

1 **Ambient measurements of biological aerosol particles near Killarney,**
2 **Ireland: a comparison between real-time fluorescence and**
3 **microscopy techniques**

4

5 D. A. Healy^{1#*}, J. A. Huffman^{2, 3*}, D. J. O'Connor¹, C. Pöhlker³, U. Pöschl³ and J. R.
6 Sodeau¹

7

8 ¹University College Cork, Department of Chemistry and Environmental Research
9 Institute, Cork, Ireland

10 ²University of Denver, Department of Chemistry and Biochemistry, Denver,
11 Colorado, USA

12 ³Max Planck Institute for Chemistry, Multiphase Chemistry and Biogeochemistry
13 Departments, Mainz, Germany

14

15 [#]Now at Pepsico, Global Quality Services, Cork, Ireland.

16 ^{*}Corresponding authors: d.healy@ucc.ie; alex.huffman@du.edu

17 **Abstract**

18 Primary biological aerosol particles (PBAP) can contribute significantly to the coarse
19 particle burden in many environments. PBAP can thus influence climate and
20 precipitation systems as cloud nuclei and can spread disease to humans, animals, and
21 plants. Measurement data and techniques for PBAP in natural environments at high
22 time- and size- resolution are, however, sparse and so large uncertainties remain in the
23 role that biological particles play in the Earth system. In this study two commercial
24 real-time fluorescence particle sensors and a Sporewatch single-stage particle
25 impactor were operated continuously from 2 August to 2 September 2010 at a rural
26 sampling location in Killarney National Park in south western Ireland. A cascade
27 impactor was operated periodically to collect size-resolved particles during exemplary
28 periods. Here we report the first ambient comparison of the waveband integrated
29 bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS)
30 and also compare these real-time fluorescence techniques with results of fluorescence
31 and optical microscopy of impacted samples. Both real-time instruments showed
32 qualitatively similar behaviour, with increased fluorescent bioparticle concentrations
33 at night when relative humidity was highest and temperature was lowest.

34

35 The fluorescent particle number from the FL3 channel of the WIBS-4 and from the
36 UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size
37 distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm ,
38 and each were correlated with the concentration of fungal spores commonly observed
39 in air samples collected at the site (ascospores, basidiospores, *Ganoderma spp.*). The
40 WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad
41 featureless single mode after averaging and exhibited poor correlation with fungal
42 spore concentrations, which may be due to the detection of bacterial and non-
43 biological fluorescent particles. *Cladosporium spp.*, which are among the most
44 abundant fungal spores in many terrestrial environments, were not correlated with any
45 of the real-time fluorescence channels, suggesting that the real-time fluorescence
46 instruments are relatively insensitive to PBAP classes with dark, highly absorptive
47 cell walls.

48

49 Fluorescence microscopy images of cascade impactor plates showed large numbers of
50 coarse mode particles consistent with the morphology and weak fluorescence

51 expected of sea salt. Some of these particles were attached to biological cells,
52 suggesting that a marine source influenced the PBAP observed at the site and that the
53 ocean may be an important contributor to PBAP loadings in coastal environments.

54 **1. Introduction**

55 The *in situ* monitoring of primary biological aerosol particles (PBAPs) with high time
56 resolution represents an important technological development made capable, in part,
57 by long-standing, military-led research into the detection of biological warfare agents.
58 The more recent drive to monitor ambient, atmospheric PBAPs is largely related to
59 adverse effects they play in human and agricultural health (e.g. allergic rhinitis, food
60 crop damage) (Lacey and Dutkiewicz, 1994; Patel and Bush, 2000; Pöschl, 2005;
61 Shiraiwa et al., 2012). Several classes of bioaerosols have been shown to act as cloud
62 and ice nuclei in laboratory settings (e.g. Maki et al., 1974; Diehl et al., 2001; Morris
63 et al., 2004; Möhler et al., 2007; Pummer et al., 2012; Haga et al., 2013; Morris et al.,
64 2013), and ambient measurements have shown PBAP to be ubiquitously associated
65 with rain and snowfall as well as present in clouds (Christner et al., 2008; Pöschl et
66 al., 2010; DeLeon-Rodriguez et al., 2013; Huffman et al., 2013; Pretni et al., 2013).
67 Thus, it has been suggested that PBAP may impact precipitation and the hydrological
68 cycle, and may ultimately affect the weather and climate of a region (Sands et al.,
69 1982; Morris et al., 2008; 2014). A review of biological aerosol properties and
70 detection methods is beyond the scope of this text, but comprehensive PBAP
71 overviews are available (e.g. Madelin, 1994; Ho, 2002; Fröhlich-Nowoisky et al., 2009;
72 Womack et al., 2010; Caruana, 2011; Xu et al., 2011; Després et al., 2012; Fröhlich-
73 Nowoisky et al., 2012).

74
75 Common usage of the term PBAP includes various classes of biological particles,
76 including: viruses; bacteria; fungal, moss and fern spores; pollen; algal and plant
77 cells; insects, mites, and their fragments including excreta (Després et al., 2012). Such
78 PBAPs have been well studied within the aerobiology community for many decades
79 using traditional methods of impact collection followed by microscopic counting and
80 identification procedures. These analyses can be time consuming and require
81 significant processing cost and skill. In contrast, relatively few studies have reported
82 ambient collection and analysis of bioaerosols at high time resolution (e.g. seconds to
83 minutes), due to the lack of instrumentation capable of monitoring particles on such
84 fast timescales. Recent studies utilizing real-time PBAP measurements have collected
85 and analysed ambient PBAP data for periods as long as 18 consecutive months (Pan et
86 al., 2007; Huffman et al., 2010; Gabey et al., 2011; Schumacher et al., 2013; Toprak
87 and Schnaiter, 2013). Such measurements obtained with high-time resolution can

88 subsequently aid our understanding of atmospheric PBAP properties including sub-
89 diurnal boundary layer transport and cloud formation. Recently, work to model
90 bioaerosol emissions on global and regional scales have attempted to quantify the
91 impact that PBAP have on coarse aerosol loadings and ice nuclei properties (e.g.
92 Burrows et al., 2009a; 2009b; Heald and Spracklen, 2009; Hoose et al., 2010; Sesartic
93 et al., 2013; Hummel et al., 2014), however more detailed understanding of PBAP
94 inputs are necessary to constrain model results.

95

96 A number of optical systems utilizing light/laser-induced fluorescence (LIF) have
97 been developed to detect airborne biological material based on the presence of
98 biological fluorophores in the particle. Instrumentation available for military research
99 use, but not commercial/civilian use, include: the Aerosol Fluorescence Spectrum
100 Analyser (AFSA) (Pinnick et al., 1995; Pinnick et al., 2004; Pan et al., 2011) and the
101 Single Particle Fluorescence Analyser (SPFA) (Eversole et al., 1999; Sivaprakasam et
102 al., 2011). Within approximately the last decade, commercially available devices have
103 become obtainable for purchase and use by non-military communities. Similar to
104 approaches developed in military-based laboratories, these commercial instruments
105 provide real-time (on-line) detection of biological particles suspended in the air. Two
106 single particle fluorescence instruments that have been used most widely within the
107 atmospheric aerosol research community include the ultraviolet aerodynamic particle
108 sizer (UV-APS; TSI, Inc. model 3314, St. Paul, MN) (Hairston et al., 1997; Brosseau
109 et al., 2000; Huffman et al., 2010) and the waveband integrated bioaerosol sensor
110 (WIBS; originally developed by the University of Hertfordshire, UK and now
111 licensed and sold by Droplet Measurement Technology, Boulder, CO) (Kaye et al.,
112 2005; Foot et al., 2008; Stanley et al., 2011). Fluorescent emission excited by ~360
113 nm radiation is considered to include the presence of metabolites (e.g. NAD(P)H,
114 riboflavin) within living cells. Emission related to excitation by ~280 nm radiation is
115 usually attributed to proteins and amino acids present in all biological material,
116 whether living or dead (Pöhlker et al., 2012; 2013). However observed fluorescence
117 signals at a given wavelength are likely to arise from a complex mixture of bio-
118 fluorophores in the particle (Pöhlker et al., 2012).

119

120 A growing body of published reports suggest that particle autofluorescence can be
121 used, to a first approximation, to separately detect biological and non-biological

122 particles (Huffman et al., 2012; Pöhlker et al., 2012; Robinson et al., 2013).
123 However, secondary organic aerosol (SOA), humic-like substance (HULIS), and other
124 atmospheric materials have been suggested to interfere with detection of ambient
125 biological particles via fluorescence (e.g. Huffman et al., 2010; Pöhlker et al., 2012;
126 Gabey et al., 2013; Lee et al., 2013). In contrast, no real-time technique for PBAP
127 analysis is able to comprehensively detect all classes of biological material.
128 Microorganisms too large or too small for efficient collection by UV-LIF instrument
129 will undercount these particles and some PBAP may fluoresce too weakly to be
130 detected in many circumstances. Despite these physical uncertainties, measurements
131 in the remote Amazon basin of Brazil showed that fluorescent particle number closely
132 approximated biological particles measured by electron microscopy (Huffman et al.,
133 2012), suggesting that techniques utilizing particle autofluorescence can be used in
134 some geographic environments as first-approximation classifiers between biological
135 and non-biological particles and can provide a lower limit for the atmospheric
136 abundance of PBAP in the super-micron ($> 1 \mu\text{m}$) size range. More work is needed to
137 better understand the scenarios in which this assumption holds.

138
139 This study represents the first co-located ambient deployment of the UV-APS and
140 WIBS-4 instruments. Results suggest a good qualitative comparison between the two
141 real-time techniques as well as with optical microscopy measurements performed on
142 samples simultaneously collected via impaction. The comparisons reported here help
143 characterize real-time fluorescence instrument capabilities for atmospheric bioaerosol
144 measurement and will improve the ability of the atmospheric research community to
145 reliably detect PBAP.

146

147 **2. Methodology**

148 *2.1 Location of sampling site*

149 Sampling was performed between 2 August and 2 September 2010 within Killarney
150 National Park (KNP), Kerry, which is situated in south-west Ireland (N 52°01.263' W
151 09°30.553'). The site was located on the eastern perimeter of Reenadinna Woods, in a
152 small clearing (~30 x 50 m) of manicured grass surrounded by *Taxus baccata*, Yew
153 trees, and within meters of Muckross Lake (online supplemental material, Figure S1).
154 KNP is one of the western-most European national parks. The site can be
155 characterized as clean and rural, with local south-westerly winds and incoming air

156 masses influenced most heavily from pristine Atlantic trajectories, including minimal
157 influence from anthropogenic emissions. The site comprises mixed deciduous trees
158 and rich undergrowth. A list of typical botanic species found in Reenadinna Woods is
159 outlined elsewhere (Kelly, 1981).

160
161 All instruments were housed in a purpose-built mobile laboratory trailer (3 m length)
162 which was positioned immediately adjacent to a lawn area in front (~5 m) of the
163 unoccupied Arthur Vincent House from where electrical power was obtained. Sample
164 inlets extended vertically from the mobile laboratory were approximately 2.5 – 3.0 m
165 in height above ground level and positioned approximately 4 m from the nearest trees.

166

167 2.2 *Instrumentation*

168 2.2.1 *WIBS*

169 The waveband integrated bioaerosol sensor Model 4 is a prototype of a series of real-
170 time biological particle sensors developed by the University of Hertfordshire in the
171 United Kingdom (Kaye et al., 2005; Foot et al., 2008; Gabey et al., 2011; Stanley et
172 al., 2011; Healy et al., 2012a; 2012b). Briefly, the WIBS-4 consists of a central
173 optical chamber, around which are arranged: (i) a continuous-wave 635 nm diode
174 laser used for the initial detection of particles and the determination of particle size
175 (optical diameter); (ii) a forward light-scattering quadrant photomultiplier used in the
176 determination of particle size and asymmetry; and (iii) two pulsed xenon flashtube
177 UV sources emitting sequentially at 280 nm and 370 nm. Fluorescence emission is
178 detected in two bands: 310–400 nm (band 1) and 420–650 nm (band 2). Thus, for
179 each particle, three fluorescence measurements are provided: (i) excitation at 280 nm,
180 emission in band 1 (FL1); (ii) excitation at 280 nm, emission in band 2 (FL2); and
181 (iii) excitation at 370 nm, emission in band 2 (FL3). For each individual particle
182 detected, the instrument also provides the optical particle size (D_o) and the particle
183 asymmetry factor (A_f), which is a parameter that describes the degree of symmetry for
184 the forward scattered light (Kaye et al., 2005). Light detected by a four-quadrant
185 photomultiplier tube (PMT) is combined to calculate an A_f ; a spherical particle has A_f
186 of 0, and rod-shaped fibres yields A_f near 100 (Gabey et al., 2010).

187

188 The particle counting efficiency of the WIBS-4 used in the current study drops below
189 unity at $D_o < 0.69 \mu\text{m}$ with D_{50} at $0.49 \mu\text{m}$ (Healy et al., 2012b). Therefore, number

190 concentrations for particles with $D_o < 0.69 \mu\text{m}$ should be considered as lower limit
191 values. The upper size limit is defined as a function of the PMT gain setting and was
192 approx. 13 μm for this study. It is possible to operate the Hertfordshire WIBS-4
193 instruments at a different gain setting for the detection of particles up to
194 approximately 31 μm in diameter. However, the configuration utilized here only
195 permits optical particle sizing of particles between approx. 0.5 and 13 μm .

196

197 The trigger threshold setting of WIBS-4 (Trig) is an instrumental parameter that can
198 be adjusted to predefine the lower particle size limit for which the firing of the xenon
199 UV flash lamps (i.e. fluorescence excitation) will be triggered. The effects of such
200 adjustments, i.e. minimum particle size as a function of Trig setting, had not
201 previously been explored in an ambient setting. Furthermore WIBS instruments
202 manufactured by the University of Hertfordshire are each unique prototypes and
203 therefore the operational settings are not necessarily comparable between instruments.
204 Three Trig settings were used for the WIBS-4 during the campaign (see also Sect.
205 3.2). A Trig setting of 8 (2-5 Aug.) corresponded to minimum detectable particle size
206 of 0.52 μm (channel ≥ 1 ; see supplemental Table S1). A Trig setting of 20 (5-18 &
207 27-31 Aug.) corresponded to a minimum particle size of 0.65 μm (channel ≥ 4).
208 Lastly, a Trig setting of 30 (23-27 Aug. and 31 Aug.-2 Sept.) corresponded to a
209 minimum particle size of 0.75 μm (channel ≥ 6).

210

211 The performance of the two Xe flashtubes within the WIBS-4 was monitored
212 throughout the measurement period. Flashtube power output values were recorded;
213 upper and lower limit values were determined as $\pm 3\sigma$ (as standard deviation) from the
214 mean. All particles resulting from UV flashes with power outside these bounds were
215 eliminated from the fluorescent particle number concentration calculations. Note,
216 however, that the total particle concentrations remained unaffected.

217

218 2.2.2 *UV-APS*

219 An ultraviolet aerodynamic particle sizer was utilized and operated using standard
220 procedures (e.g. Huffman et al., 2010) and thereby provided 5-minute ensemble
221 averages of number concentration, fluorescence intensity, and size of particles
222 (Hairston et al., 1997; Brosseau et al., 2000). Aerodynamic particle sizing (D_a) in the
223 diameter range between 0.5 and 20 μm is obtained by measuring time of particle

224 flight between two red (633 nm) He-Ne interrogating lasers. Optical excitation of the
225 individual particles is provided by a pulsed Nd:YAG laser operating at 355 nm.
226 Subsequent fluorescence is collected in a single bin (not wavelength dispersed) within
227 the wavelength range between 420 and 575 nm. UV-APS particle transmission drops
228 below unity at approximately 0.8 μm , with D_{50} approx. 0.54 μm (Huffman et al.,
229 2012), and thus particles smaller than approximately 1 μm are conservatively treated
230 as lower limit values.

231

232 2.2.3 *Real-time fluorescence instrument comparison*

233 Both WIBS-4 and UV-APS instruments sampled ambient air from the same inlet as
234 shown in Figure S2. The vertical inlet line consisted of 0.5 inch stainless steel tube
235 and was connected to a 0.5 inch Y-splitter with Swagelok fittings. Connections to
236 both instruments after the split were made using conductive rubber tubing with an
237 internal diameter of approx. 0.75 inch (Simolex Rubber Corp., Plymouth, MI). A by-pass
238 flow of 2.4 L min^{-1} was drawn through a Swagelok tee (at 90°) from the WIBS-4 line
239 to match flows at 4.8 L min^{-1} on either branch of the Y-junction. Flow rates were
240 regularly checked throughout the sample line with an external flowmeter (TSI Inc.
241 Model 4140 Thermal Mass Flowmeter). The instruments and auxiliary pump pulled a
242 total flow of 9.6 L min^{-1} through the inlet.

243

244 The WIBS-4 records the size of each individual particle sampled, but particles were
245 binned according to UV-APS particle size channels for ease of comparison.
246 Integrated particle number concentrations for each instrument are given for the size
247 range greater than 1 μm in all cases here. A summary of the characteristic features
248 and settings used by both WIBS-4 and UV-APS as operated here are outlined in Table
249 1.

250

251 The detection limit for each fluorescence channel of the WIBS-4 is defined as the
252 mean fluorescence signal detected during > 10 min. of forced trigger data acquisition
253 mode with no particle flow (i.e. pump off) (Gabey et al., 2010). Hence for each
254 fluorescence channel (FL1, FL2, and FL3) the measured detection limit is taken as the
255 minimum fluorescence intensity that can be reliably obtained by WIBS-4. In contrast
256 the UV-APS bins the fluorescence intensity of individual particles into one of 64
257 channels. Particles with no measured fluorescence signal appear in channel 1. For the

258 current study particles that give fluorescence signals in channels >3 were defined as
259 FBAP (Huffman et al., 2010).

260
261 WIBS-4 PMT voltage values were 0.701 V for FL1 and 0.649 V for both FL2 and
262 FL3. The UV-APS PMT voltage was set 380 V as set by the factory to exclude
263 polystyrene latex spheres (PSL) from being characterized as fluorescent. Increasing
264 the UV-APS PMT setting allows for more sensitive detection of particle fluorescence,
265 but also increased the likelihood of weakly fluorescent non-biological particles being
266 counted as FBAP.

267

268 2.2.4 *Sporewatch particle impactor*

269 The Burkard Sporewatch Sampler (Burkard Scientific, UK) is a volumetric Hirst-type
270 particle trap that operates by drawing air in through an orifice at a constant rate (10 L
271 min^{-1}), allowing particles to impact onto silicone-coated tape (Lanzoi) mounted on a
272 rotating drum (Hirst, 1952). The sampler was mounted on the roof of the mobile
273 laboratory trailer (sampling height ~3 m above ground) and operated to rotate at a rate
274 of one revolution per week, with start and end times manually recorded. Tapes were
275 changed weekly, stored in air-sealed bags at ~4°C and then cut into seven daily
276 segments for analysis. Tape segments were mounted on microscope slides and counts
277 of the identifiable fungal spores and pollen species were recorded. Microscope slides
278 were stained with fuchsine (Sigma Aldrich) and the samples were examined under
279 x400 magnification using an optical light microscope (VWR, TR500) according to
280 regulations of the British Aerobiology Federation (Lacey and Venette, 1995). A
281 longitudinal counting method was used, meaning that microscopic observation was
282 performed in one continuous sweep through the centre of the 24 hour tape. Only 3%
283 of the total tape area is observed at a given time by this method and particle
284 concentrations are scaled accordingly. A more detailed description of the method is
285 described elsewhere (Sterling et al., 1999; Lacey and West, 2007). Count values were
286 converted into atmospheric number concentrations by scaling to the full tape width
287 and dividing by the volumetric flow rate of the sampler after assuming that particles
288 were deposited onto the tape with unit efficiency. Resultant concentrations are listed
289 as counts per cubic centimeter of air (cm^{-3}).

290

291 Particle counting by this technique is done manually, and so several biases are
292 possible. First, both the sensitivity and selectivity of the characterization is user-
293 dependent. In this case, fungal spores and pollen grains were investigated and
294 counted. Particles smaller than approximately 2 μm were not counted. Individual
295 bacteria or small bacterial agglomerates, for example, would thus not have been
296 counted by this method. Further, many fungal spores are hyaline (translucent, glassy
297 appearance when examined by microscope) in nature and are therefore difficult to
298 enumerate via optical microscopy. Lastly, the collection efficiency of the Sporewatch
299 impactor drops below unity for particles smaller than approximately 3-5 μm (Khattab
300 and Levetin, 2008). For these reasons, particle concentration values reported here
301 should be taken as lower limit values.

302

303 2.2.5 *MOUDI particle impactor*

304 Size-resolved particle samples were collected using a micro-orifice uniform
305 deposition impactor (MOUDI; MSP, model 110) at a flow-rate of 30 L min^{-1} via a
306 dedicated inlet. Cut points of aerosol size fractionation have been discussed elsewhere
307 (Marple et al., 1991). Samples were collected onto glass microscope slides for
308 subsequent analysis via fluorescence microscopy.

309

310 2.2.6 *Fluorescence microscopy*

311 Fluorescence microscopy images were taken using a BZ-9000 Fluorescence
312 Microscope (Keyence, Inc., Osaka, Japan). The instrument was equipped with a super
313 high-compression mercury lamp (120 W) and a 2/3-inch, 1.5 mega pixel monochrome
314 CCD. The following fluorescence filters were used to take images in different spectral
315 ranges: OP-66834 DAPI-BP ($\lambda_{\text{ex}} = 360/20$ nm, $\lambda_{\text{Dichroic}} = 400$ nm, $\lambda_{\text{Absorp}} = 460/25$ nm),
316 OP-66836 GFP-BP ($\lambda_{\text{ex}} = 470/20$ nm, $\lambda_{\text{Dichroic}} = 495$ nm, $\lambda_{\text{Absorp}} = 535/25$ nm), OP-
317 66838 TexasRed ($\lambda_{\text{ex}} = 560/20$ nm, $\lambda_{\text{Dichroic}} = 595$ nm, $\lambda_{\text{Absorp}} = 630/30$ nm). Filter
318 specifications are represented as wavelength and peak width (λ/FWHM).

319

320 2.2.7 *Meteorological Data*

321 Wind speed, wind direction, temperature, humidity, down-welling solar radiation, and
322 rainfall were monitored using a Casella NOMAD weather station mounted on the roof
323 of the mobile laboratory trailer. Measurements were made at 5 minute intervals.

324 **3 Results and Discussion**

325 *3.1 Total particle comparison*

326 The WIBS-4 and UV-APS instruments were operated continuously behind the same
327 inlet for approximately one month. Mean coarse particle number concentration ($N_{T,c}$,
328 $D > 1 \mu\text{m}$) was 32.8 and 32.4 cm^{-3} for WIBS-4 and UV-APS, respectively (Fig. 1),
329 suggesting that there were no significant differences in sampling losses between the
330 two branches of the inlet flow. Figure 1 also shows the correlation of total particle
331 concentration between the instruments, averaged into 5-minute samples. The
332 quantitative comparison between the instruments is good, with R^2 value of 0.90 over
333 the campaign. The slope of 0.86, however, suggests that the WIBS method
334 undercounted the total particle concentrations with respect to the UV-APS, especially
335 at concentrations above approx. 50 cm^{-3} . The shallow slope to the correlation above
336 50 cm^{-3} is likely a result particle coincidence that reduced particle counts within the
337 WIBS at a lower concentration than within the UV-APS as a result of differing
338 physical instrument parameters. Size-resolved total particle concentrations measured
339 throughout the campaign by both instruments are shown in Figure S3.

340

341 *3.2 Overview of fluorescent aerosol trends*

342 A comprehensive overview of biological particle measurements from
343 Sporewatch/optical microscopy, WIBS-4, and UV-APS methods as employed over
344 the whole measurement period is shown in Figure 2. A coarse view of the
345 measurements shows broad agreement between the techniques, with rhythmic,
346 synchronous increases in particle number across platform and wavelength channel in
347 addition to episodic events of high concentration. Step-functions in the lower size of
348 fluorescent particles from the FL1 channel (Fig. 2b) highlight periods when different
349 trigger values were used to investigate optimal WIBS-4 operation (Sect. 2.2.1).
350 Ignoring the corresponding fluctuation in lower particle size, as shown by the size-
351 resolved image plots (Fig. 2) and by averaged size distributions from each channel
352 (Fig. 3), the same pattern through time emerges.

353

354 The WIBS FL1 channel typically shows a broad, multi-modal distribution, with three
355 distinct modes present for most of Aug. 5-18, and a bimodal distribution present for
356 most of the rest of the campaign. The presence of the smallest mode (approx. $1.0 \mu\text{m}$)
357 during the period when the trigger value was set the lowest highlights the influence

358 that this WIBS setting has on the detection of particles and to the relative shape of
359 fluorescent particle size distributions at small sizes. While discreet modes are present
360 in the time-resolved size distributions (Fig. 2), these fine temporal differences are
361 largely smoothed away when looking at average size distributions over the entire
362 measurement period (Fig. 3a). The WIBS FL2 channel also shows a bimodal
363 distribution, with consistent peaks at approx. 1 and 3 μm in particle size (Figs. 2c and
364 4b).

365

366 The size distributions from the WIBS FL3 channel and UV-APS, in contrast to WIBS
367 FL1 and FL2 channels, show much stronger signal at the 3 μm particle size and
368 relatively minimal influence from the 1 μm mode. The qualitative correlation in
369 particle size between WIBS FL3 and UV-APS signals is expected, because the
370 excitation wavelengths (370 nm and 355 nm, respectively) are both designed to
371 highlight molecules related to active cellular metabolism (e.g. NAD(P)H and
372 riboflavin) (Harrison and Chance, 1970; Setlow and Setlow, 1977; Eng et al., 1989; Li
373 et al., 1991). There is no doubt that the assumption, that detecting fluorescence from
374 these channels implies the presence of actively metabolizing cells, significantly over-
375 simplifies the perspective of airborne microorganisms (Pöhlker et al., 2012; 2013).
376 The broad nature of fluorescence excitation and emission spectra along with the
377 relative similarity of excitation wavelength between these channels of the two
378 instruments leads to broad consistency between the WIBS FL3 and UV-APS trends.
379 However, despite the relative agreement between the peaks and temporal patterns of
380 WIBS FL3 and UV-APS, Figure 3c and 3d show significantly reduced presence of the
381 1.2 μm mode in UV-APS compared to the WIBS FL3. This suggests that the UV-
382 APS was less sensitive to smaller fluorescent particles, and thus may not record
383 particles $<2 \mu\text{m}$ as efficiently as the WIBS-4. The influence of particle size on
384 fluorescent particle detection is likely a result of the fact that fluorescence detected
385 from individual particles scales as a function of the 2nd to 3rd power of particle
386 diameter, depending on the depth of excitation photon penetration into the
387 interrogated particle (Tanke et al., 1982; Hill et al., 2001; Sivaprakasam et al., 2004).
388 Further, the UV-APS is typically operated with relatively poor sensitivity in order to
389 reduce the possible inclusion of non-biological artefacts in the fluorescence
390 measurement (Huffman et al., 2012).

391

392 Both FL1 and FL2 channels are a result of excitation at 280 nm, which can probe
393 proteins, amino acids, and other bio-fluorophores. The differences between FL1 (λ_{em}
394 310 – 400 nm) and FL2 (λ_{em} 420 – 650 nm) channels, however, can highlight different
395 molecules. For example, Pöhlker et al. (2012) show that the FL1 band is much more
396 efficient at detecting certain amino acids and proteins, whereas the FL2 channel
397 detects flavin compounds (naturally occurring pigments, including riboflavin) at
398 higher efficiency. This may also explain the qualitative overlap between the FL2
399 channel with aspects of each of the FL1 and FL3 channels, while the FL1 and FL3
400 channels show relatively little similarity in size distribution.

401

402 A quantitative comparison between the fluorescence channels detected is provided in
403 Figure 4, each WIBS channel shown with respect to UV-APS fluorescent particle
404 number. As discussed, of all WIBS channels, FL3 $N_{\text{F},\text{c}}$ displays the highest
405 correlation with UV-APS $N_{\text{F},\text{c}}$ (R^2 0.78). The correlation between FL2 and UV-APS
406 was also quite high (R^2 0.68), but between FL1 and UV-APS the correlation was poor
407 (R^2 0.34). As mentioned, the good correlation between FL3 and UV-APS is expected,
408 because of the common excitation and emission wavelengths employed by the two
409 measurements. However, the UV-APS undercounts the FL3 measurement by a factor
410 of 2.7 (Fig. 4d). In contrast the WIBS FL1 and FL2 signals result from fundamentally
411 different fluorophores that result in much higher number concentrations.

412

413 Results of the Sporewatch analysis show qualitative agreement with temporal cycles
414 from the single particle fluorescence measurements (Fig. 2, 5); when each of the real-
415 time fluorescence channels peak, a corresponding peak in spore concentrations can be
416 seen as well. Correlation analysis discussed later highlights the agreement further
417 (Fig. 6). A comparison of the diurnal cycles will be discussed in Section 3.3. It is of
418 note that the differing time resolution of the techniques used (5 min for real-time
419 fluorescence instruments, 2 hr for Sporewatch) results in small temporal shifts in
420 peaks of number concentrations.

421

422 3.3 *Real-time fluorescence sensors versus Sporewatch*

423 The advantage of the Sporewatch technique paired with optical microscopy is that
424 number concentrations of individual microorganism types can be directly measured as
425 a function of time. The most commonly observed species (2-10 μm) at the KNP site

426 during this experiment were all fungal spores: *Cladosporium spp.*, *Ganoderma spp.*,
427 basidiospores., and ascospores. Ascospores are specific to fungi classified as
428 ascomycetes which are ubiquitous in terrestrial ecosystems worldwide. Basidiospores
429 are a reproductive spores produced by Basidiomycete fungi and *Ganoderma* is a
430 genus of polypore mushrooms which grow on wood. Figure 2 shows a comparison of
431 these species (with *Ganoderma* included in the Other category) alongside the size-
432 resolved image plots of each fluorescence channel from the two real-time
433 fluorescence instruments. The correlation of total biological particle concentration
434 (Sporewatch) with WIBS and UV-APS may be more readily seen by comparing
435 integrated number concentrations, however, as shown in Figure 5. $N_{F,c}$ determined by
436 WIBS FL2, FL3 and UV-APS, respectively, each show similar periods of high and
437 low concentrations (Fig. 5b), though each channel is plotted with a different y-scale
438 multiplier. This suggests that, despite the differing lists of fluorophores accessible to
439 each channel, the groups of microorganisms selected are similar. The differing
440 magnitude to the numbers, however, suggests that individual particles in each group
441 possessing lower fluorescence emission are likely to be under-counted by the
442 measurements and that the sensitivity of the detection scheme is important. The rise
443 and fall of the Sporewatch peaks at similar time periods of the FL2, FL3, and UV-
444 APS $N_{F,c}$ suggests a good qualitative comparison between the techniques and that
445 these channels of the real-time fluorescence instruments are indeed successful in
446 detecting biological aerosols such as these fungal spores.

447

448 In contrast to the qualitative similarity of the temporal trends of the WIBS FL2, FL3,
449 and UV-APS numbers with the spore concentrations, the WIBS FL1 numbers bear
450 little temporal similarity (Fig. 5a). $N_{F,c}$ from FL1 is influenced heavily by particles
451 with $D < 2 \mu\text{m}$, which is collected less efficiently by the Sporewatch impactor. Thus
452 the population of particles detected by FL1 is largely separate from that of the
453 particles observed by the paired Sporewatch/microscopy technique. These could be
454 single or agglomerated bacteria particles that would be expected to fluoresce after
455 excitation by 280 nm light of the FL1 channel. Though bacteria were not counted
456 directly by the Sporewatch technique and their numbers cannot be accurately
457 determined by the UV-APS or WIBS, the number of fluorescent particles $1 - 2 \mu\text{m}$ in
458 the WIBS FL1 channel is approx. 10^5 m^{-3} , which is an order of magnitude higher than
459 $\sim 10^4 \text{ m}^{-3}$ commonly estimated as the concentration of bacteria present over vegetated

460 surfaces (Bauer et al., 2002; Burrows et al., 2009b; Després et al., 2012). The cited
461 studies estimated the concentration of bacteria over vegetated surfaces by reviewing a
462 large number of studies collectively, each of which use different methods of detection,
463 e.g. DNA sequencing, compared to the current work which uses online particle
464 autofluorescence detection. Thus, it is likely that bacteria were detected by the WIBS
465 FL1 channel, but that bacteria cannot explain all particles measured by the FL1 signal.
466 We hypothesize three other mechanisms by which observed Sporewatch numbers
467 would be lower than WIBS FL1 number. First, sea spray enriched in sub-micron
468 organic material, including proteins and other biological degradation products
469 (Prather et al., 2013), coating larger particles account for some of the FL1 particles
470 and fluorescent coatings on particles observed via fluorescent microscopy. Second,
471 low Sporewatch numbers are partially a result of hyaline particles not easily seen or
472 counted using microscopy, but which could still fluoresce. This mechanism is less
473 likely, however, because the process of fluorescent excitation is limited to particles
474 that absorb, and so an individual particle would be expected to absorb strongly at 280
475 nm, but not so for visible (> 390 nm) identification. It is also unlikely that such
476 biological particles would coincidentally fluoresce after 280 nm excitation, but not
477 fluoresce with 355 – 370 nm excitation at the same time as being missed by visual
478 counting. A third and final mechanism to explain the discrepancy between FL1 and
479 Sporewatch number concentrations is that the FL1 channel counts a much higher
480 number of non-biological particles that reduce the correlation with spore
481 concentrations. These particles could be certain types of absorbing brown carbon
482 secondary organic aerosol (Bones et al., 2010; Gabey et al., 2013; Lee et al., 2013) or
483 soot particles (Lewitzka and Niessner, 1995; Panne et al., 2000), as adsorbed coatings
484 (Huffman et al., 2012) or as discreet particles of size < 2 μm .

485
486 A quantitative view of the same correlations is shown in Figure 6; $N_{\text{F},\text{c}}$ from each
487 channel plotted against a subset of the Sporewatch number (all classes except
488 *Cladosporium*). In this case, the correlation of $N_{\text{F},\text{c}}$ from the UV-APS is the highest
489 with the spore numbers (R^2 0.71), compared with R^2 of 0.05, 0.29, and 0.38 for WIBS
490 FL1, FL2, and FL3 channels, respectively. In each comparison, however, the spore
491 numbers are shown to undercount the real-time fluorescence measured numbers by
492 factors of 3 to 14 (see Fig. 6 caption). This undercounting is likely influenced heavily
493 by the fact that the Sporewatch does not efficiently collect particles with $D < 2 \mu\text{m}$, a

494 size range that contain significant particle numbers measured by several of the
495 fluorescence channels (Fig. 3). The Sporewatch undercounting of small particles is
496 unlikely to be the only cause of the scaling factor, however, because the UV-APS did
497 not show significant fluorescent particles in this size range, but still under-counted
498 spores by a factor of 3. As a result, it may indicate that other fluorescent bioparticles
499 (e.g. bacteria) or non-biological particles in the same size range can be associated
500 with the same air masses, and thus would increase $N_{F,c}$ but not the contemporaneous
501 spore numbers.

502

503 3.4 *Diurnal trends and atmospheric implications*

504 To highlight the similarity of each of the measurements styles, Figure 7 shows diurnal
505 (24 hr) plots of spores observed (Fig. 7a) and of each fluorescence channel (Figs. 7b-
506 e). Each measurement shows an increase in biological or fluorescent number
507 concentration during the night and early morning hours (approx. 02:00 – 06:00 LT),
508 with daily minima occurring in the mid-afternoon (approx. 15:00 LT). Figure 7 also
509 shows the corresponding diurnal trend in relative humidity, which peaks at similar
510 hours. This is consistent with commonly observed trends that many bioparticle
511 classes correlate strongly with RH and peak at night due to active fungal emission
512 mechanisms that require high humidity to function (e.g. Hirst, 1953; Rockett and
513 Kramer, 1974; Huffman et al., 2012; Schumacher et al., 2013; Toprak and Schnaiter,
514 2013). The UV-APS and WIBS FL3 channels each show mono-modal size
515 distributions peaking at 3-4 μm through the night, while the FL2 channel shows a bio-
516 modal distribution peaking at approx. 1 μm and 3-4 μm in size. These diurnal trends
517 are reflected strongly by the concentrations of basidiospores and even more so by
518 ascospores. Based on the observations via optical microscopy, the larger species (D
519 ~3-4 μm) identified by the real-time fluorescence techniques are likely to be
520 basidiospores and *Ganoderma spp.*, while the smaller mode (D approx. 1 μm)
521 observed for the FL2 channel may be comprised of ascospores. However, the identity
522 of the smaller fluorescent particles is more uncertain, because the particles are
523 relatively unidentifiable via optical microscopy because of insufficient magnification.
524 Huffman et al. (2012) argue, using diurnal measurements and comparison with
525 previous literature reports, that $N_{F,c}$ from UV-APS observations in the Amazon
526 rainforest are most likely to be a mixture of ascospores and basidiospores. Though
527 measurements were conducted in a very different ecosystem, the conclusions here are

528 consistent with earlier suggestions that UV-LIF measurements are particularly well
529 suited to the detection of these bioparticle classes. Further, Manninen et al. (2014)
530 present multi-year Sporewatch measurements in Hyytiälä, Finland and show that late
531 summer (August and September) in N. Europe are peak seasons for many spores,
532 including several groups of ascospores and basidiospores. Comparing with long-term
533 UV-APS measurements reported by Schumacher et al. (2013) and Manninen et al.
534 (2014) suggest these classes of spores peak on a similar yearly cycle as the UV-APS
535 $N_{F,c}$, and thus the August measurement period in this study coincides with a period of
536 the year consistent with high fungal spore concentrations. Further, the fungal spore
537 concentrations reported by Manninen et al. of $1 - 10 \times 10^4 \text{ m}^{-3}$ ($1-10 \times 10^{-2} \text{ cm}^{-3}$) are
538 within an order of magnitude of Sporewatch numbers reported here $0.1-1 \times 10^{-2} \text{ cm}^{-3}$.

539

540 Diurnal patterns for additional meteorological measurements (e.g. air temperature,
541 solar radiation, atmospheric pressure, and wind speed) observed during the entire
542 measurement period are shown in supplemental Figure S4. A consistent diurnal cycle
543 was observed for RH with night time periods (campaign max. 98%) reaching higher
544 values than during the day (campaign min. 38 %). Minimum and maximum air
545 temperatures recorded during the campaign were 4 °C and 26 °C, respectively, with a
546 campaign average of 15 °C. Generally calm weather conditions, with several short
547 periods of rain, were encountered throughout the entire campaign. This general
548 pattern was reflected meteorologically by the lack of observable diurnal patterns for
549 atmospheric pressure and also by low wind speeds.

550

551 3.5 Weakly detected *Cladosporium* spores

552 In contrast to the diurnal trend of the ascospores and basidiospores, the “Other”
553 category shows relatively flat diurnal profile, and the concentration of *Cladosporium*
554 spp. spores, which are among the most common spore types in vegetated areas, shows
555 a relative increase during the middle of the afternoon (peaking approx. 14:00). This
556 temporal pattern for *Cladosporium* is expected and has been reported frequently. It is
557 usually considered to be a dry weather spore whose concentration increases during
558 warm periods of low relative humidity (De Groot, 1968; Oliveira et al., 2009). The
559 interesting observation here is that the real-time fluorescence methods are relatively
560 insensitive to the increases in *Cladosporium* spore concentration. Correlation plots of
561 each fluorescence channel with *Cladosporium* spores show no qualitative pattern,

562 with R^2 values < 0.006 in all cases. The reason for the relative insensitivity of these
563 techniques to *Cladosporium* is unknown, but may relate to the dark-skinned (i.e.
564 absorbing) nature of these spores preventing impinging photons from penetrating
565 exterior pigments to excite fluorescence from internal fluorophores (Bell-Pedersen et
566 al., 1996).

567

568

569 **3.6 Marine particle influence**

570 Fluorescence microscopy images of size-resolved MOUDI stages collected during the
571 study qualitatively show the presence of spores and other biological particles. The
572 particles in the size range > 2 μm observed by the fluorescent microscopy technique
573 to have the highest fluorescence were identified morphologically as PBAP. Many of
574 the strongly fluorescent PBAP also demonstrated a clear cell wall fluorescence which
575 suggests that it is not the cytosol or cellular metabolites such as NAD(P)H or
576 riboflavin, but structural components of the cell wall that dominate the emission
577 (Pöhlker et al., 2012; 2013). Many of the fluorescent PBAP also demonstrated fungal
578 spore- like morphologies. Also frequently observed, however, were cubic particles
579 that appear morphologically similar to NaCl (Fig. 8), and needle-like particles
580 consistent with structures of crystals such as CaSO₄. No elemental analysis was
581 possible on these particle agglomerates for confirmation, however. The observations
582 of these inorganic-appearing particles suggest the influence of marine air containing
583 sea salt. Of further interest is the appearance of bioparticles attached to the cubic salt-
584 like particles, in which cases the bioparticle typically fluoresces strongly while the sea
585 salt-like crystals do not. The number concentration of bioparticles and sea salt in the
586 coarse particle mode make the agglomeration of these particles while airborne
587 statistically unlikely. Thus, we suggest that the bioparticle-salt agglomerates were
588 likely emitted by marine sources and transported approx. 20 km from the ocean west
589 of Ireland (Kenny and Jennings, 1998; Aller et al., 2005).

590

591 **4 Conclusions**

592 The study shows the measurement capabilities of the WIBS-4 and UV-APS to detect
593 biological particles in a rural, ambient location and is the first to compare these two
594 commercial sensors. Information revealed by each instrument is qualitatively similar,
595 but key differences are apparent. Total coarse particle concentration ($N_{T,c}$) was shown

596 to correlate well between the two instruments, and size distributions of total particles
597 were similar. The UV-APS sizing measurement (aerodynamic diameter) showed
598 more highly resolved distributions than did the WIBS-4 (optical diameter). This is
599 likely a function of the physical properties of the particle sizing schemes in each
600 instrument, and has been suggested previously. The minimum particle size detected
601 by the WIBS-4, however, is related to the trigger threshold selected by the operator.

602

603 Concentrations of fluorescent particles observed during the measurement period by
604 both instruments show regular, diurnal fluctuations that are qualitatively similar to
605 each other. Differences in excitation/emission wavelength result in different particle
606 populations observed, however. The UV-APS (λ_{ex} 355 nm) and WIBS FL3 channel
607 (λ_{ex} 370 nm) correlate strongly, suggesting that the relative proximity of the excitation
608 wavelengths allows each of these channels to excite similar fluorophores within
609 interrogated particles. The UV-APS and WIBS FL3 channel show fluorescent
610 particles dominated by a mode peaking at approx. 3 μ m, with additional presence of a
611 mode at approx. 1 μ m present in FL3. The UV-APS $N_{F,c}$ was lower than FL3 $N_{F,c}$ by
612 a factor of approx. 2.4, however, suggesting that the UV-APS particle detection
613 sensitivity was relatively poor.

614

615 The WIBS FL2 channel showed a consistently bi-modal distribution comprised of 1
616 and 3 μ m modes and qualitatively appears to be a combination of modes present in
617 the FL1 and FL3 channels. The WIBS FL2, FL3, and UV-APS particle numbers
618 correlated well in time and number with spore numbers collected via Sporewatch
619 impactor and enumerated via optical microscopy. Each showed a diurnal peak in the
620 early morning, with daily minima in the mid afternoon.

621

622 The WIBS FL1 channel, however, showed very different patterns. FL1 showed a
623 relatively consistent diurnal pattern and a multi-modal size distribution with the
624 highest concentration of fluorescent particles observed by any channel, but with the
625 poorest correlation with spore numbers. This arises partially, because $N_{F,c}$ from FL1
626 was summed of particles with $D > 1 \mu$ m, whereas the Sporewatch impaction
627 technique is relatively inefficient at collecting particles $< 2 \mu$ m. The smaller particles
628 that escape Sporewatch detection, but that are recorded by the FL1 channel (λ_{ex} 270
629 nm) may include bacterial cells and protein-enriched coatings from sea spray origin.

630 However, the discrepancy could also indicate the detection of non-biological particles
631 such as certain absorbing SOA or soot into the FL1 particle number. It is thus clear
632 from these observations that the multiple channels of fluorescent information
633 delivered by the WIBS provide an advantage over the single fluorescence channel of
634 the UV-APS. The qualitative similarity of diurnal patterns and of the UV-APS with
635 WIBS FL3 channels highlights the utility of the UV-APS to detect the overall trends
636 of fluorescent biological particles, however.

637

638 Comparisons between the real-time fluorescence instruments and the
639 Sporewatch/microscopy technique reveal that the most likely species of airborne
640 microorganism ($D > 2 \mu\text{m}$) present in Killarney National Park during the
641 measurement period were spores, including basidiospores, ascospores, *Ganoderma*
642 spp., and *Cladosporium* spp. The correlation of total spore concentration with the
643 WIBS FL2, FL3, and UV-APS $N_{F,c}$ was high. However, *Cladosporium* spores
644 correlated extremely poorly with all fluorescent measurements, suggesting that dark-
645 walled cell walls may inhibit real-time fluorescence detection. Despite the presence
646 of the spores observed, the microscopy results cannot rule out the possible
647 contribution of soil bacteria such as actinobacteria and streptomycetes in the size
648 range 1 – 2 μm that is not efficiently collected by the Sporewatch. These commonly
649 airborne PBAP classes could also contribute to $N_{F,c}$ and reduce correlation with
650 Sporewatch number.

651

652 The results of this study show that both WIBS and UV-APS techniques are capable of
653 providing real-time information about biological aerosol particles, and that they can
654 relate the major temporal trends of airborne fungal spores. Significant uncertainties
655 still remain in the interpretation of the data from these instruments, and follow-up
656 studies (e.g. systematic comparisons of the instruments in a controlled laboratory
657 setting) will be necessary to inform further studies and analysis. For example, further
658 work will be required to understand the nature of the poor correlation between spore
659 concentration and WIBS FL1 number. Additional follow-up work will also be
660 necessary to understand WIBS triggering thresholds to best characterize both
661 fluorescent and non-fluorescent aerosol in field environments with unknown aerosol.
662 These data show that the instruments performed well in a relatively clean, rural
663 national park in western Ireland, but operational considerations will likely be different

664 at sites more heavily influenced by anthropogenic aerosol sources. On the other hand
665 UV-APS detected few of the smaller bacterial PBAP because of its single excitation
666 wavelength. Measurements such as those presented here may provide direct inputs for
667 the improvement of global models investigating the role of PBAP as ice or cloud
668 condensation nuclei.

669
670 Relatively few estimates of PBAP concentrations exist, and the present study provides
671 measured concentrations in a rural European environment. Further, the comparison of
672 real-time fluorescence techniques capable of detecting fluorescent biological particles
673 at high time and size resolution are supported by good correlations with direct
674 observations of particles using optical microscopy (bright-field and fluorescence).
675 These data support the idea that real-time fluorescence techniques can significantly
676 improve time resolution and analysis time of traditional PBAP identification, which
677 can be very laborious, time-consuming, and costly. Spore concentrations were
678 observed on the order of $1 - 10 \times 10^4 \text{ m}^{-3}$, which is consistent with previous estimates
679 (e.g. Elbert et al., 2007; Després et al., 2012; Manninen et al., 2014). Bacteria
680 concentrations were not directly measured by these techniques, but the number of $1 -$
681 $2 \mu\text{m}$ particles in the WIBS FL1 channel is on the order of 10^5 m^{-3} , which could easily
682 encompass the $\sim 10^4 \text{ m}^{-3}$ of bacteria commonly estimated to be present as a continental
683 background concentration (Bauer et al., 2002; Burrows et al., 2009b; Després et al.,
684 2012). Observations that spore and FBAP concentrations cycle on a daily basis with
685 RH and inversely with temperature are consistent with many previous reports that
686 suggest many classes of fungal spores utilize periods of high humidity for active
687 release (Jones and Harrison, 2004; Pringle et al., 2005; Elbert et al., 2007). Lastly,
688 fluorescent microscopy images of sea salt-like particles agglomerated with biological
689 cells suggests that air at the site was influenced but marine air and that the ocean
690 provides one source for airborne biological material.

691

692 5. Acknowledgements

693 The authors acknowledge the National Parks and Wildlife Service of Ireland for
694 providing a sampling location in Killarney National Park with a suitable power
695 supply. This work was financially supported by the Irish EPA BioCheA 2007 CCRP
696 Project 4.4.6 and STRIVE Doctoral training program (2008-PhD-AQ-2). Financial
697 support for J. A. Huffman, C. Pöhlker, and U. Pöschl was from the Max Planck

698 Society, the Max Planck Graduate Center with the Johannes Gutenberg-Universität
699 Mainz (MPGC), and the LEC Geocycles Mainz. J. A. Huffman acknowledges internal
700 faculty funding from the University of Denver. The authors also acknowledge: J.
701 Schneider and S. Borrmann (MPIC Particle Chemistry) for providing a UV-APS
702 instrument; Eoin McGillicuddy, Ian O'Connor and Arnaud Allanic for help with the
703 mobile laboratory and help transporting equipment. P. Kaye, W. Stanley are
704 acknowledged for their technical support provided to project BioChea while David
705 Dodd is acknowledged for his support of project BioChea.

706 6. References

707 Aller, J. Y., Kuznetsova, M. R., Jahns, C. J. and Kemp, P. F.: The sea surface
708 microlayer as a source of viral and bacterial enrichment in marine aerosols, *Journal of*
709 *Aerosol Science*, 36, 801-812, <http://dx.doi.org/10.1016/j.jaerosci.2004.10.012>, 2005.

710 Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F.
711 and Puxbaum, H.: The contribution of bacteria and fungal spores to the organic
712 carbon content of cloud water, precipitation and aerosols, *Atmospheric Research*, 64,
713 109-119, 2002.

714 Bell-Pedersen, D., Garceau, N. and Loros, J. J.: Circadian rhythms in fungi, *Journal of*
715 *Genetics*, 75, 387-401, 1996.

716 Bones, D. L., Henricksen, D. K., Mang, S. A., Gonsior, M., Bateman, A. P., Nguyen,
717 T. B., Cooper, W. J. and Nizkorodov, S. A.: Appearance of strong absorbers and
718 fluorophores in limonene-O-3 secondary organic aerosol due to NH4+-mediated
719 chemical aging over long time scales, *J. Geophys. Res.-Atmos.*, 115,
720 10.1029/2009jd012864, 2010.

721 Brosseau, L. M., Vesley, D., Rice, N., Goodell, K., Nellis, M. and Hairston, P.:
722 Differences in detected fluorescence among several bacterial species measured with a
723 direct-reading particle sizer and fluorescence detector, *Aerosol Sci. Technol.*, 32, 545-
724 558, 2000.

725 Burrows, S. M., Butler, T., Jockel, P., Tost, H., Kerkweg, A., Pöschl, U. and
726 Lawrence, M. G.: Bacteria in the global atmosphere - Part 2: Modeling of emissions
727 and transport between different ecosystems, *Atmospheric Chemistry and Physics*, 9,
728 9281-9297, 2009a.

729 Burrows, S. M., Elbert, W., Lawrence, M. G. and Pöschl, U.: Bacteria in the global
730 atmosphere - Part 1: Review and synthesis of literature data for different ecosystems,
731 *Atmospheric Chemistry and Physics*, 9, 9263-9280, 2009b.

732 Caruana, D. J.: Detection and analysis of airborne particles of biological origin:
733 present and future, *Analyst*, 136, 4641-4652, 10.1039/c1an15506g, 2011.

734 Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R. M. and Sands, D. C.:
735 Ubiquity of biological ice nucleators in snowfall, *Science*, 319, 1214-1214,
736 10.1126/science.1149757, 2008.

737 De Groot, R. C.: Diurnal cycles of airborne spores produced by forest fungi,
738 *Phytopathology*, 58, 1223-1229, 1968.

739 DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M.,
740 Anderson, B. E., Beyersdorf, A. J., Ziembka, L. D., Bergin, M., Nenes, A. and
741 Konstantinidis, K. T.: Microbiome of the upper troposphere: Species composition and
742 prevalence, effects of tropical storms, and atmospheric implications, *Proceedings of*
743 *the National Academy of Sciences of the United States of America*, 110, 2575-2580,
744 10.1073/pnas.1212089110, 2013.

745 Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G.
746 A., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U. and Jaenicke, R.:
747 Primary Biological Aerosol Particles in the Atmosphere: A Review, Tellus Series B-
748 Chemical and Physical Meteorology, 64, 15598, 10.3402/tellusb.v64i0.15598, 2012.

749 Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K. and Jaenicke, R.: The ice
750 nucleating ability of pollen - Part I: Laboratory studies in deposition and condensation
751 freezing modes, Atmospheric Research, 58, 75-87, 2001.

752 Elbert, W., Taylor, P. E., Andreae, M. O. and Pöschl, U.: Contribution of fungi to
753 primary biogenic aerosols in the atmosphere: wet and dry discharged spores,
754 carbohydrates, and inorganic ions, Atmospheric Chemistry and Physics, 7, 4569-
755 4588, 2007.

756 Eng, J., Lynch, R. M. and Balaban, R. S.: Nicotinamide Adenine Dinucleotide
757 Fluorescence Spectroscopy and Imaging of Isolated Cardiac Myocytes, Biophysical
758 Journal, 55, 621-630, 1989.

759 Eversole, J. D., Hardgrove, J. J., Cary, W. K., Choulas, D. P. and Seaver, M.:
760 Continuous, rapid biological aerosol detection with the use of UV fluorescence:
761 Outdoor test results, Field Anal. Chem. Technol., 3, 249-259, 1999.

762 Foot, V. E., Kaye, P. H., Stanley, W. R., Barrington, S. J., Gallagher, M. and Gabey,
763 A.: Low-cost real-time multi-parameter bio-aerosol sensors, Proceedings of the SPIE -
764 The International Society for Optical Engineering, 7116, 711601, 10.1117/12.800226,
765 2008.

766 Fröhlich-Nowoisky, J., Pickersgill, D. A., Després, R. V. and Pöschl, U.: High
767 diversity of fungi in air particulate matter, Proceedings of the National Academy of
768 Sciences, 106, 12814 - 12819, doi: 10.1073/pnas.0811003106, 2009.

769 Fröhlich-Nowoisky, J., Burrows, S. M., Xie, Z., Engling, G., Solomon, P. A., Fraser, M. P.,
770 Mayol-Bracero, O. L., Artaxo, P., Begerow, D., Conrad, R., Andreae, M. O., Després, V. R.
771 and Pöschl, U.: Biogeography in the air: fungal diversity over land and oceans,
772 Biogeosciences, 9, 1125 - 1136, doi:10.5194/bg-9-1125-2012, 2012.

773 Gabey, A., Stanley, W. R., Gallagher, M. and Kaye, P. H.: The fluorescence
774 properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations,
775 Atmospheric Chemistry and Physics, 11, 5491-5504, 10.5194/acp-11-5491-2011,
776 2011.

777 Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H. and
778 Stanley, W. R.: Measurements and comparison of primary biological aerosol above
779 and below a tropical forest canopy using a dual channel fluorescence spectrometer,
780 Atmospheric Chemistry and Physics, 10, 4453-4466, 10.5194/acp-10-4453-2010,
781 2010.

782 Gabey, A. M., Vaitilingom, M., Freney, E., Boulon, J., Sellegrí, K., Gallagher, M. W.,
783 Crawford, I. P., Robinson, N. H., Stanley, W. R. and Kaye, P. H.: Observations of
784 fluorescent and biological aerosol at a high-altitude site in central France,

785 Atmospheric Chemistry and Physics, 13, 7415-7428, 10.5194/acp-13-7415-2013,
786 2013.

787 Haga, D. I., Iannone, R., Wheeler, M. J., Mason, R., Polishchuk, E. A., Fetch, T., Jr.,
788 van der Kamp, B. J., McKendry, I. G. and Bertram, A. K.: Ice nucleation properties of
789 rust and bunt fungal spores and their transport to high altitudes, where they can cause
790 heterogeneous freezing, *J. Geophys. Res.-Atmos.*, 118, 7260-7272,
791 10.1002/jgrd.50556, 2013.

792 Hairston, P. P., Ho, J. and Quant, F. R.: Design of an instrument for real-time
793 detection of bioaerosols using simultaneous measurement of particle aerodynamic
794 size and intrinsic fluorescence, *Journal of Aerosol Science*, 28, 471-482, 1997.

795 Harrison, D. E. and Chance, B.: Fluorimetric Technique for Monitoring Changes in
796 Level of Reduced Nicotinamide Nucleotides in Continuous Cultures of
797 Microorganisms, *Applied Microbiology*, 19, 446-450, 1970.

798 Heald, C. L. and Spracklen, D. V.: Atmospheric budget of primary biological aerosol
799 particles from fungal spores, *Geophysical Research Letters*, 36, L09806,
800 10.1029/2009gl037493, 2009.

801 Healy, D. A., O'Connor, D. J., Burke, A. M. and Sodeau, J. R.: A laboratory
802 assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual
803 samples of pollen and fungal spore material, *Atmospheric Environment*, 60, 534-543,
804 10.1016/j.atmosenv.2012.06.052, 2012a.

805 Healy, D. A., O'Connor, D. J. and Sodeau, J. R.: Measurement of the particle
806 counting efficiency of the "Waveband Integrated Bioaerosol Sensor" model number 4
807 (WIBS-4), *Journal of Aerosol Science*, 47, 94-99, 10.1016/j.jaerosci.2012.01.003,
808 2012b.

809 Hill, S. C., Pinnick, R. G., Niles, S., Fell, N. F., Pan, Y. L., Bottiger, J., Bronk, B. V.,
810 Holler, S. and Chang, R. K.: Fluorescence from airborne microparticles: dependence
811 on size, concentration of fluorophores, and illumination intensity, *Applied Optics*, 40,
812 3005-3013, 2001.

813 Hirst, J. M.: An Automatic Volumetric Spore Trap, *Annals of Applied Biology*, 39,
814 257-265, 10.1111/j.1744-7348.1952.tb00904.x, 1952.

815 Hirst, J. M.: Changes in atmospheric spore content: Diurnal periodicity and the effects
816 of weather, *Transactions of the British Mycological Society*, 36, 375-393, IN378, Doi:
817 10.1016/s0007-1536(53)80034-3, 1953.

818 Ho, J.: Future of biological aerosol detection, *Anal. Chim. Acta*, 457, 125-148, 2002.

819 Hoose, C., Kristjansson, J. E. and Burrows, S. M.: How important is biological ice
820 nucleation in clouds on a global scale?, *Environ. Res. Lett.*, 5, 024009, 10.1088/1748-
821 9326/5/2/024009, 2010.

822 Huffman, J. A., Treutlein, B. and Pöschl, U.: Fluorescent biological aerosol particle
823 concentrations and size distributions measured with an Ultraviolet Aerodynamic

824 Particle Sizer (UV-APS) in Central Europe, Atmospheric Chemistry and Physics, 10,
825 3215-3233, 2010.

826 Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S., Artaxo,
827 P., Martin, S. T., Andreae, M. O. and Poeschl, U.: Size distributions and temporal
828 variations of biological aerosol particles in the Amazon rainforest characterized by
829 microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,
830 Atmospheric Chemistry and Physics, 12, 11997-12019, 10.5194/acp-12-11997-2012,
831 2012.

832 Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N.
833 H., Fröhlich-Nowoisky, J. F., Tobo, Y., Després, V., Garcia, E., Gochis, D. J., Harris,
834 E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M.
835 O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K. and Pöschl, U.:
836 High concentrations of biological aerosol particles and ice nuclei during and after
837 rain, Atmospheric Chemistry and Physics, 13, 6151-6164, 10.5194/acp-13-6151-
838 2013, 2013.

839 Hummel, M., Hoose, C., Gallagher, M., Healy, D. A., Huffman, J. A., O'Connor, D.,
840 Pöschl, U., Pöhlker, C., Robinson, N. H., Schnaiter, M., Sodeau, J. R., Toprak, E. and
841 Vogel, H.: Regional-scale simulations of fungal spore aerosols using an emission
842 parameterization adapted to local measurements of fluorescent biological aerosol
843 particles, Atmos. Chem. Phys. Discuss., 14, 9903-9950, 10.5194/acpd-14-9903-2014,
844 2014.

845 Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on
846 atmospheric bioaerosol concentrations - a review, Science of the Total Environment,
847 326, 151-180, 10.1016/j.scitotenv.2003.11.021, 2004.

848 Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L. and Barrington, S. J.:
849 Single particle multichannel bio-aerosol fluorescence sensor, Optics Express, 13,
850 3583-3593, 2005.

851 Kenny, C. M. and Jennings, S. G.: Background bioaerosol measurements at Mace
852 Head, Journal of Aerosol Science, 29, S779-S780, 10.1016/S0021-8502(98)90572-9,
853 1998.

854 Khattab, A. and Levetin, E.: Preliminary studies on the effect of the Burkard alternate
855 orifice on airborne fungal spore concentrations. Aerobiologia, 2008. 24: p. 165-171.
856 Preliminary studies on the effect of the Burkard alternate orifice on airborne fungal
857 spore concentrations., Aerobiologia, 24, 165-171, 2008.

858 Lacey, J. and Dutkiewicz, J.: Bioaerosols and Occupational Lung Disease, Journal of
859 Aerosol Science, 25, 1371-1404, 1994.

860 Lacey, J. and Venette, J.: Outdoor Air Sampling Techniques, in: Bioaerosols
861 Handbook, edited by: Cox, C. S. and Wathes, C. M., Lewis Publishers, Boca Raton,
862 FL, 407 - 471, 1995.

863 Lacey, M. E. and West, J. S.: The air spora: a manual for catching and identifying
864 airborne biological particles, Springer, 2007.

865 Lee, H. J., Laskin, A., Laskin, J. and Nizkorodov, S. A.: Excitation–Emission Spectra
866 and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic
867 Aerosols, *Environ. Sci. Technol.*, 47, 5763-5770, 10.1021/es400644c, 2013.

868 Lewitzka, F. and Niessner, R.: Application of Time-Resolved Fluorescence
869 Spectroscopy on the Analysis of PAH-Coated Aerosols, *Aerosol Sci. Technol.*, 23,
870 454-464, 10.1080/02786829508965328, 1995.

871 Li, J. K., Asali, E. C. and Humphrey, A. E.: Monitoring Cell Concentration and
872 Activity by Multiple Excitation Fluorometry, *Biotechnology Progress*, 7, 21-27, 1991.

873 Madelin, T. M.: Fungal Aerosols - A Review, *Journal of Aerosol Science*, 25, 1405-
874 1412, 10.1016/0021-8502(94)90216-x, 1994.

875 Maki, L. R., Glynn, E. L., Chang-Chien, M. M. and Caldwell, D. R.: Ice nucleation
876 induced by *Pseudomonas syringae*, *Applied and Environmental Microbiology*, 28,
877 456-459, 1974.

878 Manninen, H. E., Sihto-Nissilä, S.-L., Huffman, J. A., Bäck, J., Pessi, A.-M.,
879 Hiltunen, V., Aalto, P., Hidalgo, P. J., Hari, P., Saarto, A., Kulmala, M. and Petäjä,
880 T.: Annual pattern of airborne pollen grains, fungal spores and particle mass in a
881 boreal forest, *Boreal Environmental Research*, In Review, 2014.

882 Marple, V. A., Rubow, K. L. and Behm, S. M.: A microorifice uniform deposit
883 impactor (MOUDI) - description, calibration, and use, *Aerosol Sci. Technol.*, 14, 434-
884 446, 10.1080/02786829108959504, 1991.

885 Möhler, O., DeMott, P. J., Vali, G. and Levin, Z.: Microbiology and atmospheric
886 processes: the role of biological particles in cloud physics, *Biogeosciences*, 4, 1059-
887 1071, 2007.

888 Morris, C. E., Georgakopoulos, D. G. and Sands, D. C.: Ice nucleation active bacteria
889 and their potential role in precipitation, *Journal de Physique IV*, 121, 87-103,
890 10.1051/jp4:2004121004, 2004.

891 Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffiere, A.,
892 Yan, S., Dominguez, H. and Thompson, B. M.: The life history of the plant pathogen
893 *Pseudomonas syringae* is linked to the water cycle, *ISME J*, 2, 321-334, 2008.

894 Morris, C. E., Sands, D. C., Glaux, C., Samsatly, J., Asaad, S., Moukahel, A. R.,
895 Gonçalves, F. L. T. and Bigg, E. K.: Urediospores of rust fungi are ice nucleation
896 active at $> -10^{\circ}\text{C}$ and harbor ice nucleation active bacteria, *Atmospheric Chemistry
897 and Physics*, 13, 4223-4233, 10.5194/acp-13-4223-2013, 2013.

898 Morris, C. E., Conen, F., Huffman, J. A., Phillips, V., Pöschl, U. and Sands, D. C.:
899 Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and
900 land use through biological ice nucleators in the atmosphere, *Global Change Biology*,
901 20, 341-351, 10.1111/gcb.12447, 2014.

902 Oliveira, M., Ribeiro, H., Delgado, J. and Abreu, I.: The effects of meteorological
903 factors on airborne fungal spore concentration in two areas differing in urbanisation

904 level, International Journal of Biometeorology, 53, 61-73, 10.1007/s00484-008-0191-
905 2, 2009.

906 Pan, Y.-L., Hill, S. C., Pinnick, R. G., House, J. M., Flagan, R. C. and Chang, R. K.:
907 Dual-excitation-wavelength fluorescence spectra and elastic scattering for
908 differentiation of single airborne pollen and fungal particles, Atmospheric
909 Environment, 45, 1555-1563, 10.1016/j.atmosenv.2010.12.042, 2011.

910 Pan, Y. L., Pinnick, R. G., Hill, S. C., Rosen, J. M. and Chang, R. K.: Single-particle
911 laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in
912 the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New
913 Mexico, J. Geophys. Res.-Atmos., 112, 15, 10.1029/2007jd008741, 2007.

914 Panne, U., Knöller, A., Kotzick, R. and Niessner, R.: On-line and in-situ detection of
915 polycyclic aromatic hydrocarbons (PAH) on aerosols via thermodesorption and laser-
916 induced fluorescence spectroscopy, Fresenius J Anal Chem, 366, 408-414,
917 10.1007/s002160050083, 2000.

918 Patel, N. J. and Bush, R. K.: Role of environmental allergens in rhinitis, Immunology
919 and Allergy Clinics of North America, 20, 323-353, [http://dx.doi.org/10.1016/S0889-8561\(05\)70151-X](http://dx.doi.org/10.1016/S0889-8561(05)70151-X), 2000.

921 Pinnick, R. G., Hill, S. C., Nachman, P., Pendleton, J. D., Fernandez, G. L., Mayo, M.
922 W. and Bruno, J. G.: Fluorescence Particle Counter for Detecting Airborne Bacteria
923 and Other Biological Particles, Aerosol Sci. Technol., 23, 653-664, 1995.

924 Pinnick, R. G., Hill, S. C., Pan, Y. L. and Chang, R. K.: Fluorescence spectra of
925 atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of
926 single particles containing organic carbon, Atmospheric Environment, 38, 1657-1672,
927 10.1016/j.atmosenv.2003.11.017, 2004.

928 Pöhlker, C., Huffman, J. A. and Pöschl, U.: Autofluorescence of atmospheric
929 bioaerosols - fluorescent biomolecules and potential interferences, Atmospheric
930 Measurement Techniques, 5, 37-71, 10.5194/amt-5-37-2012, 2012.

931 Pöhlker, C., Huffman, J. A., Förster, J.-D. and Pöschl, U.: Autofluorescence of
932 atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen,
933 Atmospheric Measurement Techniques, 13, 3369-3392, 10.5194/amt-6-3369-2013,
934 2013.

935 Pöschl, U.: Atmospheric aerosols: Composition, transformation, climate and health
936 effects, Angewandte Chemie-International Edition, 44, 7520-7540,
937 10.1002/anie.200501122, 2005.

938 Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A.,
939 Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M.,
940 Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P.,
941 Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P. and Andreae, M. O.: Rainforest
942 Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon, Science,
943 329, 1513-1516, 10.1126/science.1191056, 2010.

944 Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D., DeMott,
945 P. J., Aluwihare, L. I., Palenik, B. P., Azam, F. and Seinfeld, J. H.: Bringing the ocean
946 into the laboratory to probe the chemical complexity of sea spray aerosol, *Proceedings
947 of the National Academy of Sciences*, 110, 7550-7555, 2013.

948 Prenni, A. J., Tobo, Y., Garcia, E., DeMott, P. J., Huffman, J. A., McCluskey, C. S.,
949 Kreidenweis, S. M., Prenni, J. E., Pöhlker, C. and Pöschl, U.: The impact of rain on
950 ice nuclei populations at a forested site in Colorado, *Geophysical Research Letters*,
951 40, 227-231, 10.1029/2012gl053953, 2013.

952 Pringle, A., Patek, S. N., Fischer, M., Stolze, J. and Money, N. P.: The captured
953 launch of a ballistospore, *Mycologia*, 97, 866-871, 10.3852/mycologia.97.4.866,
954 2005.

955 Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S. and Grothe, H.: Suspendable
956 macromolecules are responsible for ice nucleation activity of birch and conifer pollen,
957 *Atmos. Chem. Phys.*, 12, 2541-2550, 10.5194/acp-12-2541-2012, 2012.

958 Robinson, N. H., Allan, J. D., Huffman, J. A., Kaye, P. H., Foot, V. E. and Gallagher,
959 M.: Cluster analysis of WIBS single-particle bioaerosol data, *Atmospheric
960 Measurement Techniques*, 6, 337-347, 10.5194/amt-6-337-2013, 2013.

961 Rockett, T. R. and Kramer, C. L.: Periodicity and Total Spore Production by
962 Lignicolous basidiomycetes, *Mycologia*, 66, 817-829, 1974.

963 Sands, D. C., Langhans, V. E., Scharen, A. L. and de Smet, G.: The association
964 between bacteria and rain and possible resultant meteorological implications, *Journal
965 of the Hungarian Meteorological Service*, 86, 148-152, 1982.

966 Schumacher, C. J., Pöhlker, C., Aalto, P., Hiltunen, V., Petäjä, T., Kulmala, M.,
967 Pöschl, U. and Huffman, J. A.: Seasonal cycles of fluorescent biological aerosol
968 particles in boreal and semi-arid forests of Finland and Colorado, *Atmos. Chem.
969 Phys.*, 13, 11987-12001, 10.5194/acp-13-11987-2013, 2013.

970 Sesartic, A., Lohmann, U. and Storelvmo, T.: Modelling the impact of fungal spore
971 ice nuclei on clouds and precipitation, *Environ. Res. Lett.*, 8, 014029, 10.1088/1748-
972 9326/8/1/014029, 2013.

973 Setlow, B. and Setlow, P.: Levels of Oxidized and Reduced Pyridine Nucleotides in
974 Dormant Spores and During Growth, Sporulation, and Spore Germination of *Bacillus
975 megaterium*, *J. Bacteriol.*, 129, 857-865, 1977.

976 Shiraiwa, M., Selzle, K. and Poeschl, U.: Hazardous components and health effects of
977 atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic
978 compounds and allergenic proteins, *Free Radical Research*, 46, 927-939,
979 10.3109/10715762.2012.663084, 2012.

980 Sivaprakasam, V., Huston, A. L., Scotto, C. and Eversole, J. D.: Multiple UV
981 wavelength excitation and fluorescence of bioaerosols, *Optics Express*, 12, 4457-
982 4466, 2004.

983 Sivaprakasam, V., Lin, H.-B., Huston, A. L. and Eversole, J. D.: Spectral
984 characterization of biological aerosol particles using two-wavelength excited laser-
985 induced fluorescence and elastic scattering measurements, *Optics Express*, 19, 6191-
986 6208, 2011.

987 Stanley, W. R., Kaye, P. H., Foot, V. E., Barrington, S. J., Gallagher, M. and Gabey,
988 A.: Continuous bioaerosol monitoring in a tropical environment using a UV
989 fluorescence particle spectrometer, *Atmospheric Science Letters*, 12, 195-199,
990 10.1002/asl.310, 2011.

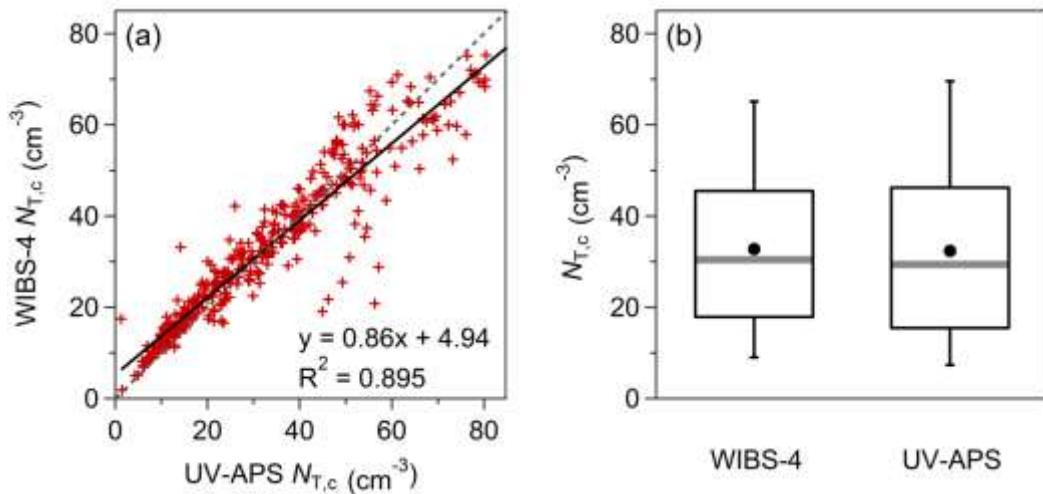
991 Sterling, M., C. Rogers and Levetin., E.: An evaluation of two methods used for
992 microscopic analysis of airborne fungal spore concentrations from the Burkard Spore
993 Trap., *Aerobiologia*, 15, 9-18, 1999.

994 Tanke, H. J., van Oostveldt, P. and van Duijn, P.: A parameter for the distribution of
995 fluorophores in cells derived from measurements of inner filter effect and
996 reabsorption phenomenon, *Cytometry*, 2, 359-369, 10.1002/cyto.990020602, 1982.

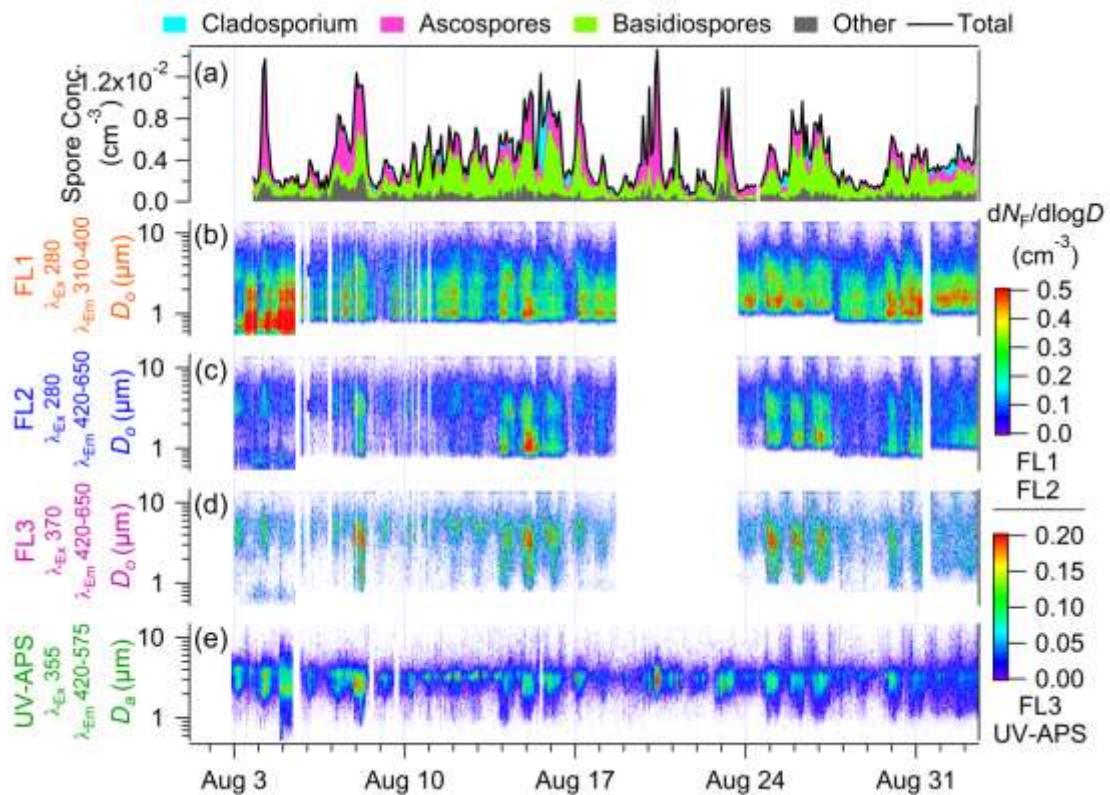
997 Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol particles measured with
998 the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with
999 a one year field study, *Atmospheric Chemistry and Physics*, 13, 225-243,
1000 10.5194/acp-13-225-2013, 2013.

1001 Womack, A. M., Bohannan, B. J. M. and Green, J. L.: Biodiversity and biogeography
1002 of the atmosphere, *Philosophical Transactions of the Royal Society B: Biological
1003 Sciences*, 365, 3645-3653, 10.1098/rstb.2010.0283, 2010.

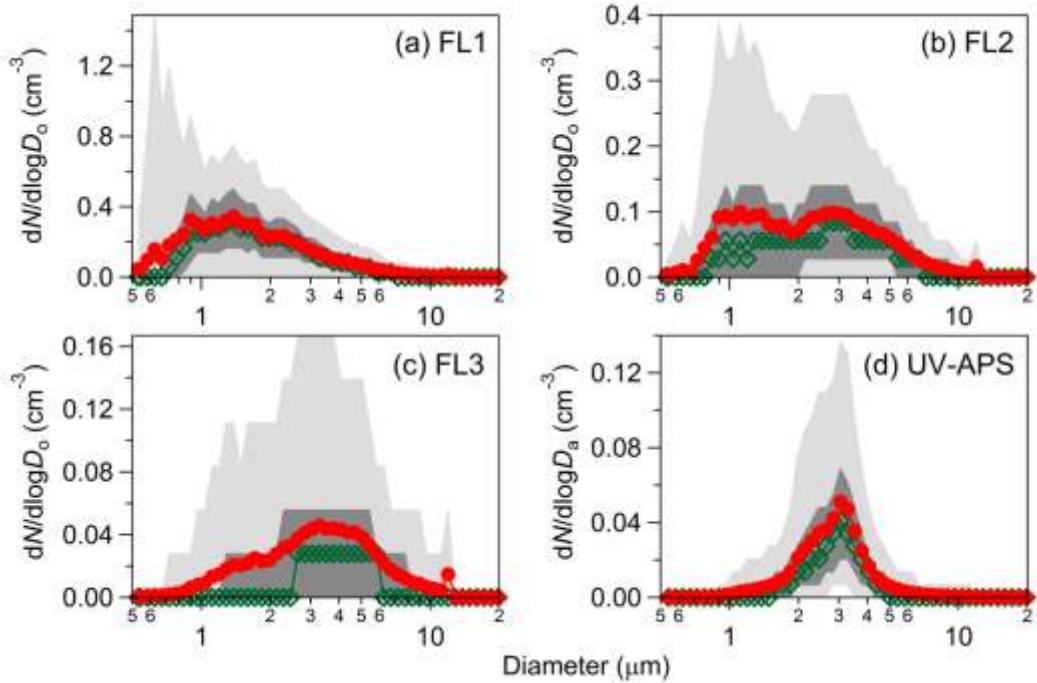
1004 Xu, Z., Wu, Y., Shen, F., Chen, Q., Tan, M. and Yao, M.: Bioaerosol Science,
1005 Technology, and Engineering: Past, Present, and Future, *Aerosol Sci. Technol.*, 45,
1006 1337-1349, 10.1080/02786826.2011.593591, 2011.


1007

1008


1009 **Table 1.** A comparison between instrumental parameters used during the study for the
 1010 UV-APS and WIBS-4 techniques.

	UV-APS (TSI Model no. 3314)	WIBS (Univ. Hertfordshire Model no. 4)												
Summary of measurement capabilities	particle size, intrinsic particle fluorescence (1 channel), particle side-scatter light intensity	particle size, intrinsic particle fluorescence (3 channels), particle asymmetry												
Aerosol sample flow rate	1.0 L min^{-1}	0.23 L min^{-1}												
Sampling Time	User-defined binning (5-min here)	Individual particle detection (post-binned to 5-min)												
Sizing Method	Aerodynamic Diameter (D_a)	Optical Diameter (D_o)												
Size resolution	52 channels selected	52 channels selected (only 45 channels used due to max $D_o \sim 13 \mu\text{m}$)												
Particle Size Range	$D_a: \sim 0.5 \text{ to } \sim 20 \mu\text{m}$	$D_o: \sim 0.5 \mu\text{m} \text{ to } \sim 13 \mu\text{m}$												
Excitation source	355 nm via UV laser (Nd:YAG)	280 nm and 370 nm via Xenon flash-tubes with blocking filters												
Fluorescence	$\lambda_{\text{ex}} = 355 \text{ nm}$ $\lambda_{\text{em}} = 420 - 580 \text{ nm}$	<table border="0"> <tr> <td>FL</td><td>$\lambda_{\text{ex}} = 280 \text{ nm}$</td> </tr> <tr> <td>1</td><td>$\lambda_{\text{em}} = 310 - 400 \text{ nm}$</td> </tr> <tr> <td>FL</td><td>$\lambda_{\text{ex}} = 280 \text{ nm}$</td> </tr> <tr> <td>2</td><td>$\lambda_{\text{em}} = 420 - 650 \text{ nm}$</td> </tr> <tr> <td>FL</td><td>$\lambda_{\text{ex}} = 370 \text{ nm}$</td> </tr> <tr> <td>3</td><td>$\lambda_{\text{em}} = 420 - 650 \text{ nm}$</td> </tr> </table>	FL	$\lambda_{\text{ex}} = 280 \text{ nm}$	1	$\lambda_{\text{em}} = 310 - 400 \text{ nm}$	FL	$\lambda_{\text{ex}} = 280 \text{ nm}$	2	$\lambda_{\text{em}} = 420 - 650 \text{ nm}$	FL	$\lambda_{\text{ex}} = 370 \text{ nm}$	3	$\lambda_{\text{em}} = 420 - 650 \text{ nm}$
FL	$\lambda_{\text{ex}} = 280 \text{ nm}$													
1	$\lambda_{\text{em}} = 310 - 400 \text{ nm}$													
FL	$\lambda_{\text{ex}} = 280 \text{ nm}$													
2	$\lambda_{\text{em}} = 420 - 650 \text{ nm}$													
FL	$\lambda_{\text{ex}} = 370 \text{ nm}$													
3	$\lambda_{\text{em}} = 420 - 650 \text{ nm}$													
Particle Asymmetry	n/a	A_F via side-scatter intensity in four quadrants ($A_F = 0$, sphere; $A_F \gg 0$, high aspect ratio fibre)												


1011
 1012

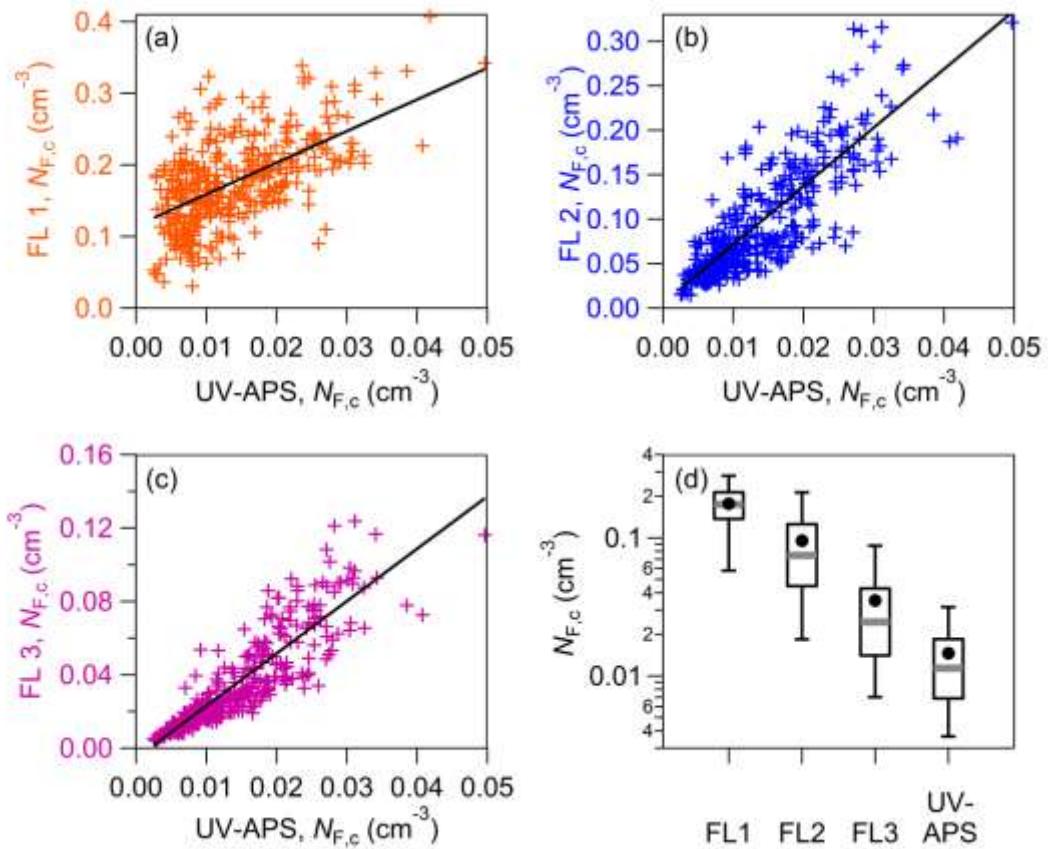

Figure 1. Comparison of concentrations of total coarse particles ($D > 1 \mu\text{m}$) over the entire ~1 month measurement period. Red symbols (a) show 5-minute data points, and solid black line shows linear fit (not weighted). Dashed line is 1:1 line. Statistical summary of $N_{T,c}$ shown as box-whisker plots (b). Black dots (mean), horizontal gray bar (median), boxes (25-75th percentile), vertical bars (5-9th percentile).

Figure 2. Campaign overview time series. Selected biological particles identified by Sporewatch technique (a). Size-resolved measurements of fluorescent particles as determined by: WIBS FL1 (b), FL2 (c), and FL3 (d) channels, and UV-APS (e). Color scale for image plots (b-e) shown as $dN_F/d\log D$ (cm^{-3}) on right and is separated into FL1, FL2 (upper scale) and FL3, UVAPS (lower scale). Data reported for both WIBS-4 and UV-APS as 5-min averages and for Sporewatch as 2 hr averages.

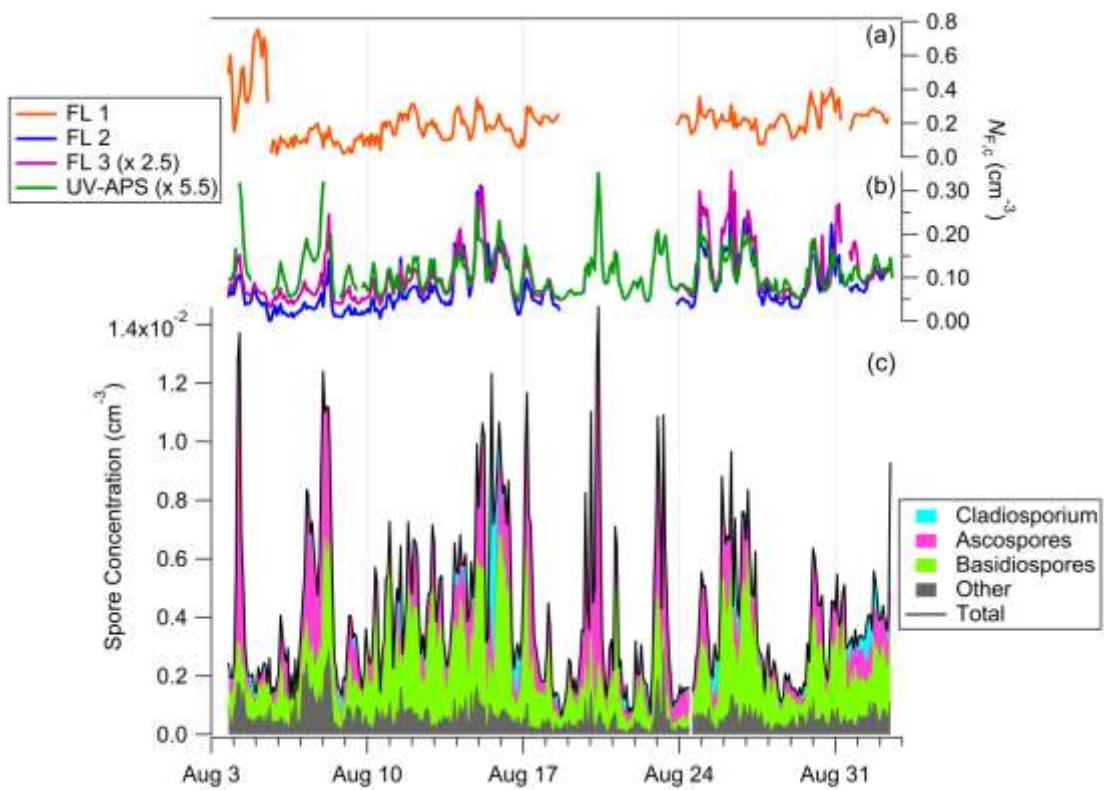


Figure 3. Average FBAP number size distributions measured by WIBS-4 for (a) FL1, (b) FL2 (c) FL3 and (d) UV-APS for the entire sampling period. Red traces show mean values, green traces show median, dark gray areas show 25-75th percentile, and light gray areas show 5-95th percentiles. Vertical scale is different in each panel.

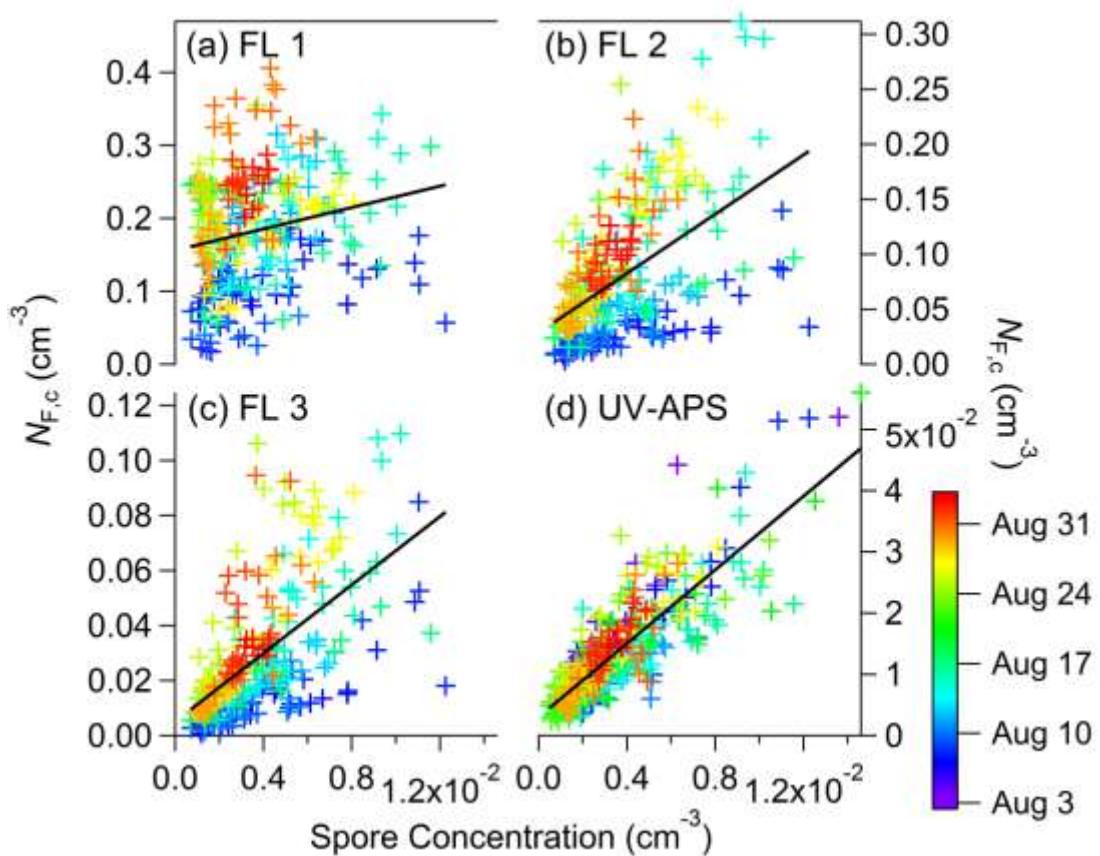
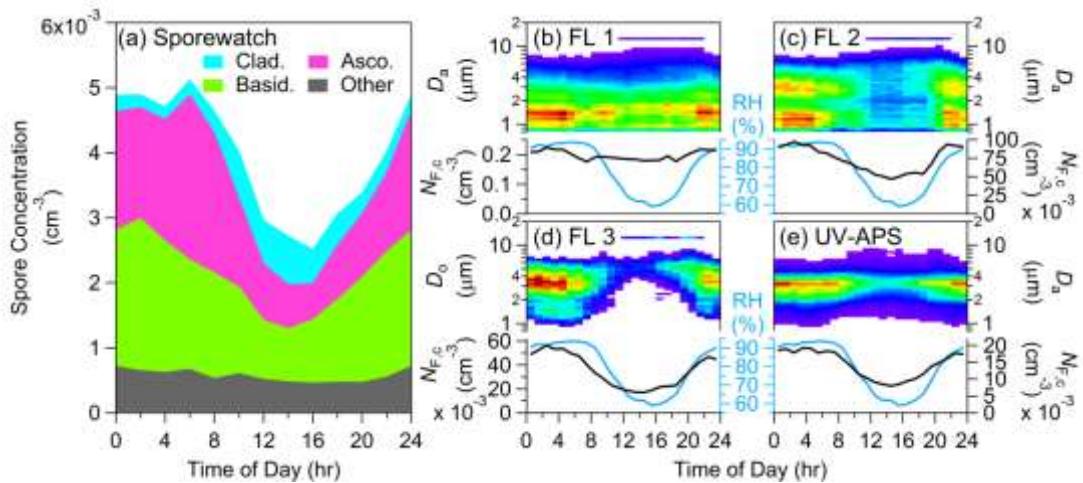
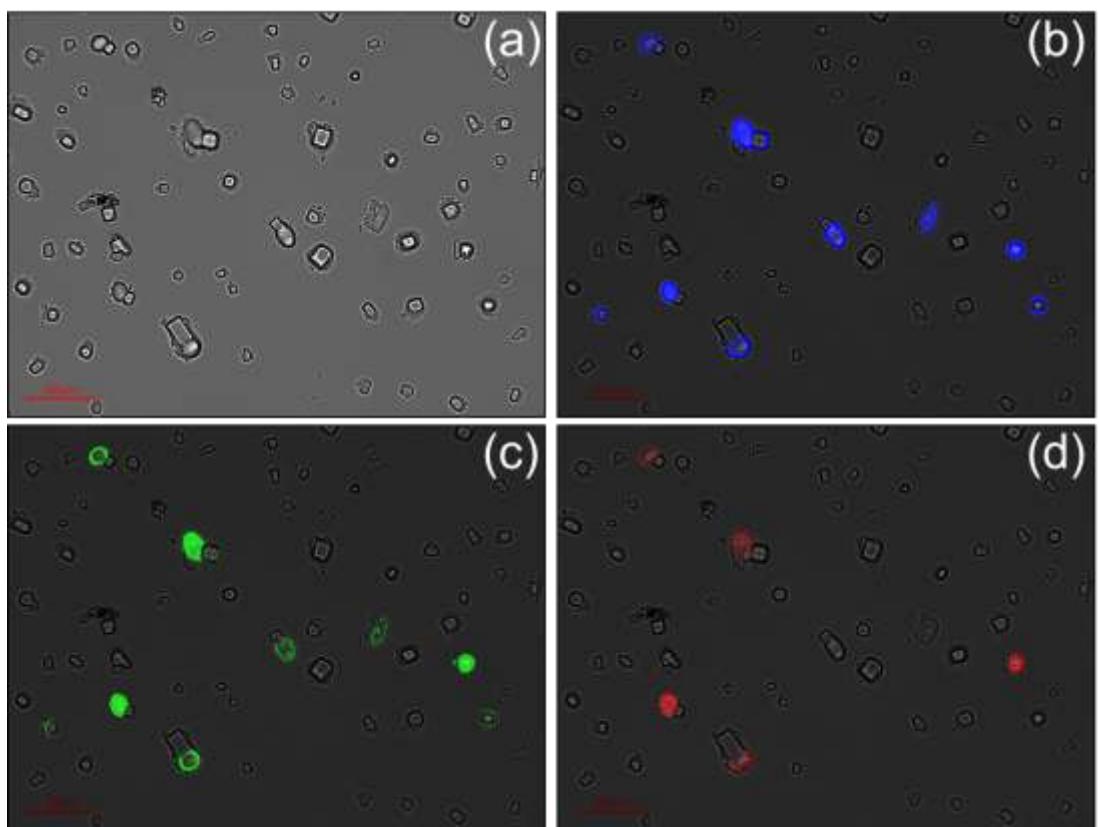

1035
1036
1037
1038
1039
1040
1041
1042
1043

Figure 4. Comparison of coarse ($> 1 \mu\text{m}$) fluorescent particle number ($N_{\text{F},\text{c}}$) between individual WIBS channels and UV-APS shown for entire measurement period. Coloured crosses show individual 5-minute data (a-c), and black diagonal lines show un-weighted linear fits. Correlation coefficients are: FL1, R^2 0.34 (a); FL2, R^2 0.68 (b); FL3, R^2 0.78 (c). Statistical overview of all data shown for each channel as box-whisker plots (d); black dot mean, horizontal gray bar median, black box 25-75th percentile, vertical bars 5-95th percentiles. Vertical scales are different in each correlation plot (a-c).



1044


1045 **Figure 5.** Temporal trends observed for coarse fluorescent particles (a-b) and spores
 1046 sampled by Sporewatch (c). WIBS FL1 $N_{F,c}$ plotted alone (a), WIBS FL2, FL3, and
 1047 UV-APS $N_{F,c}$ traces plotted together (b). Scaler value for FL3 and UV-APS traces
 1048 shown in legend, showing that these traces have been multiplied by the value to show
 1049 on one axis. All three vertical axes have different scales.

1050
1051 **Figure 6.** Demonstrated relationship of $N_{F,C}$ determined by the real-time instruments
1052 versus a sum of a subset of spores collected by the Sporewatch impactor. Spores here
1053 include: ascospores, basidiospores, and *Ganoderma spp*, which relate approx. 88% of
1054 total spore concentration (remaining percentage *Cladosporium spp.*). Crosses
1055 represent 2 hr measurement points, coloured by sampling date. Black lines represent
1056 un-weighted linear fits, with coefficients as follows: (a) FL1 ($m = 7.67$, $R^2 = 0.052$);
1057 (b) FL2 ($m = 14.03$, $R^2 = 0.290$); (c) FL3 ($m = 6.47$, $R^2 = 0.380$); (d) UV-APS ($m =$
1058 3.00 , $R^2 = 0.710$). All vertical axes have different scales.

1059 **Figure 7.** Diurnal plots of number concentrations from Sporewatch (a) and real-time
1060 fluorescence instruments (b-e) as median values for entire sampling period. Upper
1061 panel of WIBS and UV-APS plots (b-e) show size-resolved image, with colour scale
1062 qualitatively similar to Fig. 2 (warmer colours, higher concentration). Lower panel of
1063 the same plots show integrated fluorescent particle number ($N_{F,c}$; $D > 1 \mu\text{m}$) as black
1064 trace and relative humidity as blue trace. Vertical scale on $N_{F,c}$ axes not consistent.
1065 $N_{F,c}$ scale for (c-e) shown expanded by 10^3 .

1066
1067 **Figure 8.** Fluorescence microscopy images of ambient aerosols collected on MOUDI
1068 stage 5 (size range, D 1.0 – 1.8 μm) on 25 August, 03:00 – 07:00 (LT). Illumination
1069 source: (a) bright field, (b) $\lambda_{\text{ex}} = 340 – 380\text{nm}$, $\lambda_{\text{em}} = 435 – 485$, (c) $\lambda_{\text{ex}} = 465 –$
1070 495nm , $\lambda_{\text{em}} = 510 – 560$, (d) $\lambda_{\text{ex}} = 540 – 580\text{nm}$, $\lambda_{\text{em}} = 600 – 660$. Magnification \times
1071 1000.