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Abstract 13 

Polycyclic aromatic hydrocarbons concentration in air of the central and eastern 14 

Mediterranean in summer 2010 was 1.45 (0.30-3.25) ng m-3
 (sum of 25 PAHs), with 8 (1-17) 15 

% in the particulate phase, almost exclusively associated with particles <0.25 µm. The total 16 

deposition flux of particulate PAHs was 0.3-0.5 µg m-2 year-1. The diffusive air-sea exchange 17 

fluxes of fluoranthene and pyrene were mostly found net-depositional or close to phase 18 

equilibrium, while retene was net-volatilisational in a large sea region. Regional fire activity 19 

records in combination with box model simulations suggest that seasonal depositional input 20 

of retene from biomass burning into the surface waters during summer is followed by an 21 

annual reversal of air-sea exchange, while inter-annual variability is dominated by the 22 

variability of the fire season. One third of primary retene sources to the sea region in the 23 



period 2005-2010 returned to the atmosphere as secondary emissions from surface seawaters. 24 

It is concluded that future negative emission trends or interannual variability of regional 25 

sources may trigger the sea to become a secondary PAH source through reversal of diffusive 26 

air-sea exchange. 27 

 28 

Capsule: Polycyclic aromatic hydrocarbons phase distributions in marine aerosols, direction 29 

of air-sea exchange and open fires as a possible source characterised in the Mediterranean  30 

 31 

Keywords: polycyclic aromatic hydrocarbons, long-range transport, air-sea exchange, open 32 

fires 33 

 34 

1. Introduction  35 

The marine atmospheric environment is a receptor for polycyclic aromatic hydrocarbons 36 

(PAHs) which are advected from combustion sources on land (power plants, biomass 37 

burning, road transport, domestic heating). Marine sources may be significant near transport 38 

routes (ship exhaust). Long-range transport from urban and industrial sources on land are the 39 

predominant sources of PAHs in the Mediterranean (Masclet et al., 1988; Tsapakis et. al, 40 

2003 and 2006; Tsapakis and Stephanou, 2005a). A number of PAHs are semivolatile (vapour 41 

pressures at 298 K in the range 10-6-10-2 Pa) and, hence partition between the gas and 42 

particulate phases of the atmospheric aerosol, influenced by temperature, particulate phase 43 

chemical composition and particle size (Keyte et al., 2013). Upon deposition to surface water 44 

PAHs partition between the aqueous and particulate (colloidal and sinking) phases and may 45 

bioaccumulate in marine food chains (Lipiatou and Saliot, 1991; Dachs et al., 1997; Tsapakis 46 



et. al, 2003; Berrojalbiz et al., 2011). They were also found enriched in the sea-surface 47 

microlayer relative to subsurface water (Lim et al., 2007; Guitart et al., 2010). Semivolatile 48 

PAHs may be subject to re-volatilisation from the sea surface (reversal of air-sea exchange), 49 

similar to chlorinated semivolatile organics (Bidleman and McConnell, 1995), in case high 50 

concentrations in surface water would build up. This had been predicted by 51 

multicompartmental modelling for 2-4 ring PAHs for polluted coastal waters and also the 52 

open ocean (Greenfield and Davis, 2005; Lammel et al., 2009a) and was indeed observed in 53 

coastal waters off the northeastern United States (Lohmann et al., 2011). Field studies in the 54 

open sea found net-deposition to prevail whenever determined (e.g. Tsapakis et al., 2006; 55 

Balasubramanian and He, 2010; Guitart et al., 2010; Castro-Jiménez et al., 2012; Mai, 2012). 56 

However, some 3-4 ring parent PAHs, among them fluorene (FLN), fluoranthene (FLT) and 57 

pyrene (PYR), were reported to be close to phase equilibrium in the Mediterranean, Black 58 

and North seas (Castro-Jiménez et al., 2012; Mai, 2012), and net volatilisation of FLT and 59 

PYR was observed in the open southeastern Mediterranean Sea in spring 2007 (Castro-60 

Jiménez et al., 2012).  61 

The aim of this study was to add insights on the cycling of PAHs in the Mediterranean in 62 

summer, with a focus on sources and phase partitioning in the aerosol. 63 

 64 

2. Methods 65 

2.1 Sampling 66 

Gas and particulate phase air samples were taken during the RV Urania cruise, 27 August – 67 

12 September 2010 (see Supplementary Material (SM), Fig. S1). The high volume sampler 68 

(Digitel) was equipped with one glass fibre filter (GFF, Whatman) and one polyurethane 69 

Gelöscht: U
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foam (PUF) plug (Gumotex Břeclav, density 0.030 g cm-3, 50 mm diameter, cleaned by 70 

extraction in acetone and dichloromethane, 8 h each, placed in a glass cartridge) in series. 71 

Particle size was classified in the particulate phase using high-volume filter sampling (F = 68 72 

m³ h-1, model HVS110, Baghirra, Prague) and low-volume impactor sampling (F = 0.54 m³ h-
73 

1, Sioutas 5-stage cascade, PM10 inlet, cutoffs 2.5, 1.0. 0.5, 0.25 µm of aerodynamic particle 74 

size and back-up filter, impaction on quartz fibre filters (QFF), SKC Inc., Eighty Four, USA, 75 

sampler Baghirra PM10-35). In total 15 high-volume filter samples, exposed 8-36 h (230-1060 76 

m³ of air), and 3 low-volume impactor samples, exposed 5 d, were collected. Water sampling 77 

was performed using the stainless steel ROSETTE active sampling device equipped with 24 78 

Niskin bottles (volume of 10 l) deployed in water at 1.5 m depth for surface water sampling. 79 

 80 

PAH sampling on GFF and in PUF can be subject to losses related to oxidation of sorbed 81 

PAH by ozone (Tsapakis and Stephanou, 2003). This artifact is species-specific and the more 82 

pronounced the higher the ozone concentration and the longer the sampling time. Among the 83 

PAHs addressed benzo(a)pyrene and pyrene have been identified as particularly vulnerable to 84 

oxidation. Based on such sampling artefact quantification studies (Tsapakis and Stephanou, 85 

2003; Galarneau et al., 2006) and ozone levels (Table 1a) and sampling times (Table S1) we 86 

expect that total PAHs are underestimated by up to 50% in the gas-phase and by up to 25% in 87 

the particulate phase. 88 

With the aim to characterize the potential influences of ship-bourne emissions on the 89 

samples, passive air samplers with PUF disks (150 mm diameter, 15 mm thick, deployed in 90 

protective chambers consisting of two stainless steel bowls; Klánová et al., 2008) were 91 



exposed at 5 different locations on board during 16 days. The PAH levels of these samples 92 

indicated that ship-based contamination was negligible. 93 

 94 

2.2 PAHs analyses and quality assurance 95 

For PAH analysis all samples were extracted with dichloromethane in an automatic extractor 96 

(Büchi B-811). Surrogate recovery standards (D8-naphthalene, D10-phenanthrene, D12-97 

perylene) were spiked on each PUF and GFF prior to extraction. The volume was reduced 98 

after extraction under a gentle nitrogen stream at ambient temperature, and fractionation 99 

achieved on a silica gel column.  100 

The extract was fractionated on a silica column (5 g of silica 0.063 – 0.200 mm, activated 12 101 

h at 150°C). The first fraction (10 mL n-hexane) containing aliphatic hydrocarbons was 102 

discarded. The second fraction (20 mL dichloromethane) containing PAHs was collected and 103 

then reduced by stream of nitrogen in a TurboVap II (Caliper LifeSciences, USA) 104 

concentrator unit and transferred into an insert in a vial. Terphenyl was used as syringe 105 

standard, final volume was 200 μL. Gas-chromatography / mass spectrometric analysis was 106 

performed on a 6890N GC equipped with a 60m x 0.25mm x 0.25µm DB5-MS column 107 

(Agilent J&W, USA) coupled to 5973N MS (Agilent, USA). The MS was operated in 108 

electron impact positive ion mode with selected ion recording (SIR).The targeted compounds 109 

are the 16 EPA priority PAHs (i.e., naphthalene (NAP), acenaphthylene (ACY), 110 

acenaphthene (ACE), fluorene (FLN), phenanthrene (PHE), anthracene (ANT), fluoranthene 111 

(FLT), pyrene (PYR), benzo(a)anthracene (BAA), chrysene (CHR), benzo(b)fluoranthene 112 

(BBF), benzo(k)fluoranthene (BKF), benzo(a)pyrene (BAP), indeno(123cd)pyrene (IPY), 113 

dibenzo(ah)anthracene (DBA), benzo(ghi)perylene (BPE)), 10 more parent PAHs (i.e., 114 



benzo(ghi)fluoranthene (BGF), cyclopenta(cd)pyrene (CPP), triphenylene (TPH), 115 

benzo(j)fluoranthene (BJF), benzo(k)fluoranthene (BKF), benzo(e)pyrene (BEP), perylene 116 

(PER), dibenz(ac)anthracene (DCA), anthranthrene (ATT), and coronene (COR)), and one 117 

alkylated PAH, retene (RET). The injection volume was 1 µL. Terphenyl was used as internal 118 

standard. 119 

Field blank values, b, were gained from GFFs and PUFs manipulated in the field, as far as 120 

possible identical to the samples, except without switching the high-volume sampler on. No 121 

QFF field blank was taken for impactor sampling. As no PAHs were detected in the stages 122 

corresponding to 2.5-10 µm (all PAHs < limit of detection in all such samples), instead the 123 

mean of values of the QFF substrates of the 2 uppermost impactor stages (in total 6) was 124 

taken. The respective b value was subtracted from sample values. The limit of quantification 125 

needs to take the accuracy of the blank level into account. In lack of a measure for the 126 

variation of the field blank, the relative standard deviation (SD) of field blanks from earlier 127 

field campaigns, (c/bc), on a high-mountain site (high-volume sampling summer 2007, n = 5; 128 

Lammel et al., 2009b) and in the Mediterranean (impactor sampling summer 2008, n = 6; 129 

Lammel et al., 2010a) was used ( = (c/bc) × b). Identical samplers, sampling and analysis 130 

protocols for all analytes had been applied. Values below the sum of the field blank value 131 

(from this campaign) and 3 relative SDs of the field blank values (from the previous 132 

campaigns) were considered <LOQ (limit of quantification, LOQ = b + 3). NAP and ACY 133 

were excluded from the data set, because of the lack of blank values. The field blank values 134 

of most other analytes were below instrument LOQ in high-volume PUF and GFF samples. 135 

However, higher field LOQs, up to (6-25) pg m-3 (according to sampled volume of air) 136 

resulted for ANT, PYR and RET, and up to (45-180) pg m-3 for ACE, FLN, PHE and FLT in 137 



PUF. Field LOQs of PAHs in impactor QFF samples were below instrumental LOQ for most 138 

substances, but in the range (8-15) pg m-3 for ACE, ANT, and FLT, 55 pg m-3 for FLN, and 139 

120-140 pg m-3 for NAP and PHE.  140 

The instrument limit of quantification (LOQ), which is based on the lowest concentration of 141 

calibration standards used, was 0.5 ng, corresponding to 0.5-2.5 pg m-3 for high-volume 142 

samples, 8 pg m-3 for impactor samples, 6-10 pg m-3 for semivolatile PAHs determined in 143 

passive air samples and up to 200 pg m-3 for non volatile PAHs in passive air samples. 144 

Water samples (2-2.5 L) were extracted immediately after their collection using solid phase 145 

extraction on C18 Empore discs using a vacuum manifold device. Disks were stored closed in 146 

glass vials in a freezer and transported to the processing laboratory, PAHs were eluted from 147 

disks using 40 mL of dichloromethane. The above listed PAHs were analysed on GC/MS 148 

(Agilent GC 6890N coupled to an Agilent single quadrupole MS 5973N operating in electron 149 

impact ionisation mode). LOQ was 0.1 ng L-1. 150 

 151 

Other trace constituents and meteorological parameters  152 

Ozone was measured with an absorption method (Teledyne–API model 400A UV) on the top 153 

deck (10 m above sea surface). Meteorological parameters (air temperature, humidity, wind 154 

direction and velocity) and oceanographic parameters were determined aboard. 155 

 156 

2.3 Models of gas-particle partitioning  157 

The data set (15 high-volume samples of separate gas and particulate phase concentrations) 158 

is used to test gas-particle partitioning models for semivolatile organics in terms of the 159 

organics' mass size distribution and size dependent particulate matter (PM) composition. The 160 



models assume different processes to determine gas-particle partitioning, i.e. an adsorption 161 

model (Junge-Pankow; Pankow, 1987), and two absorption models (i.e. KOA models; Finizio 162 

et al., 1997; Harner and Bidleman, 1998). Absorption is into particulate organic matter (OM). 163 

Adsorption to soot is a significant gas---particle partitioning processes for PAHs, but no soot 164 

data or PM chemical composition data are available. We, therefore, refrain from testing dual 165 

adsorption and absorption models (e.g. Lohmann and Lammel, 2004). Particulate mass 166 

fraction, , and partitioning coefficient, Kp, are defined by the concentrations in the 2 phases: 167 

 168 

 = cp / (cp + cg)  169 

 170 

Kp = cp / (cg × cTSP) =  / [( 1 - ) × cTSP] 171 

 172 

With PAH particulate and gas-phase concentrations cp and cg in units of ng m-3, cp 173 

representing the whole particle size spectrum, concentration of total suspended matter, cTSP. 174 

Different models describe different processes to quantify differences in ad- and absorption 175 

between compounds. The Junge-Pankow model uses the vapour pressure of the sub-cooled 176 

liquid pL
0,  = cJ S/(pL

0+cJ S), (data taken from Lei et al., 2002), cJ should be approximately 177 

171 Pa cm for PAHs (Pankow, 1987). The aerosol particle surface concentration, S, was not 178 

measured and a typical value for maritime aerosols is adopted instead (4.32×10-7 cm-1; 179 

Jaenicke, 1988). Harner and Bidleman, 1998, use the log KOA and fOM: log Kp = log KOA+log 180 

fOM -11.91; and Finizio et al., 1997, uses only the KOA as predictor (data taken from Ma et al., 181 

2010): log Kp = 0.79×log KOA - 10.01. The range of the fraction of OM used here is based on 182 

Putaud et al., 2004 (16% lower limit) and Spindler et al., 2012 (45% upper limit). 183 
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 184 

2.4 Air-sea diffusive mass exchange calculations 185 

State of phase equilibrium is addressed by fugacity calculation, based on the Whitman two-186 

film model (Liss and Slater, 1974; Bidleman and McConnell, 1995). The fugacity ratio (FR) 187 

is calculated as:  188 

 189 

FR = fa/fw = CaRTa / (CwHTw,salt)  190 

 191 

with fugacities from air and water, fa and fw, gas-phase concentration Ca (ng m3), dissolved 192 

aqueous concentration Cw (ng m3), universal gas constant R (Pa m3 mol-1 K-1), water 193 

temperature and salinity corrected Henry's law constant HTw,salt (Pa m3 mol-1), and air 194 

temperature Ta (K). Cw is derived from the bulk seawater concentration, Cbulk: 195 

 196 

Cw = Cbulk /(1 + KPOC CPOC + KDOC CDOC) 197 

 198 

with particulate and dissolved organic carbon concentrations, CPOC and CDOC, from Pujo-Pay 199 

et al., 2011, KPOC and KDOC from Karickhoff, 1981, Lüers and ten Hulscher 1996, Rowe et al, 200 

2009, and Ma et al, 2010. Values 0.3< FR <3.0 are conservatively considered to not safely 201 

differ from phase equilibrium, as propagating from the uncertainty of the Henry's law 202 

constant, HTw,salt, and measured concentrations (e.g., Bruhn et al., 2003; Castro-Jiménez et al., 203 

2012; Zhong et al., 2012). This conservative uncertainty margin is also adopted here, while 204 

FR >3.0 indicates net deposition and FR <0.3 net volatilisation. The diffusive air–seawater 205 



gas exchange flux (Faw, ng m-2 day-1) is calculated according to the Whitman two-film model 206 

(Bidleman and McConnell, 1995; Schwarzenbach et al., 2003):  207 

 208 

Faw = kol (Cw - CaRTa/HTw,salt) 209 

 210 

with air-water gas exchange mass transfer coefficient kol (m h–1), accounting for resistances 211 

to mass transfer in both water (kw, m h-1) and air (ka, m h-1), defined as 212 

 213 

1/kol = 1/kw + RTa/(kaHTw,salt) 214 

 215 

with ka = (0.2U10 + 0.3)*(Di,air/DH2O,air)
0.61×36, kw = (0.45U10

1.64)×(Sci/ScCO2)
-0.5×0.01. U10 is 216 

the wind speed at 10 meter height above sea level (m s-1), Di,air and DH2O,air are the 217 

temperature dependent diffusivities of substance i and H2O in air, and Sci and ScCO2 are the 218 

Schmidt numbers for substance i and CO2 (see Bidleman and McConnell, 1995; Zhong et al. 219 

2012; and references therein). U10, Ta, Tw and air pressure are taken from the ship based 220 

measurements.  221 

 222 

2.5 Non-steady state 2-box model 223 

The air–sea mass exchange flux of RET is simulated by a non-steady state zero-dimensional 224 

model of intercompartmental mass exchange (Lammel, 2004). RET is selected, because of 225 

the prevalence of one dominating source. This 2-box model predicts concentrations by 226 

integration of two coupled ordinary differential equations that solve the mass balances for the 227 

two compartments, namely the atmospheric marine boundary layer (MBL) and seawater 228 



surface mixed layer. Processes considered in air are dry (particle) deposition, removal from 229 

air by reaction with the hydroxyl radical, and air-sea mass exchange flux (dry gaseous 230 

deposition), while in seawater export (settling) velocity, deposition flux from air, air-sea 231 

mass exchange flux (volatilisation), and degradation (as 1st order process) are considered. All 232 

input parameters are listed in the SM, Table S2.  233 

Atmospheric depositions related to emissions from open fires are assumed to provide the 234 

only source for seawater RET. These are available as daily time series for the East 235 

Mediterranean domain (28-45°N, 8-30°E) through the fire-related PM2.5 emissions as 236 

provided by the Global Fire Assimilation System (GFASv1.0; Kaiser et al., 2012) in 237 

combination with an emission factor (207 mg RET in PM2.5 (kg fuel burnt)-1; Schmidl et al., 238 

2008). The fire emissions are averaged over the domain and assumed to disperse within the 239 

MBL only. This is justified due to the assumed underestimation of the fire related emissions 240 

and ignorance of other (emission) sources. The 2-box model is run for the years 2005-2010, 241 

for the east Mediterranean domain (28-45°N, 8-30°E) with a 1 h time resolution. Air–sea 242 

mass exchange fluxes, Fem, in the range (0.30 ± 1.46) ng m-2 h-1 (positive defined upward) are 243 

simulated (using the initially estimated parameter set, Table S2). GFAS uses global satellite 244 

observations of fire radiative power to estimate daily dry matter combustion rates and fire 245 

emission fluxes. The GFAS system partly corrects for observational gaps (e.g. due to cloud 246 

cover) and detects fires in all biomes, except for very small fires (lower detection limit of 247 

around 100-1000 m2 effective fire area). 248 

 249 

2.6 Analysis of long-range advection of air  250 
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Distributions of potential sources can be identified by inverse modelling using 251 

meteorological input data (Stohl et al., 2003; Eckhardt et al., 2007). So-called retroplumes 252 

are generated using operational weather prediction model data and a Lagrangian particle 253 

dispersion model, FLEXPART (Stohl et al., 1998, 2005). Hereby, 50000 virtual particles per 254 

hour were 'released' and followed backwards in time for 5 days. The model output is a 3-D 255 

distribution of residence time.  256 

 257 

3. Results and discussion 258 

3.1 PAH concentrations in air and seawater 259 

The mean total (i.e., sum of gaseous and particulate) Σ25 PAHs concentration is 1.45 ng m-3 260 

(time-weighted; 1.54 with values <LOQ replaced by LOQ/2, see Table 1a), and ranged from 261 

0.30-3.25 ng m-3. The spatial variability of PAH levels in the Mediterranean is large, 262 

determined by long-range advection (Tsapakis and Stephanou, 2005a; Tsapakis et al., 2006). 263 

The levels found in this study in the southeastern Mediterranean are for most substances 264 

lower than found earlier (Table 2). In the  Ionian Sea and Sicily region (ISS) some PAHs are 265 

found somewhat higher than previously measured i.e., FLT and PYR (in the gas-phase) and 266 

BAP and PER (in the particulate phase). Due to a sampling artefact BAP and other 267 

particulate phase PAHs could be underestimated by up to 25% (aforementioned, section 2.1). 268 

The seasonality of emissions and the variability of advection or advection in combination 269 

with different cruise routes being influenced differently by coastal or ship emission plumes 270 

can have a large influence and may explain these differences. On the other hand, the duration 271 

of temporal averaging atmospheric concentrations was similar across the various studies. 272 

Diagnostic ratios (BAA/(BAA+CHR), FLT/(FLT+PYR); Dvorská et al., 2011) in some of the 273 
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samples (No. 2, 4, 7, 8, and 15) reflect the influence of traffic and industrial sources. We 274 

investigated the potential source distribution of individual samples collected along the cruise 275 

(section 2.6) and found that indeed maxima of PAH concentrations corresponded with air 276 

masses having resided over large urban areas, and, vice versa, low concentrations 277 

corresponded with air masses without apparent passage of such areas (illustrated in  Fig. S4). 278 

This finding is supported by the ozone data i.e., 53 (47-65) ppbv during influence from urban 279 

areas but 37 (33-62) ppbv otherwise.  280 

It had been pointed out that the source distribution around the Mediterranean may cause a 281 

west-east gradient, leading to higher concentrations found in the ISS than in the southeastern 282 

Mediterranean (SEM; Berrojalbiz et al., 2011). This gradient is somewhat reflected in our 283 

results, as levels in the ISS exceeded levels in the SEM (Table 2). 284 

Most PAH concentrations in surface seawater were <LOQ, while FLT, PYR and RET were 285 

quantified in at least part of the samples (Table 1b). These observed seawater contamination 286 

levels are comparable to levels found in the region 2 and 1 decades ago (Lipiatou et al., 287 

1997; Tsapakis et al., 2003). The concentrations near Crete (samples No. 7 and 8a) are very 288 

similar to those found in fall 2001 and winter-spring 2002 (Tsapakis et al., 2006; FLT = 0.15 289 

(0.11-0.21) ng L-1 , PYR = 0.12 (0.07-0.17) ng L-1). 290 

 291 

Table 1. Concentrations of PAHs found in (a.) air (total, i.e. sum of gas and particulate 292 

phases, ng m-3) and (b.) seawater (total, i.e. sum of dissolved and particulate, ng L-1) as time-293 

weighted mean (min-max). n LOQ  = number of samples > LOQ (out of 15 air and 23 seawater 294 

samples). PAHs with concentrations <LOQ in all samples not listed. For calculation of mean 295 

values <LOQ were replaced by LOQ/2. Ozone levels are given, too (ppbv). 296 
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a) 297 

 nLOQ mean (min-max) 

ACE 4 0.025 (<0.020–0.089) 

FLN 10 0.137 (<0.030–0.396) 

PHE 15 0.581 (0.144–1.41) 

ANT 13 0.043 (0.008–0.22) 

RET 14 0.016 (0.006–0.030) 

FLT 15 0.262 (0.053–0.795) 

PYR 15 0.203 (0.044–0.564) 

BAA 15 0.01 (0.0014–0.031) 

CHR 15 0.04 (0.012–0.092) 

TPH 15 0.018 (0.007–0.032) 

BBN 11 0.018 (0.001–<0.085) 

BBF 15 0.021 (0.004–0.102) 

BKF 14 0.012 (0.002–<0.085) 

BAP 12 0.015 (0.001–<0.085) 

BGF 15 0.021 (0.005–0.067) 

CPP 7 0.012 (0.001–<0.085) 

BJF 15 0.016 (0.002–0.079) 

BEP 14 0.019 (0.004–0.088) 

PER 7 0.012 (0.001–0.1) 

IPY 7 0.022 (0.008–0.094) 



BPE 6 0.02 (0.009–0.085) 

COR 5 0.016 (0.002–0.1) 

Σ25 PAHs  1.539 (0.44–4.694) 

Ozone  42 (33 – 65) 

 298 

b) 299 

 nLOQ mean (min-max) 

PHE 1 1.1 

RET 12 0.1 (<0.1–0.5) 

FLT 10 0.1 (<0.1–0.3) 

PYR 7 0.2 (<0.2–0.9) 

 300 

Table 2 Gaseous (a) and particulate (b) concentrations in air (time-weighted mean (min-301 

max), ng m-3) of selected PAHs compared to other studies in the Ionian Sea and Sicily region 302 

(ISS) and in the southeastern Mediterranean (SEM). For calculation of means values <LOQ 303 

were replaced by LOQ/2. RV = research vessel cruise. 304 

a)  305 

ISS SEM   

RV August-

September 

2010 

RV  June 

2006, May 

2007 

RV August-

September 

2010 

RV June 2006, 

May  2007 

Finokalia 

September-

October 2001, 

February, 

March and 

July 2002 (1) 

Finokalia 

November 2000-

February 2002(2) 



this study 

Castro-

Jiménez et al., 

2012 this study 

Castro-Jiménez 

et al.,  2012 

Tsapakis et al. 

2006 

Tsapakis & 

Stephanou 2005a 

FLN 

0.16 

(<0.027–

0.34) 

2.25 (1.27–

5.65) 

0.071 

(<0.050–

0.40) 

0.69 (0.36–

1.23) 

1.05 (0.15–

1.67) 1.8 (0.2–5.7) 

PHE 

0.52 (0.14–

1.11) 

7.00 (3.52–

15.45) 

0.35 (0.14–

1.41) 

3.94 (2.50–

6.35) 

4.78 (1.75–

7.78) 7.3 (1.5–27.7) 

ANT 

0.040 

(<0.021–

0.10) 

0.37 (0.18–

0.55) 

0.039 

(<0.013–

0.22) 

0.20 (0.16–

0.30) 

0.61 (0.12–

1.31) 0.9 (0.1–4.5) 

FLT 

0.14 (0.053–

0.31) 

0.05 (0.02–

0.07) 

0.10 (0.061–

0.37) 

0.007 (0.003–

0.011) 

0.82 (0.12–

1.69) 1.8 (0.07–6.0) 

PYR 

0.14 (0.058–

0.56) 

0.04 (0.02–

0.06) 

0.12 (0.044–

0.29) 

0.006 (0.003–

0.009) 

0.65 (0.14–

0.97) 0.9 (0.1–2.8) 

CHR 

0.012 

(0.0071–

0.021) 

0.09 (0.03–

0.23) 

0.014 

(0.012–

0.037) 

0.03 (0.02–

0.05) 

0.18 (0.06–

0.33) 0.2 (<0.001–0.6) 

Sum 

of 6 

PAH

s 1.0 9.8 0.7 4.9 8.1 12.9 

 306 

b) 307 

ISS SEM  

RV 

August-

RV June 2006, 

May 2007 

RV August-

September 

RV June 

2006, May 

Finokalia 

November 2000-



September 

2010 

2010 2007 February 2002 

this study 

Castro-Jiménez 

et al.,  2012 this study 

Castro-

Jiménez et al.,  

2012 

 
Tsapakis & 

Stephanou 2005a 

FLN 

<0.92 

(<0.60–

<1.1) 

0.001 (0.0009–

0.002) 

<0.66 

(<0.33–

<1.4) 

0.0013 

(0.0011–

0.0016) 

0.02 (<0.001–

0.01) 

PHE 

<1.9 

(<1.2–

<2.3) 

0.06 (0.01–

0.12) 

<1.6 

(<0.66–

<2.7) 

0.04 (0.01–

0.13) 0.05 (0.004–0.2) 

ANT 

<0.21 

(<0.14–

<0.26) 

0.007 (0.0009–

0.012) 

<0.16 

(<0.07–

<0.32) 

0.009 

(0.0007–

0.023) 

0.004 (<0.001–

0.02) 

FLT 

<0.85 

(<0.56–

<1.0) 

0.099 (0.01–

0.19) 

<0.62 

(<0.30–

<1.3) 

0.049 (0.01–

0.12) 0.1 (0.04–0.2) 

PYR 

<0.11 

(<0.070–

<0.13) 

0.109 (0.016–

0.216) 

<0.08 

(<0.044–

<0.16) 

0.057 (0.012–

0.142) 0.04 (0.01–0.01) 

BAA 

0.0054 

(<0.0018–

0.025) 

0.013 (0.006–

0.023) 

0.0026 

(<0.0006–

0.0080) 

0.018 (0.004–

0.046) 0.03 (0.003–0.1) 

CHR 

0.018 

(0.0030–

0.076) 

0.04 (0.01–

0.08) 

0.0079 

(0.0033–

0.020) 

0.043 (0.012–

0.101) 0.1 (0.02–0.3) 

BBF 0.023 0.029 (0.012– 0.011 0.033 (0.010– 0.04 (<0.001–0.2) 



(<0.0018–

0.010) 

0.045) (0.0042–

0.033) 

0.060) 

BKF 

0.012 

(<0.0018–

0.057) 

0.015 (0.005–

0.027) 

0.0047 

(0.0018–

0.015) 

0.089 (0.005–

0.333) 0.04 (<0.001–0.2) 

BAP 

0.013 

(<0.0009–

0.072) 

0.009 (0.04–

0.016) 

0.0046 

(<0.0011–

0.0098) 

0.034 (0.005–

0.081) 0.02 (0.01–0.05) 

BJF 

0.018 

(<0.0018–

0.079) 

0.015 (0.014–

0.016) 

0.0072 

(0.0023–

0.031) 

0.010 (0.008–

0.011) - 

BEP 

0.019 

(<0.0018–

0.088) 

0.03 (0.02–

0.05) 

0.0082 

(0.0035–

0.025) 

0.046 (0.017–

0.093) 0.04 (0.01–0.1) 

PER 

0.0023 

(<0.00096

–0.011) 

0.002 (0.0005–

0.004) 

0.00075 

(<0.0006–

0.0021) 

0.026 

(0.0001–

0.068) 

0.004 (<0.001–

0.01) 

IPY 

0.015 

(<0.00096

–0.094) 

0.018 (0.006–

0.032) 

0.0016 

(<0.00052–

0.019) 

0.009 (0.002–

0.013) 0.03 (0.009–0.2) 

BPE 

<0.0014 

(<0.00096

–0.0018) 

0.026 (0.017–

0.042) 

0.0041 

(<0.00052–

0.020) 

0.081 (0.012–

0.210) 0.03 (0.010–0.09) 

Sum 

of 15 

PAH

s 0.09 1.06 0.05 0.54 0.54 



(1) months Sep and Oct 2001, Feb, Apr and May 2002. No particulate data reported. 308 

(2) 24h per month between Feb 2000 and Feb 2002 309 

 310 

3.2 Gas-particle partitioning 311 

Only a small mass fraction of the total,  = 0.08, is found in the particulate phase, confirming 312 

earlier findings from remote sites in the region (Tsapakis and Stephanou, 2005a; Tsapakis et 313 

al., 2006; Table 3c). The particulate mass fraction, , of four semivolatile PAHs varied 314 

considerably along the cruise track (see SM Fig. S2).  is thought to be strongly influenced 315 

by temperature and doubling per 13 K cooling was found in a Mediterranean environment 316 

(Lammel et al., 2010b) apart from PM composition. We refrain from an exploration of the 317 

vapour pressure (pL
0) dependence of  (or Kp): A low time resolution implies lack of 318 

representativeness of the temperature measurement for the phase change (Pankow and 319 

Bidleman, 1992). Furthermore, non-equilibrium conditions cannot be excluded (but are 320 

likely as a consequence of time resolution; Hoff et al., 1998), and supporting physical and 321 

chemical aerosol parameters, necessary to relate to, are lacking. For similar temperatures 322 

higher  values had been observed at sites on the region influenced by urban and industrial 323 

sources (Mandalakis et al., 2002; Tsapakis and Stephanou, 2005b; Akyüz and Çabuk, 2010), 324 

which is probably related to the influence of higher organic and soot PM mass fractions. Gas-325 

particle partitioning models (Table 3) underpredict  , except the Finizio et al., 1997, model 326 

for one substance, TPH.  predicted by the Junge-Pankow (JP) model comes closest. A 327 

number of semivolatile PAHs could not be included in this test of gas-particle partitioning 328 

models as concentrations in either the gas-phase (CPP, BBF, BJF), or the particulate phase 329 

(FLT, PYR, BBN) did not exceed LOQ or no insufficient input data were available (BBF). 330 



The neglect of adsorption to soot, not covered by the gas-particle partitioning models tested, 331 

may explain at least part of the underprediction (Lohmann and Lammel, 2004). Due to the 332 

lack of organic and elemental carbon data an extended examination is not possible.  333 

In size-segregated samples particulate PAH mass was almost exclusively found in the size 334 

fraction <0.25 µm aerodynamic diameter (AD) (<LOQ in the other stages, except 0.002 ng 335 

m-3 CPP in the size fraction corresponding to 0.5-1.0 µm; S2.1, Table S4). Most particulate 336 

phase PAHs, 40%, have been found associated with particles <0.5µm out of 5 size ranges in 337 

the marine background aerosol of the sea region (coast of Crete, November 1996 – June 338 

1997; Kavouras and Stephanou, 2002). At continental sites in central and southern Europe 339 

mass median diameters of PAHs were found to be in the accumulation range, mostly 0.5-1.4 340 

µm (Schnelle et al., 1995; Kiss et al., 1998; Lammel et al., 2010b and 2010c), but also a 341 

second, coarse mode was found (up to 2.4 µm; Chrysikou et al., 2009).  342 

 343 

Table 3. Gas-particle partitioning of selected PAHs (mean ± sd (median)), observed and 344 

predicted by the models Junge-Pankow, 1987 (JP), Harner and Bidleman, 1998 (HB), and 345 

Finizio et al., 1997 (F), expressed as (a) particulate mass fraction,  , and (b) log Kp of this 346 

study. 347 

a) 348 

  Observed JP HB  F 

BAA 0.51 ± 0.28 (0.47) 0.18 ± 0.07 (0.18) 0.08 – 0.20 0.18 

TPH 0.27 ± 0.13 (0.26) 0.24 ± 0.10 (0.24) 0.23 – 0.46 0.37 

CHR 0.35 ± 0.15 (0.35) 0.31 ± 0.13 (0.32) 0.09 – 0.21 0.19 

BBF 0.88 ± 0.40 (0.94) 0.91 ± 0.40 (0.97) 0.49 – 0.73 0.59 



 349 

b)  350 

  Observed JP HB  F 

BAA -1.28 ± 1.00 (-0.96) -1.97 ± 1.14 (-1.84) -2.43 – -1.98 -1.89 

TPH -1.77 ± 1.27 (1.45) -1.80 ± 1.07 (-1.63) -1.91 – -1.46 -1.48 

CHR -1.59 ± 1.18 (1.34) -1.65 ± 1.01 (-1.46) -2.41 – -1.96 -1.87 

BBF -0.94 ± 0.19 (-0.24) -0.52 ± 0.66 (-0.74) -1.41 – -0.96 -1.08 

 351 

3.3 Fugacity ratio and air-sea exchange flux 352 

Fugacity ratios (Fig. 1a) and vertical fluxes (Fig. 1b) could be quantified for FLT, PYR and 353 

RET. The uncertainty window of FR = fa/fw = 0.3 - 3.0 is based on the uncertainty of HTw,salt. 354 

Values FR >3.0 indicate net deposition, FR <0.3 indicate net volatilisation. For RET both 355 

water and air concentrations of sample No. 2 were <LOQ. Transfer coefficients were kw << 356 

ka. 357 

a. 358 



 359 

b. 360 

 361 

Fig. 1. Air-sea exchange, (a) fugacity ratios FR = fa/fw (volatilisation > 3, deposition < 0.3, 362 

grey area insignificant deviation from phase equilibrium) and (b) flux Faw (ng m-2 d-2; 363 

volatilisation > 0, deposition < 0) of FLT, PYR and RET along the cruise of RV Urania. Error 364 



bars indicate sea water concentration Cw <LOQ. The x-axis depicts the correspondence of 365 

sequential pairs of air samples (1-13) and water samples (a-e). 366 

 367 

FLT and PYR were found to be close to phase equilibrium, with most of the FR values within 368 

the uncertainty range, one sample (No. 1) indicating deposition of FLT and one or two (No. 9 369 

and 13) indicating volatilisation of FLT and PYR, respectively. In comparison with earlier 370 

observations of FLT and PYR air-sea exchange in the SEM in 2001-02 and 2007 (Tsapakis et 371 

al., 2006; Castro-Jiménez et al., 2012) and considering spatial and temporal variabilities no 372 

trend, in particular no reversal of air-sea exchange is indicated. This comparison is detailed 373 

in the SM, S2.2.1. RET, however, is found net-volatilisational throughout most of the cruise 374 

(Fig. 1). Among the highest fluxes (> 50 ng m2 d-1) are some samples with very low FR, 375 

<0.03. Fugacity of RET from water is supported by its Henry’s law coefficient (11 Pa m3 376 

mol-1 at 298 K) which is higher than for CHR (0.53 Pa m3 mol-1) and FLT (2.0 Pa m3 mol-1). 377 

RET is commonly considered as biomarker for coniferous wood combustion (Ramdahl, 378 

1983). A decrease in wildfires could explain the suspected RET volatilisation. Integrated over 379 

the domain and the year 2010, fires released 7.2 PJ fire radiative energy, which translates into 380 

around 22.2 Gg of PM2.5 emitted (Fig. 2). Compared to the PM2.5 emissions of the years 2003 381 

to 2012, the year 2010 had the lowest emissions, equivalent to 46% of the 2003-2012 mean, 382 

and only 18% of the peak emissions of the year 2007 (Fig. 2d). As typical for the East 383 

Mediterranean region, the fire season in 2010 started by the end of June and ended by early 384 

October. The Urania cruise measurements took place between 27.8. and 12.9., i.e. towards 385 

the end of the main burning season (Fig. 2c). During the first half of the Urania cruise, 386 

widespread fire activity was observed in the entire domain, with most intense fires occurring 387 



in Southern Italy, Sicilia and along the East coast of the Adriatic and the Ionian Sea (notably 388 

in Albania and Greece) (Fig. 2a). 389 

 390 

 391 

Fig. 2. Spatial pattern of fire-related PM2.5 emissions (Global Fire Assimilation System 392 

GFASv1.0; Kaiser et al., 2012) for the East Mediterranean (28-45°N/8-30°E), (a) time 393 

integral of August 10-26, (b) time integral of August 27 - September 12, 2010, given as sum 394 

over each period in mg m-2. Areas with no observed fire activity are displayed in white. 395 

Temporal pattern of domain-integrated (c) daily total PM2.5 emissions over 2010 (c) and 396 

yearly total PM2.5 emissions over 2003 to 2012. Labelled in red is (c) the the period of the 397 

Urania cruise (27 August – 11 September 2010) (d) and the year 2010. 398 

 399 



The hypothesis that seasonal depositional input of RET into the surface waters during the fire 400 

season (summer) triggers reversal of diffusive air-sea exchange, at least in the year 2010, are 401 

tested by box model (sections 2.5 and S1.3) runs. Two scenarios are considered, an ‘Initially 402 

Estimated Parameter Set' (IEPS) representing mean values for environmental parameters, and 403 

an 'Upper Estimate Parameter Set' (UEPS) which represents realistic environmental 404 

conditions favouring seawater pollution (SM, Table S3). Simulated diffusive air-sea 405 

exchange flux, Faw, during 2005-2010 initialised by the UEPS is shown in Fig. 3a and by the 406 

IEPS in the SM, Fig. S3, and during the observations (cruise of RV Urania, 27.8.-9.9.2010) 407 

initialised by the UEPS in Fig. 3b.  408 

The model confirms the hypothesis that seasonal depositional input of RET into the surface 409 

waters during the fire season (July-September, typically in the range Faw = 10-2-101 ng m–2 d–
410 

1 under IEPS) is followed by a period of prevailing flux reversal, typically Faw = 10-2-100 ng 411 

m–2 d–1, which in the years 2008-10 started in October and lasted until the onset of the fire 412 

season, but eventually started later in the years 2005-07 (at least under  IEPS). The 413 

volatilisation flux is predicted smaller in magnitude than the net-deposition flux during the 414 

fire season, but correspondingly, i.e. higher after intense fire seasons. The high RET 415 

volatilisation flux, indicated by measured Ca and Cw, seems to be dominated by biomass 416 

burning in the region in the previous fire season. Faw is predicted highly fluctuating, also 417 

during the observational period (Fig. 3b). Even under UEPS the model is underpredicting Faw 418 

(Fig. 3b). The sensitivity to input uncertainties (SM S1.2) may explain part of the 419 

underestimate, but not up to one order of magnitude. Neglected RET sources to seawater, 420 

such as riverine input may explain part of the discrepancy. 421 

 422 



a. 423 

 424 

 425 

b. 426 

 427 



Fig. 3. Diffusive air-sea exchange flux, Faw, of RET (ng m-2 d-1; downward in blue and 428 

upward in red) using the upper estimate parameter set (UEPS) for the Eastern Mediterranean 429 

(28-45°N/8-30°E) (a.) model predicted for 1.1.2005-31.12.2010 and (b.) model predicted and 430 

observed (black) for 27.8.-9.9.2010. Hourly mean data filtered against off-shore winds (see 431 

text). Error bars including both signs of Faw reflect Cw <LOQ. 432 

 433 

4. Conclusions  434 

 435 

PAH pollution of the atmospheric Mediterranean environment was below previous 436 

observations at the beginning of the decade (2001-02; Tsapakis and Stephanou, 2005a; 437 

Tsapakis et al., 2006), also considering possible losses during sampling. This might reflect 438 

emission reductions. The particulate phase PAHs were concentrated in the size fraction < 439 

0.25 µm AD. The residence time in the troposphere is longest for particles around 0.2 µm of 440 

size, with 0.01 cm s-1 being a characteristic corresponding dry deposition velocity (Franklin 441 

et al., 2000), which translates into a residence time of 120 days in the MBL (depth of 1000 442 

m; see Table S3) and deposition flux Fdep = c×v = 0.03-0.06 µg m-2 year-1 for the individual 443 

PAHs associated with the particulate phase (c = 0.01-0.02 ng m-3; Table 2b), such as BAP, 444 

and 0.5 and 0.3 µg m-2 year-1, respectively, for the total flux of particulate phase PAHs in the 445 

ISS and SEM in summer, respectively. The flux will be higher in winter, because of the 446 

seasonality of the emissions. 447 

Three gas-particle partitioning models were tested and found to underpredict the particulate 448 

mass fraction in most of the samples (four PAHs i.e., BAA, TPH, CHR and BBF). Although 449 

input parameters were incomplete these results confirm the earlier insight that additional 450 



processes on the molecular level need to be included, beyond adsorption (Junge-Pankow 451 

model) and absorption in OM (Koa models), namely both adsorption and absorption 452 

(Lohmann and Lammel, 2004) or even a complete description of molecular interactions 453 

between sorbate and PM matrix (Goss and Schwarzenbach, 2001).  454 

Simulations with a non-steady state 2-box model confirm the hypothesis that seasonal 455 

depositional input of RET from biomass burning into the surface waters during summer is 456 

followed by a period of flux reversal. The volatilisation flux is smaller in magnitude than the 457 

net-deposition flux during the previous months, but correspondingly, i.e. higher after intense 458 

fire seasons. Future negative emission trends or interannual variability of regional sources 459 

may trigger the sea to become a secondary PAH source through reversal of diffusive air-sea 460 

exchange. For the wood burning marker RET it is found that the secondary source became 461 

significant in recent years: While the flux of secondary RET emissions (from surface 462 

seawaters) in the study area was 1.0 µg m-2 year-1 (mean of years 2005-2010,_UEPS), the 463 

primary sources amounted to 3.1 µg m-2 year-1. Because of non-diffusive emission from the 464 

sea surface, such as aerosol suspension from sea spray and bubble bursting (Woolf, 1997; 465 

Qureshi et al., 2009; Albert et al., 2012), the true volatilisation may have exceeded the 466 

diffusive flux significantly. 467 
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