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Air sample Start time (UTC) Stop time (UTC) Duration (h) 
1 27.8.10 20:00 29.8.10 08:00 36 
2 29.8.10 11:30 30.8.10 16:30 29 
3 30.8.10 16:45 31.8.10 13:45 21 
4 31.8.10 15:00 1.9.10 12:00 21 
5 1.9.10 13:00 2.9.10 13:00 24 
6 2.9.10 13:30 3.9.10 18:30 29 
7 3.9.10 20:15 4.9.10 18:15 22 
8 4.9.10 20:00 5.9.10 04:00 8 
9 5.9.10 06:10 5.9.10 22:10 16 
10 6.9.10 01:00 7.9.10 10:00 33 
11 7.9.10 12:15 8.9.10 06:15 18 
12 8.9.10 08:30 8.9.10 18:10 9.4 
13 8.9.10 19:00 9.9.10 06:00 11 
14 9.9.10 16:30 10.9.10 09:00 16.3 
15 11.9.10 20:00 12.9.10 06:00 10 

 23 

Figure S1. Spatial coverage of air (blue and green, numbers) and seawater samples 24 

(diamonds) 25 
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 2 

S1.2 Diffusive air-sea exchange flux calculation 3 

  4 

A sensitivity analysis is done, to explore the influence of the variabilities of air and seawater 5 

temperatures and wind speed (expressed as their standard deviations) during individual 6 

sample duration on the air-sea exchange flux (Table S3). 7 

 8 

Table S2. Sensitivity of the diffusive air-sea exchange flux, Faw, calculated as Faw = | [100× 9 

(Faw + i) – Faw]/Faw |, with the standard deviations, i, of i = wind speed (WS) or air or 10 

seawater temperature (Ta, Tw). 11 

  FLT PYR RET 

WS 146 148 185

Ta 1.3 0.19 4.1

Tw 13 9.5 4.1

 12 

S1.3 Two-box fugacity model 13 

A non-steady state 2-box model is applied to test the hypothesis that seasonal depositional 14 

input of RET into the surface waters during the fire season (summer) triggers reversal of 15 

diffusive air-sea exchange.  16 
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The model simulations for the period 2005-2010 are initialised by fire-related RET emissions 1 

into air for the East Mediterranean (28-45°N, 8-30°E). RET was in the region eventually also 2 

emitted to air from coal and crop residues combustion (Bi et al., 2008; Shen et al., 2012), and 3 

eventually emitted to seawater influenced by pulp or paper mill effluents (Leppänen and 4 

Oikari, 1999) or by diagenesis (Alexander et al., 1995) in the region. However, these sources 5 

of RET to air and seawater are neglected as expected to contribute insignificantly and to 6 

show less inter-annual variability. Moreover, advection of RET into the model domain e.g., 7 

from fires in the western Mediterranean is neglected for simplicity.  8 

Temperature and wind speed data were taken from the Iraklion meteorological station 9 

(35°20’N / 25°11’E, 39 m a.s.l.), located close to the centre of the model domain. Wind 10 

speed data were extrapolated to 10 m above sea level assuming neutral conditions all the time 11 

(Stull, 1988). Input data are listed in Table S3. Only wind speeds of on-shore winds were 12 

considered representative, while periods (hourly data) of off-shore winds observed at Iraklion 13 

were rejected, leading to gaps in the time series of predicted Faw. No experimental data for 14 

RET lifetime in seawater exist. Degradation rate in seawater is uncertain. It was derived from 15 

a model estimated halflife against hydrocarbon biodegradability in freshwater (56 days; 16 

BioHCwin; USEPA, 2009), which could be much longer for seawater. A factor of 10 is often 17 

applied to estimate lifetime in seawater from data in freshwater (EU, 1996).  18 

Gaseous air and seawater concentrations and the air-sea exchange flux, Faw, are output. 19 

Two scenarios are considered, an ‘Initially Estimated Parameter Set' (IEPS) representing 20 

mean values for environmental parameters, and an 'Upper Estimate Parameter Set' (UEPS) 21 

which represents realistic environmental conditions favouring seawater pollution (Table S3). 22 

UEPS considers lower estimates for the atmospheric and seawater mixing layers, the  23 

degradation rate in seawater (kOC) and the export (settling) velocity in seawater (vexp) and an 24 

upper estimate of the of fire-related PM2.5 emission flux. 25 

 26 

Table S3. Input parameters for the 2-box model, initially estimated parameter set (IEPS). For 27 

the upper estimate parameter set (UEPS) FRPM25 was replaced by FRPM25×5, KOC by 28 

KOC/100, VEXP by VEXP/10,  HMIX by HMIX/2, and HMIXM by HMIXM/2. 29 

 30 

 Parameter Unit Value adopted or Reference 
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mean (min-max) 

COH 

 

OH concentration in air molec cm-

3 

(0.5-2.2)×106 during 

day-time, 0 during 

nighttime 

climatological data 

(Spivakovsky et al., 

2000) temporally 

interpolated 

DOC Dissolved organic carbon µM 61.5 Pujo-Pay et al., 2011 

FRPM25 fire-related PM2.5 emission flux mg m-2 h-1 3.02 (0 - 496)×10-7 

 

Kaiser et al., 2012 

FACEMP

M25 

Emission factor for PM2.5 mg (kg 

fuel 

burnt)-1 

207 Schmidl et al., 2008, 

Andreae 1991 

HENRY Henry coefficient of RET Pa m-3 

mol-1 

2.3 USEPA, 2009 

HMIX Atmospheric mixing height M 1000 Estimate 

HMIXM Mixing depth in ocean M 40 d'Ortenzio et al., 

2005 

KDOC Dissolved organic carbon/water 

partition coefficient 

L g-1 

 

158.49 Karickhoff, 1981 

KOC 1st order degradation rate 

coefficient in seawater 

s-1 1.0×10-7 (4×10-8 -

4×10-7) 

USEPA, 2009, T 

dependence: EU, 

1996 

KOH Gas-phase reaction rate coefficient 

with OH of RET 

cm³ 

molec-1 s-1 

4.2×10-11 

 

Lammel et al., 

2010a 

KOW Octanol/water partitioning 

coefficient of RET 

 2.24×106 USEPA, 2009 

KOHEOR Factor E/R in van 't Hoff equation 

for OH reaction of RET 

K -20.33 Calvert et al., 2002 

KPOC Particulate organic carbon/water 

partitioning coefficient 

L g-1 

 

2240 assumed to be given 

by Kow; Rowe et al., 

2009 

KS Setschenow constant of RET L mol-1 0.38 Jonker and Muijs, 

2010 

POC Concentration of particulate 

organic carbon in surface seawater 

µM 3.08 Pujo-Pay et al., 2011 

Ta Air temperature K 292.1 (275.2 - 311.2) WMO, 2013 

Tw Surface seawater temperature K 292.1 (27482 - 311.6) estimated from Ta: 
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Tw = Ta + 0.4 K 

during day-time, Tw 

= Ta - 0.4 K during 

nighttime 

THETA Particulate mass fraction of RET 

in air 

 

 

0.05 (0.02 - 0.14) Lammel et al., 

2010a, T 

dependence: 

Lammel et al., 

2010b 

VEXP Export (settling) velocity of 

particle-sorbed molecule in 

seawater 

m s-1 8×10-6 Schwarzenbach et 

al., 2003 

VDEPP Deposition velocity of particle-

sorbed molecule in air 

m s-1 6.5×10-5 Franklin et al., 2000 

WS Wind speed m s-1 6.1 (0.6-30.7) WMO, 2013 

 1 

S2. Results 2 

S2.1 Gas-particle partitioning 3 

 4 

Fig. S2. Time series of particulate mass fraction (Theta), air temperature T (°C) and PM10 5 

concentration (ng m-3) for (a) BAA, (b) TRI, (c) CHR and (d) BBF. 6 

a. 7 

 8 

b. 9 
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 1 

c.  2 

 3 

d. 4 

 5 

S2.2 Air-sea exchange 6 

S.2.2.1 FLT and PYR 7 
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FLT, PYR and dimethylphenanthrenes were near equilibrium or net volatilisational in coastal 1 

waters of the southeastern Mediterranean and FLT in the Black Sea, and also FLT (FR = fa/fw 2 

= 0.1) and PYR (FR = 0.3) in two pairs of samples collected in May 2007 in the open 3 

southeastern Mediterranean Sea, in the same regions than our samples No. 8 and 10 (Castro-4 

Jiménez et al., 2012). In this study (June-July 2006 and May 2007), for FLT and PYR mean 5 

deposition fluxes Faw = -5.87 (-11.42 – -1.11) ng m–2 d–1 and Faw = -7.29 (-12.18 – -2.46) ng 6 

m–2 d–1, respectively, were derived in the ISS, while for the SEM for FLT and PYR mean 7 

volatilisation fluxes Faw = 14.33 (4.54 – 41.04) ng m–2 d–1 and Faw = 15.90 (-0.56 – +62.58) 8 

ng m–2 d–1, respectively, were derived. In our study (August-September 2010), in the ISS 9 

(paired air and water samples No. 11-13) we obtain Faw = 3.14 (-38.79 – +29.16) ng m–2 d–1 10 

and Faw =  60.95 (-14.21 – +195.0) ng m–2 d–1 for FLT and PYR, respectively, and for the 11 

SEM (paired air and water samples No. 7-10) Faw = - 47.36 (-169.23 – +24.45) ng m–2 d–1 12 

and Faw = -53.64 (-243.67 – +62.74) ng m–2 d–1 for FLT and PYR, respectively. This 13 

comparison shows opposite findings. However, spatial variability was very high during the 14 

2010 cruise: In the ISS different signs of flux are indicated for the various sampling sites. In 15 

the SEM the mean fluxes derived from the paired air and water samples No. 7 and 9-10 16 

(neglect of samples No. 8), Faw = 7.48 (-2.62 - 24.45) and Faw = 42.64 (17.73-62.74) for FLT 17 

and PYR, respectively, is close to the 2006-07 findings. Ca in sample No. 8 were very high, 18 

apparently because the air mass had passed over an industrial area in western Turkey (Izmir; 19 

see also SM Fig. S5a). This caused a correspondingly high deposition flux, similar to the 20 

mean annual fluxes derived for 2001-02 at Finokalia, Crete, with then lower Cw (i.e., Faw = -21 

240 ng m-2 d-1 and Faw = -187 ng m-2 d-1 for FLT and PYR, respectively; Tsapakis et al., 22 

2006). In conclusion, considering spatial and temporal variabilities and different seasons 23 

(spring vs. summer) no trend, in particular no reversal of air-sea exchange is indicated by 24 

these two data sets, 3 years apart. 25 

 26 

S2.2.2 RET 27 

Under UEPS (Fig. S4), for 6 out of 12 observed (i.e., fugacity ratio-derived) Faw (all > 0) 28 

agreement within one order of magnitude is found (underpredicting), the wrong sign (Faw < 29 

0) is predicted for 2 such cases (31.8.2010 and 2.9.2010) and no prediction was possible for 4 30 

such cases. Note that because of a high frequency of nocturnal off-shore winds at the coastal 31 
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station from where wind speed data were adopted from (land breeze at Iraklion, Crete), data 1 

gaps in the simulated time series of Faw occur more often during night-time than during day 2 

time (visible in Fig. S4). Because of the diurnal variation of temperature and wind speed 3 

these data gaps are often corresponding with maxima rather than minima of predicted Faw. 4 

Underprediction could be due to neglected emissions to air and seawater in the region other 5 

than fire related (no or little seasonality) or neglect of advection into the model region 6 

(similar seasonality as captured emissions). Therefore, also the amplitude of the high 7 

frequency (daily) fluctuations could be underestimated. On the other hand, Faw derived from 8 

observed concentrations Ca and Cw is uncertain, too. The biggest contribution is expected to 9 

be caused by sampling air and water not simultaneously (but combining short seawater 10 

sampling intervals with 10-20 h air sampling periods, often starting or ending when seawater 11 

samples were collected).  12 

A sensitivity analysis (section S1.2) was performed to quantify the uncertainty of the 13 

calculated flux, Faw, accounting for the variabilities of wind speed, air and seawater 14 

temperatures during sampling periods (Table S2). Faw is found most sensitive to wind speed, 15 

changes on average for all the samples about 160% when adding or subtracting one SD of 16 

wind speed (hourly data) from the mean. The flux is much less sensitive to variation of the 17 

air and seawater temperatures, leading to changes of approximately 2 and 9%, respectively, 18 

when adding or subtracting one SD from the mean. While the sensitivity of Faw to wind speed 19 

would be even higher when based on higher time-resolved data, hourly data appear 20 

appropriate considering mixing times of surface waters. This sensitivity to input uncertainties 21 

may explain part of the underestimate, but not up to one order of magnitude. 22 

 23 

Fig. S3. Model predicted diffusive air-sea exchange flux, Faw, of RET (ng m-2 d-1; downward 24 

in blue and upward in red) using the initially estimated parameter set (IEPS) for the Eastern 25 

Mediterranean (28-45°N/8-30°E) 1.1.2005-31.12.2010, hourly means. Data filtered against 26 
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off-shore winds (see main text). (Same as Fig. 4, but IEPS)1 

 2 

 3 

S2.3 Long-range transport 4 

 5 

Fig. S5. Residence time distribution (left: latitude vs. longitude, right: latitude vs. altitude) of 6 

particles in backward simulations corresponding to (a) maximum and (b) minimum 7 

atmospheric PAH concentrations. 8 

a) 9 

 10 

b) 11 
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