

1 **TNO-MACC_II emission inventory; A multi-year (2003-2009) consistent high-resolution**
2 **European emission inventory for air quality modelling**

3

4 **J.J.P. Kuenen, A.J.H. Visschedijk, M. Jozwicka and H.A.C. Denier van der Gon**

5 {TNO, Department of Climate, Air and Sustainability, Utrecht, The Netherlands}

6 Correspondence to: J. J. P. Kuenen (jeroen.kuenen@tno.nl)

7

8 **Abstract**

9 Emissions to air are reported by countries to EMEP. The emissions data are used for country
10 compliance checking with EU emission ceilings and associated emission reductions. The
11 emissions data are also necessary as input for air quality modelling. The quality of these
12 “official” emissions varies across Europe.

13 As alternative to these official emissions, a spatially explicit high resolution emission
14 inventory (7x7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air
15 pollutants was made. The primary goal was to supply air quality modellers with the input
16 they need. The inventory was constructed by using the reported emission national totals by
17 sector where the quality is sufficient. The reported data were analysed by sector in detail, and
18 completed with alternative emission estimates as needed. This resulted in a complete emission
19 inventory for all countries.

20 For particulate matter, for each source emissions have been split in coarse and fine particulate
21 matter, and further disaggregated to EC, OC, SO₄, Na and other minerals using fractions
22 based on literature. Doing this at the most detailed sectoral level in the database implies that a
23 consistent set was obtained across Europe. This allows better comparisons with observational
24 data which can, through feedback, help to further identify uncertain sources and/or support
25 emission inventory improvements for this highly uncertain pollutant.

26 The resulting emission dataset was spatially distributed consistently across all countries by
27 using proxy parameters. Point sources were spatially distributed using the specific location of
28 the point source. The spatial distribution for the point sources was made year-specific.

1 The TNO-MACC_II is an update of the TNO-MACC emission dataset. Major updates
2 included the time extension towards 2009, use of the latest available reported data (including
3 updates and corrections made until early 2012) and updates in distribution maps.

4

5 **1 Introduction**

6 Over the last decades, environmental problems such as acidification, eutrophication, air
7 pollution and climate change have caused significant adverse impacts on human health and
8 vegetation (EEA, 2010). Only part of the air pollution emission reductions set by the 2010
9 National Emission Ceilings have been achieved (EEA, 2012a), therefore transboundary air
10 pollution remains a problem (EEA, 2010). All these environmental problems are directly
11 related to the emissions of substances to air. Reliable emission inventories are a prerequisite
12 to understand these environmental issues and to develop effective mitigation options.

13 For a good understanding of environmental problems, not only the magnitude of the sources
14 but also their location is important. The spatially distributed emissions need to cover the
15 complete domain, and describe the emissions in a consistent way, i.e. in all countries the same
16 sources should be included, and these sources should be assessed as accurately and
17 consistently as possible.

18 Emission inventories are typically developed by using a bottom-up approach, i.e. combining
19 available statistics on fuel combustion, industrial production, etc. with the most appropriate
20 emission factors. For a detailed description on how emission inventories are constructed we
21 refer to EEA (2013), IPCC (2006) and Olivier et al. (1999). This approach has been taken
22 also by many countries that produce annual emission inventories for greenhouse gases and air
23 pollutants, since they have to report their emissions under the various international treaties.
24 Over time, as experience and expertise increased, the number, substances covered and quality
25 of these inventories significantly improved (EMEP, 2013). These in-country systems take into
26 account all country-specific information and national legislation and are therefore capable of
27 providing a more accurate estimate of the emissions compared to a regional or global
28 emission inventory.

29 When using regional chemical-transport modelling in policy studies, the use of these official
30 inventories is often required. However, the official emissions do still contain a number of
31 gaps and shortcomings, e.g. not all countries report according to the requirements (EMEP,

1 2013). This paper presents a complete, consistent and spatially distributed inventory, which
2 has used the official reported emissions as basis where possible. This makes this inventory
3 suitable for application in policy-related modelling and impact studies for air pollution. The
4 TNO_MACC-II inventory is the successor of the widely used GEMS inventory for 2000
5 (Visschedijk et al., 2007) and the TNO_MACC inventory for the years 2003-2007 (Kuenen et
6 al., 2011; Pouliot et al., 2012).

7

8 **2 Methodology**

9 **2.1 Emission estimates**

10 The Convention for Long-Range Transboundary Air Pollution (CLRTAP; <http://www.unece.org/env/lrtap/>) requires countries to report their emissions. Fifty-one
11 countries in Europe and North America, including the EU as a whole, have to annually submit
12 their emissions of air pollutants for the latest year and all historic years to EMEP (Co-
13 operative Program for monitoring and evaluation of long-range transmission of air pollutants
14 in Europe). The reporting follows well-defined Guidelines and asks countries to complete a
15 pre-defined template with emissions by year, pollutant and sector (defined by the
16 Nomenclature for Reporting; NFR). Countries are encouraged to set up their own inventory
17 system and choose the best methodologies for emission estimation which fit their national
18 situation. For larger sources, Parties have to use more advanced methodologies, with specific
19 emission factors for each technology. When no specific national methodology is available, the
20 EMEP/EEA Air Pollutant Emission Inventory Guidebook (EEA, 2013) provides default
21 guidance on how to estimate emissions for each sector. The official submitted data for all
22 countries are collected by the Centre for Emission Inventories and Projections
23 (<http://www.ceip.at/>) and made available online. Because of the more detailed methodologies
24 included in most inventories and the national focus of each of the inventories, the reported
25 emissions often provide the most accurate estimate for a country. However, in many cases
26 gaps and errors do exist in the reported emission data. Especially the consistency in emissions
27 reporting for consecutive years is problematic.

28 In order to assess the quality of the reported emissions, we have downloaded the data from
29 CEIP (CEIP, 2011) for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 and from EEA

1 (EEA, 2012b) for CH4 for all countries for the period 2003-2009. Before analysing the data in
2 detail, we have first aggregated the NFR sectors to 43 individual sectors (link table available
3 from supplementary material, Excel file number 1). These 43 sectors were defined based on
4 the SNAP (Selected Nomenclature for Air Pollution) at level 1 with one additional level of
5 detail for most sectors. Industrial combustion (SNAP 3) and industrial process emissions
6 (SNAP 4) have been aggregated to a new defined SNAP 34. This was done because there is
7 often confusion between combustion and process emissions for a particular plant or facility,
8 partly because countries may have slightly different definitions on where to draw the line or
9 how to report. In an overarching European inventory this problem is effectively solved by
10 merging both categories. An explanation of the SNAP source categories as used in this study
11 is given in Table 1.

12 For this dataset we have analysed the time series between 2003 and 2009 in detail. Where the
13 time series or the sector split of the total country emissions was not understandable (e.g.
14 unexplainable jumps in the trend, multiple years of data missing, not understandable sector
15 splits), the data were discarded.

16 In cases where reported data have not been used or were not available, emissions at the
17 country level were taken from the GAINS model (IIASA, 2012). The GAINS model
18 combines information on economic and energy development, emission control potentials and
19 costs, atmospheric dispersion characteristics and environmental sensitivities towards air
20 pollution (Schöpp et al., 1999). For a more detailed description we refer to Amann (2009) and
21 Amann et al. (2011). The advantage of using the GAINS data is that it is consistent across
22 countries and sectors and regularly updated. Emission data are available at sector and activity
23 level, comprising more than 200 different categories for 5-yearly intervals. To obtain
24 emissions for the years in between linear interpolation was used where necessary.

25 The GAINS model does not calculate emissions of CO. In case no country reported CO
26 emissions of sufficient quality were available the CO emissions are gap-filled using a
27 bottom-up emission inventory which has been developed at TNO for the year 2005. Like the
28 GAINS model or the EDGAR inventory (JRC, 2011) this bottom-up inventory is built up
29 using activities such as the energy statistics, industrial production figures, etc. as the baseline
30 and combines this with the most appropriate emission factors. In the transport sector, this
31 means that data from the TREMOVE model (De Ceuster et al., 2005) were used to

1 disaggregate the energy use to detailed vehicle classes technologies for each country. These
2 were combined with state-of-the-art emission factors for each technology for road transport
3 (Ntziachristos et al., 2009) to calculate the emissions. If less detail was available for certain
4 source categories, technology-specific emission factors have been applied to groups of
5 countries with a similar technology level. Since this bottom-up inventory was originally only
6 developed for the year 2005, emissions for the other years were estimated by scaling this
7 inventory. Scaling factors for the different years were calculated from the EDGAR emission
8 inventory v4.2 (JRC, 2011), which provides sector specific annual emission estimates for CO
9 for each country in the world.

10 For the countries Armenia, Azerbaijan and Georgia, neither reported nor GAINS emission
11 data were available. Therefore, EDGAR (JRC, 2011) data were used at SNAP level 1 (see
12 Table 1) for these countries for all pollutants and all years. These were disaggregated to the
13 same subcategories as the other countries by using the relative contribution of each subsector
14 to the SNAP level 1 sector for Turkey (for each pollutant and each year) as a blue print.

15 To illustrate in more detail the extent to which each data source has been used, the
16 supplementary material (Excel file number 2) includes a table which shows the main source
17 of the emissions that was used, per country per pollutant. However, for underlying sectors the
18 choice of which emission source to use may have been updated based on the checks that were
19 performed. In the final dataset, the share of reported data in the total emissions varies between
20 40% (for PM) and 70% (for NH₃). In geographical terms, reported emissions were the
21 primary data source for most EU Member States and EFTA countries, while for many former
22 Soviet Union countries and some Balkan countries the use of GAINS or other alternative data
23 sources was necessary. The Excel file number 2 in the supplementary material also contains a
24 full overview of the choices made per country, pollutant and sector.

25

26 **2.1.1 Consistency between countries and across years**

27 Emission data for certain years may be missing (Figure 1 and Figure 2, left panel), and
28 countries may use different classifications or differ in what sources they report. To improve
29 consistency between countries, a number of updates have been made to the resulting dataset
30 which mainly affected the reported emissions data.

- Emissions of NOx and NMVOC from agriculture have been removed for all countries, since reporting of this source is found to be very inconsistent between countries. For NOx, 3/4 of the removed NOx (approximately 150 kton annually) was reported by Germany as emissions from biological N fixation and crop residues, which is not reported by other countries. There is a risk that some of the other countries reported emissions from agricultural machinery in SNAP 10 instead of SNAP 8 which is then “lost”.
- Estimates for emissions from agricultural waste burning have been replaced by GAINS emissions because only few countries reported emissions from this source, while emissions are significant especially for PM. This adds about 350 kton PM10 per year to our inventory, where the sum of the country values adds up only to 16 kton (in 2009).
- Emission estimates for national shipping were found to be very inconsistent between countries, partly due to different definitions for the various sectors (allocation issue). To avoid inconsistencies and double counted or missing emissions to the extent possible, all national shipping including international inland shipping emissions have been replaced with TNO estimates, which distinguish inland shipping and coastal shipping as separate sources. Especially with international inland navigation, countries may treat this differently in their inventories.
- For particulate matter, numerous cases were found where reported PM2.5 exceeded reported PM10. These have been corrected by increasing PM10 emissions to PM2.5 levels. This implies that in such cases the coarse fraction was set to zero and can be seen as a conservative correction. In nearly all cases the difference was very small, therefore this change did not affect the total PM emissions in the inventory very much.
- Emissions from international shipping have been taken from CEIP (2012) for all years and pollutants.
- NMVOC, SO2, NOx, CO and PM shipping emissions for the 43 largest North Sea ports (including oil terminals) were additionally included. For the year 2009, these data were taken from MARIN (Cotteleer et al., 2011). For SO2 and PM a strong decreasing emission trend for the period 2005 to 2010 is expected as a result of implementation of European sulphur reduction policies (EC, 2011). The assumed

average sulphur contents in marine fuel used for the calculation of in-port emissions is presented in Table 2. SO₂ and PM emissions have been scaled accordingly from the 2009 emission data. Emissions of other substances are assumed to be constant at 2009 level for the 2003-2009 period. From the MARIN emission data, implied emission factors based on port turnover capacity were derived and applied to the 1200 other ports in Europe, for which capacity data was taken from the PAREST emission database (Denier van der Gon et al. 2010). Based on Google Maps and visual identification of port activities the 1/8 x 1/16° cells occupied by the 43 MARIN ports have been manually selected (e.g. the Port of Rotterdam occupies seven of such cells). Geographical distribution of emission within cells associated with a certain port is assumed to be uniform. The location of the centre point of the 1200 other ports in Europe has been taken from the PAREST emission database (Denier van der Gon et al., 2010).

To be suitable as model input the emissions need to be distributed on a grid (see section 2.3), for which a more detailed sectoral breakdown is needed to allow for a different spatial distribution of different subsectors and fuels underlying the 43 sectors. Therefore, emissions have been disaggregated using the more detailed data available from the GAINS model and the TNO bottom-up inventory (for CO). For power plants, residential combustion and road transport (exhaust) the emissions are disaggregated to main fuel type (coal, gas, solid biomass, waste or light, medium or heavy liquid fuels). For some other sectors such as the iron and steel and non-ferrous metal industries, emissions are disaggregated to subsectors. An overview of the disaggregated sectoral classification is given in the supplementary material (Excel file number 3).

2.2 Particulate matter composition

For particulate matter, the emissions have been further disaggregated from PM_{2.5} and PM₁₀ to various components in the coarse and fine mode. To calculate this PM split, more detailed sectoral information is needed, for example the fuel type used in combustion installations and

1 the type of installation. Therefore, the emission data are first disaggregated to GAINS sector
2 and activity combinations (more than 200 categories).

3 For each GAINS category, a fractional split between 5 PM components (EC, OC, SO₄, Na
4 and other minerals) was made separately for the coarse and the fine mode. The fractional split
5 is constructed in such a way that it adds up to 1, provided that OC is converted from a C-mass
6 basis to full molecular mass (FMM). To convert to FMM, OC was multiplied by a factor 1.3
7 that accounts for other elements present on OC (e.g. O, N or S). It is known that the
8 conversion factor of OC to FMM ranges between (1.1-1.8) but here a weighted average of
9 1.3 was used for all sources. Since the PM split provides fractions and not absolute emissions,
10 this has no influence on total PM emissions. For EC and OC, the split is based on a recent
11 bottom-up EC and OC inventory for the year 2005 (Visschedijk et al., 2009). This inventory
12 involved creating ‘best estimates’ per GAINS sector and activity combination for EC and OC
13 fractions in PM, based on literature data and three earlier EC and OC emission inventories.

14 Particle-bound sulphate is mostly emitted through the combustion of high-sulphur fuels such
15 as coal and residual fuel oil. In the LOTOS-EUROS model (Schaap et al., 2008) it is
16 estimated that around 2% of the sulphur is emitted in the form of particles. When particle
17 mass is calculated based on the SO₂ emissions using this estimation, the fraction of sulphur
18 emitted in the form of particles ranges from 0.1% for gasoline and diesel combustion in road
19 transport to 10-20 % for coal and residual fuel oil combustion in energy and manufacturing
20 industries and in shipping.

21 The sodium fraction is relatively unimportant to the total PM but may be useful when looking
22 at base cat ion deposition. The sodium content is based on reported sodium content for 40 PM
23 sources calculated in Van Loon et al. (2005).

24 The fraction “Other minerals” contains other non-carbonaceous particles and is calculated as
25 the remaining fraction after the other fractions have been calculated.

26 The fractions per GAINS category have been applied to the emissions of coarse PM (PM10-
27 PM2.5) and fine PM (PM2.5) for each GAINS category, and subsequently been aggregated to
28 the 77 source categories which are used as input to the spatial distribution.

29 EC and OC country total emissions (for both fine and coarse mode) are given for all years in
30 the supplementary material, Excel file number 5.

1

2 **2.3 Spatial distribution**

3 The final step in the inventory was the distribution of the complete emission dataset across the
4 European emission domain at $0.125^\circ \times 0.0625^\circ$ longitude-latitude resolution. For each of the
5 77 source categories for which emissions are available, one or more proxies were identified.
6 These proxies provide the mapping of the emissions of a certain pollutant to the grid for a
7 given sector and year. For each country, pollutant, sector and year the most appropriate proxy
8 was chosen in a selection table. An overview of all the proxies used per sector is given in the
9 supplementary material (Excel file number 3).

10 For point sources, we have made use of the E-PRTR database (<http://prtr.ec.europa.eu/>) which
11 provides information on the location (longitude, latitude) and emissions of major facilities in
12 Europe. E-PRTR data was available on an annual basis from 2007 onwards, while data from
13 the years 2001 and 2004 were available from its predecessor EPER (EC, 1996). For the
14 intermediate years, data from the closest year available was used. Since the EPER and E-
15 PRTR data only contain emissions from facilities above a certain threshold, using this data to
16 distribute total emissions for a certain sector can only be done for those sectors comprised of
17 large facilities, e.g. the cement and aluminium industry. Furthermore, a judgement has been
18 made on the quality of the data before actually using it. For example, there are multiple
19 facilities where the geographical location points to the administrative location (e.g. company
20 headquarters) rather than the location where the actual emissions occur. For the other point
21 sources, and also those in countries which are not covered by E-PRTR, TNO's own point
22 source database (described in more detail in Denier van der Gon et al., 2010) was used as a
23 proxy for the distribution of these point source emissions.

24 For non-point sources (e.g. residential combustion, transport sectors, agriculture), proxies
25 were selected to distribute country total emissions over the grid. These proxies include a.o.
26 total, rural and urban population, arable land, TRANSTOOLS road network (JRC, 2005). The
27 proxies for the area sources were assumed to be static in time, e.g. changes in the population
28 density are not taken into account. Most proxy maps were taken from Denier van der Gon et
29 al. (2010) but a number of modifications and improvements have been made. A new
30 population map for the year 2005 has been implemented at high resolution, and a special
31 proxy has been developed for the distribution of residential wood combustion. The latter takes

1 into account both the population density, but also the proximity to wood. Despite this
2 modification for the distribution of residential wood combustion, an overallocation of the
3 emissions in urbanized centres may well be present in the spatial distribution. This has
4 previously been described by Timmermans et al. (2013). However, a universal, representative
5 and well-documented approach that justifies a modification of the spatial distribution between
6 urban and rural areas for Europe does not exist at this moment.

7 For the actual calculation of the emissions grids, a SQL server system has been set up which
8 performs all the calculations. Emissions that could not be distributed (e.g. because the proxy
9 was not available for that specific country) are by default distributed using either total
10 population, rural population or arable land. In a last step the gridded emissions are aggregated
11 to SNAP level 1, primarily to reduce the size of the output emission grid file.

12

13 **3 Results and discussion**

14 **3.1 Analysis of reported emissions**

15 To illustrate that consistency is an issue with reported emissions, Figure 1 shows reported
16 emissions for 5 selected combinations of country and SNAP level 1 source categories. It is
17 shown that in a number of cases reporting only started somewhere during the time series.
18 Also, some of the time series show unexplained trends (e.g. high emission in LVA SNAP 34
19 for 2004; very strong increase in Hungary SNAP 2 in the last years; small emission in Russian
20 Federation from SNAP 2 compared to other countries in 2009).

21 Especially the issue of missing data for earlier years is important to the total emissions, as
22 illustrated by Figure 2. The left panel shows the time series for NOX and PM10 for all
23 sectors, by country group, relative to the emission in 2009. For the EU15 countries (15
24 Member States of the EU as of 1995 plus Norway and Switzerland) the trend is a small
25 decrease indicating improvements in technology and more abatement in later years. For the
26 EU13 (New EU Member States joined after 1995, including Croatia) and the other (non-EU)
27 countries, clearly a large part of the emissions is missing in earlier years.

28 The right panel of Figure 2 shows the same trend data, but now for the final dataset. In this
29 dataset, all missing emission data and erroneous time series were corrected and / or gap-filled
30 by replacement with other data. NOx and PM trends in EU countries are decreasing faster

1 than in non-EU countries. In fact, for PM10 in non-EU countries the total emission is even
2 slightly increasing.

3 EMEP (2011) provides an overview of submissions under the Convention of Long-Range
4 Transboundary Air Pollution. The report shows that out of the 50 countries that have to report
5 (excluding the EU as a separate Party), 42 countries actually did submit an inventory, while
6 34 submitted their inventory in time with the deadlines. Seven countries submitted an
7 inventory without emission data for particulate matter (EMEP, 2011). For gridded data, data
8 is to be reported every 5 years at a spatial resolution of 50x50 km². As for the reporting in the
9 year 2005, only 17 out of 48 countries in the EMEP area reported gridded emissions for the
10 main pollutants, and only 15 countries reported gridded data for PM (EMEP, 2011).

11

12 **3.2 Resulting emissions**

13 Table 3 lists the total emissions in each year per pollutant per year. The trend shows that
14 emissions of all pollutants are decreasing in time. The decrease is most pronounced for CO
15 and SO₂, for which emissions in 2009 are about 25% reduced compared to 2003. However,
16 the change in emissions is not uniform. Figure 3 shows the relative reduction in 2009
17 compared to 2003 by country group. It can be seen that for the EU15 countries (plus Norway
18 and Switzerland) the highest emission reductions were achieved (up to 50% for SO₂), and
19 also for EU13 countries significant reductions were found. For the non-EU countries
20 however, emission reductions were much smaller and even emission increases were found for
21 CH₄ and particulate matter. On the European seas, most emissions increased going from
22 2003 to 2009, most notably for NO_x, CO and NMVOC (Figure 3).

23 In the supplementary material, an Excel file is included which lists emissions by pollutant for
24 each year between 2003 and 2009. The file contains an overview of country totals as well as a
25 more detailed overview with emissions by sector.

26

27 **3.2.1 Comparing to other datasets**

28 To assess the quality of the resulting dataset, and get some feeling for the major uncertainties,
29 we have compared our results to the official reported emissions, GAINS (IIASA, 2012) and

1 EDGAR (JRC, 2011). Figure 4 shows a comparison between the different emission
2 inventories for NOx and PM10, for all countries included in our inventory, per SNAP level 1
3 source category. It is observed that our inventory, GAINS and EDGAR match reasonably
4 well, while reported emissions are much lower. At sector level, differences between our
5 inventory and GAINS are minor, while EDGAR shows higher emissions from SNAP 1
6 (electricity generation) and lower emissions for SNAP 8 (non-road transport), and also
7 includes NOx emissions from SNAP 10 (agriculture) not included in any other inventory. The
8 latter is most likely an allocation issue, since NOx emissions from agricultural machinery are
9 included in SNAP 8 in our inventory, as well as in GAINS.

10 Figure 6 shows the same figure, but now per country group, for SO2 and PM10. This figure
11 not only includes reported emissions, but also the selection of the reported emissions that was
12 used in this study. As described in Section 2.1, some of the reported data may not be used due
13 to inconsistent time series or other reasons. It is shown that for EU15 (EU Member States as
14 of 1995, plus Norway and Switzerland) the differences are small, while for the (EU12, the
15 newer EU Member States) the reported emissions are lower due to gaps in these data. For the
16 non-EU countries (NONEU) reported emissions are negligible compared to the other datasets,
17 especially for PM. Our emission dataset is similar to GAINS, while EDGAR shows a
18 different picture. SO2 emissions from EU15 are higher, from EU12 lower. Higher NONEU
19 emissions may be partly explained by the fact that the Russian Federation is completely
20 included in EDGAR, while in our inventory and in GAINS only the European part (west of
21 60°E) is included.

22

23 **3.2.2 PM fractions**

24 PM10 and PM2.5 are broken down into components (EC, OC, SO4, Na and other minerals)
25 using the developed PM split . Figure 6 shows the EC and OC emissions per SNAP category
26 for the European domain. In terms of total mass, the particulate carbonaceous emissions < 2.5
27 μm were about 5 times higher than the coarse fraction (<2.5-10 μm) emissions. The most
28 important source of fine OC is residential combustion (SNAP 2), particularly related to wood
29 combustion. For coarse OC however, agriculture is the most important source of emissions.
30 For EC residential combustion and transport (diesel combustion) are the most important
31 sources for fine EC, while for coarse EC power plants and industry are the main sources.

1 The relative importance of source sector contributions varies substantially between countries.
2 As an example, the EC emissions (for coarse and fine mode separately) for Poland and the
3 Netherlands are shown (Figure 7). In Poland, high EC emissions resulted from coal and wood
4 combustion in the residential sector, which are much less relevant for the Netherlands. Total
5 emissions from the road transport sector in the Netherlands and Poland are quite similar, the
6 larger fleet size in Poland is more or less compensated by the lower share of diesel in the fuel
7 mix.

8

9 **3.3 Spatial distribution**

10 The result of spatially distributing the emissions using the various proxies is shown for NOx
11 and EC (<2.5 μ m) for the year 2009 (Figure 8 and Figure 9, respectively). The major cities,
12 major transport routes and shipping routes at sea can be identified as important sources in
13 these maps.

14 Figure 10 and Figure 11 show also NOx and EC (<2.5 μ m), but now the difference from 2003
15 to 2009. Positive numbers (blue colour in the maps) indicate a decrease in emissions from
16 2003 to 2009, while negative numbers (red colour) show an increase in emissions. For NOx, it
17 is shown that most land-based emissions decrease, but in some countries in Eastern Europe an
18 increase is seen, e.g. in road transport for Poland, Slovak Republic and Bulgaria.

19 For fine particulate EC emissions are decreasing in most countries, but also increases are
20 found especially in Eastern Europe and at sea. Highest reductions are achieved in cities and
21 urban areas, since the initial 2003 emissions in these regions were higher. Increases can be
22 due to a growth in activity, e.g. for the Slovak Republic, the increase is due to higher reported
23 emissions of PM2.5 from road transport in 2009 compared to 2003. Emissions from
24 international shipping increased on all seas (CEIP, 2012).

25 To ensure consistency at borders, we have chosen to use a generic spatial distribution
26 methodology. To account for sudden changes in point source emissions, e.g., due to
27 implementation of emission abatement measures, E-PRTR data was used on an annual basis
28 for the distribution of the emissions over the various point sources. As an example, the share
29 of each major power plant in the total SO2 emission from the power plant sector in Spain is
30 shown in Figure 12. The largest emitters in 2003 have reduced their emissions drastically.

1 This causes some of the less important plants to become relatively more important, even
2 though their absolute emission did not change. It was confirmed that in these specific cases
3 for Spain, the power plants switched fuel (using coal with less or no sulphur) or installed
4 advanced control technologies for desulphurisation. The use of annual E-PRTR data for these
5 large point sources enables us to reflect these changes from year to year. As mentioned
6 earlier, for the years 2003, 2005 and 2006 no point source information was available and the
7 closest year available has been used instead.

8

9 **3.4 Uncertainties**

10 A typical emission inventory is compiled by collecting activity data and appropriate emission
11 factors, according to the EMEP/EEA Guidebook (EEA, 2013):

$$12 \quad Emission_{pollutant} = \sum_{activities} Activity\ rate_{activity} \times Emission\ factor_{activity,pollutant}$$

13 Although for some sectors the equation to be used to estimate emissions is more complicated
14 than a simple multiplication of a variable (Activity rate activity) and a parameter (Emission
15 factor activity, pollutant), in general such a simple equation can be used to obtain uncertainty
16 estimates. For a more detailed treatment of the uncertainty calculations we refer to Chapter 5
17 uncertainties in EEA (2013).

18 For activity data like statistics the overall estimate of uncertainty would be 5-10% (EEA,
19 2013). However, for the emission factors this is much more complicated as it may differ by
20 source and pollutant and is often not known. To tackle this issue, a system has been developed
21 that rates the uncertainty of emission factors (Table 4). This system allows for giving different
22 ratings to various pollutant emission factors for a single source. As an illustration and
23 indication of uncertainty we reproduce the general assessment of emission factors
24 uncertainties for European emissions (Table 5). The values in Table 5 provide a good
25 approximation of the uncertainty in the TNO_MACC-II emission inventory as well as the
26 country reported data are at the base of our inventory. A more elaborate uncertainty analysis
27 has not been made. Although such an uncertainty analysis is desirable it should be realized
28 that it is a highly complicated and time consuming endeavour. The mixing of the different
29 approaches to obtain the most reliable and consistent dataset asks for a complicated weighing

1 of uncertainties, that differs country by country. Moreover, it may not be entirely feasible as
2 we use country reported data (for good reasons) but the detailed information such as
3 uncertainty in national statistics and often country-specific emission factors is simply not
4 available.

5 The PM10, NOx, SO2 and NH3 emissions data officially submitted by EU Member States
6 and other EEA member countries follow common calculation (EEA 2009) and reporting
7 guidelines (UNECE, 2003). The European Environment Agency (EEA, 2011) assesses the
8 uncertainty in emissions for the SO2, NOx and NH3 as follows:

- 9 • Sulphur dioxide emission estimates in Europe are thought to have an uncertainty of
10 about 10% as the sulphur emitted comes from the fuel burnt and therefore can be more
11 accurately estimated. However, because of the need for interpolation to account for
12 missing data the complete dataset used here will have higher uncertainty. EMEP has
13 compared modelled (using emission inventory data) and measured concentrations
14 throughout Europe (EMEP, 1998). From these studies differences in the annual
15 averages have been estimated in the order of 30% consistent with an inventory
16 uncertainty of 10% (there are also uncertainties in the measurements and especially
17 the modelling).
- 18 • Nitrogen oxide emission estimates in Europe are thought to have an uncertainty of
19 about +/-20% (EMEP, 2009), as the NOx emitted comes both from the fuel burnt and
20 the combustion air and so cannot be estimated accurately from fuel nitrogen alone.
21 However, because of the need for interpolation to account for missing data, the
22 complete dataset used will have higher uncertainty.
- 23 • Ammonia emissions are relatively uncertain. NH3 emission estimates in Europe are
24 more uncertain than those for NOx or SO2 due largely to the diverse nature of
25 agricultural sources - which account for the vast majority of NH3 emissions. It is
26 estimated that they are around +/-30% (EMEP, 2009). The trend is likely to be more
27 accurate than the individual absolute annual values - the annual values are not
28 independent of each other.

29 The above estimates are in line with De Leeuw (2002) (but also largely based on the same
30 methodologies) who reported uncertainties in emissions as about 50% for NH3, VOC and
31 CH4. NOx emission estimates in Europe were thought to have an uncertainty of about $\pm 30\%$

1 and SO₂ emission estimates in Europe were thought to have an uncertainty of about $\pm 10\%$ as
2 the sulphur emitted comes from the fuel burnt and so can be relatively accurately estimated.
3 However, because of the need for interpolation to account for missing data the complete EU
4 dataset studied by De Leeuw (2002) will have higher uncertainty.

5 More recently, Nielsen et al. (2014) reported Danish uncertainty estimates for the total
6 emissions of air pollutants from Denmark. The Danish uncertainty estimates were still based
7 on the simple Tier 1 approach described by Pulles and Van Aardenne (2004). The uncertainty
8 estimates are based on uncertainties for fuel consumption and emission factors for each of the
9 main SNAP source categories. Uncertainty in total Danish emissions for pollutants as used in
10 the TNO-MACC_II inventory were estimated as SO₂ (16%), NO_x (39%), NMVOC
11 (23%), CO (42%), NH₃ (29%), PM10 (289%) and PM2.5 (347%) (Nielsen et al., 2014). For
12 SO₂, NO_x and NH₃ this is all rather consistent but it should be noted that always rather
13 simple Tier 1 methods were used because the data to do a complete detailed uncertainty
14 analysis of all relevant source are simply not available. Remarkable in the reporting by
15 Nielsen et al. (2014) is the high uncertainty in PM emissions. This is mostly due to the high
16 uncertainty in emission factors for residential combustion which is one of the key sources of
17 PM in Europe. However, it is not so much uncertainty as well as definition of PM
18 measurement methodology which is especially variable for residential combustion stoves
19 (Nussbaumer et al., 2008). Since different countries use different methodologies this results
20 in extremely high uncertainty of the order of 200-300% as reported by Nielsen et al. (2014).

21 Independent of the uncertainty in national total emissions is the uncertainty in spatial
22 distribution of the emissions within a country which is done using proxy data. Some proxies
23 are more accurate than others. For example a point source data base for power plants is fairly
24 accurate although some uncertainty is present related to the specific fuel use, fuel quality and
25 operation times. For some other proxies , e.g. the population density used to distribute the
26 emission from woodstoves, the accuracy of this proxy is not known as we don't really know
27 where the woodstoves are. The uncertainty of using such a proxy increases when going from a
28 large to a smaller grid size. Moreover, for some countries the proxy data like road networks or
29 industrial activity may more detailed than for other countries. Hence the uncertainty may vary
30 from country to country.

31

1 **4 Conclusions**

2 A model-ready emission inventory at high spatial resolution for UNECE-Europe for 7
3 consecutive years (2003-2009) was constructed, which combines the advantage of using
4 official reported emissions to the extent possible. For air quality modelling and environmental
5 impact assessment studies, a good understanding of the magnitude and location of the sources
6 of pollution is of crucial importance for deriving policy conclusions. The main advantages of
7 this inventory are:

- 8 • We use source sector specific data in a harmonized way, which allows both tracking of
9 sources in the modelled data as well as trend analysis without artifacts such as
10 differences between annual reporting years. For instance, NMVOC and NOx from
11 agriculture were excluded for all countries as reporting was found to be very
12 inconsistent.
- 13 • The application of a consistent gridding methodology for all countries ensures patterns
14 across borders do not show sudden changes or jumps; e.g. consistent land use and
15 animal density maps to distribute agricultural emissions
- 16 • To model particulate matter concentration and fate, models need to breakdown PM
17 into components with different behaviour. We now provide such data which are not
18 available from the official reporting.
- 19 • By using the point source data from E-PRTR and EPER, better locations of point
20 sources were brought into the data base. Moreover, the point source gridding data is
21 now year-specific, where earlier the 2005 distribution was used as a proxy for all
22 years.
- 23 • Emission in ports were added in a harmonized way for the whole of Europe.
- 24 • Elemental Carbon and/or Black carbon is increasingly important in discussion of
25 health effects of PM exposure as well as climate discussion focussing on short-lived
26 climate forcers. By bringing this component into the gridded emission datasets, the
27 models are able to better cater for policy makers in this respect.
- 28 • Finally, since the data are as much as possible (given our quality criteria) from the
29 official reported data, the data can be readily used for policy evaluation.

1 Our emission dataset has been compared to other emission inventories to assess the quality of
2 the inventory. Since GAINS was a primary data source used, a good match was found with
3 this inventory. Between our inventory and EDGAR differences were found, which can partly
4 be explained by allocation issues and by a somewhat different domain definition.

5 Uncertainties in emission inventories are difficult to quantify, especially when multiple
6 sources are combined. General approaches to uncertainty exist, but data collection is difficult
7 especially at European scale.

8 A potentially new way to address uncertainty in large point sources is by comparing the
9 emission maps with satellite measurement. A first comparison between OMI satellite data and
10 SO₂ source strength of major point sources (Visschedijk et al., 2012) revealed that for some
11 major point sources in eastern Europe, no OMI signal was found, which could indicate that
12 the point source closed, or changed fuel. The resulting information from this type of
13 comparisons is very useful to further improve the point source databases in the future.

14 All in all, this paper presents a significantly improved spatially explicit emission dataset for
15 the European domain. However, one should bear in mind the limitations of the European scale
16 emission inventory. Since the spatial distribution of national emissions is done using a generic
17 system of point sources and proxies, differences with other inventories may exist, especially
18 when zooming in to the local scale such as a large city or urban area.

19 A next step would be to include the “semi-natural” sources in our emission inventory, which
20 are not covered by official inventory data (e.g. resuspension of dust and NO_x emissions from
21 soils). With decreasing emissions from most anthropogenic sources, these become
22 increasingly important for the comparison between modelled and observed concentrations.

23

24

25 **Acknowledgements**

26 This research has been funded by the FP7 projects MACC and MACC-II. The authors thank
27 the Centre for Emission Inventories and Projections (CEIP) and the European Environment
28 Agency (EEA) for making reported data available in a comprehensive format. The IIASA
29 GAINS and JRC EDGAR teams are acknowledged for important emission inventory work
30 which was gratefully used in the present study.

1

2

1 **References**

2 Amann M., Bertok I., Borken-Kleefeld J., Cofala J., Heyes C., Hoeglund-Isaksson L.,
3 Klimont Z., Nguyen B., Posch M., Rafaj P., Sandler R., Schoepp W., Wagner, F., Winiwater
4 W.: Cost-effective control of air quality and greenhouse gases in Europe: Modelling and
5 policy applications, Environmental Modelling and Software (26) 12: 1489-1501, 2011.

6 Amann M.: Integrated assessment tools: The Greenhouse and Air Pollution Interactions and
7 Synergies (GAINS) model. In: "Atmospheric Pollution and Climate Change: How to address
8 both challenges effectively together?", pages 73-76, 2009.

9 Centre for Emission Inventories and Projections: Reported emissions by Parties under the
10 Convention for Long-Range Transboundary Air Pollution, <http://www.ceip.at/webdab-emission-database/officially-reported-emission-data/>, date of download 12 March 2012, 2012.

12 Cotteleer, A. and Van der Tak C., MARIN's emission inventory for North Sea shipping 2009:
13 Validation against ENTEC's inventory and extension with port emissions, 2nd final report
14 No. 25300-1-MSCN Rev. 2, Maritime Research Institute Netherlands MARIN, Wageningen,
15 The Netherlands, 2009.

16 De Ceuster G., Franckx L., van Herbruggen B., Logghe S., van Zeebroeck B., Tastenhoye S.,
17 Proost S., Knockaert J., Williams I., Deane G., Martino A., Firello D.: TREMOVE 2.30
18 Model and Baseline description, Final Report. Transport and Mobility Leuven,
19 <http://www.tremove.org> (last access date: 16 February 2009), 2005.

20 Denier van der Gon H.A.C., Visschedijk A., Van der Brugh H., Dröge R.: A high resolution
21 European emission database for the year 2005, a contribution to the UBA-project PAREST:
22 Particle Reduction Strategies. TNO report TNO-034-UT-2010-01895_RPT-ML, Utrecht,
23 2010.

24 EMEP: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in
25 2009, EMEP Status Report 2011, EMEP Report 1/2011, 2011.

26 EMEP: Transboundary Acidifying Air Pollution in Europe, Part 1: Estimated dispersion of
27 acidifying and eutrophying compounds and comparison with observations. EMEP/MSC-W
28 Report 1/98, July 1998.

1 European Commission: Council Directive 96/61/EC of 24 September 1996 concerning
2 integrated pollution prevention and control. Official Journal L 257, pages 26-40. European
3 Commission, 1996.

4 European Commission: Directive 2012/33/EU of the European Parliament and of the Council
5 of 21 November 2012 amending Council Directive 1999/32/EC as regards the sulphur content
6 of marine fuels. Official Journal L 327, pages 1-13. European Commission, 2011.

7 European Environment Agency: EMEP/EEA Air Pollutant Emission Inventory Guidebook,
8 2013 edition, <http://www.eea.europa.eu/publications/emeep-eea-guidebook-2013> (last access
9 date 9 September 2013), 2013.

10 European Environment Agency: Emissions of primary particles and secondary particulate
11 matter precursors, Indicator code CSI 003, Published 11 Nov 2008, Last modified: 07 Jul
12 2011, 02:39 PM, [http://www.eea.europa.eu/data-and-
13 maps/indicators/ds_resolveuid/781d346e34436a4aacf75c63e7288078](http://www.eea.europa.eu/data-and-maps/indicators/ds_resolveuid/781d346e34436a4aacf75c63e7288078), 2011.

14 European Environment Agency: Evaluation of progress under the EU National Emission
15 Ceilings Directive, EEA Technical Report No. 14/2012. European Environment Agency,
16 Copenhagen, 2012a.

17 European Environment Agency: Reported emissions by Parties under the Convention for
18 Long-Range Transboundary Air Pollution and the UN Framework Convention on Climate
19 Change, date of download 3 March 2012, 2012b.

20 European Environment Agency: The European environment — state and outlook 2010:
21 synthesis. European Environment Agency, Copenhagen, 2010.

22 Intergovernmental Panel on Climate Change: IPCC Guidelines for National Greenhouse Gas
23 Inventories, Intergovernmental Panel on Climate Change, Japan, 2006.

24 International Institute for Applied Systems Analysis: GAINS detailed emissions by source
25 and activity, <http://gains.iiasa.ac.at/gains/EUN/index.login?logout=1>, PRIMES baseline
26 scenario 2009, download date 19 June 2012, 2012.

27 Joint Research Centre: Emission Database for Global Atmospheric Research (EDGAR) v4.2,
28 <http://edgar.jrc.ec.europa.eu> (last access 24 May 2012), 2011.

1 Joint Research Centre: TRANSTOOLS, Tools for transport forecasting and scenario testing,
2 Version 1, <http://energy.jrc.ec.europa.eu/transtools/index.html> (last access 1 December 2008),
3 2005.

4 Kuenen J.J.P., Denier van der Gon H.A.C., Visschedijk A., Van der Brugh, H., Van Gijswijk,
5 R.: MACC European emission inventory for the years 2003-2007, TNO report TNO-060-UT-
6 2011-00588, Utrecht, 2011.

7 Leeuw , F. de: A set of emission indicators for long-range transboundary air pollution.
8 Environmental Science and Policy, Volume 5, Issue 2, p. 135-145, 2002.

9 Nielsen, O.-K., Winther, M., Mikkelsen, M.H., Hoffmann, L., Nielsen, M., Gyldenkærne, S.,
10 Fauser, P., Plejdrup, M.S., Albrektsen, R., Hjelgaard, K. & Bruun, H.G.: Annual Danish
11 Informative Inventory Report to UNECE. Emission inventories from the base year of the
12 protocols to year 2012. Aarhus University, DCE – Danish Centre for Environment and
13 Energy, 759 pp. Scientific Report from DCE – Danish Centre for Environment and Energy
14 No. 94. <http://www.dce.au.dk/pub/SR94.pdf>, 2014.

15 Ntziachristos L., Gkatzoflias D., Kouridis C. and Samaras Z.: COPERT : A European road
16 transport emission inventory model, In : I.N. Athanasiadis, P.A. Mitkas, A.E. Rizzoli, J. Marx
17 Gómez, Information Technologies in Environmental Engineering, Environmental Science and
18 Engineering, Springer-Verlag, Heidelberg, DOI 10.1007/978-3-540-88351-7_37, 2009.

19 Nussbaumer, T., Klippel N., Johansson L.: Survey on measurements and emission factors on
20 particulate matter from biomass combustion in IEA countries, 16th European Biomass
21 Conference and Exhibition, 2–6 June 2008, Valencia, Spain – Oral Presentation OA 9.2,
22 2008.

23 Olivier J.G.J., Bouwman A.F., Berdowski J.J.M., Veldt C., Bloos J.P.J., Visschedijk A.J.H.,
24 Van der Maas C.W.M., Zandveld P.Y.J.: Sectoral emission inventories of greenhouse gases
25 for 1990 on a per country basis as well as on 1° x 1°, Environmental Science and Policy 2 (3),
26 pp. 241-263, 1999.

27 Pouliot G., Pierce T., Denier van der Gon H., Schaap M., Moran M., Nopmongcol U.:
28 Comparing emission inventories and model-ready emission databases between Europe and
29 North America for the AQMEII project, Atmospheric Environment 53 (2012) 4-14, 2012.

1 Pulles, T. and Aardenne, J.v.: Good Practice Guidance for LRTAP Emission Inventories,
2 <http://www.eea.europa.eu/publications/EMEPCORINAIR4/BGPG.pdf>, 2004.

3 Schaap M., Sauter F., Timmermans R.M.A., Roemer M., Velders G., Beck J., Builtjes P.J.H.,
4 The LOTOS-EUROS model: description, validation and latest developments. International
5 Journal of Environment and Pollution 32 (2), 270-290, 2008.

6 Schöpp W., Amann M., Cofala J., Heyes C., Klimont Z.: Integrated assessment of European
7 air pollution emission control strategies. Environmental Modelling and Software 14 (1), page
8 1-9, [http://dx.doi.org/10.1016/S1364-8152\(98\)00034-6](http://dx.doi.org/10.1016/S1364-8152(98)00034-6), 1999.

9 Timmermans, R.M.A., Denier van der Gon H.A.C., Kuenen J.J.P., Segers A.J., Honoré C.,
10 Perrussel O., Builtjes P.J.H., Schaap M.: Quantification of the urban air pollution increment
11 and its dependency on the use of down-scaled and bottom- up city emission inventories.
12 Urban Climate 6 44–62, 2013

13 UNECE: Guidelines for Estimating and Reporting Emission Data under the Convention on
14 Long-range Transboundary Air Pollution, ECE/EB.AIR/80. Air Pollution studies No. 15,
15 United Nations, New York and Geneva.
16 <http://www.unece.org/env/documents/2003/eb/air/ece.eb.air.80.E.pdf>, 2003.

17 Van Loon M., Tarrason L., Posch M.: Modelling base cations in Europe, MSC-W Technical
18 Report 2/2005, available at http://emep.int/publ/reports/2005/emep_technical_2_2005.pdf
19 (last access date: 1 December 2008), 2005.

20 Visschedijk A.J.H., Denier van der Gon H.A.C., Dröge R.: A European high resolution and
21 size-differentiated emission inventory for elemental and organic carbon for the year 2005,
22 TNO-034-UT-2009-00688_RPT-ML, TNO, Utrecht, The Netherlands, 2010.

23 Visschedijk A.J.H., Zandveld P.Y.J., Denier van der Gon H.A.C.: A high resolution gridded
24 European emission database for the EU Integrate Project GEMS, TNO report 2007-A-
25 R0233/B, TNO, Utrecht, The Netherlands, 2007.

26 Visschedijk, A., Denier van Der Gon, H., McLinden, C., Foletov, V., Identification and Cross-
27 checking of large point source SO₂ emissions in Europe using OMI retrievals, 15th GEIA
28 Conference, Emissions to Address Science & Policy Needs, 11-13 June 2012, Toulouse,
29 France.

30

1

2 Table 1 Explanation of the SNAP source categories (SNAP 3 and SNAP 4 are merged to
3 SNAP 34).

SNAP	Sector name
1	Energy industries
2	Non-industrial combustion
34	Industry (combustion + processes)
5	Extraction and distribution of fossil fuels
6	Product use
7	Road transport
8	Non-road transport and other mobile sources
9	Waste treatment
10	Agriculture

4

5

1

2 Table 2 Sulphur content assumed in the fuel for the calculation of in-port emissions (in %).

Year	North Sea	Baltic Sea	Other EU(27)	Non-EU(27)
2005	1.335	1.335	1.335	1.335
2006	1.335	1.095	1.335	1.335
2007	1.305	0.975	1.335	1.335
2008	0.975	0.975	1.335	1.335
2009	0.975	0.975	1.335	1.335
2010	0.1	0.1	0.1	1.335

3

4

1
2 Table 3 Overview of total emissions (kton) per pollutant and year for UNECE-Europe
3 (including international shipping), and the overall reduction in the time period 2009-2003.

	2003	2004	2005	2006	2007	2008	2009	Reduction 2003-2009
CH4	48 857	47 965	47 636	47 547	47 390	47 282	46 857	4%
CO	48 642	47 602	44 905	43 271	41 608	40 739	38 157	22%
NH3	5 786	5 732	5 675	5 624	5 645	5 576	5 543	4%
NMVOC	15 744	15 367	14 936	14 525	14 123	13 577	12 943	18%
NOX	20 996	20 913	20 737	20 329	19 941	19 121	18 248	13%
PM10	5 430	5 432	5 414	5 328	5 257	5 142	5 029	7%
PM2.5	3 775	3 779	3 761	3 695	3 656	3 590	3 513	7%
SO2	17 921	17 353	16 689	16 144	15 815	14 483	13 189	26%

4
5
6 Table 4 Uncertainty rating definitions used for air pollutants in the Emission inventory
7 guidebook (source: EEA, 2013)

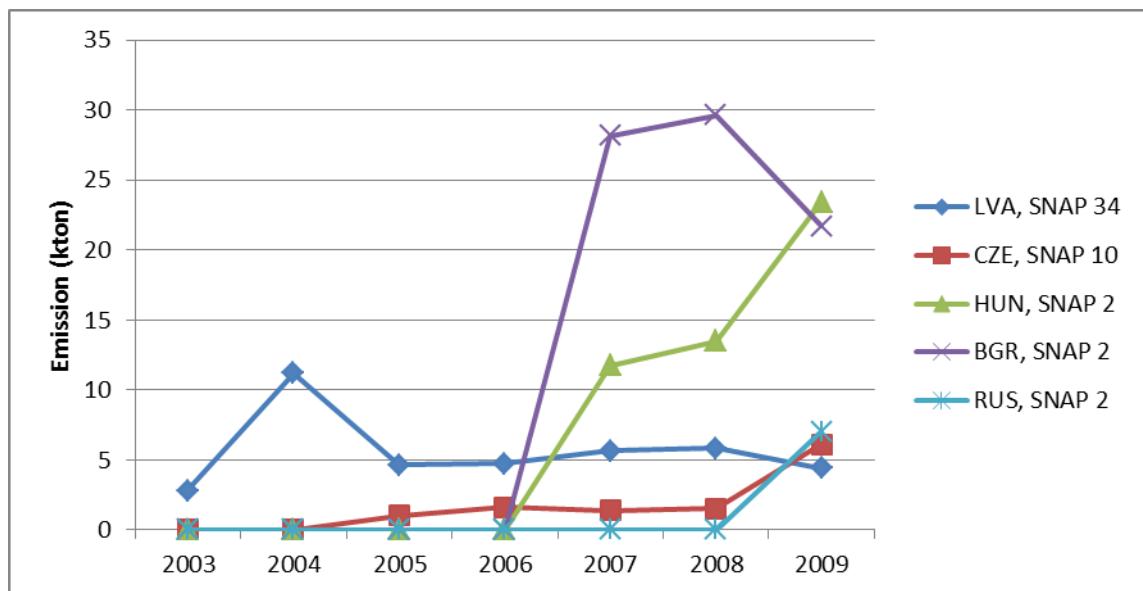
Rating	Definition	Typical error range
A	An estimate based on a large number of measurements made at a large number of facilities that fully represent the sector	10 to 30 %
B	An estimate based on a large number of measurements made at a large number of facilities that represent a large part of the sector	20 to 60 %
C	An estimate based on a number of measurements made at a small number of representative facilities, or an engineering judgement based on a number of relevant facts	50 to 200 %
D	An estimate based on single measurements, or an engineering calculation derived from a number of relevant facts	100 to 300 %
E	An estimate based on an engineering calculation derived from assumptions only	order of magnitude

1

2 Table 5 Main relevant NFR source categories with applicable quality data ratings (source:
 3 EEA, 2013)

NFR	SOURCE CATEGORY	SO ₂	NO _x	VOC	CO	NH ₃
1.A.1	Public power, cogeneration and district heating	A	B	C	B	
1.A.2	Industrial combustion	A	B	C	B	
1.A.3.b	Road transport	C	C	C	C	E
1.A.3.a	Other mobile sources and machinery	C	D	D	D	
1.A.3.c						
1.A.3.d						
1.A.3.e						
1.A.4	Commercial, institutional and residential combustion	B	C	C	C	
1.B	Extraction and distribution of fossil fuels	C	C	C	C	
2	Industrial processes	B	C	C	C	E
3	Solvent use			B		
4	Agriculture activities			D	D	D
6	Waste treatment	B	B	B	C	
6	Disposal activities	C	C	C	C	E

4

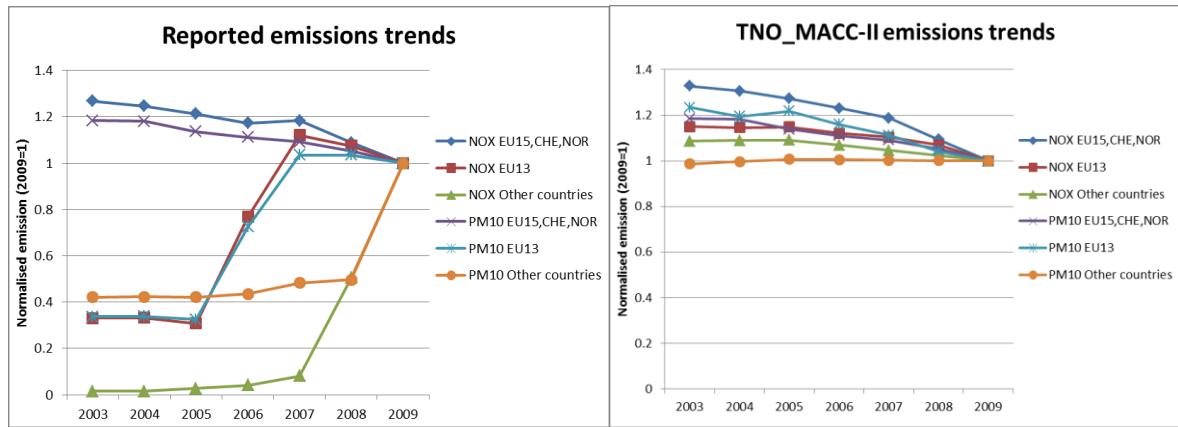

5

6

7

8

1

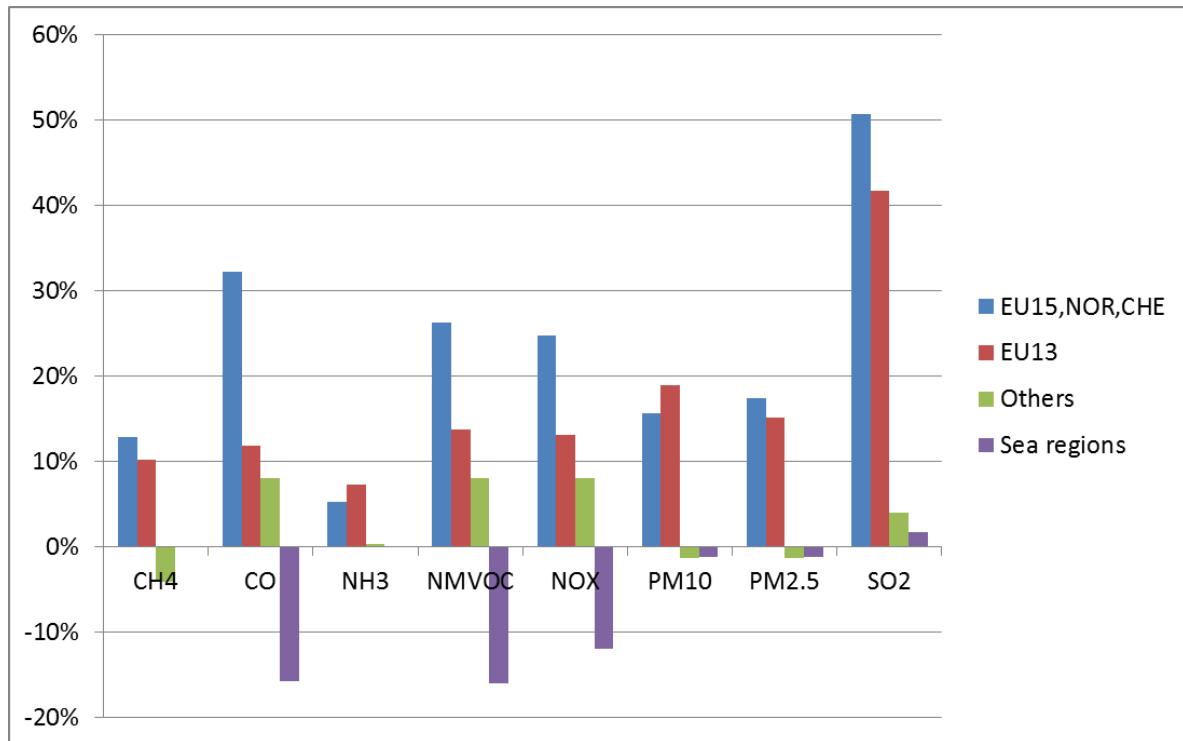


2

3 Figure 1 Observed trends in PM10 reported emissions for selected countries and SNAP level
4 1 source categories (source: CEIP, 2012).

5

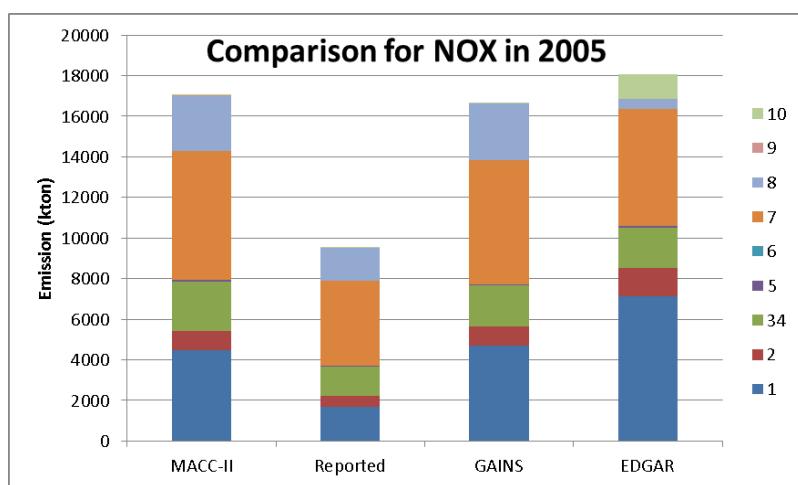
1



2

3 Figure 2 Trends in reported emissions (left panel) and TNO_MACC-II (right panel)
4 normalized to 2009 = 1.

5


1

2

3 Figure 3 Relative reduction in emissions per country group in 2009 compared to 2003.

4

5

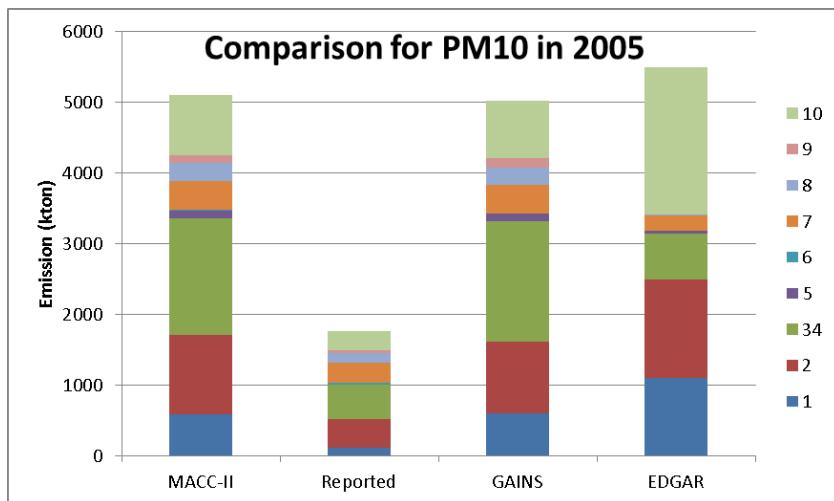


Figure 4 Comparison between the TNO_MACC-II results and the reported emissions, GAINS and EDGAR v4.2, for NOx (upper graph) and PM10 (lower graph), by SNAP level 1 sector.

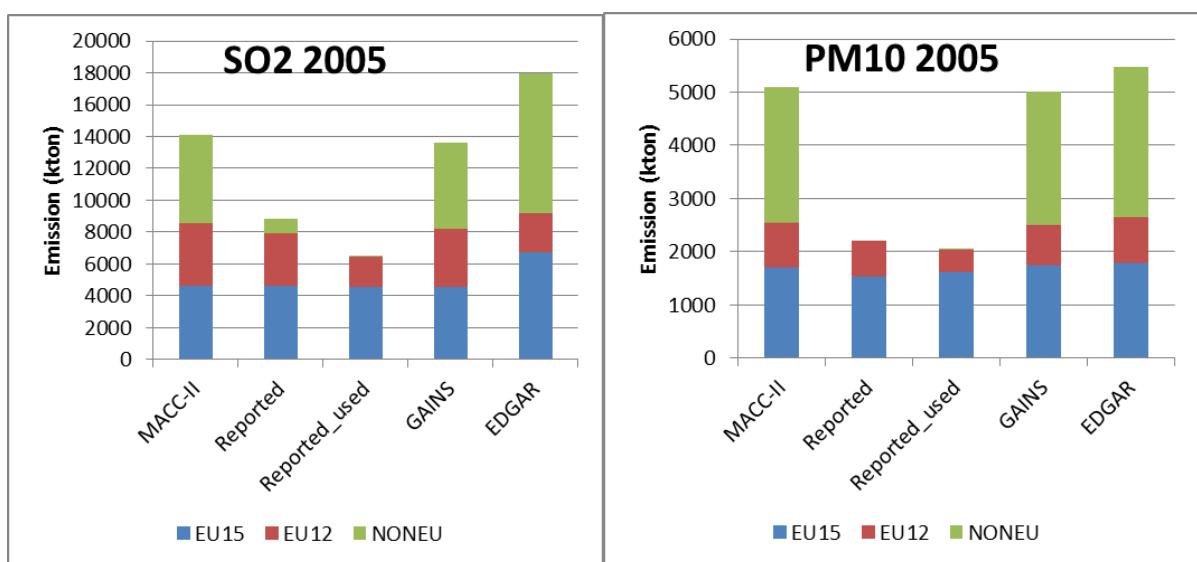
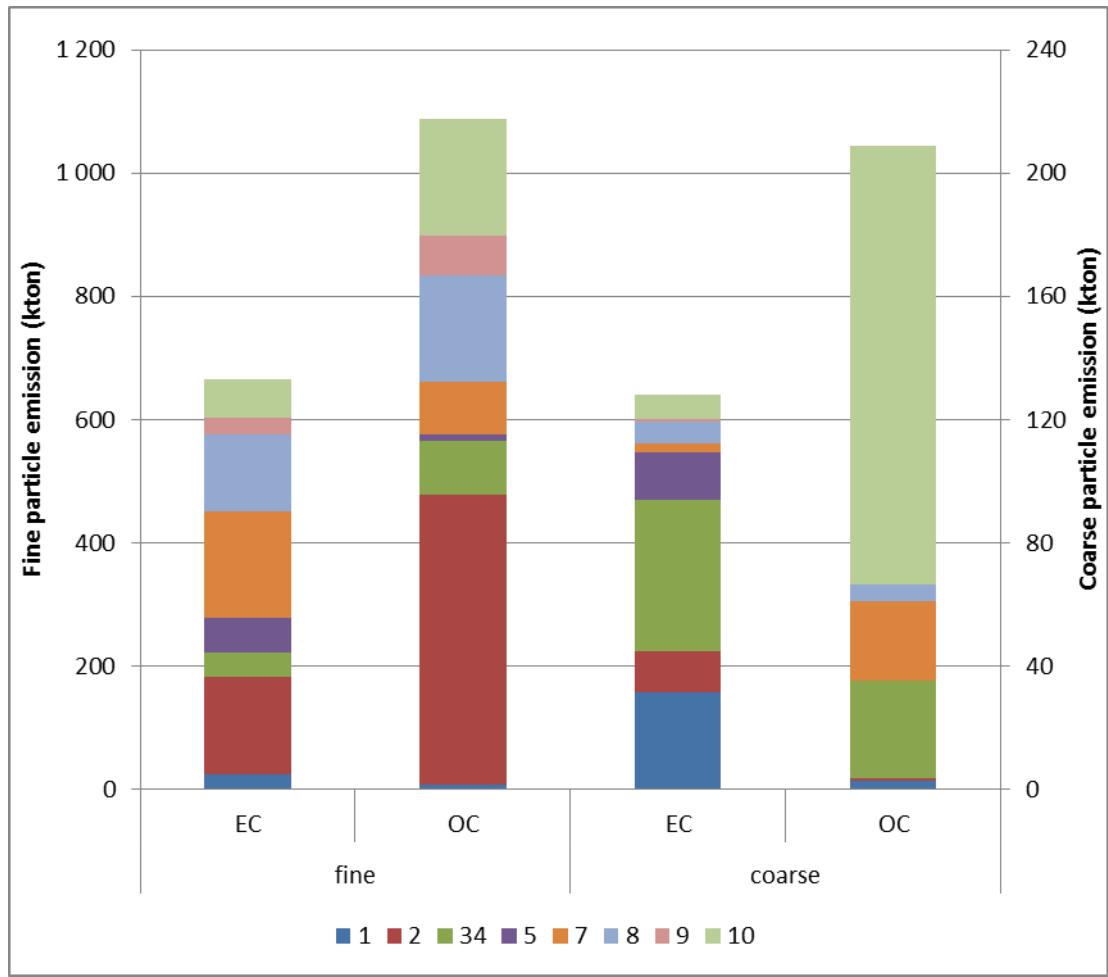
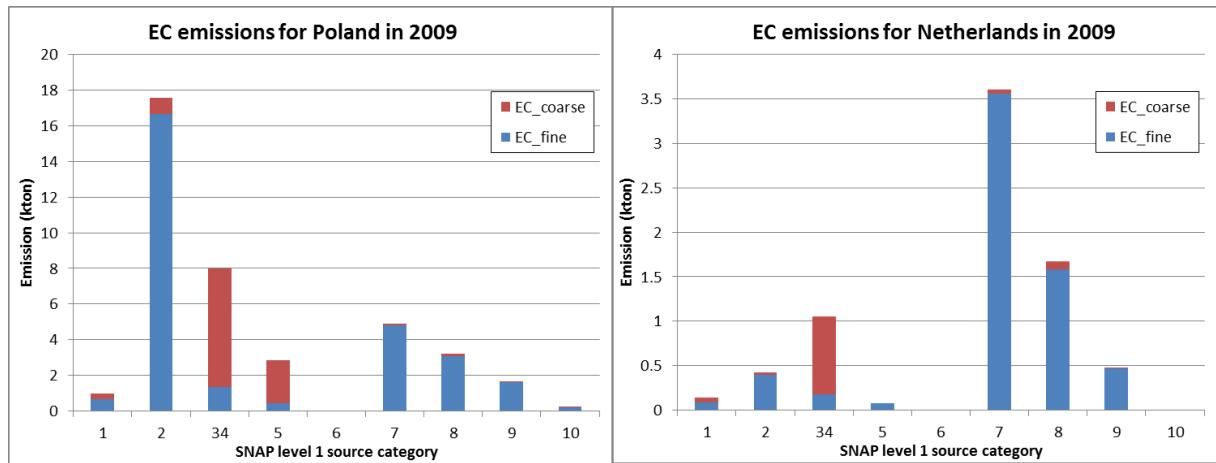



Figure 5 Comparison between the TNO_MACC-II results and the reported emission totals, reported emissions used in this study, GAINS and EDGAR v4.2 by country group, for SO2 (left) and PM10 (right).

1

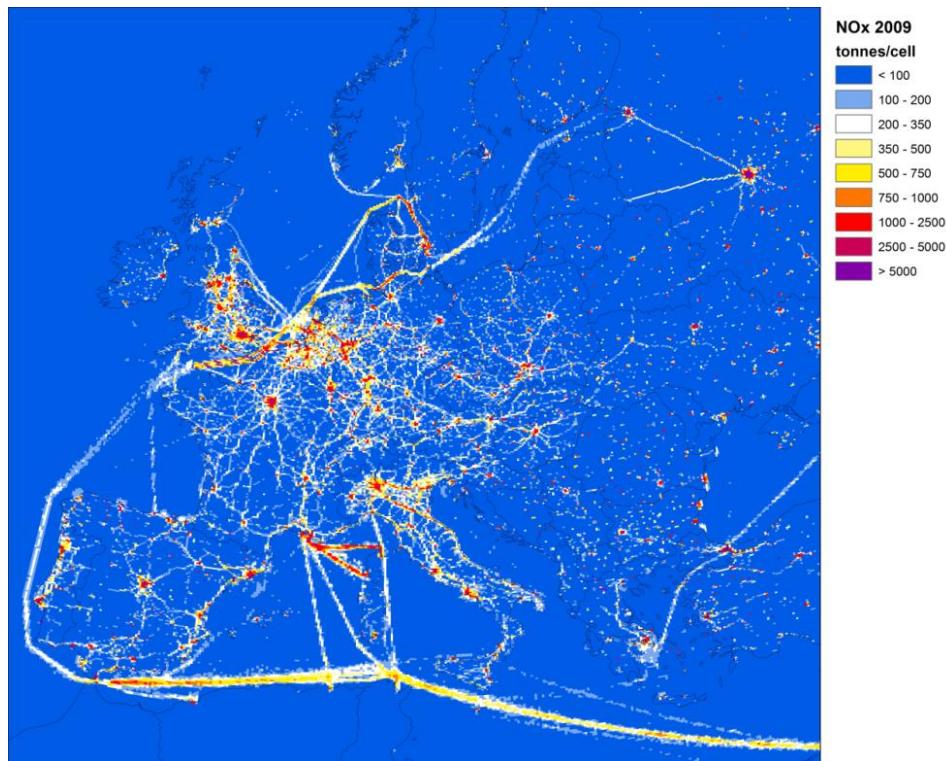


2

3 Figure 6 Total EC and OC emissions per SNAP in coarse ($2.5-10 \mu\text{m}$) and fine mode ($< 2.5 \mu\text{m}$) for UNECE-Europe (including sea regions) for the year 2005. Note that fine EC and OC
4 are plotted on the left Y-axis, while coarse EC and OC are plotted on the right Y-axis.
5

6

1

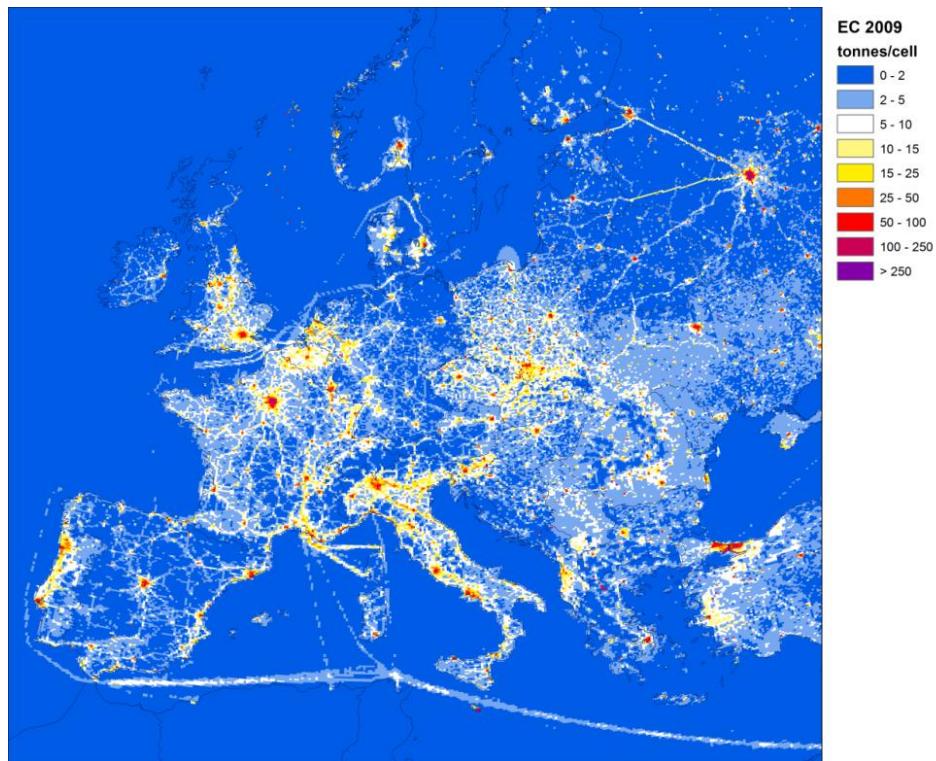


2

3 Figure 7 EC emissions in Poland (left panel) and the Netherlands (right panel) per SNAP
4 level 1 source category in 2009.

5

1

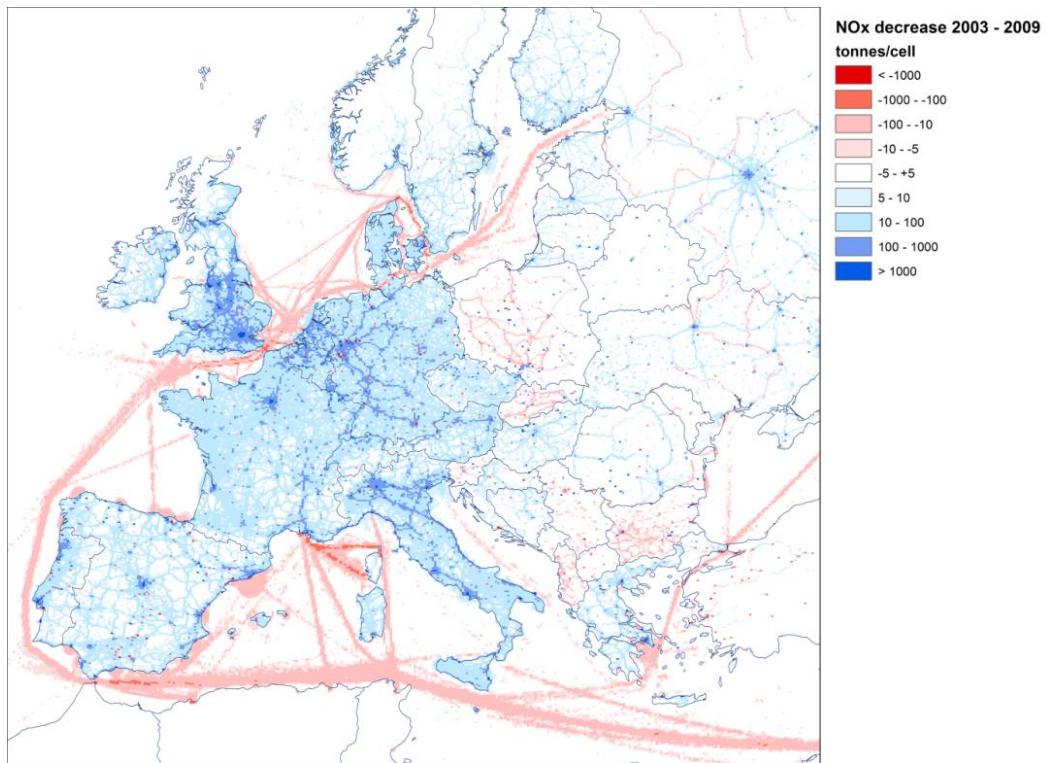


2

3 Figure 8 Spatially distributed NOx emissions from the year 2009 for all sources.

4

1

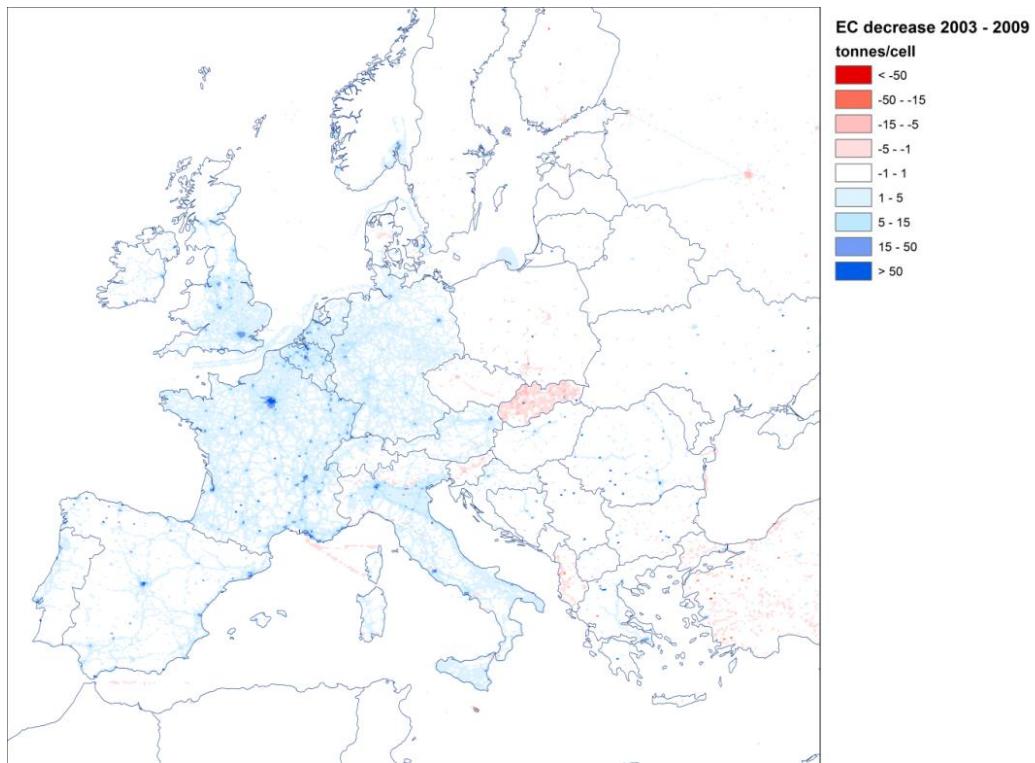


2

3 Figure 9 Spatially distributed EC emissions (fine mode) from the year 2009 for all sources.

4

1



2

3 Figure 10 Change in NOx emissions between 2003 and 2009 in Europe, for all sources.

4


1

3 Figure 11 Change in EC ($<2.5 \mu\text{m}$) emissions between 2003 and 2009 in Europe, for all
4 sources.

5

1

2

3 Figure 12 Contribution of the top-7 SO₂ emitting power plants in Spain in 2003 to the annual
4 total SO₂ emissions from the power plant sector.

5