonlinear
regression is physically more correct.

The performance of the two different regression methods and, in particular, the WVC and AOD
correlation effect on the performance, is illustrated as scatter plots in Fig. 3. In Fig. 3a all data are
presented in ADRE (nonlinear decay method) and ADRE (AERONET AF**“¢ Eq. 2) form. The colour
of the single points indicates the correlation of the WVC and AOD. In Fig. 3b the same is shown for the
linear regression case. Evidently a majority of the cases are such that WVC and AOD have a strong
positive correlation (red colored points). In addition, it seems that for most of these cases, the linear
regression method (Fig. 3b) results in a better ADRE estimation than the nonlinear decay regression
method (Fig. 3a). This means that the inaccuracy inherent in the linear regression cancels out errors
caused by the WVC and AOD correlation. For a weak WVC and AOD correlation, the nonlinear decay
method appears to be clearly better. Other parameters as surface albedo, ASYM or SSA do not play as a
crucial role as WVC. We classified the ADRE estimates of the both methods against the baseline in
respect of AOD, albedo, ASYM, SSA and WVC. It was evident that only WVC can explain the
observed differences of both methods when compared against the baseline (see Supplement Appendix
B). Moreover, we confirmed, by modeling a short wavelength range (310 nm -500 nm), that this WVC-
effect vanishes, if some other wavelength band as e.g. the visible range of 400-700 nm containing no
significant water vapour absorption is under consideration, instead of the broadband wavelength range
of F*" (see Supplement Appendix C).

Next we investigated possible geographical features of this correlation. Figure 4 shows the

WVC and AOD correlation (in the color scales) at all the sites available from AERONET, in this case
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for seasons; December-February (DJF, Fig. 4a), March-May (MAM, Fig. 4b), June-August (JJA, Fig.
4c¢) and September-November (SON, Fig. 4d)(all years available). Most of the points are colored either
green or red, indicating an absent or a positive correlation. The strongest positive correlation is for the
stations in Europe and eastern USA, presumably due to aerosol hygroscopic growth. This holds
especially for the JJA and SON- seasons The DJF and MAM- seasons provide weaker positive
correlation, indicating that the linear method can then provide there somewhat underestimated ADRE.
Interestingly, the strongest negative correlation appears during the JJA-season in the west Sahara's
region and Central-America, probably caused by a strong desert dust domination and low WVC in the
Saharan outflow region (Marsham et al., 2008). During those particular cases, the linear method can
significantly underestimate ADRE, as indicated by the points of largest negative WVC vs. AOD
correlation in Fig. 3b, while the nonlinear decay provides then a better estimate.

Finally, the ADRE estimations of all data are grouped together in numerical form in Table 1. As
already evident from the figures, the nonlinear decay regression method overestimates (mean = -57.2
Wm™) while the linear method underestimates (mean = -39.4 Wm™) the magnitude of ADRE
(AERONET value = -46.1 Wm™). Overall, the linear method yields better results than the nonlinear
decay method.

Previous studies have shown that the AERONET WVC agrees well with radiosonde sounding
data (e.g., Prasad and Singh, 2009; Bokoye et al., 2007). Also, Smirnov et al. (2004) indicates that the
AERONET WVC provides the root mean square difference of 7.0 % in a multiyear comparison with
WVC measurements derived from GPS. We also compared AERONET WVC measurements against
radiosonde data from five sites (Alta-Floresta, Cuiaba-Miranda, Niamey, Thessaloniki and Wallops)
and observed similarly high correlations between these two data sources. However, we wanted to
assess in particular whether there exists any systematic dependence between WVC from these two data

sources as a function of AOD, which could affect our ADRE analysis based on the modeled F. We
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found that while the ratio between the AERONET and radiosonde WVC is essentially constant for
AODs (at 500nm) larger than about 0.1, in many sites WVC can deviate for the cases of smallest AOD
(below 0.1). We estimated how our ADRE values (based on the /' and AOD relation) would change if
we normalized the AERONET-modeled fluxes to incorporate the WVC from the radiosonde
measurements instead of AERONET-measured WVC. We found that the increased WV C uncertainty at

the lowest AOD values introduces an insignificant change in our ADRE estimates.

4. Conclusions

Determining the ADRE at the Earth’s surface from radiative flux, F, measurements is not
straightforward because it involves the estimation of the flux without aerosols F’. This requires either
radiative transfer modelling or an extrapolation of /' down to AOD = 0.

We have evaluated two such extrapolation methods: 1) a linear fit and ii) an nonlinear decay fit
to the F and AOD data. As a reference we used the AERONET ADRE data in which F” (and F) is
calculated with radiative transfer modelling. Radiation attenuation due to multiple scattering and
absorption results typically in a near nonlinear decay of the intensity, and thus the nonlinear decay
regression is expected to give a better estimation of ADRE. This would be the case if the typically
positive correlation of WVC and AOD would not affect the dependency. F” represents an
unrealistically low WVC, resulting in an underestimation of attenuation caused by the WVC, and hence
a too large F'. This leads to an overestimation of the magnitude of ADRE. For stations and data series

in which there is no correlation between WVC and AOD, the nonlinear decay fit is superior.

As the WVC effect was found to be of such importance, we also investigated the geographical
correlation of WVC and AOD. The positive correlations clearly dominate, and clear negative

correlations occur predominantly in desert dust dominated data series, such as the regions at the
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Saharan outflow. The strongest positive correlation was found in in stations in Europe and Eastern
USA. Our results indicate that the regression method, either linear or nonlinear, can readily produce a
significant error due to the correlation of WVC and AOD. Since for a majority of locations, AOD and
water vapour column (WVC) have a positive correlation, the linear method gives somewhat better
results in general than the nonlinear approach, for the reasons discussed above. However, there are
specific regions of strong negative WVC and AOD correlation, most notably in the Saharan dust
outflow region, where the opposite takes place and nonlinear approach results in better estimate for
ADRE. Therefore, based on our results we recommend that when the surface ADRE is estimated by
using pyranometer and AOD measurements, the site-specific correlation between WVC and AOD
should be also estimated to deduce whether linear or nonlinear approach is more suitable. We moreover
recommend to take a one step forward and additionally attempt to correct for the possible bias due to
WVC and AOD correlation. If the data for the WVC is available, then better ADRE accuracy is likely
achieved if the flux measurements are normalized to constant WV C amount with simple scaling

obtained from RT modeling.
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Figure 1: Radiative flux with aerosols F*" (plusses) and without aerosols £’ (circles) as a function of
AOD for the AERONETsite in Kanpur in March-May and with SZA = 69°+1.5°. The bar on the
vertical axis represents the mean value of the estimated F’ (all circles). The solid and dashed lines

represent the exponential and linear fits to the data, respectively.
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376  Figure 2: Same as Fig. 1, but for the June-August season in a) GSFC (SZA=70°), b) Rio-Branco (SZA
377 =70°), c) Dhadnah (SZA = 70°), d) GSFC (SZA = 22°).
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419  Figure 3: ADRE predicted with exponential decay (a) and linear (b) regression methods (equation 1),
420 compared with AERONET values (equation 2). The color of the data points represents the correlation
421 coefficient of the AOD and WVC correlation, with red color indicating positive and blue color negative
422  correlation.
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441 considered in this study for a) December-February, b) March-May, c¢) June-August and d) September-
442  November (all available years).

18



	2. Methods and data
	3. Results

