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Abstract

We suggest that some metrics for quantifying distances in phase space are based on linearized
flows about unrealistic reference states and hence may not be applicable to atmospheric flows.
A new approach of defining a norm induced metric based on the total energy norm is proposed.
The approach is based on the rigorous mathematics of normed vector spaces and the law of5

energy conservation in physics. It involves the innovative construction of the phase space so
that energy (or a certain physical invariant) takes the form of a Euclidean norm. The metric can
be applied to both linear and nonlinear flows and for small and large separations in phase space.
The new metric is derived for models of various levels of sophistication: the 2-D barotropic
model, the shallow-water model and the 3-D dry, compressible atmosphere in different vertical10

coordinates. Numerical calculations of the new metric are illustrated with analytic dynamical
systems as well as with global reanalysis data. The differences from a commonly used metric
and the potential for application in ensemble prediction, error growth analysis and predictability
studies are discussed.

1 Introduction15

1.1 The context

In predictability studies, the sensitivity of numerical models to initial conditions is an important
topic. It has been demonstrated in Lorenz’s (1963) pioneering work that slightly different initial
states diverge exponentially over time. Thus, theoretical predictability is often measured by the
Lyapunov exponent, which is roughly speaking the long-term growth rate of the “separation”20

between neighbouring states (Lorenz, 1965). This characterizes only one aspect, the intrinsic
predictability, of a chaotic system (Yoden, 1987). In practice, prediction also involves assim-
ilating data to bring the first-guess modelled state into the “neighbourhood” of the observed
state, putting an extrinsic constraint on predictability. In ensemble-prediction methods, an clus-
ter of close initial model states may be generated around an analyzed state to yield “optimally25
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growing” error structures so as to cover most efficiently the range of forecast uncertainty and
guide targeted observations (Palmer et al., 1998; Mu et al., 2003).

In the preceding notions of “separation”, “neigbourhood” and “optimally growing”, the def-
inition of a metric that measures the distance between two states is fundamental. There are a
number of metrics used in the literature and many authors may hold the view that the definition5

of a metric is somewhat arbitrary a priori, especially in the weights given to the differently di-
mensioned state variables. The particular choice is often taken to depend on the application in
mind, whether for investigating the theoretical predictability in a model, estimating optimally
growing perturbations, or minimizing model departures from observations. For example, if tem-
perature is rather constant in a region, more emphasis may be given to wind in the metric used to10

evaluate the theoretical predictability in that region; if temperature forecast is particularly bad,
more emphasis may be put on temperature in the metric used to generate optimally growing
perturbations or to minimize initial model errors.

In principle, one can adopt any expression to measure the distance between two points in
the phase space of a dynamical system as long as the expression satisfies the properties of a15

metric. But only some expressions may have associated physical significance. For example,
geopotential height is often taken to represent well the wind and temperature in mid-latitude
regions through geostrophic and hydrostatic balance respectively. So in these regions, the phase
space is single-variate and the metric may be defined simply from the p1 norm, i.e. the domain
integral of the absolute difference in geopotential between two atmospheric states (Ding and Li,20

2007). In multi-variate phase space, the situation is more complex as there are various ways of
combining state variables into a single metric (Lorenz, 1969; Molteni and Palmer, 1993; Mu
et al., 2003). No doubt each of these definitions have its merits for the purposes they serve.
While the value of a metric for achieving a practical purpose is important in applications, our
current work is mainly concerned with the fundamental theoretical question: is there a distin-25

guished mathematical formulation of the metric that is consistent with the intrinsic dynamics of
a physical system? Without jumping too much ahead, the answer lies in having a well-reasoned
methodology to formulate such a metric rather than in a particular form of the metric itself.
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Energy-like metrics are most commonly used to measure the distance between two states of
the atmosphere. Some definitions look similar to wave energy (Bannon, 1995; Zou et al., 1997;
Kim et al., 2011), while others use quadratic expressions that resemble kinetic and available
potential energy (Buizza et al., 1993; Zhang et al., 2003; Leutbecher and Palmer, 2008; Rivière
et al., 2009). But none of these metrics are truly energy or energy differences, as already noted5

by some authors (e.g. Ehrendorfer and Errico, 1995). Palmer et al. (1998) summarized and
compared a number of metrics inspired by expressions of kinetic energy and total energy. Like
energy, enstrophy is another dynamical invariant under certain conditions and Palmer et al.
(1998) also investigated an enstrophy-like metric. But the commonality of such approaches lies
in (1) the identification of a dynamical invariant, and (2) the formulation of a metric. The former10

is rather well-established in atmospheric dynamical theory; it is the latter formulation that needs
clarification. We shall first review an often used metric as a concrete illustration of the problem.

1.2 An example of a metric

Talagrand (1981) considered dry, compressible flows linearized about a reference atmosphere
at rest with temperature T◦ and surface pressure p◦ in the absence of surface topography, where15

T◦ and p◦ are constant in time and uniform in space. The following integral of quadratic forms
over a horizontal domainA is conserved by the linearized flow when it is adiabatic and inviscid:

ET81 =
1

2

∫
A

p◦∫
0

(
u2 + v2 +

cp
T◦
T ′

2
)
dp dA+

1

2

∫
A

RT◦
p◦

p′
2
s dA, (1)

where cp and R are specific heat capacity at constant pressure and specific gas constant of dry20

air. The state variables u, v, T , and ps are zonal wind, meridional wind, temperature and surface
pressure respectively while primes denote perturbations from the reference state. Contrary to
what is stated in Sect. 4 of Ehrendorfer and Errico (1995), ET81 is not related to available
potential energy of the linearized system. In fact, its tendency is a small, time-varying fraction
of the true energy tendency. A derivation of ET81 is given in Sect. A1 of the Appendix. The25
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associated metric, MT81, proposed by Talagrand (1981) is given by

M2
T81 =

1

2

∫
A

p◦∫
0

(
(δu)2 + (δv)2 +

cp
T◦

(δT )2
)
dp dA+

1

2

∫
A

RT◦
p◦

(δps)
2 dA, (2)

where δ denotes the difference between two evolving atmospheric states. MT81 is likewise
invariant under the linearized dynamics.

The expression defined in Eq. (2) was originally formulated to study the convergence of the5

modelled state to the observed state with repeated data assimilation cycles in Talagrand (1981).
It was used later by a number of authors (Ehrendorfer and Errico, 1995; Errico, 2000; Mu et al.,
2009; Qin and Mu, 2012) to measure the evolving difference between two atmospheric states.
Unfortunately, in the latter applications, the uniform T◦ in Eq. (2) has lost its physical meaning
as a reference state about which linearization takes place due to large realistic values of lapse10

rates. As Talagrand (1981) noted, ET81 and MT81 are not conserved due to nonlinearity even if
realistic flows were adiabatic and inviscid. We note additionally that siginificant surface topog-
raphy like the Tibetan plateau, the Rockies and the Andes would also invalidate the conservation
of ET81 in realistic flows and renders questionable the use of MT81 as a metric. Many authors
are probably aware of these shortcomings but for the lack of a better choice, continue to employ15

Eq. (2).
At a more fundamental level, while a dynamical invariant is a good metric to diagnose the

change in a system due to data assimilation (which disrupts model dynamics and hence does not
conserve that invariant), it is not a suitable metric to investigate sensitivity to initial conditions
or to search for optimally growing initial perturbations precisely because it does not change20

during dynamical evolution. The former objective was the subject of Talagrand (1981) and he
succeeded in finding MT81 as such an invariant metric in linearized flows. The latter two objec-
tives were the interests of many other authors (Ehrendorfer and Errico, 1995; Errico, 2000; Qin
and Mu, 2012) who used MT81 or MT81-like metrics, sometimes appealing to the conditioned
conservation of ET81 as a movtivation. But for ET81 to be conserved, the flow has to be linear25

which also means that MT81 is invariant and useless for detecting growing perturbations. This
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inherent contradiction was not realized in the literature no doubt because realistic flows mani-
fest significant nonlinearity, thus never revealing the otherwise invariant property of MT81, but
also never conserving ET81. This makes MT81 no more or less justifiable than other metrics,
e.g. the total difference energy of Zhang et al. (2007) which is MT81 less the surface pressure
contribution. Talagrand (1981) clearly did not intend his metric to be employed for those latter5

purposes while the community continues to use MT81 without a firm theoretical basis.

1.3 The essential problem

The essential question that this paper addresses is this: can a metric be theoretically determined
a priori, other than being designed to fit a particular practical purpose a posteriori? In this the-
oretical work, we aim to develop a methodology to construct new non-invariant metrics based10

rigorously and consistently on invariant norms. These metrics should overcome the limitations
of having unrealistic reference states and the need to linearize the flow about those states.

The organization of the paper is as follows. Section 2 illustrates the methodology by con-
structing energy-based metrics for the 2-D barotropic model and for the shallow-water model.
Section 3 follows the same methodology and derives energy-based metrics for the dry, com-15

pressible model in different vertical coordinates. In Sections 4 to 6, the new metrics are applied
to analytic dynamical systems and reanalysis data of the atmosphere. Finally in Section 7, we
discuss the theoretical and practical advantages of using an invariant-norm induced metric.

2 Basic methodology for simple fluid systems

2.1 Mathematical foundation20

A norm on S can be any function ‖ • ‖ : S→ [0,+∞) which satisfies the following properties
(Davidson and Donsig, 2010): non-negativity, absolute homogeneity, triangle inequality, and is
zero only for the zero vector. Although given the flexibility of defining the norm, some norms
may be interpreted with physical meanings while others may not when the vector space repre-
sents the state of a physical system. For atmospheric dynamical systems, a natural candidate for25
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the norm is the square-root of energy which is invariant in the unforced flow. (“Forcing” here
refers generally to diabatic heating, dissipation, mechanical forcing or gain/loss through domain
boundaries.) The importance of the energy-norm is its conservation property so that any change
in the norm means there is a net forcing or energy flux in or out of the system.

In a normed vector space, the metric between two vectors can be defined as the norm of the5

difference between them, and is called the “norm induced metric”. But there are other ways of
constructing a metric without first defining a norm, because a metric only needs to satisfy the
following properties: non-negativity, identity of indisernibles, symmetry and triangle inequality
(Davidson and Donsig, 2010). When an inner product is defined for a vector space, the inner
product of the difference between two vectors with itself yields the square of the norm-induced10

metric. In the literature, both the norm (Buizza et al., 1993; Ehrendorfer and Errico, 1995;
Leutbecher and Palmer, 2008) and the inner product (Palmer et al., 1998) have been used to
define a metric. We have the following hierarchy (Davidson and Donsig, 2010)

{metric space}% {normed space}% {inner product space} .

In this section, the energy norm and the norm induced metric are constructed on the phase15

space of two simple fluid systems, namely the 2-D barotropic model and the shallow-water
model as

an illustration of the basic methodology.
The two models are assumed to cover a horizontal domain A with periodic lateral boundary

conditions.20

2.2 2-D barotropic model

For the 2-D barotropic model in Cartesian coordinates (x,y), the kinetic energy,

E =
1

2

∫
A

(
u2 + v2

)
dA, (3)

is conserved, where u = (u,v) is the velocity vector. The barotropic flow is fully described by
the phase vector x = (u,v), where u and v are functions on the domain A and all the possible25
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states form the vector space {x ∈ S}. It is easy to verify that energy could be used to defined a
norm such that ‖x‖2 = E. This is the familiar Euclidean norm on the vector space.

Let x1 and x2 be two vectors in S. The norm induced metric is defined by

‖x1−x2‖2 =
1

2

∫
A

(
(u1−u2)2 + (v1− v2)2

)
dA, (4)

which is similar to the “error kinetic energy”defined by (Lorenz, 1969). For ease of reference,5

the norm induced metric can also be called the “separation” in this work.

2.3 Shallow-water model

For the shallow-water model, the sum of kinetic and geopotential energy,

E =
1

2

∫
A

(
hu2 + gh2

)
dA, (5)

is conserved (Vallis, 2006), where h is the height of the water surface, g is the gravitational10

acceleration, and the other symbols have the same meaning as in the barotropic model. Before
making use of this energy expression as a norm, the subtle question is how the phase vector
should be constructed.

The easiest way of constructing the phase space is adding another “dimension” to the phase
space of the barotropic model, which results in a three-dimensional phase vector (u,v,h).15

However,
√
E is not a norm in this vector space because it does not have the property of

absolute homogeneity, i.e.
√
E[µu,µv,µh] 6= ‖µ‖

√
E[u,v,h], where µ is a real number.

Moreover, since the integrand in Eq. (5) is not quadratic, despite being non-negative for a
single state, it is not so for the corresponding difference vector between two states. So we also
cannot use Eq. (5) to define a metric for this phase space.20

The phase vector is constructed instead as
(√

hu,
√
hv,h

)
so that the energy is the Euclidean

norm in this vector space. Let x1 =
(√
h1u1,

√
h1v1,h1

)
and x2 =

(√
h2u2,

√
h2v2,h2

)
be two

8
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phase vectors. The norm induced metric or separation, M , is given by

M2 = ‖x1−x2‖2 =
1

2

∫
A

(
(δ
√
hu)2 + g(δh)2

)
dA, (6)

where δ denotes taking the difference between the two phase vectors, e.g. δ
√
hu = (

√
h1u1−√

h2u2).
In mathematics, the axiomatic approach usually defines a norm after the construction of a5

vector space. But in physics, we suggest that it is more useful to first identify the physical
quantity which we desire to be the norm and then try to construct the vector space such that
this quantity is indeed a norm on that vector space. In the above example, we have adopted the
latter approach and constructed the vector space such that energy is the familiar Euclidean norm
again. The norm induced metric follows naturally thereafter.10

2.4 Linearization of separation

Let the norm be E = f (a,b) + g (a,b), where f and g are positive definite functions of vari-
ables a and b, so that E is the Euclidean norm on the vector space

{
x ∈ S |x =

(√
f,
√
g
)}

. If
variables a and b are observed and recorded in practice rather than f and g, it is more conve-
nient to transform

(√
f,
√
g
)

coordinates to the more conventional (a,b) coordinates. Although15

the relation between the two coordinate systems may involve nonlinear transformations, the
increments

(
δ
√
f,δ
√
g
)

can be approximated by linear combinations of (δa,δb) assuming the
increments are small (Fleisch, 2011). One example is the transformation from Cartesian coor-
dinates (x,y,z) to spherical polar coordinates (λ,φ,r) where λ is longitude, φ is latitude and r
is the distance from origin (Fleisch, 2011).20

The norm induced metric in
(√
f,
√
g
)

coordinates is given by

M2 =
(
δ
√
f,δ
√
g
)(

δ
√
f,δ
√
g
)T

. (7)
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Using the total increment theorem,M can be approximated in the tangent space {y ∈ T |y = (δa,δb)}
by

M2 ≈ (δa,δb)G(δa,δb)T , (8)

where the metric tensor

G =
1

4

(
f2a/f + g2a/g fafb/f + gagb/g

fafb/f + gagb/g f2b /f + g2b/g

)
, (9)5

where the subscripts denote derivatives with respect to that variable. Notice that when f = a2

and g = b2, the metric tensor is simply the identity matrix and Eq. (8) reproduces the Euclidean
norm.

In the shallow-water model, we may transform
(√

hu,
√
hv,h

)
coordinates to the more con-

ventional (u,v,h) coordinates. If two vectors x1 and x2 are close to each other, the total in-10

crement δ
√
hu can be linearized about a reference state which could be either one of the two

vectors. Hence, Eq. (6) can be rewritten as

M2 ≈ 1

2

∫
A

(δu,δv,δh)

 h 0 u/2
0 h v/2
u/2 v/2

(
u2 + v2

)
/4h+ g

δuδv
δh

dA, (10)

which is non-Euclidean as the metric tensor matrix is not diagonal. The separation-squared
between two neighbouring states is linearized about one of them but importantly, the dynamics15

governing the evolution of both states remain nonlinear.

3 Dry compressible atmosphere

In this section, the definition of the separation metric is extended using the same methodology
as above to fully compressible equations of a dry, adiabatic and inviscid atmosphere in different
vertical coordinates. The horizontal domain A is assumed to be closed or periodic.20

10
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3.1 Pressure coordinate

The formulation of a metric in pressure coordinate p is useful because much observation and
reanalysis data are presented on pressure levels. In p-coordinate, it can be proven that the fol-
lowing quantity is conserved (Trenberth, 1997)

E =
1

g

∫
A

pH∫
0

(
1

2
u2 + cpT + ΦH

)
dp dA, (11)5

where T is temperature, ΦH is surface geopotential, pH is surface pressure, cp is the specific
heat capacity of dry air at constant pressure, and the other symbols are as before. The energy
in Eq. (11) is not a norm in the vector space (u,v,

√
T ) as pH also appears as a variable in the

upper limit of the first integral. This means Eq. (11) cannot be used directly to define the norm
induced metric.10

To make further progress, consider a constant reference pressure pr close to but smaller than
pH such that the vertical integration of the first two terms in Eq. (11) could be separated into a
main contribution [0,pr] and a boundary-layer contribution [pr,pH ]. In the boundary layer, the
kinetic energy u2/2 is always much less than cpT and the temperature does not deviate much
from a reference temperature Tr(x,y), which could be conveniently defined by the vertical15

gradient of a hydrostatically balanced geopotential field Φref (x,y,p) at pressure pr:

Tr =−pr
R

(
∂Φref

∂p

)
p=pr

. (12)

So Eq. (11) can be approximated by

E ≈ 1

g

∫
A

pr∫
0

(
1

2
u2 + cpT

)
dp dA+

1

g

∫
A

(cpTr (pH − pr) + ΦHpH) dA, (13)

where (pH − pr) represents the boundary-layer mass. Note that the atmosphere stays close to20

the reference state Φref (x,y,p) because hydrostatic balance must be dominant for the pressure
11
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coordinate to be reasonably employed. This implies that surface pressure and boundary-layer
temperature must always stay close to their reference values. So the above approximation is
as good as the hydrostatic balance implicitly assumed in pressure coordinate and a modified
energy expression differing by a constant from Eq. (13) can be defined:

Emod =
1

g

∫
A

pr∫
0

(
1

2
u2 + cpT

)
dp dA+

1

g

∫
A

(cpTr + ΦH)pH dA. (14)5

The energy expression Eq. (14) is used to define the norm with the phase vector defined as
x =

(
u,v,
√
T ,
√
pH

)
since ΦH and Tr are time-independent. The separation metric of com-

pressible flows in pressure coordinate is given by

M2 =
1

g

∫
A

pr∫
0

(
1

2
(δu)2 + cp

(
δ
√
T
)2)

dp dA+
1

g

∫
A

(cpTr + ΦH)(δ
√
pH)2 dA, (15)

where the three contributions by differences in wind, temperature and surface pressure are10

henceforth called kinetic, enthalpy and surface pressure components of separation-squared re-
spectively.

Equation (15) could be approximated in terms of perturbations of the more conventional
variables u, v, T and pH as:

M2 ≈ 1

g

∫
A

pr∫
0

(
1

2
(δu)2 + cp

(δT )2

4T

)
dp dA+

1

g

∫
A

(cpTr + ΦH)
(δpH)2

4pH
dA. (16)15

The approximation in Eq. (15) only requires δT/T � 1 because hydrostatic balance then im-
plies δpH/pH � 1.

The separation metric in Eq. (16) is linearized in the sense that it has been transformed into
the tangent linear space at (T,pH). It is different from MT81 in Eq. (2) in the coefficients of

12
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temperature difference (δT )2 and surface pressure difference (δpH)2 by factors 2 and 2R/cp
respectively. In our expression, the reference state is realistic and can evolve nonlinearly with
time. We also account for the influence of surface topography. Moreover, no linearization is
assumed in the flow dynamics in developing Eq. (16) and a more accurate expression for the
separation metric is available in Eq. (15) for atmospheric states that are not close, i.e. δT/T &5

0.1, or less likely, δpH/pH & 0.1.

3.2 Isentropic coordinate

The use of potential temperature as a vertical coordinate dates back half a century when for
example, Lagrangian parcel trajectories were traced on isentropic surfaces (Green et al., 1966).
Hoskins (1991) further proposed a potential vorticity - potential temperature view of the general10

circulation which has advantages in understanding atmospheric dynamics and advanced mid-
latitude weather forecasts. Thus, it is of both theoretical and practical interest to examine our
seperation metric in isentropic coordinate.

In isentropic coordinate θ, the conserved energy in Eq. (11) takes the form (Trenberth, 1997;
Staniforth and Wood, 2003)15

E =

∫
A

∞∫
θH

(
1

2
u2 + θΠ + ΦH

)
σ dθ dA, (17)

where σ =−g−1∂p/∂θ is isentropic density, Π = cp (p/1000 mb)R/cp is Exner’s function, θH
is surface potential temperature, and the other symbols are as before. Similar to the case of pres-
sure coordinate, we define an appropriate reference potential temperature at the lower boundary
θr (x,y) to separate the main contribution and the boundary-layer contribution as thus:20

E ≈
∫
A

∞∫
θr

(
1

2
σu2 + θσΠ +σΦH

)
dθ dA+

∫
A

θr∫
θH

(θΠ + ΦH)σ dθ dA, (18)

13
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where we have ignored the kinetic energy in the boundary layer as before. Since θΠ = cpT and
σdθ = ρdz, where ρ is mass density and z is height, the boundary-layer term can be evaluated
as

θr∫
θH

(θΠ + ΦH)σ dθ =

zθr∫
zH

(
1 +

ΦH

θΠ

)
cp
R
p dz ≈

(
1 +

ΦH

θrΠr

)
cp
R
pr (zθr − zH) , (19)

where zH is the surface topography, zθr = z(x,y,θr, t) is the elevation of the θr-surface as fur-5

ther elaborated in Sect. 3.5. The reference boundary-layer pressure pr(x,y) and Exner’s func-
tion Πr(x,y) are defined from the vertical gradient of the hydrostatically balanced Montgomery
potential field Mref (x,y,θ) at isentropic level θr:

Πr ≡ cp (pr/1000 mb)R/cp =

(
∂Mref

∂θ

)
θ=θr

. (20)

This allows a modified energy expression differing from Eq. (18) by a constant to be defined:10

Emod =

∫
A

∞∫
θr

(
1

2
σu2 + θσΠ +σΦH

)
dθ dA+

cp
R

∫
A

(
1 +

ΦH

θrΠr

)
przθr dA. (21)

We define the phase vector as x =
(√

σu,
√
σv,
√
σΠ,
√
σ,
√
zθr

)
so that the separation met-

ric in isentropic coordinate induced by the Euclidean norm in Eq. (21) is given by

M2 =

∫
A

∞∫
θr

(
1

2

(
δ
√
σu
)2

+ θ
(
δ
√
σΠ
)2

+ ΦH

(
δ
√
σ
)2)

dθ dA

+
cp
R

∫
A

(
1 +

ΦH

θrΠr

)
pr (δ
√
zθr)

2 dA. (22)15

14
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Compared to the separation metric in pressure coordinate, Eq. (22) depends on one more ther-
modynamic variable, the isentropic density σ, because the flow is compressible in isentropic
coordinate whereas it is nondivergent in pressure coordinate. The linearized separation-squared
in the tangent linear space (u,v,Π,σ,zθr) is given by the non-Euclidean form:

M2 ≈
∫
A

∞∫
θr

(
σ

2
(δu)2 + θσ

(δΠ)2

4Π
+
(
u2/2 + θΠ + ΦH

) (δσ)2

4σ
+ (u · δu+ θδΠ)

δσ

2

)
dθ dA5

+
cp
R

∫
A

(
1 +

ΦH

θrΠr

)
pr

(δzθr)
2

4zθr
dA. (23)

The variation of the elevation of the isentropic surface θr can be further related to the variation
of the surface potential temperature at each location (x,y):

δzθr ≈ −
δθH
Θzr

, (24)

Θzr = − g

θr

(
∂2Mref

∂θ2

)−1
θ=θr

, (25)10

where Θzr(x,y) is the reference (positive) static stability in the boundary layer defined consis-
tently above as:

∂θ

∂z

∂2M

∂θ2
=
∂θ

∂z

∂Π

∂θ
=
∂p

∂z

dΠ

dp
=−gρRΠ

cpp
=−g Π

cpT
=−g

θ
(26)

3.3 Geopotential height coordinate

Both pressure and isentropic coordinate formulations above are limited by their underlying15

assumption of hydrostatic balance. Current numerical weather prediction (NWP) models are
able to model nonhydrostatic flows at mesoscale resolution, and many predictability studies
are conducted based on NWP model results (Zhang et al., 2007; Hohenegger and Schar, 2007;
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Qin and Mu, 2012). Therefore, it is useful to derive the separation metric without making the
hydrostatic assumption and here we make use of the geopotential height coordinate.

In geopotential height coordinate, z ≡ Φ/g and total energy is the sum of kinetic energy,
internal energy and geopotential energy (Vallis, 2006)

E =

∫
A

∞∫
zH

(
1

2
ρv2 + ρcvT + ρgz

)
dz dA, (27)5

where v = (u,v,w) is the 3D velocity, cv is the specific heat capacity for dry air at constant
volume, and the other symbols are as before. For an ideal gas, Eq. (27) can be rewritten as

E =

∫
A

∞∫
zH

(
1

2
ρv2 +

cv
R
p+ ρgz

)
dz dA. (28)

By defining the phase vector as x =
(√
ρu,
√
ρv,
√
ρw,
√
p,
√
ρ
)
, Eq. (28) specifies a Eu-

clidean norm. Hence, the separation metric is given by10

M2 =

∫
A

∞∫
zH

(
1

2
(δ
√
ρv)2 +

cv
R

(δ
√
p)2 + gz (δ

√
ρ)2
)
dz dA. (29)

Actually, M is not dependent on the precise set of variables E is expressed in. The separation
metric induced by Eq. (27) is the equivalent to that induced by Eq. (28). Compared to the
separation metric in pressure and isentropic coordinate, Eq. (29) depends on w because the flow
is nonhydrostatic. Note that the absence of a boundary-layer term in Eq. (29) is because the15

bottom boundary is rigid in geopotential height coordinate.
Equation (29) can be linearized and approximated in (u,v,w,p,ρ)-space as

M2 ≈
∫
A

∞∫
zH

(
ρ

2
(δv)2 +

cv
R

(δp)2

4p
+
(
v2/2 + gz

) (δρ)2

4ρ
+

v

2
· δvδρ

)
dz dA, (30)
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The linear approximation requires the fractional difference δp/p and δρ/ρ to be much smaller
than one. The terms above are physical analogues to those in Eq. (10) for the shallow water
model, apart from the additional internal energy term. Equation (30) can be further simplified
to

M2 ≈
∫
A

∞∫
zH

(
1

2
ρ(δv)2 +

cv
R

(δp)2

4p
+ gz

(δρ)2

4ρ

)
dz dA, (31)5

if |δv|/|v| � |δρ|/ρ holds true over most of the integration domain.

3.4 Generalized coordinate and finite upper boundary

In the preceding subsections, the upper boundary of the atmosphere is always assumed to be
at zero or infinity. But it is impossible to span the whole atmosphere in a numerical model
and a finite upper boundary is prescribed. In this section, we treat the case of a generalized10

vertical coordinate with finite upper and lower boundaries. The two boundaries are assumed to
be material surfaces to conserve the mass between them.

It has been shown (Kasahara, 1974; Staniforth and Wood, 2003) that energy for a dry, com-
pressible atmosphere in generalized vertical coordinate s takes the form,

E =

∫
A

sT∫
sH

((
u2 + v2 + εvw

2
)
/2 + cvT + Φ

)
σsds dA, (32)15

where σs = ρ∂z/∂s, Φ is the geopotential and δv is the switch between nonhydrostatic (εv = 1)
and hydrostatic (εv = 0) flows. The subscripts H and T denote values at the lower and upper
boundaries respectively and the other symbols are as before. The integrand is similar to that in
geopotential height coordinate except the density is multiplied by the Jacobian of the vertical
coordinate transformation.20

E is conserved only if the upper boundary is a rigid lid, i.e. zT = zT (x,y), so that no work is
done there. But this boundary condition is not realistic for the atmosphere. Instead, we consider
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the case of an “elastic lid”, i.e. pT = constant, where an energy-like invariant exists (Staniforth
et al., 2003). For a nonhydrostatic atmosphere, this invariant is

E =

∫
A

sT∫
sH

(
σs
(
u2 + v2 +w2

)
/2 +σscvT +σsΦ + pTJ

)
ds dA, (33)

where J = ∂z/∂s is the Jacobian of the vertical coordinate transformation. The last term in
the integrand arises from work done at the upper boundary. For a hydrostatic atmosphere, the5

energy-like invariant in Eq. (33) is simplified by combining pressure work, internal energy and
gain in geopotential above the surface into enthalpy and dropping away the vertical velocity
contribution (Staniforth et al., 2003) to get

E =

∫
A

sT∫
sH

((
u2 + v2

)
/2 + cpT + ΦH

)
σs ds dA. (34)

Note that the energy density in Eq. (34) reproduces the energy density in pressure and isentropic10

coordinates with zero and infinite upper boundary respectively (cf. Eq. (11) and (17).
As before, Eq. (33) and Eq. (34) can be approximated by decomposing E into an integral

with constant integration limits [sL,sU ] over the main atmospheric body and boundary-layer
contributions over [sH ,sL] and [sU ,sT ]. To make use of the rigid lower boundary condition,
we integrate with respect to z over the lower boundary layer (except for s≡ p, see Sect. 3.1).15

Likewise, to make use of the elastic upper boundary condition, we integrate with respect to
p over the upper boundary layer. We make the hydrostatic approximation in both boundary-
layer integrations because hydrostatic balance is still dominant in the atmosphere even when
the flow is nonhydrostatic. Thus, modified energy expressions for the nonhydrostatic and hy-
drostatic atmosphere,Enhmod andEhmod respectively, can be defined after dropping away constant20
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contributions:

Enhmod =

∫
A

sU∫
sL

(
σs
(
u2 + v2 +w2

)
/2 + cvσsT +σsΦ + pTJ

)
ds dA

+

∫
A

(
cvTL + ΦH +

pT
ρL

)
ρLzL dA

+
1

g

∫
A

(
cp
R

pT
ρU

+ ΦU

)
pU dA, (35)

5

Ehmod =

∫
A

sU∫
sL

(
σs
(
u2 + v2

)
/2 + cpσsT +σsΦH

)
ds dA

+

∫
A

(cpTL + ΦH)ρLzL dA

+
1

g

∫
A

(
cp
R

pT
ρU

+ ΦH

)
pU dA, (36)

where ρL and TL are reference functions at sL, while ρU and ΦU are reference functions at sU ,
all of which are functions of (x,y) only. zL is the elevation at sL and pU is the pressure at sU . So10

the phase vectors xnh and xh respectively for the nonhydrostatic and hydrostatic atmosphere
are defined as

xnh =
(√
|σs|u,

√
|σs|v,

√
|σs|w,

√
|σs|T ,

√
|σs|Φ,

√
|J |,
√
zL,
√
pU

)
, (37)

xh =
(√
|σs|u,

√
|σs|v,

√
|σs|T ,

√
|σs|,
√
zL,
√
pU

)
. (38)

and the norm induced metrics can be defined as before. For a nonhydrostatic atmosphere, the15

degree of freedom |J | in Eq. (33) compensates for the loss in internal energy due to work done
19
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by the atmosphere at the upper boundary. But |J | is not a degree of freedom for a hydrostatic
atmosphere. The reason is that when pressure p is kept fixed, cp(dT )p ≡ (d̄Q)p so that enthalpy
in Eq. (34) can only be changed by heat transfer and is invariant to work done at the upper
boundary.

In geopotential height coordinate (s≡ z), the Jacobian J is identical to one and so drops out5

from the phase vector of a nonhydrostatic atmosphere, while Φ is a function of the coordinate
only and so

√
ρ and not

√
ρΦ is the phase coordinate. The lower-boundary coordinate is time-

independent (zL ≡ zH ) and so the lower-boundary integrals are constant and can be dropped
from Eq. (35) and (36). So our generalization is consistent with the results of Sect. 3.3.

In pressure coordinate (s≡ p), the ”density” |σs|= 1/g is a constant and so drops out from10

the phase vector. The upper-boundary coordinate is constant (pU ≡ pT ) and so the upper-boundary
integrals are also be constant and can be dropped from Eq. (36). So the separation metrics in
Eq. (15) and (16) in pressure coordinate are still valid for an atmosphere with an elastic lid,
although the vertical integrals start from pT instead of zero.

When the atmosphere has an elastic lid, the metrics for geopotential height and isentropic15

coordinates have additional upper-boundary terms while the vertical integrals over the main at-
mospheric body have finite constant upper limits, unlike Eq. (22) and (29). The pressure change
δpU on the constant upper-limit coordinate surface is directly related to the movement of the
elastic lid as follows:

δpU (zU )≈ gρU δzT , (39)20

where ρU is the reference mass density at zU in geopotiential height coordinate;

δpU (θU )≈ gρU
ΘzU

δθT =
gcp
R

pT
ΠT

δθT
θUΘzU

(40)

where ΘzU is the reference static stability at θU defined similarly to Eq. (25) and ΠT is the
constant Exner’s function on the elastic lid in isentropic coordinate.
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3.5 Elevation at the top of the lower boundary layer

Geopotential is assigned to be zero at the lowest point on Earth’s surface for energy to satisfy
the non-negative requirement of a norm. So the null vector corresponds to a state where Earth’s
surface is flat. This zero-point is not arbitrary as it is not possible to extract any more geopoten-
tial energy from this point by moving air around. So by definition, geopotential height z is also5

zero at the lowest point on Earth’s surface.
zL in Eq. (35) and (36) (or zθr in Eq. (29) for θ-coordinate) is the elevation of the coordinate

surface sL at the top of the lower boundary layer (or θr for θ-coordinate). Elevation is really
just a geometric coordinate that can have a zero-point at any level. Thus an arbitrary constant
can be added to Enhmod or Ehmod so that zL is arbitrary to a constant value. In other words, zL10

need not be identical to the geopotential height z at sL as is implicitly assumed so far. This
means our theoretical formulation of the norm and norm induced metric is not yet complete
at this juncture. (There is no corresponding problem at the upper boundary because pU is a
thermodynamic coordinate of which the zero-point is well-defined physically.)

In pressure coordinate, we treat the lower boundary differently, integrating with respect to p15

instead of z. The basic reason is that the formulation is simpler in pressure coordinate: the phase
space has one less state variable (as “density” is a constant in pressure coordinate), the top of
the boundary layer, pr, is constant and the phase coordinate arising from the lower-boundary
contribution is a well-defined thermodynamic function,

√
pH . Moreover, our formulation in Eq.

(16) has the advantage of sharing essentially same form as the already widely used MT81 in20

Eq. (2) (apart from factors of 2 and 2R/cp in the temperature and surface pressure terms and
the inclusion of surface topography). In contrast, integrating with respect to z leads to a phase
coordinate

√
zL where zL is arbitrary to a constant and in general, one must assume reference

values for two thermodynamic functions (TL and ρL) instead of one.
The uniqueness of the pressure coordinate allows us to calibrate zL by implementing Eq. (36)25

for s≡ p and requiring that the lower boundary-layer contribution to the energy norm be equal
to that in Eq. (14). Hence,
pH
g

= ρL (zL + zo) , (41)
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where zL is the geopotential height at sL as before and zo is the arbitrary constant to be cali-
brated. From hydrostatic balance, to first order,

pH − pr = gρL (zL− zH) , (42)

where pr is the time-independent reference pressure at the top of the boundary layer in pressure
coordinate as defined in Sect. 3.1. Eq. (41) and (42) imply5

zo =−zH +
pr
gρL

=−zH +
RTr
g
, (43)

where Tr is the reference boundary-layer temperature in pressure coordinate as defined in Sect.
3.1.

Now we define a generalized “local elevation”

ZL
def
= zL− zH +

RTL
g

, (44)10

which is the elevation from a zero-point located locally at a distance RTL/g below the surface.
RTL/g is the density scale height derived from the reference lower boundary-layer temperature
TL(x,y) in the generalized coordinate. The zero-point of local elevation is shallower under-
ground in regions of high terrain. When we add the relevant constants to Enhmod and Ehmod,
the phase coordinate arising from the lower boundary condition becomes the locally calibrated15 √
ZL instead of the globally calibrated, geopotential-based

√
zL. Note that the definitions of

geopotential and geopotential height are not affected by this local calibration.
Application of the calibration in isentropic coordinate leads to zθr being replaced by

Zθr
def
= zθr − zH +

R

gcp
θrΠr, (45)

which is the local elevation of the θr-surface in Sect. 3.2. This fixes the hidden problem in Eq.20

(23), and hence in Eq. (22), where the boundary-layer contribution could be arbitrarily small
22
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because zθr in the denominator of the integrand is arbitrary to a constant. In pressure coor-
dinate, the local elevation actually measures surface pressure as it can be shown that ZL =
(pH/pr)(RTr/g). Our theoretical formulation is now complete and consistent among all coor-
dinates.

4 Example I: Geostrophic balanced flow of shallow-water model5

In this section, the separation metric of the shallow-water model is applied to an axisymmetric
geostrophically balanced flow in polar coordinates in a rotating frame. Let r and λ be the radial
and angular coordinates respectively, and u and v be the radial and azimuthal velocity compo-
nents respectively, and the rest symbols follow the same notation as previous sections. The flow
is initially at rest with height given by10

h◦ =

{
−h′◦+H◦ r < a1

H◦ r > a1,
(46)

where H◦ is the basic height and h′◦ is the initial disturbance. The initial potential vorticity
profile is

ξ =
f + ζ

h
=

{
f

−h′◦+H◦
r < a1

f
H◦

r > a1,
(47)

where ξ is potential vorticity (PV), f is the Coriolis parameter (or “planetary” vorticity), ζ =15

r−1∂ (rv)/∂r is the relative vorticity. The geostrophic balanced state can be solved analytically
by PV conservation without assumption of h′◦�H◦ as pointed by Mak (2011), where he gave
the non-dimensional solution of geostrophic adjustment in Cartesian coordinates. The boundary
conditions are: ∂h/∂r = 0 at r = 0 and h= 0 as r→∞, which means the azimuthal velocity
at the origin is zero and the perturbation dies away at infinity.20

For simplicity, the following non-dimensional variables are introduced:

h̃′ =
h

H◦
− 1, r̃ =

r

Ld
, ṽ =

v

fLd
, ξ̃ =

ξ

f/H◦
, (48)
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where h̃′ is the non-dimensional perturbation height and Ld =
√
gH◦/f is the Rossby radius

of deformation. As finally axisymmetry and geostrophic balance is restored, ũ= 0 and ṽ =
∂h̃′/∂r̃. Since the initial disturbance could be strong, it is necessary to consider the advection
of fluid columns from initial positions (Mak, 2011). Let a2 be the new PV discontinuity point,
i.e. a2− a1 is the displacement of the PV boundary. Then the non-dimensional conservation of5

PV becomes

∂2h̃′

∂r̃2
+ 1

r̃
∂h̃′

∂r̃ + 1

h̃′+ 1
=

{
1/η r̃ < a2/Ld

1 r̃ > a2/Ld,
(49)

where η =−h′◦/H◦+ 1. The solution is determined by parameters h′◦/H◦ and a2/Ld.
Solving Eq. (49) separately for r̃ < a2/Ld and r̃ > a2/Ld and matching the solutions at r̃ =

a2/Ld gives the balanced perturbation height10

h̃′ =

−
h′◦
H◦

(
1− I0(r̃/

√
η)

M(a2/Ld)

)
r̃ ≤ a2/Ld

− h′◦
H◦

K0(r̃)
N(a2/Ld)

r̃ > a2/Ld,
(50)

where Iα and Kα are modified Bessel functions of the first and second kind, and

M(x) = I0 (x/
√
η) +

1
√
η

K0 (x)

K1 (x)
I1 (x/

√
η) , (51)

N(x) = K0 (x) +
√
η
I0
(
x/
√
η
)

I1
(
x/
√
η
)K1 (x) . (52)

The balanced velocity can be obtained as15

ṽ =

 h′◦
H◦

1√
η

I1(r̃/
√
η)

M(a2/Ld)
r̃ ≤ a2/Ld

h′◦
H◦

K1(r̃)
N(a2/Ld)

r̃ > a2/Ld,
, (53)
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where a2 is determined by the mass conservation equation

∞∫
0

h̃′r̃dr̃ =

a1/Ld∫
0

(
−h′◦/H◦r̃

)
dr̃. (54)

The left hand side of Eq. (54) is a monotonic decreasing function of a2, hence the solution of
a2 is unique and increases as a1 increases.

The non-dimensional separation metric in polar coordinates is given by5

M2 =
1

2

∞∫
0

((
δ
√
h̃ṽ
)2

+
(
δh̃
)2)

r̃dr̃. (55)

which linearizes as

M2 ≈ 1

2

∞∫
0

(
ṽδṽδh̃+ h̃(δṽ)2 +

(
ṽ2

4h̃
+ 1

)(
δh̃
)2)

r̃ dr̃, (56)

where the first three quadratic terms involving δṽ and ṽ sum up to approximate the kinetic
separation-squared.10

The non-dimensional PV profile is shown in Fig. 1a with a1/Ld = 4 and h′◦/H◦ = 0.8. Fig-
ures 1b and 1c show the non-dimensional solutions of height and tangential velocity. The PV
boundary is displaced from r̃ = 4 to r̃ = 3.53. The low-PV water mass originally at region D
now moves to B and C and pushes the high-PV water mass originally at C to A. The tangential
velocity maximizes at the new PV boundary a2. The Rossby number R◦ = V/fL= ṽLd/a2 is15

about 0.17 which is small so that the geostrophic approximation is good.
In order to investigate the importance of the mixed term in separation-squared, two sets of

balanced solutions with different initial height discontinuity but the same initial radius of high
PV (a1/Ld = 4) are investigated. The first case is h′◦/H◦ = 0.1, where the flow is more like a
linear system. The second case is h′◦/H◦ = 0.8, where the flow is nonlinear. Separation metrics20
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are calculated by adding perturbations to the two control parameters a1/Ld and h′◦/H◦ for both
cases. All perturbations are sufficiently small that linearization of separation-squared is good.
The ratio between the mixed term 1

2

∫∞
0

(
ṽδṽδh̃

)
r̃dr̃ and the other two quadratic terms of the

linearized kinetic separation-squared for both cases are shown in Fig. 2.
In the first case of almost linear flow, the mixed term’s contribution is always less than 5% of5

the δṽ2 term’s contribution. Hence, the non-Euclidean separation metric can be approximated
by ignoring the mixed term. But in doing so, one must also ignore the kinetic enhancement
of the δh̃2 term as it is generally even smaller. This is because the flow has only small PV
differences which induces small velocities and so all terms involving ṽ must be consistently
ignored.10

In the second case of nonlinear flow, the contribution of the mixed term could be comparable
to that of the δṽ2 term unless the perturbations are almost entirely in the extent a1/Ld rather
than the magnitude h′◦/H◦ of the initial low-PV fluid. Here, it is also generally inconsistent to
keep the kinetic enhancement of the δh̃2 term without keeping the mixed term. Therefore, in
nonlinear flows, the non-Euclidean characteristic of the linearized metric cannot be neglected15

because large PV differences lead to large velocities ṽ.
The kinetic separation-squared (the first term of Eq. (55)) for the nonlinear flow where

h′◦/H◦ = 0.8 and the fractional error made in using the linearized expression (the first three
terms in Eq. (56)) are shown in Fig. 3. Note the size of perturbations on a1/Ld and h′◦/H◦ is
comparable to the parameters themselves. The linearized separation-squared is only valid for20

very small perturbations, or for a special subset of the dynamical parameters.

5 Example II: 2-D thermal wind model in pressure coordinate

In this section, the separation metric of a dry compressible atmosphere in pressure coordinate is
applied to a 2-D thermal wind flow in the northern hemisphere. The zonal wind u at the surface
is assumed be to zero. The potential temperature θ under radiative equilibrium is assumed to be25
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θ

θ◦
= 1−∆h sin

8
3 φ

2exp{(p− pch)/∆p}− 1

2exp{(p− pch)/∆p}+ 1
+ ∆v ln

po
p
, (57)

where φ is latitude, po is the constant surface pressure, θ◦ is the constant surface temperature
at the equator, ∆h and ∆v control the fractional change of potential temperature from equator
to pole and from the surface to the tropopause respectively, pch controls the pressure where the5

equator-pole temperature difference changes sign, ∆p is a factor controlling the vertical extent
of the balanced jet and the other symbols follow the same notation as the previous sections. The
form of Eq. (57) is inspired by the work of Held and Hou (1980).

It is convenient to introduce the following non-dimensional variables:

T̃ =
T

θ◦
, ũ=

u

Rθ◦/Ωea
, p̃=

p

po
, Ẽ =

E

cpθ◦poa/g
, (58)10

where Ωe is the angular speed of rotation of Earth, a is the radius of Earth, and the rest symbols
follow the same notation as Sect. 3. So the non-dimensional thermal wind equation can be
written as

2sinφ
∂ũ

∂p̃
=

1

p̃

∂T̃

∂φ
, (59)

Given the equilibrium potential temperature, the non-dimensional temperature is15

T̃ = p̃R/cp

(
1−∆h sin

8
3 φ

2exp
{

(p̃− p̃ch)/∆p̃

}
− 1

2exp
{

(p̃− p̃ch)/∆p̃

}
+ 1
−∆v ln p̃

)
, (60)

where ∆p̃ is the non-dimensionalized ∆p. The solution for zonal wind is obtained by integrating
the right hand side of Eq. (59) from the surface to p̃. The non-dimensional separation metric is
given by

M2 =

π
2∫

−π
2

1∫
0

(
R2θ◦
cpΩ2

ea
2

(δũ)2

2
+
(
δ
√
T̃
)2)

cosφ dp̃ dφ, (61)20
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where we have used the fact that the depth of the atmosphere is much smaller than the radius of
Earth. Notice that T̃ and ũ are both well-defined finite functions of p̃ over [0, 1] so the integral
is finite.

The following parameters are specified: θ◦ = 300 K, po = 1000 mb, pch = 220 mb, ∆v =
35/300. We consider a reference solution with ∆h = 40/300 and ∆p̃ = 50/1000. Figures 4a5

and 4b show the balanced temperature and zonal wind profiles of the reference solution. The
westerly jet is formed around 40◦N with a maximum velocity of 21.5 m s−1 at about 200 mb.
The thermal wind balance model is more valid in the midlatitudes and hence the solution in the
tropics is not a good approximation of the real atmosphere. Another deficiency is the vertical
temperature profile in this model does not describe the temperature inversion above tropopause.10

Therefore we shall only make use of the data below 100 mb and between 35◦N - 65◦N.
Separation metrics are calculated when ∆h and ∆p̃ are perturbed. From the results in Fig.

4c, the kinetic component is always less than the enthalpy component though the ratio between
them varies with perturbations. The order of magnitude of the ratio of kinetic to enthalpy com-
ponents is set fundamentally by the ratio of temperature and specific angular momentum param-15

eters on Earth, θ◦/(Ωea)2. In the next section, the relative importance of kinetic and enthalpy
components of separation-squared is further investigated with reanalysis data.

6 Example III: Reanalysis data of the atmosphere

The separation metric of a dry compressible atmosphere in pressure coordinate is also applied
to the reanalysis data. The data used in this study is NCEP Climate Forecast System Reanalysis20

(CFSR) monthly mean of 6-hourly forecasts (CFSR, Accessed 15 May 2013. 2010). The reanal-
ysis monthly mean data covers 31 years from January 1979 to December 2009 with 0.5◦×0.5◦

spatial resolution and 37 vertical levels from 1000 mb to 1 mb. Temperature, zonal and merid-
ional wind at 37 pressure levels as well as geopotential height, pressure and temperature at
the surface are used for the calculation. The separation metric Eq. (16) is transformed from25

Cartesian coordinates to spherical coordinates with the Jacobian r2 cosφ. Since the depth of
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the atmosphere is much smaller than the radius of Earth, the Jacobian can be approximated by
a2 cosφ.

For the work here, at each grid point, we chose pr to be the smallest surface pressure ever at-
tained and linearly interpolate for Tr at pr between the mean temperature at the lowest pressure-
level above the surface and the mean surface temperature (assumed to be at the mean value of5

surface pressure) in the dataset. A quick check with the dataset shows that temperature within
100 mb from the surface never deviates by more than 2.5% and so the approximation T ≈ Tr in
the boundary layer in Eq. (13) is valid. We also confirmed that linearization of the separation-
squared in Eq. (16) is justified.

We investigate the separation between the monthly mean state of the atmosphere represented10

by CFSR data and its annual mean climatology. The annual mean climatology is defined as the
mean over all months in 31 years of CFSR data and so is time-independent. It provides the
values for T and pH in the denominators of the terms in Eq. (16).

6.1 Mid-latitude zonal mean and eddies

The separation-squared between zonal mean CFSR monthly mean data and its annual mean cli-15

matology in midlatitudes (35◦N - 65◦N) up to 100 mb between 2001 and 2009 is shown in Fig.
5a. The averaging interval for zonal mean is confined to isobars above the surface. Kinetic and
enthalpy components show a synchronous semi-annual oscillation, which maximizes in January
or February and in July or August. This is consistent with the seasonal cycle: the atmosphere
moves furthest from the annual mean state during winter and summer. The surface pressure20

component is noisier and the semi-annual oscillation is not obvious. The reason is that surface
pressure has strong zonal asymmetry due to the distribution of continents and oceans and the
seasonal cycles of surface pressure are out of phase between continents and oceans.

The kinetic component is smaller than the enthalpy component, which agrees with the results
from the analytical thermal wind model in Sect. 5. The ratio of kinetic to enthalpy separation-25

squared is about 0.37 on average.
Insight from Eq. (61) shows that it is because Earth is a rapidly rotating planet (i.e. Ωe is

large) resulting in smaller geostrophically balanced flow for the same equator-pole temperature
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difference. The possibility to reveal this reason stems from the separation metric being induced
from the energy norm which respects the fundamental dynamical ratios in the system. Such
dynamical reasoning would not be possible if the metric was arbitrarily constructed with user-
prescribed ratios.

It has been shown in the Lorenz energy cycle (Holton, 2004) that baroclinic eddies are the pri-5

mary driving force for the energy exchange in midlatitudes. However, the eddies are neglected
in the calculation above with zonal mean data. To reveal the contribution to the separation met-
ric from eddies, the same separation-squared is calculated from the full 3-D data as shown in
Fig. 5b. The kinetic separation-squared is found to be comparable to the enthalpy separation-
squared when the mid-latitude eddies are included. We attribute the difference between Fig. 5a10

and b to the existence of mid-latitude eddies. So on average, eddies contribute 78% to the total
kinetic separation-squared and 28% to the total enthalpy separation-squared.

These percentages are consistent with the contribution from eddies in the Lorenz energy
cycle, where eddies contribute 71% to the total kinetic energy and 31.8% to the total available
potential energy (Oort and Peixóto, 1974).15

The enthalpy separation-squared is not conceptually related to Lorenz’s definition of available
potential energy (APE) (Lorenz, 1955, 1960):

APE =

∫
A

po∫
0

1

Γd−Γ

(
T − T̄

)2
T̄

dp dA, (62)

where Γ is the atmospheric lapse rate, Γd ≡ g/cp is the adiabatic lapse rate, T̄ is the global
isobaric mean temperature and po = 1000 mb. There are superficial resemblances because of20

the quadratic form but in Eq. (16), no fixed reference state is assumed and atmospheric lapse rate
plays no role. Nonetheless, the partition between zonal mean and eddy contributions in enthalpy
separation-squared and in APE are comparable because Γ is nearly constant in the troposphere
while climatological temperature Tclim ∼ T̄ , leading to enthalpy separation-squared from the
annual mean climatology being roughly proportional to APE.25

The coefficient of temperature difference (δT )2 is different in our linearized separation-
squared in Eq. (16) from that in the often used metric MT81 in Eq. (2) (Ehrendorfer and Errico,
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1995; Errico, 2000; Qin and Mu, 2012). The enthalpy separation-squared is recalculated using
progressively modified formulae in Fig. 5c (cf. the details in the caption). It is found that using
constant reference temperature To = 270 K and constant reference pressure po = 1000 mb does
not change the enthalpy separation-squared much.

But the increase of the coefficient by a factor of two from our metric to MT81 (green to5

grey line in 5c) does make the enthalpy contribution to the total separation-squared twice more
significant!

Although the surface pressure separation-squared is one order of magnitude smaller than
the enthalpy separation-squared (Fig. 5b), the coefficient of (δpH)2 also differs between our
metric and MT81. Fig. 6a and b compares the northern mid-latitude terrain and the topographic10

contribution to the surface pressure separation-squared. However, the boundary-layer enthalpy
contribution to the surface pressure separation-squared is nearly an order of magnitude larger
and maximizes over central Pacific Ocean (Fig. 6c). If MT81 was used instead, the surface
pressure separation-squared would be considerably smaller (cf. Fig. 6c and d).

6.2 Tropical oscillations15

The separation-squared between CFSR monthly mean 3D data and its annual mean climatology
in the tropical region (25◦S - 25◦N) up to 100 mb is calculated and the results between 2001
and 2009 are shown in Fig. 7a. Surface pressure separation-squared, like kinetic and enthalpy
separations-squared, shows a synchronous semi-annual oscillation as oceans cover more area
than land in the tropics.20

The kinetic separation-squared is about one order of magnitude larger than the enthalpy
separation-squared, quite unlike in the mid-latitudes (cf. Figs. 7a and 5b). This can be explained
by the near constancy of temperature and surface pressure as opposed to large seasonality of
wind in the tropics, e.g. due to the monsoons, whereas geostrophic and thermal wind balance
necessitate surface pressure and temperature to have accompanying large variation to wind vari-25

ation.
The semi-annual oscillation at different latitudes is further investigated in Fig. 7b. Contribu-

tions from the higher tropical latitudes are an order of magnitude larger than from the equatorial
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latitudes, which attests to the constant climate near the equator. The seasonality is stronger in
the northern hemisphere compared to the same latitude in the southern hemisphere.

We next focus on the equatorial atmosphere to see what the separation metric can reveal
about tropical dynamics. The separation-squared between CFSR monthly mean data and its
annual mean climatology in the equatorial tropics (5◦S - 5◦N) integrated from the surface to the5

stratopause (1 mb) is shown in Fig. 8a. Further investigation of the separation-squared level by
level shows that on average, the kinetic and enthalpy separations-squared in the stratosphere (70
mb to 1 mb) contribute 39.3% and 47.3% respectively to the kinetic and enthalpy separations-
squared in the whole column.

This is noteworthy because the stratosphere only makes up about 10% of the atmospheric10

mass but it accounts for up to about 40% of the combined monthly variance of the equatorial
troposphere and stratosphere as measured by the energy norm induced metric.

The quasi-biennial oscillation (QBO) is a quasi-periodic reversal of the mean zonal wind
in the equatorial stratosphere, and is well-known to influence the global stratosphere through
modulation of zonal wind, temperature, humidity and the meridional circulation (Baldwin et al.,15

2001). The meridional distribution of QBO amplitude is approximately Gaussian, centered at
the equator with a 12◦ half-width (Wallace, 1973).

Although the QBO has a signature in temperature, it is weak because geostrophic balance
is not dominant near the equator and thus the QBO signal is not identifiable in the enthalpy
separation-squared against large signals arising from seasonal variation in insolation. We present20

only the analysis of the kinetic separation-squared here, which is a very good approximation to
the total separation-squared because of its overwhelmingly large contribution.

Using singular spectrum analysis (SSA), we first decompose the kinetic separation-squared
into a trend, seasonal oscillation and interannual oscillation, leaving a residue. Between 1979
and 2009, there are 372 sample points in time. The window length for SSA used is 36 sample25

points, i.e. 3 years. The first reconstructed component, RC(1), explains 90.9%of the total vari-
ance. It traces the decadal variation which is in anti-phase to the 10.7 cm solar flux (Patat, 1998)
and has a secular rising trend.
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The semi-annual oscillation due to the seasonality of hemispheric insolation is captured by
RC(2, 3), explaining 3.6% of the total variance. RC(4, 5) explain 1.4% of the total variance and
when shifted backward by 5 months matches the QBO index very well (Fig. 8b), including years
when the QBO period is longer than average, e.g. 1999 to 2002. (The QBO index is defined as
the zonal wind at 30 mb over Singapore.) RC(4, 5) is lag correlated with the absolute value of5

the QBO index in Fig. 8c. The maximum correlation score of 0.53 is attained when the RC(4,
5) lags behind the QBO index by 5 months. The correlation score peaks every 28 months which
is the average period of the QBO.

The lag correlation of the absolute value of the QBO index with the (full) kinetic separation-
squared at different pressure levels is shown in Fig. 8d. The correlation score maximizes at 3010

mb with zero lag simply because the QBO index is defined at this level. Since the QBO phase
propagates downward, the kinetic separation-squared leads the QBO index at higher pressure
levels than 30 mb and lags behind at pressures lower than 30 mb. Only the tilted positive corre-
lation band centered at zero lag denotes a real physical connection. The other tilted correlation
bands located at about multiples of 7 months away are just mirrored images produced by the15

quasi-periodicity of the QBO. The correlation score drops rapidly in the troposphere and be-
comes insignificant at the 99% confidence level (except around 500 mb). To minimize the effect
of auto-correlation in time, we assume that the number of independent samples is 124, which is
the number of seasons in our time series, giving the number of degrees of freedom as 122.

There is some indication that QBO has a significant but weak influence in the mid-troposphere20

around 500 mb. Such an influence may not be as unreasonable as it first sounds because of the
disproportionately large stratopheric contribution to equatorial atmospheric variance mentioned
earlier. A plausible dynamical reason could be that the zonal mean wind in the lowermost strato-
sphere (∼70 mb) modifies the vertical propagation of equatorial waves, reflecting certain waves
downwards so that their trapped energy maximizes in the mid-troposphere at the peaks of QBO25

easterly or westerly phases. Because we use a metric induced by the energy norm, when the
energy of the atmospheric state is enhanced, the separation of that state from the annual mean
climatology is correspondingly enhanced.
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7 Discussion and Summary

To date, much of the literature’s rationale to the definition of a metric runs along two lines of
thinking which are not mutually exclusive:

– to employ the quadratic form of a norm and its induced metric beyond the restricted dy-
namical regime for which the norm is proven to obey a conservation law (Ehrendorfer and5

Errico, 1995), with the confidence that the form is at least valid in that regime;

– to justify the quadratic form of a metric based on its simplicity (Palmer et al., 1998) and on
dimensional consistency among the contributions by different state variables: the weigh-
ing coefficient on each variable depends on the suitable choice of a convenient reference
state, certain physical constants and dimensionless numbers, as well as the practical im-10

portance of emphasizing that variable.

Neither line of thinking is without its merits and both arguments are substantial enough if prac-
tical application demands utility more than theoretical rigour. For instance, to find a singular
vector or conditional nonlinear optimal perturbation (CNOP) in an model forecast for adap-
tative observation (Buizza et al., 1993; Mu et al., 2009), knowing that temperature has larger15

normalized error variance than wind (Koh and Ng, 2009) would favour a metric definition that
emphasizes temperature deviations more, such as MT81 instead of Eq. (16). In that case, ex-
tending the use of a metric beyond the regime for which it was originally designed — MT81

was formulated by Talagrand (1981) for linearized, adiabatic, inviscid flows and is constant for
the forecast of such flows in between consecutive data assimilations — is justifiable at least be-20

cause the practical use of the metric in nonlinear, forced-dissipative regimes enables important
advancement in NWP.

There are other practical considerations: Sect. 4a of Ehrendorfer and Errico (1995) mentions
the relevance of numerical discretization schemes in determining whether a norm is practically
invariant or not. Sect. 4 and 6 of Palmer et al. (1998) distinguishes the analysis error covari-25

ance metric for practical predictions, which depends on the observation network and the data
assimilation scheme, against the geophysical fluid dynamics (GFD) covariance metric for GFD
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studies, which depends on dynamics only and is defined from the invariant measure associated
with the system’s attractor. The results of ensemble predictions, error growth analysis and pre-
dictability studies will be sensitive to the choice of the metric. Sect. 5 of Palmer et al. (1998)
showed that the MT81 metric may be more suitable for practical prediction studies than for in
pure GFD problems on predictability.5

Having recognized the merits of the above approaches, it is instructive to examine the com-
parative advantages of our theoretical approach. For that, we need to elucidate the underlying
physical basis of the norm induced metric.

Figure 9 is a Cartesian representation of the phase space (u,
√
T ,
√
pH) constructed for a

hydrostatic flow in pressure coordinate. To our knowledge, this is the first time that quantities10

like
√
T and

√
pH are constructed to serve as phase coordinates and we emphasize that only

in these constructed coordinates does the square-root of true energy satisfy all the axioms of a
norm.

√
Emod of Eq. (14) is the Euclidean norm on the vector space of (u,

√
T ,
√
pH); it is not

even a norm in the conventional vector space of (u,T,pH) because it does not have absolute
homogeneity there.15

With reference to Fig. 9,
√
Emod is used to measure a and b, the lengths of phase vectors A

and B respectively. M of Eq. (15) is the metric used to measure the separation c between A and
B. As the metric is induced by the norm, the separation of a phase vector from the null vector O
is the identical to the phase vector’s length. This means a, b and c are measured with the same
“ruler”. By using any other metric in a normed vector space, we are measuring c on a different20

ruler from a and b, which is admissable mathematically but goes against physical sense.
For adiabatic, inviscid flows, it is a law of physics that energy E is conserved and hence a

and b are invariant. The vectors A and B move on constant energy hyper-surfaces which take
the form of hyper-spheres when the phase coordinates (u,

√
T ,
√
pH) are scaled by factors of√

dp/2g,
√
cpdp/g,

√
(cpTr + ΦH)/g respectively and have common units of J1/2 m−1. Un-25

less the flow is linear (like the case in Talagrand (1981)), c will generally not be invariant. Then
the norm induced metric can indeed be used to detect changing separations between A and B
while the invariant lengths of A and B provide physical justification for using the same “ruler”
to measure separation. In this way, we avoid the inherent contradiction that MT81 faces: it is
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only useful when the norm is not conserved (cf. the end of Sect. 1.2). Moreover, linearization
of the flow is never required for the conservation of energy. Without detracting from the last
statement, where mathematically valid, the separation metric can be transformed into the tan-
gent linear space of conventional but non-Cartesian coordinates (u,T,pH) where either A or
B provides a realistic nonlinearly evolving reference state for the linearization of the metric. In5

these coordinates, the norm and metric take on a non-Euclidean form.
There is another advantage of measuring a, b and c on the same “ruler”: the angle ψ between

vectors A and B in Cartesian coordinates (u,
√
T ,
√
pH) can be consistently defined by the

cosine rule:

cosψ =
a2 + b2− c2

2ab
, (63)10

which is equivalent to the definition of the inner product:

〈A,B〉=
(
a2 + b2− c2

)
/2. (64)

For the metric in Eq. (16), the inner product defined in this way is

〈A,B〉=
1

g

∫
A

pr∫
0

(
1

2
uA ·uB + cp

√
TATB

)
dp dA+

1

g

∫
A

(cpTr + ΦH)
√
pAHp

B
H dA, (65)

where the superscripts on the variables refer correspondingly to statesA andB. Eq. (65) may be15

contrasted against Eq. (11) of Palmer et al. (1998) which is the inner product in (u,T ′,p′s)-space
related to the MT81 metric, reproduced in the notation of this paper as

〈A,B〉P98 =
1

2g

∫
A

po∫
0

(
uA ·uB +

cp
To
T ′AT ′B

)
dp dA+

1

2g

∫
A

RTopo ln

(
pAs
po

)
ln

(
pBs
po

)
dA.

(66)
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The set of angles a phase vector makes with the Cartesian axes fixes the direction of the
phase vector. The notions of direction and inner product are fundamental to many concepts and
applications in predictability (e.g. Lyapunov exponents) and optimization of error growth (e.g.
CNOP). Like our definition of separation, our definitions of direction and inner product ulti-
mately rest upon the physical principle of energy conservation as the basis for the invariance5

of the norm and Euclidean geometry is manifest in (u,
√
T ,
√
pH)-space. In contrast, the set

of metric MT81, norm
√
ET81 and inner product 〈A,B〉P98 respects Euclidean geometry in

(u,T ′,p′s)-space, but ET81 is not energy, causing the norm to vary in nonlinear, adiabatic, in-
viscid flows. In such flows, quantifying the separation and angle between two states vectors by
MT81 and 〈A,B〉P98 would be like measuring distance and angle with elastic rulers and pro-10

tractors. Appendix A delves further into the origin of the difference between ET81 and energy
E.

Placed in the context of applications like ensemble forecast, the above theoretical develop-
ment provides a physically based metric that can be used to, for instance, measure the spread of
member states about the observation in multi-variate phase space where no single variable can15

summarize the model performance, such as at the surface (Scherrer et al., 2004) or in the tropics
(Koh et al., 2012). The development of such multi-variate spread diagnostics would complement
existing univariate spread measures (Buizza, 1997). Another use can be in error growth analysis
to define the norm of a CNOP used to identify area targets for observation (Mu et al., 2009). A
major practical advantage in the above applications would be that even large separations can be20

rigorously quantified using the Cartesian coordinates in which the energy norm is Euclidean,
such as illustrated in Fig. 3a of Sect. 4. This would be essential, for example, in shallow-water
simulations of tsunamis (Wang and Liu, 2007).

The importance of the non-Euclidean form of the metric for nonlinear flows illustrated in
Sect. 4 (Fig. 2) is an important advancement in the definition of separation. For highly non-25

linear, non-hydrostatic atmospheric flows at mesoscales, especially those manifesting strong
convection such as around the core region of a tropical cyclone (TC), the separation between
atmospheric states involves a kinetic - buoyant energy inter-conversion term, δwδρ in Eq. (30).
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The practical implementation of such a metric for computing CNOP may result in a discernible
impact on the areas targeted for observation to improve TC intensity forecasts.

By agreeing on the invariant norm relevant to the dynamics of a system, for instance the
energy norm in pressure coordinate, the relative ratios of contribution among the conventional
state variables, δu, δT and δpH in this case, to the total separation-squared are no longer arbi-5

trary to some dimensionless constants or dependent on the user’s choice of the reference state,
as the case would be for a metric constructed from dimensional consistency arguments alone.

For example, the small ratio of enthalpy to kinetic components of separation-squared in the
tropics (Fig. 7a) compared with the mid-latitudes (Fig. 5a,b) cannot be increased in an ad-hoc
manner, e.g. by replacing the nonlinear reference-state T by the climatological amplitude of10

diurnal temperature fluctuations in Eq (16). The reason is that this ratio is reflective of the lack
of geostrophic balance in the monthly mean tropical climate (i.e. contrary to the case in Eq.
(61) and Fig. 4). Likewise, in the mid-latitudes, the use of MT81, where the enthalpy com-
ponent is roughly doubled (Fig. 5c), would not be recommended if the dimensionless ratio of
system constants governing the dynamics of thermal wind balance in Eq. (61) is to be respected.15

Nonetheless, we do not believe having doubled the enthalpy contribution inMT81 would detract
from the qualitative conclusions of much previous work even if details might have been altered,
e.g. the consistency of the ”energy” norm to the ”analysis error covariance metric” in Palmer
et al. (1998).

We have given a firm theoretical basis for the contribution of surface topography on the20

metric. Previous theoretical literature (e.g. Talagrand (1981)) did not allow for the presence of
topography. It would not be possible to guess the form of topographic influence by dimensional
analysis alone. For example, by dimensional analysis, topography could well modify the en-
thalpy contribution as (cpTo + ΦH)(δT/To)

2 in Eq. (2) instead of modifying the surface pres-
sure contribution in Eq. (16), especially looking at the form of Eq. (11). With our approach, the25

topographic term is negligible in pressure coordinate (Fig. 6b,c) because ΦH/(cpT ) . 1%, and
this is also true in isentropic coordinate, cf. Eq. (23). But one would not be able to consistently
neglect the topographic effect if one used the expression (cpTo + ΦH)(δT/To)

2 because sur-
face pressure separation-squared can be about 1% of enthalpy separation-squared (e.g. in Fig.
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5a) and is retained within the metric expression. In height coordinate, topography does not even
appear except as the fixed lower limit of vertical integration for the semi-infinite atmosphere.

By using the energy norm induced metric, we detected a weak but statistically significant
teleconnection between the QBO phase in the lower stratosphere and the monthly variability
at mid-tropospheric levels (Fig. 8d) which may be worth further investigation in future. At this5

early juncture, it is understandable if a teleconnection is selectively picked out by our metric
for atmospheric variation because of the principle of energy conservation on which the metric
is based: a longer state vector due to accumulation of tropospheric energy by equatorial wave
reflection from the lower stratosphere would manifest larger variation from the climatic mean
state since we use the same “ruler” to measure energy and separation in phase space (cf. Fig. 9).10

If the enthalpy contribution cpT (δT/T )2 was artificially exaggerated roughly a hundred-fold by
normalizing the temperature difference by its variance ∆T instead of by T , i.e. cpT (δT/∆T )2,
the metric would now be dominated by temperature variability in which the QBO signal is
swamped by seasonal signals. The above teleconnection between the mid-troposphere and the
QBO index would be lost when using such an ad-hoc metric.15

While useful, the energy norm is not the only invariant norm from which a metric can be
induced. Other dynamical invariants, e.g. enstrophy (Vallis, 2006) and wave-activity (Haynes,
1988), could be used. One only needs to construct the phase space judiciously following the
approaches demonstrated in Sects. 2 and 3 so that the invariant quantity takes the form of a
Euclidean norm. Hence, the above theoretical advantages may potentially be relevant to most20

problems with a conserved physical quantity. For instance, in homogeneous, isotropic turbu-
lence of a 2D incompressible fluid, the metric induced by the enstrophy norm may be useful
in investigating chaotic dynamics of turbulence: e.g. defining ζ as absolute vorticity, one might
consider the spectral power of

∫
A (δζ)2 dA in the enstrophy cascading inertial sub-range as a

measure of the separation between two mature turbulent flows.25

In summary, we propose a new two-step approach in tackling the problem of metric defi-
nition: (1) constructing the phase space specifically so that an invariant based on a physical
conservation law is the Euclidean norm on this space; and (2) defining the norm induced metric
to quantify the separation in phase space between two states. This methodology is mathemati-
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cally rigorous and physically meaningful. The norm can be invariant even for nonlinear flows
and the norm induced metric is valid even for large separations. We have applied this approach
to examine analytical examples and realistic reanalysis data, and discussed its potential appli-
cations in ensemble prediction, error growth analysis and predictability studies. But we note
that practical and other theoretical considerations may favour alternative approaches to defining5

the metric. Finally, the separation metric in this study is developed for dry atmospheres. We are
working next on the separation metric including moisture.

Appendix A

Difference between ET81 and energy E

A1 Derivation of ET8110

We first re-derive ET81, following Talagrand (1981) but using the notation of this paper. The
inviscid, adiabatic flow is first linearized about the reference state, u = 0, T = To and ps = po,
where To and po are constants. The reference-state geopotential Φo is given by hydrostatic
balance:

dΦo

dp
= −RTo

p
,15

⇒ Φo = −RTo ln

(
p

po

)
. (A1)

where we have chosen Φo(po) = 0.
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In pressure coordinate, the equations of motion for the perturbation state are:
∂u

∂t
+ fk̂×u+∇pΦ′ = 0, (A2)

cp
∂T ′

∂t
−ωRTo

p
= 0, (A3)

∇p ·u+
∂ω

∂p
= 0, (A4)

∂Φ′

∂p
+
RT ′

p
= 0, (A5)5

where f is the Coriolis parameter and k̂ is a unit vector pointing upwards.
Eq. (A2) is dot-multiplied by u to obtain the kinetic energy tendency, while Eq. (A3) is

multiplied by T ′/To to get a varying fraction of enthalpy tendency and of adiabatic heating:

∂

∂t

u′2

2
+u · ∇pΦ′ = 0, (A6)

∂

∂t

cpT
′2

2To
−ωRT

′

p
= 0. (A7)10

Eq. (A5) and (A7) can be combined as

∂

∂t

cpT
′2

2To
+ω

∂Φ′

∂p
= 0. (A8)

Eq. (A8) is added to Eq. (A6) and with the help of Eq. (A4), we get

∂

∂t

(
u′2

2
+
cpT

′2

2To

)
+∇p ·

(
uΦ′

)
+

∂

∂p

(
ωΦ′

)
= 0. (A9)

Using the fact that ω→ 0 exponentially fast with height, Eq. (A9) is integrated vertically to the15

surface to obtain
ps∫
0

∂

∂t

(
u′2

2
+
cpT

′2

2To

)
dp+∇p ·

ps∫
0

uΦ′dp+
∂ps
∂t

Φ′(ps) = 0. (A10)
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Unlike Talagrand (1981), we allow a weak surface topography to exist without interfering
with the linearization of the flow, so that Φ(ps) = Φ′s(x,y). Thus, we may write

Φ′(ps) = Φ(ps)−Φo(ps)

= Φ′s +RTo ln

(
ps
po

)
, (A11)

where we have made use of Eq. (A1). The above is substituted into Eq. (A10) to yield5

ps∫
0

∂

∂t

(
u′2

2
+
cpT

′2

2To

)
dp+

(
RTo ln

(
ps
po

)
+ Φ′s

)
∂ps
∂t

+∇p ·
ps∫
0

uΦ′dp= 0. (A12)

Integrating horizontally under periodic lateral boundary conditions causes the last term to van-
ish. Ignoring third-order terms, as is consistent with the effect of flow linearization on Eq. (A6)
and (A7), we then have

∂EtopoT81

∂t
≡ ∂

∂t

1

g

∫
A

po∫
0

(
u′2

2
+

cp
2To

T ′2
)
dp dA+

1

g

∫
A

(
RTo
2po

p′2s + Φ′sp
′
s

)
dA

= 0, (A13)10

In Eq. (A13), the influence of surface topography is exerted through a linear term in p′s,
which was fortuitously excluded from ET81 in Eq. (1) by Talagrand (1981); the other terms all
have homogeneous quadratic forms. Thus, only when the surface is flat, ET81 is derived as the
square of a norm on (u,T ′,p′s)-space and is invariant for adiabatic, inviscid flows linearized
about a reference isothermal atmosphere at rest. As only T ′/To of the adiabatic heating and15

enthalpy tendency is included in the formulation of Eq. (A7), ET81 is not total energy. But its
tendency is a time-varying fraction of the energy tendency, which explains why ET81 is not
conserved in general adiabatic, inviscid flows. From the derivation, ET81 is also clearly not
related to Lorenz’s APE (Lorenz, 1955) and not surprisingly, it lacks the factor of (Γd−Γ)−1

in the quadratic temperature perturbation term, cf. Eq. (1) and (62).20
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A2 Derivation of perturbation energy E′ in pressure coordinate

We now derive the conservation of total energyE in pressure coordinate, paying attention to the
differences from the derivation in the last subsection. We only assume that the basic atmospheric
state is hydrostatic and isothermal at temperature To so that Eq. (A1) applies, where the constant
po is now defined as the reference pressure at the lowest point on Earth’s surface. The full5

equations of motion for the perturbation state, which may not be close to the basic state, are:(
∂

∂t
+u · ∇p +ω

∂

∂p

)
u+ fk̂×u+∇pΦ′ = 0, (A14)

cp

(
∂

∂t
+u · ∇p +ω

∂

∂p

)
T ′−ωR

p

(
T ′+To

)
= 0, (A15)

and Eq. (A4) and (A5) as before.
Eq. (A14) is dot-multiplied by u to obtain the kinetic energy tendency while Eq. (A15) is10

combined with Eq. (A5) retaining the full enthalpy tendency:(
∂

∂t
+u · ∇p +ω

∂

∂p

)
u2

2
+u · ∇pΦ′ = 0, (A16)

cp

(
∂

∂t
+u · ∇p +ω

∂

∂p

)
T ′+ω

dΦ′

dp
−ωRTo

p
= 0. (A17)

Eq. (A16) and (A17) are added with the help of Eq. (A4) so that

∂

∂t

(
u2

2
+ cpT

′
)

+∇p ·
(
u

(
u2

2
+ cpT

′+ Φ′
))

+
∂

∂p

(
ω

(
u2

2
+ cpT

′+ Φ′
))
−ωRTo

p
= 0.

(A18)15

As ω→ 0 exponentially fast with height, Eq. (A18) is integrated vertically to the surface to
obtain

∂

∂t

pH∫
0

(
u2

2
+ cpT

′
)
dp+∇p ·

pH∫
0

u

(
u2

2
+ cpT

′+ Φ′
)
dp+

∂pH
∂t

Φ′(pH)−RTo

pH∫
0

ω

p
dp= 0.
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(A19)

The penultimate term in Eq. (A19) is evaluated following Eq. (A11) to get

∂pH
∂t

Φ′(pH) =
∂pH
∂t

Φs +RTo
∂pH
∂t

ln

(
pH
po

)
, (A20)

where Φs is the non-trivial surface geopotential due to topography. The last integral in Eq. (A19)
can be integrated by parts, with the help of Eq. (A1) and (A4), as follows:5

−RTo

pH∫
0

ω

p
dp = RTo

pH∫
0

∂ω

∂p
ln

(
p

po

)
dp−RTo

[
ω ln

(
p

po

)]pH
0

= ∇p ·
pH∫
0

uΦo dp−RTo
∂pH
∂t

ln

(
pH
po

)
. (A21)

The last term of Eq. (A20) is cancelled by the last term of Eq. (A21) and its contribution is
replaced by the first term of Eq. (A21) which is the flux divergence of reference-state geopoten-
tial. In contrast, the last term of Eq. (A11) survives and becomes the quadratic p′s term in Eq.10

(A13). This is because the bulk of adiabatic heating, ωRTo/p, that is responsible for the terms
in Eq. (A21) is dropped out when only a fraction T ′/To of adiabatic heating is retained in Eq.
(A7).

Subtituting Eq. (A20) and Eq. (A21) into Eq. (A19), we finally get

∂

∂t

pH∫
0

(
u2

2
+ cpT

′
)
dp+ Φs

∂p′H
∂t

+∇p ·
pH∫
0

u

(
u2

2
+ cpT

′+ Φ

)
dp= 0, (A22)15

where p′H is the perturbation of surface pressure from po and is not necessarily small. Integrat-
ing horizontally under periodic lateral boundary conditions, the flux divergence term vanishes
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leaving

∂E′

∂t
≡ ∂

∂t

1

g

∫
A

pH∫
0

(
u2

2
+ cpT

′
)
dp dA+

1

g

∫
A

Φsp
′
H dA

= 0. (A23)

The above is the basis for the conservation of perturbation energy E′ for fully nonlinear, adi-
abatic, inviscid flows. E′ is different from total energy E in Eq. (11) by a constant as mass is
conserved, i.e.

∫
A pH/gdA= constant.5

A3 Comparison between ET81 and linearized perturbation energy E′
lin

To compare with Eq. (A13) on equal footing, we linearize Eq. (A23) about the same reference
state as in Sect. A1 where surface topography is weak, i.e. Φs = Φ′s. First, consider the following
integral over the lower boundary layer [pH ,po]:

po∫
pH

(
u2

2
+ cpT

′
)
dp= cpT

′
H (po− pH) =−cpT ′Hp′H , (A24)10

where T ′H and p′H are the perturbations on surface temperature and surface pressure respectively
and we have ignored third-order terms. Thus, Eq. (A23) becomes

∂E′lin
∂t
≡ ∂

∂t

1

g

∫
A

po∫
0

(
u2

2
+ cpT

′
)
dp dA+

1

g

∫
A

(
cpT

′
H + Φ′s

)
p′H dA

= 0. (A25)

As the full enthalpy tendency and adiabatic heating are kept in Eq. (A15), the enthalpy con-
tribution in Eq. (A25) is linear in T ′ and there are no quadratic terms in p′H . Instead, the topo-15

graphic influence clearly shows a linear dependence on p′H , which is already seen in Eq. (A13)
and would have been similarly present in ET81 if surface topography had not been ignored in
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Talagrand (1981)’s approach. There is additionally a quadratic interaction term T ′Hp
′
H in Eq.

(A25) whose counterpart in Eq. (A13) is a third-order term that has been ignored.
The above comparison shows clearly that EtopoT81 or ET81 is different from E′lin. Both lin-

earized formulations are inherently problematic because the atmosphere is significantly differ-
ent from the isothermal reference state. The relative ratio of the terms in Eq. (A13) or Eq. (A25)5

also depends on the arbitrary choice of To and po. Adopting the full (nonlinearly conserved)
energy in Eq. (11) requires us to innovate on the construction of the phase space (

√
T ,
√
pH) in

Sect. 3.1, in order to solve the problem of having a Euclidean energy norm
√
E when energy is

a linear function of temperature and surface pressure. Subsequent transformation of our norm-
induced metric into the tangent linear space (T,pH) yields the quadratic dependence on δT10

and δpH but with different weighing coefficients than in the metric MT81 induced by the norm√
ET81 on the phase space (T ′,p′H). This difference arises because we use a different norm on

a different vector space from Talagrand (1981).
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Fig. 1. Non-dimensional solution of PV, height and tangential velocity with a1/Ld = 4 and h′o/Ho = 0.8
in the geostrophically balanced shallow-water model.
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Fig. 2. The ratio between the mixed term and the other two quadratic terms of the linearized kinetic
separation-squared when a1/Ld = 4 and (a) h′o/Ho = 0.1 and (b) h′o/Ho = 0.8. The value at the origin
is not defined.
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Fig. 3. (a) The non-dimensional kinetic separation-squared when a1/Ld = 4 and h′o/Ho = 0.8. (b) Frac-
tional error of linearized kinetic separation-squared from (a). The white dot at the centre marks the origin.
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Fig. 4. Balanced (a) temperature (K) and (b) zonal wind (m s−1) in the 2-D thermal wind model. (c)
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are perturbed.
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Fig. 5. (a) Kinetic (red), enthalpy (green) and surface pressure (blue) separation-squared between CFSR
zonal mean monthly mean data and its annual mean climatology in midlatitudes (35◦N - 65◦N) up to
100 mb. (b) Same as (a) but using full 3-D data including the eddies. (c) Enthalpy separation-squared
calculated with different formulae: as the author proposed (green solid line), using constant temperature
To = 270 K in the integrand cp (δT )

2
/(4To) (black dash line), further multiplying by a factor of two

to get cp (δT )
2
/(2To) (cyan dash line), and using constant po = 1000 mb instead of pr(x,y) for the

integration upper limit but excluding isobars below the surface (grey solid line). Note that the vertical
scale is logarithmic in (a,b) but is linear in (c).
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Fig. 6. (a) Surface elevation zH in the northern mid-latitudes (35◦N - 65◦N). Surface pressure
separation-squared in Dec 2005 contributed by (b) surface topography, zH (δpH)

2
/(4pH), and

(c) enthalpy, 1
g cpTr (δpH)

2
/(4pH). (d) The enthalpy contribution using the Talagrand’s formula,

1
gRTo (δpH)

2
/(2po), where To = 270 K and po = 1000 mb, for comparison with (c).
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Fig. 7. (a) Kinetic (red), enthalpy (green) and surface pressure (blue) separation-squared between CFSR
monthly mean data and its annual mean climatology in the tropical region (25◦S - 25◦N) up to 100
mb. (b) Time-latitude cross section of the logarithm to base 10 of the total separation-squared integrated
zonally and vertically up to 100 mb in the tropical region.

56



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
15.5

16

16.5

17

17.5

18

18.5

19

19.5

Year

lo
g 10

 o
f 

se
pa

ra
tio

n2  (
J)

(a)

Fig. 8. (a) Kinetic (red), enthalpy (green) and surface pressure (blue) components of separation-squared
between CFSR monthly mean data and its annual mean climatology in the equatorial tropics (5◦S -
5◦N) integrated over the whole atmosphere column. (b) ‖QBO index‖ (black) and RC(4, 5) of kinetic
separation-squared (magenta) shifted backward by 5 months. Black solid (dashed) lines represent west-
erly (easterly) phase of the QBO. (c) Lag correlation of ‖QBO index‖ with the RC(4, 5) of kinetic
separation-squared. (d) Lag correlation of ‖QBO index‖ with kinetic separation-squared at different
pressure levels. The black contours denote the 99%-confidence level. In (c,d), a positive lag denotes the
signal leading the QBO index.
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Fig. 8. Continued.
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Fig. 9. Multi-variate phase space for a hydrostatic flow in pressure coordinate. For ease of visualization,
wind u is shown as a 1D axis instead of a 2D plane and each axis represents one among infinite number
of degrees of freedom on the surface (for

√
pH ) or in the volume (for

√
T and u) of a fluid. The length

of phase vectors A and B are a and b respectively while their separation is c in this subspace. O is the
null vector. The spheres represent hyper-surfaces of constant energy.
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