## African dust outbreaks over the western Mediterranean

# 2 basin: 11-year characterization of atmospheric circulation

# 3 patterns and dust source areas

4

- 5 P. Salvador<sup>1</sup>, S. Alonso-Pérez<sup>2,3,4</sup>, J. Pey<sup>2,5</sup>, B. Artíñano<sup>1</sup>, J.J. de Bustos<sup>3</sup>, A.
- 6 Alastuey<sup>2</sup>, X. Querol<sup>2</sup>
- 7 [1]{ Environmental Department of the Research Center for Energy, Environment and
- 8 Technology (CIEMAT) Unidad Asociada en Contaminación Atmosférica CSIC-CIEMAT.
- 9 Avenida Complutense 40, 28040 Madrid. Spain }
- 10 [2]{ Institute of Environmental Assessment & Water Research (IDÆA-CSIC). c/ Jordi Girona
- 11 18, 08034 Barcelona. Spain }
- 12 [3]{ Centro de Investigación Atmosférica de Izaña, Agencia Estatal de Meteorología
- 13 (AEMET) c/ La Marina 20, Santa Cruz de Tenerife. 38071, Spain }
- 14 [4] { Universidad Europea de Canarias, Laureate International Universities, C/Inocencio
- 15 García, 1, 38300 La Orotava, Spain }
- 16 [5]{ Aix-Marseille Université, CNRS, LCE FRE 3416, Marseille, 13331, France }
- 17 Correspondence to: P. Salvador (pedro.salvador@ciemat.es)

18

19

#### Abstract

- 20 The main atmospheric circulation patterns causing the transport of African air masses over the
- 21 western Mediterranean basin were characterized by mean of different statistical
- 22 methodologies. To this end, all the African dust outbreaks registered in the 2001-2011 period
- 23 were taken into account. Four circulation types were obtained (I to IV) and three main
- 24 potential source areas of African dust were identified by a trajectory statistical method
- 25 (Western Sahara and Morocco; Algeria; Northeastern Algeria and Tunisia).
- 26 The circulation pattern I (24% of the total number of episodic days) produced the events with
- 27 the highest impact over the western side of the Iberian Peninsula. The transport of dust
- 28 towards this area was mainly produced in summer from Western Sahara and Southern

- 1 Morocco. The circulation pattern IV (33%) caused the most intense episodes in the central
- 2 and eastern sides of the Iberian Peninsula and the Balearic Islands. This pattern brings dust
- 3 mainly from areas of northern and southern Algeria in summer and autumn, respectively. The
- 4 remaining two circulation patterns were more frequently observed in spring, with the highest
- 5 associated impacts over the Balearic Islands. The circulation pattern II (31%) favoured the
- 6 transport of dust predominantly from northern Algeria, both in spring and summer. Finally,
- 7 the circulation type III was the less frequently observed (12%). It occurred mainly in spring
- 8 and with less intensity in winter, carrying dust from Western Sahara and southern Morocco
- 9 towards the eastern side of the Iberian Peninsula and the Balearic Islands.
- 10 Our results were contextualized within the variability of the North Atlantic Oscilation index
- 11 (NAOi). A partial link between NAOi and the occurrence of episodes in spring has been
- 12 found. Specifically, positive NAOi phases were associated with increased frequency of air
- masses from North Africa reaching the Iberian Peninsula. As a consequence, positive NAOi
- phases were distinguished by enhanced episodes within circulations types I and II.
- On the contrary, during negative NAOi phases the track of westerly winds was observed at
- lower latitudes, and the transport of north-African air masses was displaced towards the
- 17 central Mediterranean. Hence, the more negative NAOi values encompassed an augment of
- episodic days produced by the circulation type III.
- 19 Our findings point out that the impact of the African dust outbreaks over the different regions
- of study, as well as the source areas of dust, strongly depend on the atmospheric circulation
- 21 pattern and the season of the year. The circulation patterns I and IV, deserve a special
- 22 attention from the point of view of the ambient air quality, owing to the fact that they
- 23 produced the events with the highest contribution of the African dust on the ambient levels of
- 24 PM<sub>10</sub> concentrations over all the regions of study.

26

#### 1 Introduction

- 27 Mineral dust is the second largest source of natural aerosols. North African deserts emit most
- 28 of the dust particles released to the atmosphere worldwide. In this context, a persistent
- 29 outflow of Saharan dust is transported westwards, towards the Caribbean, the eastern coasts
- 30 of North America and South America (Prospero et al., 1981; Prospero, 1999; Prospero and
- Lamb, 2003). Large quantities of mineral dust are also carried across the Mediterranean basin

- 1 to Europe and the Middle East (Moulin et al., 1998) in episodic intervals and/or following
- 2 seasonal patterns (Querol et al., 2009; Pey et al., 2013). During such African Dust Outbreaks
- 3 (ADO) mineral dust represents a significant contribution to daily PM<sub>10</sub> levels registered at
- 4 rural and urban monitoring sites in the Mediterranean Basin (Querol et al., 1998; 2004; 2008;
- 5 2009; Escudero et al., 2007a; Gerasopoulos et al., 2006; Bouchlaghem et al., 2009; Pey et al.,
- 6 2013). Some recent studies demonstrated that a relevant percentage of the exceedances of the
- 7 PM<sub>10</sub> daily limit value (50  $\mu$ g/m<sup>3</sup> after the 2008/50/EC European Directive) registered at these
- 8 sites, can be exclusively attributed to the African dust contribution transported during ADO
- 9 (Escudero et al., 2007b; Viana et al., 2010; Salvador et al., 2013).
- 10 Under the light of recent researches, acute effects on human health in the western
- Mediterranean basin could be attributed to the African dust (Pérez et al., 2008; Tobías et al.,
- 12 2011a-b). More recently, Reyes et al. (2014) found a significant increase in respiratory-cause
- 13 hospital admissions associated with PM<sub>10</sub> and PM<sub>10-2.5</sub> fractions during ADO in Madrid
- 14 (Spain). It should be noted that aside from mineral dust, anthropogenic pollutants (Rodríguez
- et al., 2011) and microorganisms (Palmero et al., 2011) have been transported during these
- 16 events.
- 17 Previous studies have explained the important differences between the seasonal occurrence of
- ADO and the impact of the African dust on ambient concentrations of particulate matter over
- the western, central and eastern Mediterranean basin (Moulin et al., 1998; Querol et al., 2009;
- 20 Pey et al., 2013). In this study we will focus on the atmospheric processes which originate the
- 21 transport of African dust towards the western Mediterranean basin.
- 22 With the aim to document the occurrence of ADO over different areas of the western
- 23 Mediterranean basin and to characterize their seasonal trends, air mass classifications were
- 24 frequently carried out by means of backward air trajectories, either by straightforward
- attribution of their origin (Querol et al., 1998; 2004; Artíñano et al., 2001; Rodríguez et al.,
- 26 2001) or cluster analysis (Salvador et al. 2008; 2013). Otherwise, different interpretations of
- 27 the meteorological scenarios causing ADO were performed. Many studies have shown
- 28 specific days of the study period as examples of the most outstanding synoptic situations
- 29 favoring the transport of African air masses (Rodríguez et al., 2001; Viana et al., 2003;
- 30 Querol et al., 2009). Escudero et al. (2005) generated composite maps of sea level pressure
- and geopotential height at 850 and 700 hPa levels, by averaging the first day of each ADO
- 32 over eastern Spain during 1996-2002, after a visual classification of events. Salvador et al.

- 1 (2013) grouped air masses arriving on a daily basis over the centre of the Iberian Peninsula
- during 2001-2008, into homogeneous groups by means of a cluster analysis of back
- 3 trajectories. Trajectories coming from North-African regions were grouped into a single
- 4 cluster. They were used to create seasonally composite 850 hPa geopotential height maps.
- 5 The results obtained in these works could be considered as approaches on the characterization
- 6 of ADO over specific areas of the western Mediterranean basin from a meteorological
- 7 perspective. With the aim of yielding a more systematic perspective, this study deals with this
- 8 region as a whole. All the ADO occurring in this area from 2001 to 2011 were analyzed.
- 9 Additionally, an estimation of the African dust contribution to the PM<sub>10</sub> daily mean levels was
- 10 obtained, during each event for each region of study. Such a long temporal series of ADO
- occurrence and African dust estimates in PM<sub>10</sub> is hardly found in the literature. Part of this
- data set, among others, was analyzed by Pey et al. (2013) to characterize the occurrence of
- ADO across the whole Mediterranean basin. Issues related to levels of dust concentration,
- seasonal patterns and frequency of the events across the Mediterranean were discussed and
- evaluated. In this study the main atmospheric processes which give rise to the ADO are
- 16 characterized and the source areas of dust are identified using different objective statistical
- procedures. The seasonality and the geographical differences within the areas of study, of the
- 18 occurrence of the ADO are described.
- 19 Alonso-Perez et al. (2011) also achieved an objective characterization of meteorological
- 20 scenarios, favoring high African dust concentrations into the marine boundary layer of the
- 21 subtropical eastern north Atlantic region, with the purpose to complement previous studies
- describing ADO in the same area (Viana et al., 2002). The phenomenology of these events is
- 23 different in the subtropical eastern north Atlantic region in comparison with the western
- 24 Mediterranean basin, with clear differences in their seasonal trends and the associated
- 25 meteorological patterns (Viana et al., 2002; Alonso-Perez et al., 2011). However the
- 26 methodology used by Alonso-Perez et al. (2011) to objectively characterize synoptic
- 27 meteorological patterns, was also used in the present study.
- 28 Firstly, daily patterns of geopotential height at the 850 hpa pressure level corresponding to
- 29 episodic days were grouped into homogeneous groups, each one representing a characteristic
- 30 atmospheric circulation type, by non-hierarchical K-means cluster analysis and by principal
- 31 component analysis. Synoptic situations which give rise to these circulation types, were
- 32 characterized by composite synoptic maps of sea level pressure and geopotential height at the

- 1 850 and 700 hPa pressure levels. The seasonal occurrence of ADO during each circulation
- 2 type was analyzed. Then, the potential source areas of the mineral dust transported during
- 3 each circulation type were estimated by trajectory statistical methods. Finally an estimation of
- 4 the impact of the ADO over each one of the regions of study was carried out.

6

## 2 Methodology

- 7 During the 2001-2011 period, the occurrence of ADO over different regions of the western
- 8 Mediterranean basin was identified using a robust methodology, which consists in the daily
- 9 interpretation of meteorological products and air masses back-trajectories. This procedure can
- be found elsewhere (Escudero et al., 2005; 2007b) and consequently will not be described
- 11 here in detail.
- 12 Then, daily data from nine regional background air quality monitoring sites were obtained
- during this 11-year period, to evaluate the African dust contributions and to assess their
- impact on PM<sub>10</sub> levels. Table 1 lists the various stations used in this study. Seven out of the
- 15 nine stations are members of EMEP (Co-operative Programme for Monitoring and Evaluation
- of the Long-Range Transmission of Air Pollutants in Europe). Of the remaining sites, Bellver
- belongs to the Balearic Islands Regional Air Quality Network whereas Monagrega is part of
- 18 the ENDESA (Empresa Nacional de Electricidad S.A.) Air Quality Network. 2 different
- 19 techniques have been used to determine PM<sub>10</sub> concentrations: gravimetric determinations at
- 20 the EMEP sites and real time monitors based on Beta gauge attenuation at Monagrega and
- 21 Bellver. In these two monitoring sites the real time concentrations were corrected against the
- 22 gravimetric ones. Since only the official data reported to the European Commission are used
- in this work, their quality is guaranteed.
- 24 These monitoring sites were selected according to data coverage and geographical location
- 25 criteria. They were the regional background sites with the best data coverage of PM<sub>10</sub> daily
- mean values in the period of study (PM<sub>10</sub> daily data coverage ranging from 84% to 99%).
- 27 Besides, they were distributed throughout the Iberian Peninsula and the Balearic Islands,
- 28 covering southeastern, southwestern, central, eastern, northeastern, northern and northwestern
- 29 regions (Fig. 1a). It should be noted that until the year 2004, no rural background station was
- 30 recording PM<sub>10</sub> concentration levels on a regular basis in Portugal. For this reason Portugal
- 31 was not considered in this work.

- 1 Then, a specific procedure was applied for the quantification of the African dust contribution 2 deposited during each ADO at each sampling site, to estimate the impact of the African dust 3 on the PM<sub>10</sub> daily records. Studies made on the levels of PM<sub>10</sub> registered at EMEP and other 4 regional background stations in the Iberian Península (Escudero et al., 2007b; Viana et al., 2010) showed that the 30 days moving 40<sup>th</sup> percentile determined for each day, excluding the 5 6 African dust episodic days, reproduces rather suitably the regional background levels of the 7 study area during periods with prevailing atmospheric advective conditions. Thus, at regional 8 background monitoring sites, the origin of the PM<sub>10</sub> levels recorded during these days must be 9 local or regional. Consequently this methodology built on the identification of days with 10 African dust transport and statistical analyses based on the calculation of the 30 days moving 40<sup>th</sup> percentile for regional background PM<sub>10</sub> daily concentration time series. This percentile
- 40<sup>th</sup> percentile for regional background PM<sub>10</sub> daily concentration time series. This percentile is an indicator of the non-African regional background to be subtracted from the daily PM<sub>10</sub>
- levels during ADO, and thus allows calculating the daily African dust contribution.
- 14 The feasibility of this method was demonstrated by different approaches in Escudero et al.
- 15 (2007b) and Viana et al. (2010). This methodology became the Spanish and Portuguese
- 16 reference method to identify and quantify African dust contributions to PM<sub>10</sub> levels since
- 17 2004. The method is also applicable across the whole Southern Europe, as demonstrated by
- Querol et al. (2009) and more recently by Pey et al. (2013). Currently, this is one of the
- official methods recommended by the European Commission for evaluating the occurrence of
- 20 ADO and quantifying its contributions (Commission staff working paper, 2011).
- 21 As a consequence of this preliminary analysis, days contributing with a positive value of
- 22 African dust contribution in at least, one of the 9 regional background monitoring sites during
- the 2001-2011 period, were identified. Henceforth they will be referred to as "episodic days".
- 24 This study will focus on such episodic days and on the values of the African dust
- contributions estimated at each sampling site.

27

## 2.1 Circulation classifications methodology

- 28 First of all, gridded sea level pressure and geopotential height fields at 850 and 700 hPa in the
- 29 geographical domain defined by 0-60° N and 30° W-30° E, were extracted from the ERA-
- 30 Interim Archive at ECMWF (European Centre for Medium-Range Weather Forecasts) for the
- 31 period 2001-2011. The ERA-Interim atmospheric model and reanalysis system uses the cycle

- 1 31r2 version of the ECMWF's Integrated Forecast System, which was configured for the
- 2 following spatial resolution: 60 levels in the vertical, with the top level at 0.1 hPa; T255
- 3 spherical-harmonic representation for the basic dynamical fields; a reduced Gaussian grid
- 4 with approximately uniform 79 km spacing for surface and other grid-point fields. Additional
- 5 information is contained in Dee et al. (2011).
- 6 Next, a nonhierarchical K-means cluster analysis method was applied for classifying time
- 7 series of daily fields of geopotential height at the 850 hPa pressure level, into similar groups
- 8 or "circulation types" (Huth et al., 2008). This method is based on the minimization of the
- 9 sum of quadratic Euclidean distances between the data points of the n observations of a
- variable, and the corresponding centroid of each cluster. In this particular case, this algorithm
- is used to globally diminish the intra-group distance, classifying the geopotential height fields
- into K groups (Alonso-Pérez et al., 2011). The number of clusters to be retained must be a
- priori chosen. It was determined by computing the percentage change in within cluster
- variance, as a function of the number of the clusters (Dorling et al., 1992). This statistic
- increases abruptly when clusters which are significantly different are joined, helping to
- 16 choose the best number of clusters to be retained.
- 17 Nonhierarchical K-means cluster analysis method was selected on the basis of a number of
- 18 main-criteria. First of all, it is considered that nonhierarchical K-means outperforms
- hierarchical cluster analysis in general (Gong and Richman, 1995; Michelangeli et al., 1995;
- 20 Philipp et al., 2007). Additionally, Huth (1996) and Huth et al. (2008) demonstrated that in
- 21 comparison with other classification methodologies, K-means provides excellent separability
- among cluster, good temporal and spatial stability and a moderate ability to reproduce known
- 23 underlying structure of data. Huth (1996) also stated that if the preferred property is the
- separation (among clusters as well as between clusters and the whole data set), the K-means
- 25 method is best.
- 26 It should be noted that Principal Component Analysis (PCA) has also been widely used for
- 27 circulation patterns classification. Several studies can be found in the literature, concluding
- 28 that rotated principal components are the most accurate method for circulation pattern
- 29 classification, if the goal of the study was centered on the ability to reproduce known patterns
- 30 (Gong and Richman, 1995, Huth, 1996). However these authors also demonstrated that there
- 31 is not a classification method which is best in all aspects among other tested. In the end, each

- of the methods removes the subjectivity inherent in classification procedures to a certain
- 2 extent, although leaving some decisions on the classification subject.
- 3 Alonso-Pérez et al. (2011) demonstrated that K-means and PCA can be complementary and
- 4 related methods in circulation classifications. For this reason and with the aim to validate the
- 5 circulation types obtained with the K-means procedure, a PCA in T-mode (grid point values
- 6 in rows and cases in columns) was carried out with the same data set of 850 hPa daily fields.
- 7 The same number of principal components and clusters was obtained. Finally the resulting
- 8 circulation types, obtained by averaging the 850 hPa geopotential height daily fields
- 9 corresponding to those days assigned to each cluster and principal component, were compared
- and their "physical meaning" was analyzed. When we talk about "physical meaning" we are
- referring to circulation patterns which were detected during all the years of the period of
- study, with a common seasonal trend and geographical area of influence.
- 13 More specific details on the use of K-means cluster analysis and PCA as classification
- methods can be found in Alonso-Perez et al. (2011).
- 15 Finally, it should be noted that, unlike weather type classification, circulation pattern
- 16 classification is based on just one parameter of atmospheric circulation (Yarnal, 1993).
- 17 Studies using multiple levels (Kidson, 1997; Romero et al. 1999) indicate that owing to a high
- degree of dependence among individual layers, the inclusion of additional levels yields only
- 19 little extra information over using a single level. Alonso-Pérez et al. (2011) did not found
- 20 significant variations on the total variance fraction explained by each PC and the percentage
- 21 of the African intrusion days occurred under synoptic meteorological patterns explained by
- each K-means cluster at different levels (1000, 850, 700 and 500 hPa). In the present work
- daily fields of geopotential height at the 850 hPa pressure level were selected, because in most
- of the cases they correctly describe the mean transport wind at a synoptic scale during ADO
- 25 towards the western Mediterranean basin (Moulin et al., 1998; Querol et al., 1998; Salvador et
- al., 2004). In fact, previous studies stated that the transport of African dust towards this area
- 27 mostly occurs at relatively high atmospheric levels (Escudero et al., 2005; Querol et al., 2009;
- 28 Pey et al., 2013). The Atlas Mountains range, extending from Western Sahara towards
- 29 Tunisia, hinders the transport of dust at low altitudes from occurring.

#### 2.2 Identification of potential source areas of dust

- 2 It is recognized that the statistical analysis of a great number of back trajectories from
- 3 receptor sites, has turned out to be a valuable tool to identify sources and sinks of atmospheric
- 4 trace substances or to reconstruct their average spatial distribution (Stohl et al., 1998;
- 5 Scheifinger and Kaiser, 2007). In this study the Redistributed Concentration Field (RCF)
- 6 method (Stohl, 1996) was used to identify potential source areas of the mineral dust
- 7 transported during ADO towards the WMB.
- 8 5-day backward 3-D air trajectories arriving at all of the 9 sampling sites at 00:00, 06:00,
- 9 12:00 and 18:00 UTC were computed for each day of the 2001-2011 period, using the
- 10 HYSPLIT model (Draxler and Rolph, 2003). Fixed height of 1500 m ASL was chosen as the
- air masses arrival height, because this altitude approximately coincides with the 850 hPa
- 12 geopotential height pressure level. In all, more than 22,000 trajectories corresponding to
- episodic days were available for analysis, each with 120 endpoints.
- 14 RCF were computed over the region defined by 12-60° N and 28° W-24° E. For each 2°
- longitude x 2º latitude grid cell, a weighted concentration of African dust was computed using
- the procedure defined by Stohl (1996). Thus, cells with weighted concentrations in the higher
- and lower value ranges indicated that, on average, air parcels residing over these cells resulted
- in high and low concentrations, respectively, of the African dust contributions at the receptor
- sites. RCF results were reported on geographical maps as a result of the interpolation of the
- 20 weighted concentrations in the grid cells. These maps show those potential source areas
- 21 whose emissions can be transported to the measurement site by prevailing synoptic winds
- 22 (Vinogradova, 2000).
- 23 To provide detailed information on the source areas of dust contributing to the different
- 24 regions of the WMB, RCF maps were obtained using African dust contribution values and
- back-trajectories from western (Barcarrota and O Saviñao), central (Viznar, Risco Llano and
- Niembro) and eastern (Zarra, Bellver, Monagrega and Els Torms) regions of the WMB during
- each season (spring, summer, autumn and winter) and each circulation type. Lupu and
- 28 Maenhaut (2002) demonstrated that calculating RCF with data from several locations
- improved their spatial resolution.

#### 2.3 Estimation of the impact index

- 2 With the aim to evaluate the impact of the ADO produced by each circulation type on the
- 3 concentrations of African dust in PM<sub>10</sub> registered at the regional background stations, an
- 4 impact index was defined. This parameter combined the frequency of occurrence of each
- 5 circulation pattern with the average African dust levels recorded during each of them at any
- 6 sampling site. The higher the index, the higher the African dust contributions and the
- 7 frequency of episodic days.
- 8 For each sampling site:

9 
$$IND_i = (ADC_i \cdot N_i)/(ADC \cdot N_t) \cdot 100$$
. (1)

- Where, IND<sub>i</sub> is the impact index associated to the circulation pattern i, ADC<sub>i</sub> is the average
- value of African dust contributions registered at this site only for days in which the circulation
- pattern i occurs, N<sub>i</sub> is the number of episodic days produced by the circulation pattern i and
- 13 ADC is the average value of African dust contribution for all the N<sub>t</sub> episodic days produced in
- this site. Hence, for each sampling site:

15 
$$\sum_{i=1}^{4} IND_i = 100\%$$
. (2)

16

17

1

#### 3 Results and discussion

#### 18 **3.1 Circulation classifications**

- During the period 2001-2011, 1592 episodic days were identified (on average 145 episodic
- 20 days per year) increasing the daily concentration levels of PM<sub>10</sub> recorded in regional
- 21 background air quality monitoring stations, due to African mineral dust. The highest number
- of episodic days was recorded in 2007 (187 days) and the lowest in 2005 (125 days).
- 23 The episodic days occurred less frequently at northern locations (21% at O Saviñao and
- Niembro) than at central (30-50% at Els Torms, Monagrega, Risco Llano, Bellver and Zarra)
- and southern locations (>50% at Barcarrota and Viznar) of the area of study (Fig. 1b). At the
- 26 most southern locations it was evident a higher frequency of episodic days due to their higher
- 27 proximity to the African mainland.

- 1 26% of the episodic days (409 days) were detected only at one of the sampling sites. Some of
- 2 these episodic days corresponded to ADO with short duration, which only transported dust to
- 3 one of the regions. Otherwise during ADO with duration of several days, mineral dust could
- 4 be transported to further areas, being firstly detected at borderline sites such as Barcarrota
- 5 (18% of the episodic days detected only in this site), Viznar (22%) and Bellver (46%).
- 6 Otherwise, 3% of the episodic days (41 days) were registered simultaneously in all of the
- 7 stations, during the most intense ADO.
- 8 On average the highest number of episodic days was recorded, in summer (June-August)
- 9 followed by those registered in the spring (March-May) and the autumn (September-
- 10 November) months. The lowest number of episodic days was recorded from December to
- 11 February (Table 2).
- 12 The application of the methodology exposed in section 2.1, to find an appropriate number of
- 13 clusters in a given dataset, showed a large increase in the percentage change in within cluster
- variance when reducing the number of clusters from 7 to 6 and from 4 to 3. A percentage
- 15 change of 9.9 and 13.0 was respectively produced. This suggested that 7 or 4 clusters could be
- 16 retained as the best number for describing significantly different atmospheric circulation
- patterns in this study. 7 clusters were considered too many, as some of them were composed
- only by a few episodic days. Moreover, some of these circulation types were not produced
- during all the years of the study period. In order to have a manageable number of clusters with
- 20 physical meaning, 4 clusters were retained for use in this analysis.
- 21 Figures 2-5 shows the 4 composite synoptic maps of the geopotential height at the 850 hPa
- 22 level, calculated by averaging the data corresponding to all episodic days assigned to a
- 23 particular cluster after the last iteration in the clustering procedure and principal component
- 24 (right column). Different orthogonal (Varimax) and oblique rotations (Oblimin) were checked
- 25 in the PCA procedure, resulting in equivalent structures. Oblimin rotated solutions (Huth,
- 26 1996) were utilized to create Figs. 2-5. Composite synoptic maps calculated by averaging the
- 27 sea level pressure and the geopotential height at the 700 hPa level, using the data
- corresponding to all episodic days assigned to a particular cluster, are depicted in Figs. S1 and
- 29 S2 (Supplement).
- 30 The main features characterizing the 4 circulation types that were obtained by K-means
- 31 cluster analysis could be found in the 4 circulation types obtained from PCA. Circulation

- patterns resulting from clusters 1, 2, 3 and 4 resembled quite well those obtained from PC4,
- 2 PC1, PC3 and PC2, respectively (Figs. 2-5).
- 3 Circulation type I illustrated a synoptic meteorological scenario, characterized by a relative
- 4 low pressure system observed at the 850 and 700 hPa levels west or southwest of the Iberian
- 5 Peninsula coast and by an upper level high, located over northern Algeria (Figure 2). The so
- 6 called North African high is a common synoptic feature in all the circulation types giving rise
- 7 to ADO over the western Mediterranean basin. It is produced by the intense heating of the
- 8 North African surface which generates the development of thermal lows. As a consequence, a
- 9 compensatory high pressure system is formed at higher altitudes over different geographical
- locations, depending on the circulation pattern. This circulation type favored the advection of
- 11 African air masses towards the Iberian Peninsula by south and southwestern winds in the
- 12 upper atmospheric levels.
- 13 Circulation type II was characterized by a shift of the North African high to the east and a
- trough placed over the western Iberian Peninsula coast (Figure 3a) or at a somewhat more
- eastern location the Iberian Peninsula (Figure 3b). A small low pressure system, centered over
- Morocco, was also noticeable. This synoptic meteorological situation generated southwestern
- winds over the Iberian Peninsula. The composite 700 hPa geopotential height field illustrated
- a clear south-westerly wind flow with a strong high in the southern Algeria, carrying warm air
- onto the western Mediterranean basin (Fig. S2b).
- 20 It should be noted that other authors identified meteorological scenarios dominated by
- 21 Atlantic depressions between January and June, inducing transport of African dust towards
- southern and eastern Spain (Rodríguez et al., 2001; Escudero et al., 2005). Circulation types I
- and II gathered these scenarios, discriminating between those in which the North African was
- located over northeastern Algeria and Tunisia (type I) or at more eastern locations (type II).
- 25 Circulation type III showed a strong high pressure system extended over eastern Algeria and
- Libya in the map of geopotential height at the 850 hPa level. Besides, a strong longitudinal
- 27 baric gradient produced by a strong Icelandic low and weak Azores high, which is displaced
- towards the southwest, caused a clear zonal circulation over the Iberian Peninsula (Figure 4).
- 29 This circulation type was not associated in previous studies with dust transport over the
- 30 western Mediterranean basin.
- 31 The most remarkable feature of the synoptic situation described by the circulation type IV,
- 32 was the development of an intense North African high over northeastern Algeria and Tunisia,

- 1 advecting warm African air masses onto the Iberian Peninsula from southern and southeastern
- areas (Figure 5). At 700 hPa, the North African high was extended over Western Sahara, Mali
- 3 and Mauritania, inducing the transport of air masses from these areas towards the Iberian
- 4 Peninsula and the western Mediterranean basin. At sea level, an extension of the Azores high
- 5 over central Europe and a weak pressure gradient, inhibited the transport of air masses at low
- 6 altitudes. This was the most frequent synoptic meteorological situation causing ADO over
- 7 eastern (Rodríguez et al., 2001; Escudero et al., 2005) and central (Salvador et al., 2013)
- 8 Spain.
- 9 Table 2 shows a comparison of the main features of the 4 circulation patterns obtained with
- 10 cluster analysis and PCA. It can be concluded that both methodologies produced basically the
- same results in terms of the frequency of episodic days attributed to each circulation pattern
- and the prevalent season of the year with a higher frequency of occurrence of episodic days.
- For the sake of simplicity from now on, the discussion will be referred to the results obtained
- 14 exclusively from cluster analysis.
- 15 The most frequent patterns were the fourth and the second circulation types, representing 33%
- and 31% of the episodic days, respectively. The first circulation type accounted for 24% of
- 17 the episodic days whereas the third one grouped the transport regimes less frequently
- observed. It represented only 12% of the episodic days (Table 2). Figure 6 shows the monthly
- 19 distribution of occurrence of the circulation types during the period of study. The number and
- 20 seasonal frequency of episodic days during each year of the period 2001-2011 by circulation
- 21 type can be consulted in Tables S1 and S2, respectively (Supplement).
- 22 Trend estimates of the occurrence of ADO were undertaken, using the OpenAir data analysis
- 23 tools (Carslaw and Ropkins, 2012). The magnitude of the trend was expressed as a slope
- 24 using the Theil-Sen method (Hirsch et al., 1982). Smooth trends in the monthly mean
- 25 concentrations of pollutants were also determined using Generalized Additive Modelling
- 26 (Carslaw et al., 2007) and represented in Fig. 6. The monthly number of episodic days
- 27 produced during the different circulation types, did not show a significant trend (neither
- 28 upward nor downward). These results indicate that the occurrence of ADO over the Iberian
- 29 Peninsula and the Balearic Islands under the four prevalent circulation types obtained,
- maintained a steady tendency during the period 2001-2011. This fact is evidenced in Fig. 3 by
- 31 the horizontal lines, representing the smooth trends.

- 1 Table 3 and Fig. 6 illustrate that a marked seasonal pattern is observed in the occurrence of
- 2 the different circulation types. There was a clear seasonal trend towards a higher frequency of
- 3 the circulation type I episodic days during the summer months and in lesser extent during
- 4 spring and autumn. The episodic days occurred during the circulation type II, were more
- 5 frequent during the spring and the summer months. The meteorological scenarios represented
- 6 by the circulation type III, occurred predominantly in spring and autumn and less frequently
- 7 during summer. In opposition, episodic days generated by the circulation type IV were more
- 8 likely registered in summer.
- 9 Moulin et al. (1997) found that interannual variations in dust transport from North Africa
- towards the Atlantic Ocean and the Mediterranean Sea, were well correlated with the climatic
- variability defined by the North Atlantic Oscillation (NAO) index. This index was defined by
- Hurrell (1995), and accounts for the difference between the normalized sea-level atmospheric
- pressures between Lisbon, Portugal and Stykkisholmur, Iceland. It has the limitation that
- 14 these stations are fixed in space and thus may not track the movement of the NAO centers of
- action through the annual cycle. Besides, individual station pressure readings can be noisy
- due to small-scale and transient meteorological phenomena unrelated to the NAO.
- 17 When this pressure gradient between the Icelandic low and the subtropical high is more
- intense than normal (positive NAO) the westerly winds are stronger across northern Europe,
- 19 bringing Atlantic air masses over the continent associated with mild temperatures and higher
- 20 precipitation. On the opposite, dryer conditions than usual are produced at lower latitudes
- 21 across southern Europe. When the pressure gradient is less intense than normal (negative
- 22 NAO) the track of westerly Atlantic winds is observed at lower latitudes, bringing stronger
- than normal winds over the Mediterranean. Moreover, in recent published works, winter
- 24 (Cusack et al., 2012) and summer (Pey et al., 2013) periods with positive and negative NAO
- 25 index were associated with more and less frequent ADO, respectively, over areas of the
- 26 Iberian Peninsula and the north-western region of the Mediterranean Basin.
- 27 Pey et al. (2013) detected a modification in the atmospheric circulations for the summer
- 28 periods of the 2007-2008 biennium. It was associated to a change in the NAO index, towards
- more negative values than usual. As a consequence, an unusual displacement of warm air
- 30 masses accomplishing African dust towards the central Mediterranean, was detected during
- 31 these summer periods, although still affecting the northeastern Spain and the Balearic Islands.
- 32 The highest frequency of episodic days produced by the circulation type III in summer was

- detected in 2007 (19% of the annual number of episodic days associated to this circulation
- 2 type) and 2008 (15%). During the other years of the period of study this frequency ranged
- 3 from 0 to 8%, demonstrating that the occurrence of the circulation type III in the summer
- 4 period can only be achieved under atypical atmospheric conditions (Table S2, Supplement).
- 5 In this work annual and monthly mean NAO index for the 2001-2011 period were obtained
- 6 from the NOAA data center
- 7 (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) and compared with
- 8 the occurrence of episodic days according to the four circulation types. They did not always
- 9 show a statistically significant linear correlation across all the seasons and the years of the
- period 2001-2011. This fact evidences that other factors related with large-scale dynamical
- features apart from NAO index, contributes to the year-to-year variability of the occurrence of
- 12 ADO and the intensity of dust export (Moulin et al., 1997).
- 13 Anyway, a remarkable result was found in relation with the development of different
- 14 circulation types during periods with a high or low NAO index. Figure 7a depicts the good
- 15 fitting between the annual occurrence of the circulation types II and III episodic days and the
- 16 corresponding annual NAO index values. This behavior was especially intense during spring
- 17 (Fig. 7b). In this period, circulation types I and II, showed a positive linear relationship with
- the value of the NAO index. The opposite was found with the circulation type III. It should be
- 19 noted that the year 2010 was excluded from the correlation plot (Fig. 7a) owing to the atypical
- low values of the NAO index obtained across all the seasons (annual NAO index = -1.65). It
- 21 is evident that this year was governed by anomalous atmospheric patterns.
- 22 This fact suggests that during specific low-NAO periods, the transport of African dust
- 23 towards the western Mediterranean basin could be achieved, in spite of the fact that zonal
- 24 flows prevailed over this area. This situation was depicted in Fig. 8a, which represents the
- 25 mean geopotential height at 850 hPa during episodic days in spring 2005. This was the year
- 26 with the lower NAO index value in spring. The advection of Atlantic air masses was produced
- 27 at lower latitudes than usual (grey arrow) but the presence of the high pressure system
- 28 extended over eastern Algeria, Tunisia and Libya, allowed the transport of the African air
- 29 masses (white arrow) towards the eastern side of the Iberian Peninsula and the Balearic
- 30 Islands. The similarity between Fig. 8a and Fig. 4, illustrates the prevalence of the circulation
- 31 type III in this period.

- 1 On the contrary, periods with higher than normal NAO index values, revealed a different
- 2 synoptic meteorological situation. During spring 2011 (Fig. 8b) the advection of Atlantic air
- 3 masses took place at latitudes higher than 45° N, whereas the low pressure system located
- 4 over 35° N-15° W and the high pressure system extended again over eastern Algeria, Tunisia
- 5 and Libya, favored African air masses moving northward. In this period 50 episodic days
- 6 were identified, most of them caused by the circulation types I (24%) and II (52%).

8

### 3.2 Identification of potential source areas of dust

- 9 Prospero et al. (2002) have shown that dust sources are usually associated with topographical
- 10 lows in arid regions where runoff and flooding have created lacustrine and alluvial sediments.
- 11 These sediments are composed of fine particles which are easily eroded by winds. Ginoux et
- al. (2001) determined the global distribution of dust sources taking into account this so called
- 13 "topographic hypothesis" and creating a source function S, which represents the probability to
- have accumulated transportable sediments at land surface with bare soil. African dust sources
- estimated this way are consistent with studies that used satellite products to locate major dust
- sources such as TOMS absorbing aerosol index (Prospero et al., 2002) or MODIS Deep Blue
- aerosol products (Ginoux et al., 2010; 2012). The values of the source function S are
- represented in 0.25°x0.25° grid cells in Fig. 9. This figure was used as a reference to validate
- 19 the source areas of African dust identified by the RCF maps. The three zones of study are also
- indicated in Fig. 9.
- 21 Three main geographical areas were identified in the RCF maps as the greatest potential
- 22 sources of mineral dust. They agreed fairly well with maxima in the dust source function map
- 23 (Fig. 9). Table 4 summarizes the main results of this section.
- 24 The first source area corresponded with the series of sources starting near the west coast of
- North Africa at 23° N-16° W and extending to the north and northeast to 26-27° N and 6-7° W
- over Western Sahara and northern Mauritania. This potential source area included hydrologic
- 27 sources such as lakes in the Tiris Zemmour region in Northern Mauritania (Ginoux et al.,
- 28 2012). Source areas are attributed to a hydrological origin based on the presence of ephemeral
- water bodies such as streams, rivers, lakes, and playas which contain deposits of clay, silt, and
- 30 salts (Prospero et al., 2002). The second source area corresponded with different regions of
- Algeria. Large basins (>200,000 km<sup>2</sup>) with sand seas (Grand Erg Oriental and Grand Erg

- 1 Occidental) are located across central and southern Algeria (Ginoux et al., 2012). The intense
- 2 dust emission area centered at 26° N-0° E and extending from 22° S to 30° N (Fig. 9) is
- 3 considered as the main source area of mineral dust in this area (Prospero et al., 2002). Source
- 4 areas of dust in Northern Algeria group ephemeral lakes such as Chott el Hodma and Chott
- 5 ech Chergui (Ginoux et al., 2012). The third source area was located between Tunisia and
- 6 northeast Algeria, in an area centered at 34° N-8° E. This area also includes ephemeral lakes
- 7 such as the Chott Jerid in Tunisia and the Chott Melrhir in northeastern Algeria and the sand
- 8 seas in the Grand Erg Oriental (Prospero et al., 2002; Ginoux et al., 2012) and consequently
- 9 was distinguished as an intense source area of dust in Fig. 9. All these areas are essentially
- 10 natural sources (dust emitted from land surfaces where land use is less than 30%, Ginoux et
- al., 2012). They are active during all the months of the year, but the maximum activity is
- currently reached from April to September (Prospero et al., 2002).
- 13 In relation with the chemical composition of the African dust, it is well known that the
- 14 Tunisia and most of the western Sahara lie upon carbonated lithology. In the occidental
- 15 Sahara, the Coastal Basin is composed of Mesozoic and Cenozoic carbonatic sediments,
- dolomites and marls. By contrast, Precambrian and Paleozoic Massifs with low carbonate
- 17 content cover more southern parts comprising central and southern Algeria, Chad, Sudan,
- Mali and Mauritania (Chiapello et al., 1997; Moreno et al., 2006). Consequently, higher
- 19 contents of calcite-dolomite derived elements should contribute to the mineral dust loading
- 20 from Sources I and III (Fig. 9). Otherwise, dust from Source II (Fig. 9) should have a higher
- 21 content of clay-silicates derived elements.
- 22 The circulation type I transported dust from different source areas. On the one hand the low
- 23 pressure system located southwest of the Iberian Peninsula coast leaded the transport of dust
- 24 from Western Sahara and southern Morocco (Source I in Fig. 9) towards the western and the
- central sides of the Iberian Peninsula (Fig. 10a-b). On the other hand, the upper-level high
- 26 over Northern Algeria promoted the transport of dust from Northeastern Algeria and Tunisia
- 27 (Source III in Fig. 9) towards the eastern side of the Iberian Peninsula and the Balearic Islands
- 28 (Fig. 10c-d). This type of transport was predominantly produced in summer and autumn.
- 29 The circulation type II transported dust mainly from northern Algeria (Source II in Fig. 9) in
- spring and summer, towards each of the three zones of study (Fig. 11a-c).
- 31 The longitudinal baric gradient which characterized the circulation type III (Fig. 4) promoted
- 32 an effective transport of dust in spring, from Western Sahara and southern Morocco (Source I

- 1 in Fig. 9) towards the eastern side of the Iberian Peninsula and the Balearic Islands (Fig. 12a).
- 2 During winter, the transport of lower concentrations of African dust from regions of northern
- 3 Morocco, was also detected associated to the circulation type III (Fig. 12b).
- 4 The circulation type IV generated the transport of dust essentially from Algeria (Source II in
- 5 Fig. 9). In summer (Fig. 13a-b) the main sources areas of dust were located over northern
- 6 Algeria. Finally in autumn, the North African high was displaced on the way to lower
- 7 latitudes. Consequently the main sources of dust were identified over more southern regions
- 8 of Algeria (Source II in Fig. 9). The transport of dust from these source areas was preferably
- 9 achieved towards the central and the eastern sides of the Iberian Peninsula and the Balearic
- 10 Islands (Fig. 13c-d).

12

13

# 3.3 Estimation of the impact of ADO produced by the circulation types over different regions of the western Mediterranean basin

- Table 5 shows the ranges of variation of the impact index values for all the circulation types
- and the sampling locations. This index accounted for the intensity of the ADO for each
- 16 circulation type over a specific geographic area, in terms of the average African dust
- 17 contributions determined at this area and the frequency of occurrence of episodic days.
- 18 Thus, the circulation type I had the largest impact index values in the most western located
- 19 stations, Barcarrota and O Saviñao, whereas for the other stations the highest impact index
- 20 values corresponded to the circulation type IV. These circulation types were more frequently
- 21 registered in summer, when the maximum activity of most of the African sources of dust, is
- currently reached (Prospero et al., 2002). Figure 14 depicts interpolation maps of the impact
- 23 index values for each circulation type.
- 24 Figure 14a indicates that the ADO produced by the circulation type I had a higher impact at
- 25 western than eastern regions. It should be noted that it was demonstrated that this circulation
- type may induce the transport of African dust towards western, central and eastern sides of the
- 27 Iberian Peninsula and the Balearic Islands (Fig. 10). However, owing to the fact that the
- 28 frequency of episodic days produced by the circulation type I was lower at eastern (15
- 29 episodic days per year on average at Zarra) than at western (23 episodic days per year on
- 30 average at Barcarrota) areas, the resulting impact index was higher at the western areas.

- 1 In comparison with the circulation type I, the circulation type II produced a higher frequency
- 2 of episodic days but also lower average values of the African dust contributions at most of the
- 3 sampling sites. As a consequence, the impact index was lower for all the sites excepting for
- 4 those located at the most eastern locations (Els Torms, Monagrega and Bellver, Table 5). This
- 5 circulation type generated similar impact index across all the Iberian Peninsula (from 20% at
- 6 Risco Llano to 24% at Els Torms and O Saviñao). The highest impact index was obtained at
- 7 the Balearic Islands site (31% at Bellver, Fig. 14b) as a consequence of the typical south-
- 8 westerly wind flows, generated by these synoptic meteorological situations (Fig. 3).
- 9 The prevalent southwestern circulation over the western Mediterranean basin associated to the
- 10 circulation pattern III (Fig. 4) generated higher values of the impact index at eastern than at
- western locations of the study area (Fig. 14c). The impact index was lower than 10% at the
- western sites, rising to 17-18% at the eastern sites (Zarra, Els Torms and Monagrega) and to
- 13 20% at the Balearic Islands site (Bellver). Because of the low frequency of occurrence of this
- 14 circulation type (Table 3) the impact index values were the lowest obtained for all the
- sampling sites, with the exception of Bellver (Table 5).
- 16 Finally the circulation type IV, generated higher impact index values at southern, eastern and
- 17 central areas than at western and northern regions of the Iberian Peninsula and the Balearic
- 18 Islands (Fig. 14d). In these cases, the air masses coming from North Africa were heavily
- 19 loaded with dust and the frequency of episodic days was very high, especially in summer and
- autumn (Table 3). Consequently the impact index was the highest obtained for most of the
- 21 sites.

23

#### 4 Conclusions

- 24 In this work the occurrence of African Dust Outbreaks (ADO) over the western
- 25 Mediterranean basin were analyzed on an 11-years period (2001-2011) with the aim to
- 26 characterize the prevailing atmospheric circulation patterns and the associated dust source
- areas. Estimations of the values of African Dust contribution in PM<sub>10</sub> during each event were
- 28 obtained at 9 regional background sites across the western Mediterranean basin and analyzed
- 29 together with daily fields of meteorological variables and daily air mass back-trajectories
- 30 arriving at these sites. The impact of the ADO produced by each circulation type was
- 31 estimated in terms of the average contribution of the African dust on the ambient levels of
- $PM_{10}$  concentrations and the frequency of episodic days.

- 1 The summer months dominated ADO occurrence (40% of the total number of episodic days
- 2 produced during the 2001-2011 period), under two prevailing circulation types (circulation
- 3 types I and IV). Their transport mechanisms were composed of two stages. In the first stage,
- 4 convective injection of dust from source areas was produced by the intense surface heating. In
- 5 the second stage, transport towards the Iberian Peninsula and the Balearic Islands was
- 6 produced at the upper levels, being driven by the North African high, alone in the case of the
- 7 circulation type IV or in combination with a relative low pressure system placed west of the
- 8 Iberian Peninsula coast in the case of the circulation type I. ADO produced during the
- 9 circulation type IV generated the highest impact at southern, eastern and central areas of the
- 10 Iberian Peninsula and the Balearic Islands. The transport of dust was predominantly produced
- from northern and southern areas of Algeria in summer and autumn, respectively.
- 12 Events generated by the circulation type I produced a higher impact at western than eastern
- areas of the Iberian Peninsula. The transport of dust was produced from Western Sahara and
- 14 Southern Morocco towards the western and the central sides of the Iberian Peninsula and from
- 15 northeastern Algeria and Tunisia towards the eastern side of the Iberian Peninsula and the
- 16 Balearic Islands.
- 17 The circulation types II and III, were more frequently produced during the spring season.
- 18 They were characterized by a displacement of the North African high to the east and by a
- 19 stronger baric gradient than the one obtained in the circulation types I and IV. South to
- 20 southwestern winds were the prevailing flows generated by these synoptic situations,
- 21 transporting dust mainly from northern Algeria in the case of the circulation type II and from
- Western Sahara and Morocco in the case of the circulation type III. Our results indicated a
- 23 progressive higher influence of the ADO originated during these circulation types towards the
- 24 eastern areas of the Iberian Peninsula and the Balearic Islands.
- 25 The occurrence of the different circulation types was associated with the values of the North
- 26 Atlantic Oscillation (NAO) index. In fact, this index was observed to influence the frequency
- of episodic days across the western Mediterranean basin during spring. In this period higher
- 28 (lower) than normal values of the NAO index, were associated with higher (lower) frequency
- 29 of circulation types I and II. This suggests that when NAO was more intensely positive, the
- 30 probability of transporting air masses from North Africa towards the Iberian Peninsula was
- 31 higher. On the contrary during negative NAO phases in spring, the advection of Atlantic air
- 32 masses was produced at lower latitudes than usual, thus hindering subtropical air masses to

- 1 reach this area. However, during specific events characterized by the presence of high
- 2 pressure systems located over eastern Algeria, Tunisia and Libya, as those described by
- 3 circulation type III, the transport of the African air masses towards the eastern side of the
- 4 Iberian Peninsula and the Balearic Islands and the central Mediterranean could be produced.
- 5 The results obtained in this study demonstrate that the ADO across the western Mediterranean
- 6 basin were caused by different atmospheric circulation patterns, which condition their
- 7 intensity and the areas affected by mineral dust. The four main synoptic meteorological
- 8 situations that generate this type of events were described in this work and the highest
- 9 potential source areas of mineral dust, associated to each of them, were also characterized.
- 10 This information can be used as a complementary tool for forecast and analysis of aerosol
- properties as well as their effects on human health, ecosystems or rain composition,
- distinguishing between air masses coming from different areas of the African continent.

14

#### Acknowledgements

- 15 This work was funded by the Spanish Ministry of the Environment and Rural and Marine
- 16 Affairs under the project "Estudio y evaluacion de la contaminacion atmosferica por material
- particulado y metales en España" (UCA 2009020083) and by research projects GRACCIE-
- 18 CSD2007-00067, MICROSOL (CGL2011-27020) and VAMOS (CGL2010-19464/CLI). The
- authors wish to thank the EMEP programme, supplying PM<sub>10</sub> data used in this study and the
- 20 NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT trajectory model.
- 21 We acknowledge the Atmospheric Modelling & Weather Forecasting Group in the University
- 22 of Athens, the Earth Science Dpt. from the Barcelona Supercomputing Centre, the Naval
- 23 Research Laboratory and the SeaWiFS project (NASA) for the provision of the SKIRON,
- 24 DREAM/BSC-DREAM8b, NAAPs aerosol maps, and the satellite imagery, respectively.

#### References

- 2 Alonso-Pérez, S., Cuevas, E. and Querol, X.: Objective identification of synoptic
- 3 meteorological patterns favouring African dust intrusions into the marine boundary layer of
- 4 the subtropical Eastern north Atlantic región, Meteorol. Atmos. Phys., 113, 109-124, 2011.
- 5 Artíñano, B., Querol, X., Salvador, P., Rodríguez, S., Alonso, D.G. and Alastuey, A.:
- 6 Assessment of airborne particulate levels in Spain in relation to the new EU-Directive,
- 7 Atmos. Environ., 35, S43-S53, 2001.
- 8 Bouchlaghem, K., Nsom, B., Latrache, N. and Haj Kacem, H.: Impact of Saharan dust on
- 9 PM10 concentration in the Mediterranean Tunisian coasts, Atmos. Res. 92, 531-539, 2009.
- 10 Carslaw, D.C., Beevers, S.D. and Tate, J.E.: Modelling and assessing trends in traffic-related
- emissions using a generalised additive modelling approach, Atmos. Environ., 41(26), 5289-
- 12 5299, 2007.
- 13 Carslaw, D.C. and Ropkins, K.: Openair an R package for air quality data analysis, Environ.
- 14 Modell. Softw., 27-28, 52-61, 2012.
- 15 Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F. and Santos Soares, E.:
- Origins of African dust transported over the North-Eastern Tropical Atlantic. J. Geophys. Res.
- 17 102, 13701–13709, 1997.
- 18 Commission staff working paper, establishing guidelines for demonstration and subtraction of
- 19 exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air
- 20 quality and cleaner air for Europe, Brussels, 15.02.2011. SEC(2011) 208 final, 37 pp:
- 21 <a href="http://ec.europa.eu/environment/air/quality/legislation/pdf/sec">http://ec.europa.eu/environment/air/quality/legislation/pdf/sec</a> 2011 0208.pdf, (last access:
- 22 2014), 2011.
- 23 Cusack, M., Alastuey, A., Pérez, N., Pey, J. and Querol, X.: Trends of particulate matter
- 24 (PM2.5) and chemical composition at a regional background site in the Western
- 25 Mediterranean over the last nine years (2002–2010), Atmos. Chem. Phys., 12, 8341-8357,
- 26 2012.
- Dee, D.P., Uppala, S. M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
- 28 Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L.,
- 29 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L.,
- Healy, S.B., Hersbach, H., H'olm, E.V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M.,

- 1 McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
- 2 Tavolato, C., Th'epaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and
- 3 performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, 2011.
- 4 Dorling, S.R., Davies, T.D. and Pierce, C.E.: Cluster analysis: a technique for estimating the
- 5 synoptic meteorological controls on air and precipitation chemistry method and
- 6 applications, Atmos. Environ., 26A, 2575-2581, 1992.
- 7 Draxler, R.R. and Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated
- 8 Trajectory), [Online]. Silver Spring. MD. Model access via NOAA ARL READY Website:
- 9 <a href="http://www.arl.noaa.gov/ready/hysplit4.html">http://www.arl.noaa.gov/ready/hysplit4.html</a>, (last access: 2014), 2003.
- 10 Escudero, M., Castillo, S., Querol, X., Avila, A., Alarcón, M., Viana, M.M., Alastuey, A.,
- 11 Cuevas, E. and Rodríguez, S.: Wet and dry African dust episodes over eastern Spain, J.
- 12 Geophys. Res. 110, D18S08. http://dx.doi.org/10.1029/2004JD004731, 2005.
- 13 Escudero, M., Querol, X., Ávila A. and Cuevas, E.: Origin of the exceedances of the
- European daily PM limit value in regional background áreas of Spain, Atmos. Environ. 41,
- 15 730-744, 2007a.
- 16 Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez,
- 17 S. and Cuevas, E.: A methodology for the quantification of the net African dust load in air
- quality monitoring networks, Atmos. Environ. 41, 5516-5524, 2007b.
- 19 Gerasopoulos, E., Kouvarakis, G., Babasakalis, P., Vrekoussis, M., Putaud, J.P., and
- 20 Mihalopoulos, N.: Origin and variability of particulate matter (PM10) mass concentrations
- over the Eastern Mediterranean, Atmos. Environ., 40, 4679-4690, 2006.
- 22 Ginoux, P., Chin, M., Tegen, I., Prospero, J., Holben, B., Dubovik, O. and Lin, S.J.: Sources
- and global distributions of dust aerosols simulated with the GOCART model, J. Geophys.
- 24 Res. 106, 255e273, 2001.
- 25 Ginoux, P., Garbuzov, D. and Hsu, H.C.: Identification of anthropogenic and natural dust
- 26 sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2
- data, J. Geophys. Res., 115, D05204, doi:10.1029/2009JD012398, 2010.
- Ginoux, P., Prospero, J. M., Gill, T.E., Hsu, H. C. and Zhao M.: Global-scale attribution of
- 29 anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue
- 30 aerosol products, Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388, 2012.

- 1 Gong, X. and Richman M.B.: On the application of cluster analysis to growing season
- 2 precipitation data in North America east of the Rockies, J. Clim., 8, 897-931, 1995.
- 3 Hirsch, R., Slack, J.R. and Smith, R.A.: Techniques of trend analysis for monthly water
- 4 quality data, Water Resour. Res., 18, 107-121, 1982.
- 5 Hurrell J.W.: Decadal trend in the North Atlantic Oscillation: Regional temperatures and
- 6 precipitations, Science, 269, 676-679, 1995.
- 7 Huth, R.: An intercomparison of computer-assisted circulation classification methods. Int J
- 8 Climatol 16:893–922. 1996.
- 9 Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J. and
- 10 Tveito, O.E.: Classifications of atmospheric circulation patterns: recent advances and
- 11 applications, Ann. N.Y. Acad. Sci. 1146, 105-152, 2008.
- 12 Kidson, J.W.: The utility of surface and upper air data in synoptic climatological specification
- of surface climatic variables, Int. J. Climatol., 17, 399–413, 1997.
- 14 Lupu, A. and Maenhaut, W.: Application and comparison of two statistical trajectory
- 15 techniques for identification of source regions of atmospheric aerosol species, Atmos.
- 16 Environ., 36, 5607-5618, 2002.
- 17 Michelangeli, P.A., Vautard, R. and Legras, B.: Weather regimes: Recurrence and quasi
- 18 stationary, J. Atmos. Sci., 52, 1237-1256, 1995.
- Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M.,
- 20 Elvira, J. and Gibbons, W.: Geochemical variations in aeolian mineral particles from the
- 21 Sahara-Sahel Dust Corridor. Chemosphere, 65, 261-270; 2006.
- 22 Moulin, D., Lambert, C.E., Dulac, F. and Dayan, U.: Control of atmospheric export of dust
- from North Africa by the North Atlantic Oscillation, Nature, 387, 691–694, 1997.
- Moulin, C., Lambert, C.E., Dayan, U., Masson, V., Ramonet, M., Bousquet, P., Legrand, M.,
- 25 Balkanski, Y.J., Guelle, W., Marticorena, B., Bergametti, G. and Dulac, F.: Satellite
- 26 climatology of African dust transport in the Mediterranean atmosphere, J. Geophys. Res.,
- 27 103(D11), 13137-13144, 1998.
- Palmero, D., Rodríguez, J.M., de Cara, M., Camacho, F., Iglesias, C. and Tello, J. C.: Fungal
- 29 microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric

- dust and rainfall dust, J. Ind. Microbiol. Biotechnol., 38, 13–20, DOI 10.1007/s10295-010-
- 2 0831-5, 2011.
- 3 Pérez, L., Tobías, A., Querol, X., Kunzli, N., Pey, J., Alastuey, A., Viana, M., Valero, N.,
- 4 González-Cabré, M., and Sunyer, J.: Coarse Particles from Saharan Dust and Daily Mortality,
- 5 Epidemiology, 19, 800–807, 2008.
- 6 Pey, J., Querol, X., Alastuey, A., Forastiere, F. and Stafoggia, M.: African dust outbreaks
- 7 over the Mediterranean Basin during 2001-2011: PM10 concentrations, phenomenology and
- 8 trends, and its relation with synoptic and mesoscale meteorology, Atmos. Chem. Phys., 13,
- 9 1395-1410, 2013.
- 10 Philipp, A., Della-Marta, P.M., Jacobeit, J., Fereday, D.R., Jones, P.D., Moberg, A. and
- Wanner, H.: Long-term variability of daily North-Atlantic-European pressure patterns since
- 12 1850 classified by simulated annealing clustering, J. Clim., 20, 4065-4095, 2007.
- 13 Prospero, J.M.: Long-term measurements of the transport of African mineral dust to the
- southeastern United States: Implications for regional air quality, J. Geophys. Res., 104(D13),
- 15 15, 917–15,927, 1999.
- 16 Prospero, J.M. and Lamb P.J.: African droughts and dust transport to the Caribbean: Climate
- 17 change implications, Science, 7, 1024–1027, doi:10.1126/science.1089915, 2003.
- Prospero, J.M., Glaccum R.A. and Nees R.T.: Atmospheric transport of soil dust from Africa
- 19 to South America, Nature, 289, 570–572, 1981.
- 20 Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E. and Gill T.E.: Environmental
- 21 characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total
- Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40(1),
- 23 1002, doi:10.1029/2000RG000095, 2002.
- Querol, X., Alastuey, A., Puicercus, J.A., Mantilla, E., Miró, J.V., López-Soler, A., Plana, F.
- and Artinano, B.: Seasonal evolution of suspended particles around a large coal-fired power
- station: particles levels and sources, Atmos. Environ., 32, 1963-1978, 1998.
- Querol, X., Alastuey, A., Rodriguez, S., Viana, M., Artíñano, B., Salvador, P., Mantilla, E.,
- Garcia, S., Fernandez, R., de la Rosa, J., Sanchez, A., Menendez, M. and Gil, J.: Levels of
- 29 particulate matter in rural, urban and industrial sites in Spain. Sci. Total Environ. 334-335,
- 30 359-376, 2004.

- 1 Querol, X., Alastuey, A., Moreno, T., Viana, M.M., Castillo, S., Pey, J., Rodriguez, S.,
- 2 Artíñano, B., Salvador, P., Sánchez, M., Garcia, S., Herce, M.D., Fernandez, R., Moreno, S.,
- 3 Negral, L., Minguillón, M., Monfort, E., Sanz, M., Palomo, R., Pinilla, E., Cuevas, E., de la
- 4 Rosa, J. and Sanchez A., Spatial and temporal variations in airborne particulate matter (PM10
- 5 and PM2.5) across Spain 1999-2005, Atmos. Environ., 42, 3964-3979, 2008.
- 6 Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., Moreno, N., Viana, M.,
- 7 Mihalopoulos, N., Kallos, G. and Kleanthous, S.: African dust contributions to mean ambient
- 8 PM10 mass-levels across the Mediterranean basin, Atmos. Environ., 43, 4266-4277, 2009.
- 9 Reyes, M., Diaz, J., Tobías, A., Montero, J.C. and Linares, C.: Impact of Saharan dust
- particles on hospital admissions in Madrid (Spain), Int. J. Environ. Health Res., 24(1), 63-72,
- 11 doi: 10.1080/09603123.2013.782604, 2014.
- 12 Rodríguez, S., Querol, X. Alastuey, A., Kallos, G. and Kakaliagou, O.: Saharan dust
- contributions to PM10 and TSP levels in Southern and Eastern Spain, Atmos. Environ., 35,
- 14 2433-2447, 2001.
- Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J.,
- Viana, M., Pérez, N., Pandolfi, M., and de la Rosa, J.: Transport of desert dust mixed with
- 17 North African industrial pollutants in the subtropical Saharan Air Layer, Atmos. Chem. Phys.,
- 18 11, 6663–6685, doi:10.5194/acp-11-6663-2011, 2011.
- 19 Romero, R., Sumner, G., Ramis, C. and Genovs, A.: A classification of the atmospheric
- 20 circulation patterns producing significant daily rainfall in the Spanish Mediterranean area, Int.
- 21 J. Climatol., 19, 765-785, 1999.
- 22 Salvador, P., Artíñano, B., Alonso, D., Querol, X., and Alastuey, A.: Identification and
- characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmos.
- 24 Environ., 38, 435-447, 2004.
- 25 Salvador, P., Artíñano, B., Querol, X. and Alastuey, A.: A combined analysis of backward
- trajectories and aerosol chemistry to characterise long-range transport episodes of particulate
- 27 matter: The Madrid Air Basin, a case study, Sci. Total Environ., 390, 495-506, 2008.
- 28 Salvador, P., Artíñano, B., Molero M., Viana M., Pey J., Alastuey, A. and Querol, X.: African
- 29 dust contribution to ambient aerosol levels across central Spain: Characterization of long-
- range transport episodes of desert dust, Atmos. Res., 127, 117-129, 2013.

- 1 Scheifinger, H. and Kaiser, A.: Validation of trajectory statistical methods, Atmos. Environ.,
- 2 41, 8846-8856, 2007.
- 3 Stohl, A.: Trajectory statistics-a new method to establish source-receptor relationships of air
- 4 pollutants and its application to the transport of particulate sulfate in Europe, Atmos.
- 5 Environ., 30, 579-587, 1996.
- 6 Stohl, A.: Computation, accuracy and applications of trajectories a review and bibliography,
- 7 Atmos. Environ., 32: 947-966, 1998.
- 8 Tobías, A., Caylá, J. A., Pey, J., Alastuey, A., and Querol, X.: Are Saharan dust intrusions
- 9 increasing the risk of meningococcal meningitis?, Int. J. Infect. Dis., 15, e503,
- 10 doi:10.1016/j.ijid.2011.03.008, 2011a.
- Tobías, A., Pérez, L., Díaz, J., Linares, C., Pey, J., Alastuey, A., and Querol, X.: Short-term
- 12 effects of particulate matter on daily mortality during Saharan dust outbreaks: A case-
- 13 crossover analysis in Madrid (Spain), Sci. Total Environ., 412–413, 386–389, 2011b.
- 14 Viana, M., Querol, X., Alastuey, A., Cuevas, E. and Rodríguez, S.: Influence of African dust
- on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos.
- 16 Environ., 36, 5861-5875, 2002.
- 17 Viana, M., Querol, X., Alastuey, A., Gangoiti, G. and Menéndez M.: PM levels in the Basque
- 18 Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal
- 19 variations, Atmos. Environ., 37, 2879-2891, 2003.
- Viana, M., Salvador, P., Artíñano, B., Querol, X., Alastuey, A., Pey, J., Latz, A.J., Cabañas,
- 21 M., Moreno, T., García, S., Herce, M., Diez, P., Romero, D. and Fernández, R.: Assessing the
- 22 performance of methods to detect and quantify African dust in airborne particulates. Environ.
- 23 Sci. Technol., 44, 8814-8820, 2010.
- 24 Vinogradova, A.A.: Anthropogenic pollutants in the Russian Arctic atmosphere: sources and
- sinks in spring and summer, Atmos. Environ., 34, 5151-5160, 2000.
- 26 Yarnal, B.: Synoptic Climatology in Environmental Analysis. Belhaven Press. London, UK.
- 27 195 pp, 1993.

Table 1. Location, PM10 daily data availability during the 2001-2011 period and measurement methods used in the air quality monitoring sites of this study (EMEP stations in bold).

| Site        | Location            | Latitude     | Longitude    | m a.s.l. | % Data | Method |
|-------------|---------------------|--------------|--------------|----------|--------|--------|
| O Saviñao   | NW IP               | 42° 38' 05"N | 07° 42' 17"W | 506      | 90%    | GRAV   |
| Barcarrota  | SW IP               | 38° 28' 22"N | 06° 55' 25"W | 393      | 90%    | GRAV   |
| Viznar      | SE IP               | 37° 14' 14"N | 03° 32' 03"W | 1230     | 93%    | GRAV   |
| Niembro     | N IP                | 43° 26' 21"N | 04° 51' 00"W | 134      | 87%    | GRAV   |
| Risco Llano | Central<br>IP       | 39° 32' 49"N | 04° 21' 02"W | 917      | 86%    | GRAV   |
| Zarra       | E IP                | 39° 04' 58"N | 01° 06' 04"W | 885      | 94%    | GRAV   |
| Els Torms   | NE IP               | 41° 23' 38"N | 00° 44' 05"E | 470      | 91%    | GRAV   |
| Monagrega   | NE IP               | 40° 56' 48"N | 00° 17' 27"W | 570      | 99%    | BETA   |
| Bellver     | Balearic<br>Islands | 39° 33' 50"N | 02° 37' 22"E | 117      | 84%    | ВЕТА   |

<sup>4</sup> IP: Iberian Peninsula; GRAV: Gravimetric; BETA: Beta Attenuation monitor; a.s.l.: above sea level;

## 1 Table 2. Comparison of the 4 circulation types obtained from Cluster Analysis and Principal

# 2 Component Analysis.

|                     | Cluster Analysis K-means |        |                | Priı | Principal Component Analysis |                |  |
|---------------------|--------------------------|--------|----------------|------|------------------------------|----------------|--|
| Circulation<br>Type | Cluster                  | % days | Seasonal Trend | PC   | % days                       | Seasonal Trend |  |
| I                   | 1                        | 24%    | Summer         | 4    | 22%                          | Summer         |  |
| II                  | 2                        | 31%    | Spring         | 1    | 35%                          | Spring         |  |
| III                 | 3                        | 12%    | Spring         | 3    | 9%                           | Spring         |  |
| IV                  | 4                        | 33%    | Summer         | 2    | 35%                          | Summer         |  |

<sup>3 %</sup> days: number of episodic days assigned to each cluster or principal component.

6

Table 3. Occurrence of episodic days during the period 2001-2011 and during each circulation type (CT<sub>i</sub>).

|        | 2001-2011 | $CT_{I}$ | $\mathrm{CT}_{\mathrm{II}}$ | CT <sub>III</sub> | CT <sub>IV</sub> |
|--------|-----------|----------|-----------------------------|-------------------|------------------|
| N      | 1592      | 387      | 489                         | 196               | 520              |
| Winter | 11%       | 11%      | 10%                         | 22%               | 9%               |
| Spring | 27%       | 22%      | 39%                         | 37%               | 15%              |
| Summer | 40%       | 45%      | 35%                         | 6%                | 53%              |
| Autumn | 22%       | 21%      | 16%                         | 35%               | 22%              |

9 N – Number of episodic days

10

11

12

13

Seasonal Trend: Season with the higher frequency of occurrence of the circulation type during the 2001-2011 period.

- 1 Table 4. Greatest potential source areas of African dust obtained for the western, central and
- 2 eastern regions of the study area, for each circulation type (CT<sub>i</sub>) and season (S1: Western
- 3 Saharan and Morocco; S2: Algeria; S3: Northeastern Algeria and Tunisia).

|                                                    | Winter               | Spring                | Summer               | Autumn               |
|----------------------------------------------------|----------------------|-----------------------|----------------------|----------------------|
| Western Iberian<br>Peninsula                       | ND                   | S2-CT <sub>II</sub>   | S1- CT <sub>I</sub>  | S1- CT <sub>I</sub>  |
|                                                    | ND                   | 32-C1 <sub>II</sub>   | S2- CT <sub>IV</sub> | 31- C1               |
| Central Iberian Peninsula                          |                      |                       | S1- CT <sub>I</sub>  |                      |
|                                                    | ND                   | $S3-CT_{IV}$          | S2- CT <sub>II</sub> | S2- CT <sub>IV</sub> |
|                                                    |                      |                       | S2- CT <sub>IV</sub> |                      |
| Eastern Iberian Peninsula and the Balearic Islands |                      |                       | S2- CT <sub>II</sub> |                      |
|                                                    | S1-CT <sub>III</sub> | S1- CT <sub>III</sub> | S2- CT <sub>IV</sub> | S2- CT <sub>IV</sub> |
|                                                    |                      |                       | S3- CT <sub>I</sub>  |                      |

<sup>4</sup> ND-not determined due to the insufficient number of cases to obtain reliable RCF

- 6 Table 5. Impact index calculated for each sampling site during each circulation type (CT)
- 7 leading to African Dust Outbreaks (ADO) over the western Mediterranean basin in the period
- 8 2001-2011.

|             | CT <sub>I</sub> | CT <sub>II</sub> | CT <sub>III</sub> | CT <sub>IV</sub> |
|-------------|-----------------|------------------|-------------------|------------------|
| O Saviñao   | 38%             | 24%              | 3%                | 35%              |
| Barcarrota  | 37%             | 23%              | 7%                | 33%              |
| Viznar      | 26%             | 24%              | 11%               | 39%              |
| Niembro     | 31%             | 25%              | 10%               | 34%              |
| Risco Llano | 27%             | 20%              | 10%               | 43%              |
| Zarra       | 23%             | 22%              | 17%               | 39%              |
| Els Torms   | 20%             | 24%              | 18%               | 38%              |
| Monagrega   | 20%             | 22%              | 18%               | 40%              |
| Bellver     | 17%             | 31%              | 20%               | 33%              |

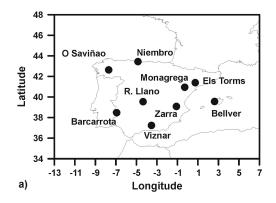
## 1 Figure captions

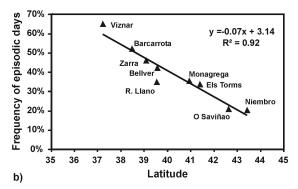
- 2 Figure 1. Location of regional background air quality monitoring sites used in this study (a)
- 3 and relationship between their latitudes and the frequency of episodic days registered at them
- 4 (b).
- 5 Figure 2. Composite 850 hPa geopotential height (m) representing circulation type I leading
- 6 to ADO over the western Mediterranean basin.
- 7 Figure 3. Composite 850 hPa geopotential height (m) representing circulation type II leading
- 8 to ADO over the western Mediterranean basin.
- 9 Figure 4. Composite 850 hPa geopotential height (m) representing circulation type III leading
- to ADO over the western Mediterranean basin.
- Figure 5. Composite 850 hPa geopotential height (m) representing circulation type IV leading
- to ADO over the western Mediterranean basin.
- Figure 6. Evolution and smooth trend line in monthly number of episodic days by circulation
- 14 type (upper: CT<sub>I</sub> and CT<sub>II</sub>; bottom: CT<sub>III</sub> and CT<sub>IV</sub>) registered over the western Mediterranean
- 15 basin from 2001 to 2011.
- Figure 7. Correlation plot between the annual NAO index (a) and the spring (March-May)
- 17 NAO index (b) and the number of episodic days for specific circulation types from 2001 to
- 18 2011.
- 19 Figure 8. Composite 850 hPa geopotential height (m) during episodic days in spring 2005 (a)
- 20 and 2011 (b). Grey and white arrows indicate Atlantic and African air masses flows,
- 21 respectively.
- Figure 9. Zones of study and source areas represented over the geographic distribution of the
- 23 dust source function S (Ginoux et al., 2001). Data obtained from the Atmospheric Physics,
- 24 Chemistry and Climate Data of the GFDL-NOAA (http://www.gfdl.noaa.gov/atmospheric-
- 25 physics-and-chemistry data). Zone I: western side of the Iberian Peninsula; Zone II: central
- side of the Iberian Peninsula; Zone III: eastern side of the Iberian Peninsula and the Balearic
- 27 Islands. Source I: Western Saharan and Morocco; Source II: Algeria; Source III: Northeastern
- 28 Algeria and Tunisia.

- 1 Figure 10. Redistributed concentration fields (RCF) for African dust contributions (μg/m³)
- during ADO generated by circulation type I over the western, central and eastern sides of the
- 3 area of study in summer and autumn.
- 4 Figure 11. Redistributed concentration fields (RCF) for African dust contributions (μg/m³)
- 5 during ADO generated by circulation type II over the western, central and eastern sides of the
- 6 area of study in spring and summer.
- 7 Figure 12. Redistributed concentration fields (RCF) for African dust contributions (μg/m³)
- 8 during ADO generated by circulation type III over the eastern side of the area of study in
- 9 spring and winter.
- 10 Figure 13. Redistributed concentration fields (RCF) for African dust contributions (μg/m³)
- during ADO generated by circulation type IV over the western, central and eastern sides of
- the area of study in summer and autumn.
- 13 Figure 14. Interpolation maps of the impact index (%) estimated at the regional background
- stations, during circulation types leading to African Dust Outbreaks (ADO) over the western
- 15 Mediterranean basin in the period 2001-2011.

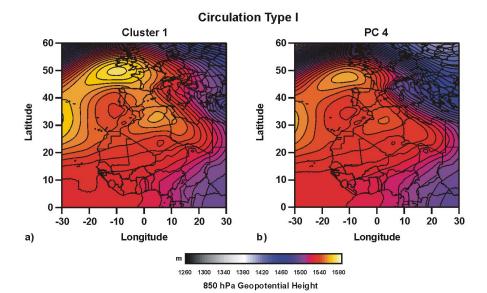
## 17 Supplementary material

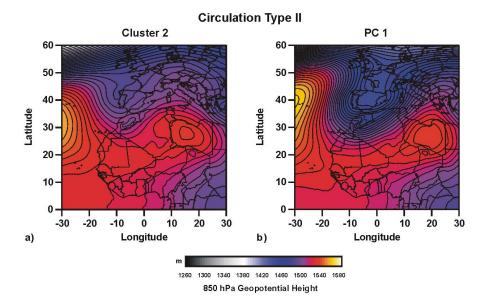
- Figure S01. Composite sea level pressure (hPa) representing circulation types leading to ADO
- 19 over the western Mediterranean basin.
- Figure S02. Composite 700 hPa geopotential height (m) representing circulation types leading
- to ADO over the western Mediterranean basin.
- 24 Supplementary data sets.xlsx enclosed in the Supplementary material.zip archive contains
- Tables S1 and S2.


26

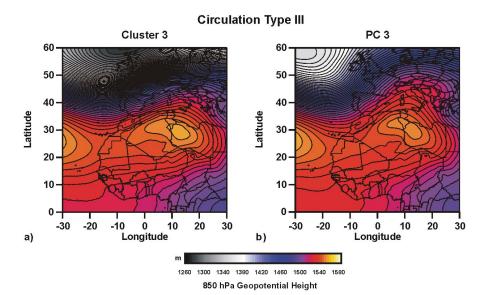

16

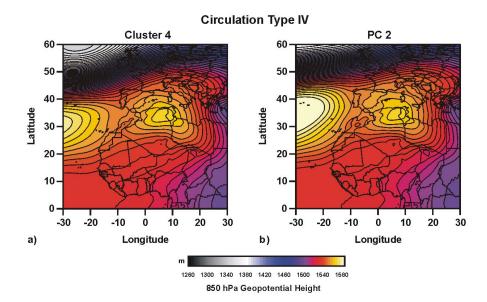
20


23

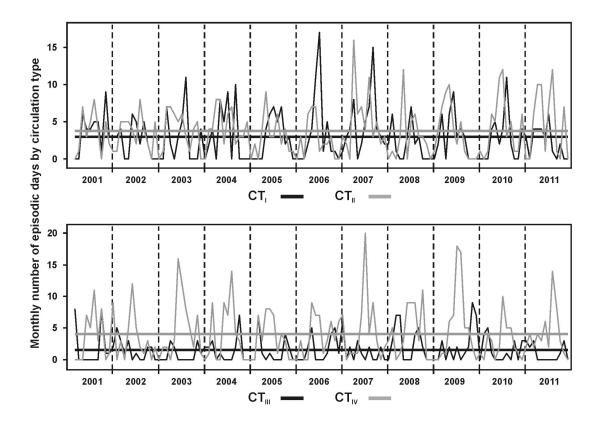

28

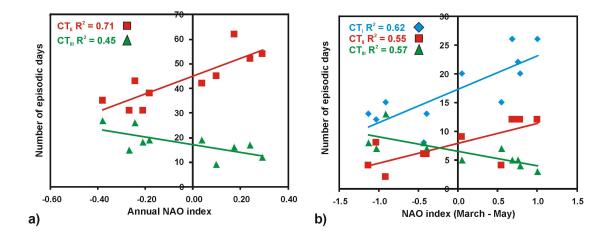




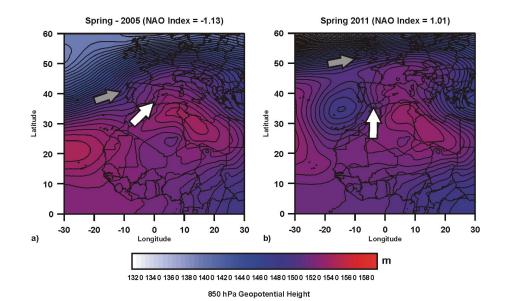


## 4 Figure 2

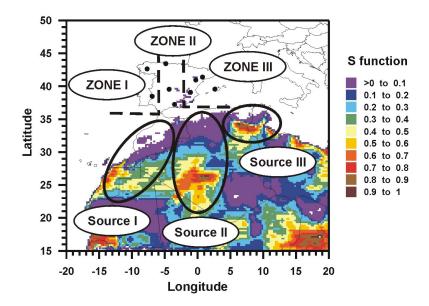




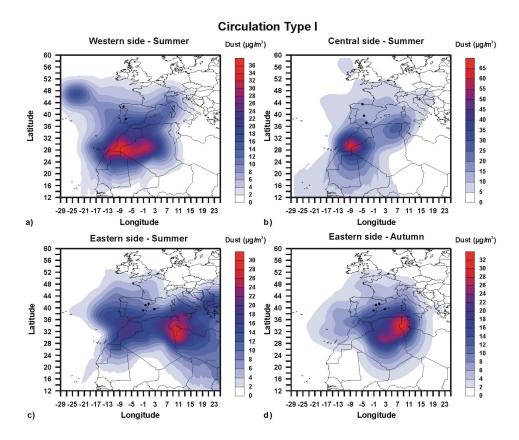


# 4 Figure 4

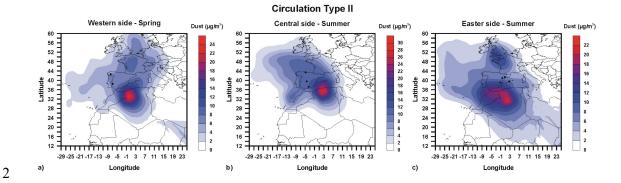




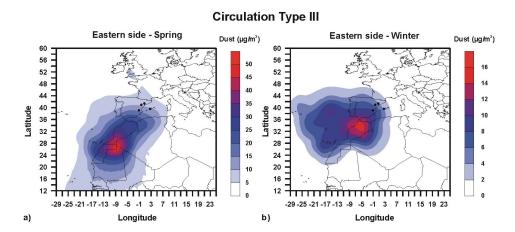


3 Figure 6

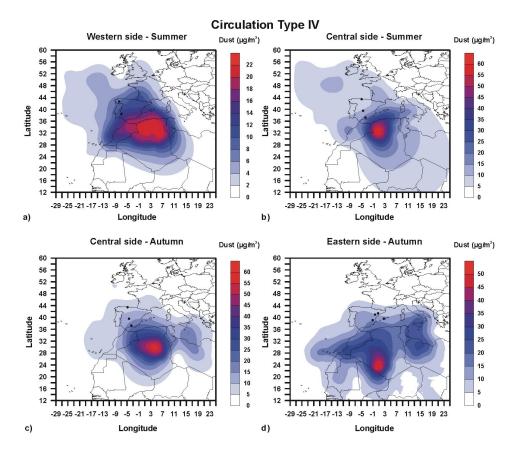






4 Figure 8

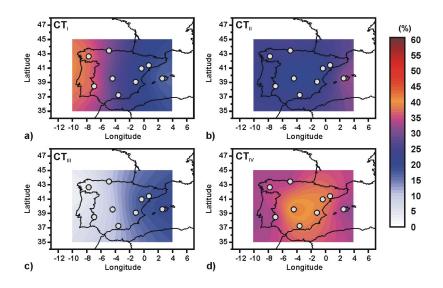






# 3 Figure 10






## 4 Figure 12





# 3 Figure 14

2

