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Reply to comments by Referee #1 

 

Summary 

This manuscript presents a review of data assimilation in atmospheric chemistry models 

and contains a wealth of information. 

I appreciate that the authors addressed some of my comments from my “short review” 

before this manuscript was published in ACPD. Nonetheless, my overall opinion is 

nearly unchanged—I still think the manuscript is too long and unfocused and that the 

writing and presentation are the main shortcomings of this manuscript. However, I have 

little concern regarding the scientific content, as I believe the authors appropriately 

encapsulated most of the work to date on data assimilation in atmospheric chemistry 

models. 

I have identified several places where I think the authors can shorten their paper. 

However, ultimately, I will defer to the authors’ choices. If the authors do not wish to 

make any substantial omissions, that is fine, but I expect that many readers will be 

turned-off from this article because of its size and often unfocused writing. 

 

Reply: Since this is a review paper, we feel that it is appropriate to provide fairly 

comprehensive descriptions of methods, data sets, past applications, and selected case 

studies. Nevertheless, we eliminated some material where we felt that it was 

appropriate to do so and we also followed some recommendations concerning the 

organization of Section 3. 

 

Bigger comments and suggestions 

1. I feel you should strongly consider removing section 5 and all the figures because they 

add little to the paper. Section 5.2 is essentially just Pagowski and Grell (2012) restated, 

and section 5.3 is already-published work from P. Saide. I found section 5.4 to be the 

most interesting of the case studies, but even that can be safely removed, in my opinion. 

While it’s nice to have figures in an article, I feel that in this case, they don’t contribute to 

further understanding of the topics already described in the text. 

I feel that section 2.4 can be omitted. A few lines about nonlinearity and non-Gaussianity 

can easily be slipped into other earlier material in section 2. 

Is section 2.5 really necessary? The point of this paper is data assimilation, not 

verification approaches. If you’re going to keep section 2.5, then, within it, I suggest 

removing the “leave-one-out-approach” because, as you mention, this approach is very 

expensive, and quite frankly, I believe a bit silly and unpractical. 

Can section 3.3 be omitted? I felt it added little to the text. 

The first paragraph of section 4.2 can be safely omitted. Further, I feel that the text in 

section 4.2 beginning “Most retrieval products” through the end of the section can be 

removed. 

I feel that section 4.3 can be safely omitted too—of course observations are used in 

chemical data assimilation. Most of this content has been said somehow earlier. 

 

Reply: We feel that it is important to show some examples of data assimilation in 

atmospheric chemistry models, as those illustrate some of the associated advantages 

and limitations. We debated whether the case studies could be incorporated into Section 

3. However, we decided to keep them as a separate section because they not only 

provide illustrations of the data assimilation methods, but also exemplify the use of 
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observational data sets (ground-level and satellite data), which have been described in 

Section 4. 

 

We agree that section 2.4 is rather short. Nevertheless, we believe it deserves a 

subsection on its own because this issue is likely to become a major mathematical and 

technical hardship of CCMM, when coupling heterogeneous variables, some of them 

physically bounded. These assumptions often contradict mathematical axioms of 

standard data assimilation methods such as Gaussianity of the errors. Coupled climate 

models (with sea ice for instance) and coupled ocean-biogeochemical models also face 

the same class of issues and addressing this non-Gaussianity issue is already considered 

a major challenge. 

 

We agree that the leave-one-out approach is not numerically feasible and we have 

modified Section 2.5 accordingly. 

 

Section 3.3 is useful as a link between the data assimilation methods, which are 

described in Section 3 and the observational data sets, which are described in Section 4. 

 

The first paragraph of Section 4.2 introduced the major agencies operating satellites. 

This paragraph has been removed. Acronyms have been defined in other parts of the 

texts where needed. 

 

The end of Section 4.2 starting with “Most retrieval products…” is useful as a reminder of 

the necessary components of the retrieval products. In particular, DOAS is a popular 

retrieval approach, but providing kernels with the DOAS approach has become common 

practice only very recently.  

 

Section 4.3 is important as it exemplifies the methods to use observations for data 

assimilation in an optimal manner. Therefore, it is complementary, rather than 

redundant, of the earlier section and it provides a bridge with the case studies section. 

 

 

2. Section 3.1 should be broken into subsections to make it easier to read. Perhaps one 

subsection could contain studies looking at inverse modeling and another those that 

examined modifying initial conditions. 

Similarly, section 3.2 should also be broken into subsections. I’d suggest one subsection 

for gaseous chemistry data assimilation and another for aerosol data assimilation. 

 

Reply: We have reorganized Section 3.1 along the suggested lines. However, it was not 

possible to break it down into only two sub-sections and it has been organized into four 

sub-sections. 

 

It was not possible to break down Section 3.2 into sub-sections along the same lines as 

Section 3.1 since inverse modeling has not been performed with CCMM yet. To break it 

down into assimilation of gaseous and aerosol data was not feasible either, because 

some applications have assimilated both gaseous and aerosol data. Furthermore, it 

appears that data assimilation into CCMM tends to differ at the moment by their data 

assimilation techniques (4D-Var, 3D-Var, Kalman filter) as mentioned in the 
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introductory paragraph. Therefore, we kept the current organization. Since Section 3.2 is 

shorter than Section 3.1, it seems appropriate not to break it down into sub-sections. 

 

3. In general, I strongly urge you to remove all unnecessary text, primarily in section 3. 

The details of the various studies do not have to be mentioned here. For example, in the 

paragraph about Schutgens et al. (2010), beginning on page 32253, the sentences starting 

with “To obtain” and “In addition” can probably be safely removed without detracting 

from the main point of this study. If readers want more information, they can consult the 

reference. 

 

Reply: We feel that some summary description of the cited studies is needed in order to 

provide sufficient information regarding those applications. Therefore, only minimal 

text removal was performed. 

 

 

Smaller comments and suggestions 

1. P 32236, L 24: Clarify how this paper differs from Zhang et al. (2012b) 

 

Reply: We added the following text: “…, however, only data assimilation in CTM was 

addressed”. 

 

2. I feel the paragraph beginning on line 17 on page 32237 can be shortened. 

 

Reply: This paragraph was slightly reduced. 

 

3. Suggest rewriting the first sentence of section 2.1 

 

Reply: This sentence was rewritten as follows: “Data assimilation in geosciences has 

been initially applied to meteorology where methods…”. 

 

4. P 32238, L 14: 90’s should be “1990s” 

 

Reply: This has been corrected. 

 

5. P 32238, L 18-20: What errors? Please be precise. 

 

Reply: We meant all errors (background, observation, posterior). This has been 

rewritten as: “…on all errors…”. 

 

6. P 32239, L 27: “of” not “in”, specify it’s the background error covariances 

 

Reply: “in” is correct; “of” is appropriate only when several elements are listed after 

“consist of…”, meaning “composed of…”. 

 

The definition of inflation is valid for any type of errors. In practice, inflation could be 

(and often is) applied to any type of error covariance: background, posterior but also 

observation. 
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7. P 32240, L 20: This sentence can probably be omitted. 

 

Reply: We feel that this sentence is a crucial remark backed up by recent numerical 

experiments: It tells that 4D-Var has an advantage over EnKF. Because of the popularity 

of EnKF, it is often forgotten that 4D-Var should outperform EnKF in strongly nonlinear 

conditions if it were not for the flow dependence. Therefore, this remark is quite 

relevant for CTM and perhaps also for CCMM. 

 

 

8.  P 32241, L 5-10: How are the “hybrid ensemble/variational” and “ensemble 

variational schemes” different? I believe you’re referring to the same thing. 

 

Reply: Hybrid methods consist in coupling two different data assimilation schemes such 

as an ensemble scheme (EnKF), and a variational scheme (3D-Var and 4D-Var). Because 

of the use of 3D-Var and 4D-Var, it usually entails using climatological information. 

Ensemble variational schemes are not always the result of the coupling of two data 

assimilation schemes, and/or do not necessarily use climatological information (for 

instance, the iterative ensemble Kalman smoother). There is a very smart account on the 

issue by Andrew Lorenc (however, it is meteorology-oriented): http://www.wcrp-

climate.org/WGNE/BlueBook/2013/individual-

articles/01_Lorenc_Andrew_EnVar_nomenclature.pdf. We changed "hybrid 

ensemble/variational" into "hybrid" to avoid any confusion. 

 

 

9.  In section 2.3, it might be appropriate to mention the NMC method as a way of 

obtaining background errors. 

 

Reply: Yes, we agree. 

 

"Algorithms relying on consistency check, cross validation and statistical likelihood have 

been used in meteorology (Hollingsworth and Lönnberg,1986; Desroziers and Ivanov, 

2001; Chapnik et al., 2004; Desroziers et al., 2005) to better assess those pivotal 

statistics." 

was modified as follows: 

"Algorithms relying on consistency check, cross validation, statistical likelihood 

(Hollingsworth and Lönnberg, 1986; Desroziers and Ivanov, 2001; Chapnik et al., 2004; 

Desroziers et al., 2005) or the empirical but efficient National Meteorological Center 

(NMC) technique (Parrish and Derber, 1992) have been used in meteorology to better 

assess those pivotal statistics." 

 

 

10.  P 32250: Suggest omitting the paragraph beginning in line 14. 

 

Reply: The first sentence has been deleted. 

 

11.  P 32252, L 12: “led” not “lead” 

 

Reply: This has been corrected. 
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12.  P 32255: Please rewrite the sentence beginning in line 11. I suggest omitting 

lines 13-17. 

 

Reply: This sentence has been rewritten as follows: “The authors showed that data 

assimilation of a combination of different observations (including multiple species) is a 

very effective way to remove systematic model errors.” 

 

We preferred to keep the end of that paragraph. Although it sounds intuitive, it is 

nevertheless relevant to future prospects of data assimilation in CCMM as data from 

different sources are more and more likely to be used. 

 

13.  I suggest omitting the text beginning in line 18 on page 32255 through the end of 

the section. Seems out of place to me. 

 

Reply: This paragraph and the following one have been deleted, along with the 

associated figures. 

 

14.  I believe lines 4-15 on page 32265 could be removed, since IMPROVE and STN 

network observations are not suitable for data assimilation purposes. 

 

Reply: Such data, which are not available in near real-time, are not suitable for air 

quality forecasting; however, they can be used for re-analyses of air pollutant 

concentrations. 

 

15.  Suggest omitting the paragraph beginning “MPLNET is a global lidar” on page 

32266. 

 

Reply: Assimilation of lidar data has recently been shown to improve air quality 

forecasts; therefore, it seems appropriate to keep this paragraph on lidar networks 

unchanged. 

 

16.  P 32271, L 18, “past” not “passed” 

 

Reply: This has been corrected. 

 

17.  P 32284, L 18: Please rewrite this sentence. 

 

Reply: This sentence has been rewritten as follows: “Assimilating distinct data sets that 

influence the same model variable could lead to some contradictory information 

concerning that model variable when the error statistics are misspecified (e.g., unknown 

bias in semi-volatile PM components); therefore, it will be essential to properly specify 

those measurement error statistics.” 

18.  P 32287, Lines 1-9: This material was just said nearly verbatim in section 6. 

Please consider removing. 

 

Reply: It is not uncommon for the main conclusions of an article to appear in the main 

text, the conclusion, and the abstract. Some journals accordingly do not accept 
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conclusion sections. However, since Atmos. Chem. Phys. articles typically include a 

conclusion section, we prefer to keep this part of the conclusion unchanged. 
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Reply to comments of Referee #2 

 

This paper presents a large review of data assimilation in atmospheric chemistry models 

with a special focus on coupled chemistry meteorology models (CCMM). First the 

author proposes a review of assimilation methods used/developed for chemical data 

applications. A very complete review of chemical data assimilation studies is presented. 

Also a very interesting review of available chemical observations is given by 

the authors. Moreover, authors present specific case studies to illustrate the state of 

data assimilation science for atmospheric chemistry. The paper is in general clear and 

well written and it is probably a review that will serve the community of atmospheric 

chemistry and more specifically the community of chemical weather prediction. I m 

then favorable to the publication of this paper but i have the feeling that the paper could 

be more “efficient” and clear with some minor modifications. Hereafter, i make few 

remarks that, I hope, could help to improve the paper. 

 

 

Page 32255 – Line 18: At the end of the section 3.1, you are presenting the results of 

a study where SCHIAMACHY observations have been assimilated. This study is probably 

very interesting but it seems that, contrary to the other examples of the section, 

the results are not related to a publication. The consequence is that the readers do 

not have the possibility to understand/evaluate the results. Maybe, the corresponding 

publication is missing but under this form it is like you were presenting results almost 

without description of the model, the assimilation, the case study, the set-up of the 

assimilation experiment, the nature of the observation used. In this state, i would 

recommend 

you to skip this section and the corresponding figure. 

 

Reply: The two paragraphs referring to this data assimilation study and the associated 

figures have been deleted. 

 

Page 32275 – Line 9: The case studies presented within section 5 are more documented 

than the case study mentioned above. Nevertheless, the interest to have such 

examples in the paper is not obvious. Maybe these case studies (at least one or two) 

should be used to illustrate a paragraph more focused on CCMM. Indeed, It is not clear 

from the paper what are the applications/processes that could be targeted with the use 

of data assimilation in CCMM. The example of the use of CCN to improve aerosol is 

relatively unexpected but very interesting and I think we would like to have a more 

exhaustive list of the domain that could benefit assimilation in CCMM. Which of these 

potential applications could be expected in a very near future when considering current 

available observations ? 

 

Reply: We feel that it is important to show some examples of data assimilation in 

atmospheric chemistry models, as those illustrate some of the associated advantages 

and limitations. We debated whether the case studies could be incorporated into Section 

3. However, we decided to keep them as a separate section because they not only 

provide illustrations of the data assimilation methods, but also exemplify the use of 

observational data sets (ground-level and satellite data), which have been described in 

Section 4. 
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It is difficult to anticipate which indirect effects of data assimilation would benefit 

various model variables via meteorology/chemistry interactions and, therefore, it does 

not seem feasible to develop an exhaustive list of such potential benefits at this point. 

Nevertheless, we added a sentence in the conclusion pointing out such potential benefits 

and giving as examples the improvement in aerosol concentrations following CCN data 

assimilation and the potential improvement in meteorology (thermal structure and 

circulation) following AOD data assimilation during dust storms. 

 

A last remark, you mention that CCMM are costly in term of time calculation which 

combined with assimilation is even more critical. Is there a tendency to have simplified 

chemistry compared to off-line CTM ? 

 

Reply: CCMM typically use the same gas-phase chemical kinetic mechanisms as CTM. 

There are some versions of CCMM that use simplified representations of aerosol 

processes (in terms of particle size resolution and/or chemical composition); however, 

some CCMM use fairly detailed representations of both particle size resolution and 

chemical composition. 
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Abstract 30 
 31 
 32 
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, 33 
construct re-analyses of three-dimensional chemical (including aerosol) concentrations and 34 
perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled 35 
chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate 36 
meteorological processes and chemical transformations jointly. They offer the possibility to 37 
assimilate both meteorological and chemical  data; however, because CCMM are fairly 38 
recent, data assimilation in CCMM has been limited to date. We review here the current 39 

status of data assimilation in atmospheric chemistry models with a particular focus on future 40 
prospects for data assimilation in CCMM. We first review the methods available for data 41 
assimilation in atmospheric models, including variational methods, ensemble Kalman filters, 42 
and hybrid methods. Next, we review past applications that have included chemical data 43 
assimilation in chemical transport models (CTM) and in CCMM. Observational data sets 44 
available for chemical data assimilation are described, including surface data, surface-based 45 
remote sensing, airborne data, and satellite data. Several case studies of chemical data 46 
assimilation in CCMM are presented to highlight the benefits obtained by assimilating 47 
chemical data in CCMM. A case study of data assimilation to constrain emissions is also 48 
presented. There are few examples to date of joint meteorological and chemical data 49 
assimilation in CCMM and potential difficulties associated with data assimilation in CCMM 50 
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are discussed. As the number of variables being assimilated increases, it is essential to 51 
characterize correctly the errors; in particular, the specification of error cross-correlations 52 
may be problematic. In some cases, offline diagnostics are necessary to ensure that data 53 
assimilation can truly improve model performance. However, the main challenge is likely to 54 
be the paucity of chemical data available for assimilation in CCMM. 55 
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1.  Introduction  56 
 57 
Data assimilation pertains to the combination of modeling with observational data to produce 58 
a most probable representation of the state of the variables considered. For atmospheric 59 
applications, the objective of data assimilation is to obtain a better representation of the 60 
atmosphere in terms of meteorological and atmospheric chemistry variables (particulate 61 
matter (PM) is included here as part of atmospheric chemistry). 62 
 63 

Data assimilation has been used for many decades in dynamic meteorology to improve 64 
weather forecasts and construct re-analyses of past weather. Several recent reviews of data 65 
assimilation methods used routinely in meteorology are available (e.g., Kalnay, 2003; Navon, 66 
2009; Lahoz et al., 2010). The use of data assimilation in atmospheric chemistry is more 67 
recent, because numerical deterministic models of atmospheric chemistry have been used 68 
routinely for air quality forecasting only since the mid 1990’s; previously, most air quality 69 
forecasts were conducted with statistical approaches (Zhang et al., 2012a). Data assimilation 70 
is also used in air quality since the 1990’s for re-analysis to produce air pollutant 71 
concentration maps (e.g., Elbern and Schmidt, 2001), inverse modeling to improve (or 72 
identify errors in) emission rates (e.g., Elbern et al., 2007; Vira and Sofiev, 2012; Yumimoto 73 
et al., 2012), boundary conditions (e.g., Roustan and Bocquet, 2006) and model parameters 74 

(e.g., Barbu et al., 2009; Bocquet, 2012). Regarding air quality re-analyses, the 2008/50 75 
European Union (EU) Air Quality Directive (AQD) suggests the use of modeling in 76 
combination with fixed measurements “to provide adequate information on the spatial 77 
distribution of the ambient air quality” (Borrego, in press; OJEU, 2008). An overview of data 78 
assimilation of atmospheric species concentrations for air quality forecasting was recently 79 
provided by Zhang et al. (2012b); however, only data assimilation in CTM was addressed. 80 
We address here data assimilation in atmospheric chemistry models, which we define to 81 
include both atmospheric chemical transport models (CTM), which use meteorological fields 82 
as inputs (e.g., Seinfeld and Pandis, 2006), and coupled chemistry meteorology models 83 
(CCMM), which simulate meteorology and atmospheric chemistry jointly (Zhang, 2008; 84 
Baklanov et al., 2014). In particular, we are interested in the future prospects and potential 85 

difficulties associated with data assimilation in CCMM. 86 
 87 
In spite of available previous experience in data assimilation for meteorological modeling on 88 
one hand and chemical transport modeling on the other hand, conducting data assimilation in 89 
CCMM can be challenging because of interactions among meteorological and chemical 90 
variables. Assimilating large bodies of various meteorological and air quality data may lead 91 
to a point of diminishing return. The objective of this review is to present the current state of 92 
the science in data assimilation in atmospheric chemistry models. Because of the limited 93 
experience available with CCMM, our review covers primarily data assimilation in CTM 94 

and, to a lesser extent, in CCMM. The emphasis for future prospects is placed on the 95 
preferred approaches for CCMM and the challenges associated with the combined 96 
assimilation of data for meteorology and atmospheric chemistry. Potential difficulties are 97 
identified based on currently available experience and recommendations are provided on the 98 
most appropriate approaches (methods and data sets) for data assimilation in CCMM. 99 
Recommendations for method development are also provided since current efforts are 100 
ongoing in this area of geosciences. 101 
 102 
We present in Section 2 an overview of the data assimilation techniques that are used in 103 
atmospheric modeling. Next, their applications to atmospheric chemistry are presented in 104 
Section 3; most applications to date pertain to meteorology and atmospheric chemistry 105 
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separately, nevertheless a few recent applications pertaining to CCMM are described. Data 106 
assimilation in the context of optimal network design is also discussed because it may be 107 
used to improve the representativeness of observational monitoring networks. The 108 
observational data sets available for data assimilation are described in Section 4. Selected 109 
case studies of data assimilation in CCMM are presented in Section 5 to illustrate the current 110 
state of the science. A case study of data assimilation performed in the context of inverse 111 
modeling of the emissions is also presented. Potential difficulties associated with data 112 
assimilation in CCMM are discussed in Section 6. Finally, recommendations for future 113 

method development, method applications and pertinent data sets are provided in Section 7, 114 
along with a discussion of future prospects for data assimilation in CCMM. 115 

 116 

 117 
2. Methods of data assimilation in meteorology and atmospheric chemistry 118 
 119 

2.1 Overview of the methods 120 
 121 
Data assimilation in geosciences has been initially applied to meteorology where methods 122 
have been very soon operationally implemented (Lorenc, 1986; Daley, 1991; Ghil and 123 
Malanotte-Rizzoli, 1991; Kalnay, 2003; Evensen, 2009; Lahoz et al., 2010). Building on 124 

established data assimilation methodology, assimilation of observations in offline CTM has 125 
emerged in the late 1990’s (Carmichael et al., 2008; Zhang et al., 2012a). Here, we briefly 126 
describe the most common techniques used in both fields and comment on their differences 127 
when appropriate. 128 
 129 
As far as spatial analysis is concerned, most common data assimilation methods hardly differ. 130 
They are mainly based on statistical Gaussian assumptions on all errors and the analysis 131 
relies on the simple but efficient Best Linear Unbiased Estimator (BLUE). At a given time, 132 
BLUE strikes the optimal compromise between the observations and a background estimate 133 
of the system state, often given by a previous forecast. Such BLUE analysis can be 134 
performed solving for the gain matrix (that balances the observations and the background) 135 

using linear algebra, a procedure called Optimal/Statistical Interpolation (OI) (Fedorov, 136 
1989; Daley, 1991), or it can be obtained through a three-dimensional (3D) variational spatial 137 
analysis, usually called 3D-Var. Within BLUE, it is mandatory to provide a priori statistics 138 
for both the observation errors and the errors of the background.  139 
 140 
When time is accounted for, these methods need to be generalized. In particular, errors (or 141 
their statistics) attached to the best estimate must be propagated in time, which leads to 142 
substantial hardships in both statistical interpolation and variational approaches. The OI 143 
approach may be generalized to the (extended) Kalman filter (Ghil and Malanotte-Rizzoli, 144 

1991), while 3D-Var is generalized to 4D-Var (Penenko and Obraztsov, 1976; Le Dimet and 145 
Talagrand, 1986; Talagrand and Courtier, 1987; Rabier et al., 2000). Kalman filters and 146 
3D/4D-Var can be combined to address deficiencies of both methods: divergence of the filter 147 
and static covariance in variational methods (at least initially for 4D-Var) (Lorenc, 2003). 148 
 149 

2.1.1 Filtering approaches 150 
 151 
The extended Kalman filter requires the propagation of the error covariance matrix of rank 152 
the dimension of state-space, which can become unaffordable beyond a few hundred. Yet, 153 
when the analysis happens to be strongly localized, the method becomes affordable such as 154 
in land surface data assimilation. For higher dimensional applications, it has been replaced by 155 
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the reduced-rank Kalman filter and the ensemble Kalman filter, and many variants thereof 156 
(Evensen, 1994; Verlaan and Heemink, 1997). In both cases, the uncertainty is propagated 157 
through a limited number of modes that are forecast by the model. This makes these methods 158 
affordable even with large dimensional models, especially because of the natural parallel 159 
architecture of such ensemble filtering. Unfortunately, the fact that the ensemble is of finite 160 
size entails a deficient estimation of the errors mostly due to undersampling, which may lead 161 
to divergence of the filter. This needs to be fixed and has been so through the use of inflation 162 
(Pham et al., 1998; Anderson and Anderson, 1999) and localization (Houtekamer and 163 

Mitchell, 2001; Hamill et al., 2001). 164 
 165 
Inflation consists in additively or multiplicatively inflating the error covariance matrices so 166 
as to compensate for an underestimation of the error magnitude. The inflation can be fixed or 167 
adaptive, or it can be rendered by physically-driven stochastic perturbations of the ensemble 168 
members. Localization is made necessary when the finite size of the ensemble whose 169 
variability is too small in high-dimensional systems makes the analysis inoperative. 170 
Localization can be performed by either filtering the ensemble empirical error covariance 171 
matrix and making it full-rank using a Schur product with a short-range correlation function 172 
(Houtekamer and Mitchell, 2001) or performing parallel spatially local analyzes (Ott et al., 173 
2004). Those methodological advances have been later tested and weighted with offline 174 

CTM (Hanea et al., 2004; Constantinescu et al., 2007a,b; Wu et al., 2008). 175 
 176 

2.1.2 Variational approaches 177 
 178 
Four-dimensional (4D) variational data assimilation (4D-Var) that minimizes a cost function 179 
defined in space and in time, requires the use of the adjoint of the forward and observation 180 
models, which may be costly to derive and maintain. It also requires the often complex 181 
modeling of the background error covariance matrix. Since linear algebra operations on this 182 
huge matrix are prohibitive, the background error covariance matrix is usually modeled as a 183 
series of operators, whose correlation part can for instance be approximated as a diffusion 184 
operator (Weaver and Courtier, 2001). This modeling is even more so pregnant in air quality 185 

data assimilation when the statistics of the errors on the parameters also need prior statistical 186 
assumptions (Elbern et al., 2007). However, as a smoother, 4D-Var could theoretically 187 
outperform ensemble Kalman filtering in nonlinear enough systems, if it was not for the 188 
absence of flow-dependence in the background statistics (Bocquet and Sakov, 2013). It also 189 
easily accounts for asynchronous observations that are surely met in an operational context. 190 
 191 
Most operational 4D-Var are strong-constraint 4D-Var, which implies that the model is 192 
assumed to be perfect. Accounting for model error and/or extending the length of the data 193 
assimilation window would require generalizing it to weak-constraint 4D-Var (Penenko, 194 

1996; Fisher et al., 2005, Penenko, 2009). However, several difficulties arise, such as the 195 
necessity to characterize model error and to significantly extend control space. On the 196 
contrary, filtering approaches quite easily incorporate model errors that nevertheless still 197 
need to be assessed. 4DVar has been rapidly evaluated and promoted in the context of air 198 
quality forecasting (Fisher and Lary, 1995; Elbern and Schmidt, 1999, 2001; Quélo et al., 199 
2006; Chai et al., 2006; Elbern et al., 2007; Wu et al., 2008). 200 
 201 
New data assimilation methods that have been recently developed are currently being tested 202 
in meteorological data assimilation such as hybrid schemes (Lorenc, 2003; Wang et al., 203 
2007), particle filters (van Leeuwen, 2009; Bocquet et al., 2010) and ensemble variational 204 
schemes (Buehner et al., 2010a, 2010b). However, the flow dependence of the methods in air 205 
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quality is not as strong as in meteorology, and it remains to be seen whether those methods 206 
have a potential in offline atmospheric chemistry modeling and, in the long term, in online 207 
CCMM (Bocquet and Sakov, 2013). 208 
 209 

2.2 From state estimation to physical parameter estimation 210 
 211 
As soon as time is introduced, differences appear between meteorological models and 212 
offline CTM. For instance, the dynamics of a synoptic scale meteorological model is chaotic 213 

while the non-chaotic dynamics of offline CTM, even though possibly very non-linear, is 214 
mainly driven by forcings, such as emissions and insolation. As a consequence, a combined 215 
estimation of state and parameters might be an advantage in CTM data assimilation. A 216 
possible difference is also in the proven benefit of model error schemes where stochastic 217 
parameterizations offer variability that most CTM lack. More generally, one should 218 
determine which parameters have a strong influence on the forecasts and, at the same time, 219 
are not sufficiently known. Whereas pure initial value estimation might be a satisfying 220 
answer for synoptic meteorological models, emission, deposition, and transformation rates as 221 
well as boundary conditions are in competition with initial values for CTM for medium- to 222 
long-range forecasts. 223 
 224 

With model parameter estimation, which is desirable in offline atmospheric data assimilation, 225 
the filtering and variational methods come with two types of solution. The (ensemble) 226 
filtering approach requires the augmentation of the state variables with the parameters (Ruiz 227 
et al., 2013). 4D-Var easily lends itself to data assimilation since the parameter variables can 228 
often be accounted for in the cost function (Penenko et al., 2002; Elbern et al., 2007; Bocquet, 229 
2012; Penenko et al., 2012). However, it is often required to derive new adjoint operators 230 
corresponding to the gradient of the cost function with respect to these parameters if the 231 
driving mechanisms are not external forcings. Often, adjoint models and operators can 232 
nonetheless be obtained through a simplifying approximation (Issartel and Baverel, 2003; 233 
Krysta and Bocquet, 2007; Bocquet, 2012; Singh and Sandu, 2012). 234 
 235 

2.3 Accounting for errors and diagnosing their statistics 236 
 237 
All the above schemes rely on the knowledge of the error statistics for the observations and 238 
the background (state or parameters). Yet, in a realistic context, it is always imperfect. The 239 
performance of the data assimilation schemes is quite sensitive to the specification of these 240 
errors. Algorithms relying on consistency check, cross validation and statistical likelihood 241 
(Hollingsworth and Lönnberg, 1986; Desroziers and Ivanov, 2001; Chapnik et al., 2004; 242 
Desroziers et al., 2005) or the empirical but efficient National Meteorological Center (NMC) 243 
technique (Parrish and Derber, 1992) have been used in meteorology to better assess those 244 

pivotal statistics. Paradoxically, they have slowly percolated in air quality data assimilation 245 
where they should be crucial given the uncertainty on most forcings or the sparsity of 246 
observations for in situ concentration measurements. 247 
 248 
The error covariance matrices can be parameterized with a restricted set of hyper-parameters, 249 
and those hyper-parameters can be estimated through maximum-likelihood or L-curve tests 250 
(Ménard et al., 2000; Davoine and Bocquet, 2007; Elbern et al., 2007). Alternatively, with 251 
sufficient data, the whole structure of the error covariance matrices in the observation space 252 
can be diagnosed using consistency matrix identities; see for example Schwinger and Elbern 253 
(2010) who applied the approach of Desroziers et al. (2005) to a stratospheric chemistry 4D-254 
Var system. 255 
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 256 
As mentioned above, stochastic perturbations, as well as multi-physics parameterizations 257 
(within ensemble methods) can be implemented to offer more variability and counteract 258 
model error. More dedicated parameterizations of model error are possible and occasionally 259 
bring in substantial improvement. Kinetic energy backscatter (Shutts, 2005) or physical 260 
tendency perturbations at the ECMWF (Buizza et al., 1999) are used in numerical weather 261 
predictions. In air quality, a subgrid statistical method has been successful in quantitatively 262 
estimating and removing representativeness errors (Koohkan and Bocquet, 2012). 263 

 264 

2.4 Nonlinearity and non-Gaussianity and the need for advanced methods 265 
 266 
The aforementioned methods that are essentially derived from the BLUE paradigm may be 267 
far from optimal when dealing with significant nonlinearities or significantly non-Gaussian 268 
statistics. This surely happens when accounting for the convective scale or for the 269 
hydrometeors in meteorology. It also occurs when modeling aerosols and assimilating 270 
aerosols/optical observations. It is also bound to happen whenever positive variables are dealt 271 
with (which is the case for most of the variables in air quality). It could become important 272 
when error estimates of species concentrations are commensurate with those concentrations. 273 
It will happen with online coupling of meteorology and atmospheric chemistry. Possible 274 

solutions are a change of variables, the (related) Gaussian anamorphosis, maximum entropy 275 
on the mean inference, particles filters or the use of variational schemes that account for 276 
nonlinearity well within the data assimilation window (Bocquet et al., 2010). 277 
 278 

2.5 Verification of the data assimilation process 279 
 280 
Clearly, one would expect that model performance would improve with data assimilation. 281 
However, comparing model simulation results against the observations that have been 282 
assimilated is only a test of internal consistency of the data assimilation process and it cannot 283 
be construed as a verification of the improvement due to the data assimilation. Verification 284 
must involve testing the model against observations that have not been used in the data 285 

assimilation process. One may distinguish two broad categories of verification. 286 
 287 
One approach is to test the result of a model simulation for a different time window than that 288 
used for the data assimilation. Since data assimilation is used routinely in meteorology to 289 
improve weather forecast, a large amount of work has been conducted to develop procedures 290 
to assess the improvement in the forecast resulting from the data assimilation. The model 291 
forecast with and without data assimilation may be tested in the forecast range (i.e., following 292 
the data assimilation window) either against observations or against reanalyses. Numerical 293 
weather forecast centers perform such verification procedures routinely and various 294 

perforamnce parameters have been developed to that end. See for example Table 6 in Yang et 295 
al. (2012a) for a non-exhaustive list of such parameters. Ongoing research continuously adds 296 
to such procedures (e.g., Rodwell et al., 2010; Ferro and Stevenson, 2011). Similar procedures 297 
may be used with CCMM to evaluate the improvement provided by data assimilation in a 298 
forecasting mode (e.g., see case studies in Sections 5.2 and 5.3).  299 
 300 
Another approach to evaluate the improvement of model performance due to data assimilation 301 
consists in comparing model performance for the data assimilation time window, but using a 302 
set of data that was not used in the assimilation process. The Leave-one-out approach, where 303 
data from only n-1 stations are assimilated and the left-out station is used for evaluation is  304 
computationally expensive and, therefore, typically unfeasible. Consequently, the Group 305 
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selection approach is more commonly used. A subset of the stations where observations are 306 
available (usually 15% to 25% of the total number of stations) is selected at the beginning of 307 
the verification process; those stations are not used in the data assimilation process and are 308 
used only for model performance evaluation with and without data assimilation. Clearly, the 309 
group selection approach is sensitive to the selection of that subset of stations. 310 
 311 
The methods mentioned above can be applied in the case of different observational sources 312 
(e.g., ground based observations, satellite data, lidar data). They can also be applied in cases 313 

where data assimilation is used to conduct inverse modeling to estimate emissions or model 314 
parameters. For example, Koohkan et al. (2013) used both an evaluation in a forecast mode 315 
and a leave-one-out approach to evaluate the improvement in model performance resulting 316 
from a revised emission inventory obtained via inverse modeling.  317 
 318 
One must note that the availability of chemical data is significantly less than that of 319 
meteorological data and, for all approaches, this paucity of chemical data will place some 320 
limits on the depth of the verification of the improvement due to data assimilation that can be 321 
conducted. 322 
 323 
 324 

3. Applications 325 
 326 

3.1 Data assimilation in CTM 327 
 328 
Many successful applications have demonstrated the benefits of data assimilation applied in 329 
CTM either with the purpose to produce re-analysis fields or with the focus on improvement 330 
of accuracy of model inputs (IC, BC, and emissions) and forecasts. To represent the current 331 
status and to illustrate the performance of data assimilation for these purposes, we provide 332 
examples from regional and global studies, using different types of observational data, 333 
including in-situ, airborne, and satellite data.  334 
 335 

3.1.1 Initial conditions and re-analysis fields 336 
 337 
A range of techniques have been used for estimating the best known estimate for the state 338 
space variables, such as ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) or 339 
aerosols (particulate matter, PM), with the purpose either to conduct air quality assessments 340 
or to improve the initial conditions for forecast applications. Elbern and Schmidt (2001) in 341 
one of the pioneer studies providing a chemical state analysis for the real case O3 episode 342 
with the use of a 4D-Var based optimal analysis, EURAD CTM model, with surface O3 343 
observations and radiosonde measurements. Analyses of the chemical state of the atmosphere 344 

obtained on the basis of a 6 hour data assimilation interval were validated with observational 345 
data withheld from the variational DA algorithm. The authors showed that the initial value 346 
optimization by 4D-Var provides a considerable improvement for the 6 to 12 hour O3 347 
forecast including the afternoon peak values, but vanishing improvements afterwards. A 348 
similar conclusion was later reached in other studies (e.g., Wu et al., 2008; Tombette et al. 349 
2009; Wang et al. 2011; Curier et al. 2012). Chai et al (2006), with the STEM-2K1 model 350 
and 4D-Var technique applied to assimilate aircraft measurements during the TRACE-P 351 
experiment showed not only that adjusting initial fields after assimilating O3 measurements 352 
improves O3 predictions, but also that assimilation of NOy measurements improves 353 
predictions of nitric oxide (NO), NO2, and peroxy acetyl nitrate (PAN). In this study, the 354 
concentration upper bounds were enforced using a constrained limited memory Broyden-355 

Supprimé Supprimé Supprimé Supprimé : : : : :

Supprimé Supprimé Supprimé Supprimé : : : : the 

Supprimé Supprimé Supprimé Supprimé : : : : –



 9 

Fletcher-Goldfarb-Shanno minimizer to speed up the optimization process in the 4D-Var and 356 
the same approach was later used also by Chai et al. (2007) for assimilating O3 measurements 357 
from various platforms (aircraft, surface, and ozone sondes) during the International 358 
Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 359 
operations in the summer of 2004. Here, the ability to improve the predictions against the 360 
withheld data was shown for every single type of observations. A final analysis where all the 361 
observations were simultaneously assimilated resulted in a reduction in model bias for O3 362 
from 11.3 ppbv (the case without assimilation) to 1.5 ppbv, and in a reduction of 10.3 ppbv 363 

in RMSE.  It was also demonstrated that the positive effect in air quality forecast for the near 364 
ground O3 was seen even out to 48 hours after assimilation. 365 
 366 
In addition to the variational data assimilation work, a number of atmospheric chemistry data 367 
assimilation applications used sequential approaches, including various Kalman filter 368 
methods. Coman et al. (2012) in their study used an Ensemble Square Root Kalman Filter 369 
(EnSRF) to assimilate partial lower tropospheric ozone columns (0 - 6 km) provided by the 370 
IASI (Infrared Atmospheric Sounding Interferometer) instrument into a continental-scale 371 
CTM, CHIMERE, for July 2007. In spite of the fact that IASI shows higher sensitivity for O3 372 
in the free troposphere and lower sensitivity at the ground, validations of analyses with 373 
assimilated O3 observations from ozone sondes, MOZAIC aircraft and AIRBASE ground 374 

based measurements, showed 19% reduction of the RMSE and 33 % reduction of the bias at 375 
the surface. The more pronounced reduction of the errors in the afternoon than in the 376 
morning was attributed to the fact that the O3 information introduced into the system needs 377 
some time to be transported downward.  378 
 379 
The limitations and potentials of different data assimilation algorithms with the aim of 380 
designing suitable assimilation algorithms for short-range O3 forecasts in realistic 381 
applications have been demonstrated by Wu et al. (2008). Four assimilation methods were 382 
considered and compared under the same experimental settings: optimal interpolation (OI), 383 
reduced-rank square root Kalman filter (RRSQRT), ensemble Kalman filter (EnKF), and 384 
strong-constraint 4D-Var. The comparison results revealed the limitations and the potentials 385 

of each assimilation algorithm. The 4D-Var approach due to low dependency of model 386 
simulations on initial conditions leads to moderate performances. The best performance 387 
during assimilation periods was obtained by the OI algorithm, while the EnKF had better 388 
forecasts than OI during the prediction periods. The authors concluded that serious 389 
investigations on error modeling are needed for the design of better DA algorithms.  390 
 391 
Data assimilation approaches have been used also with the purpose of combining the 392 
measurements and model results in the context of air quality assessments. Candiani et al. 393 
(2013) formalized and applied two types of offline data assimilation approaches (OI and 394 

EnKF) to integrate the results of the TCAM CTM (Carnevale et al., 2008) and ground-level 395 
measurements and produce PM10 re-analysis fields for a regional domain located in northern 396 
Italy. The EnKF delivered slightly better results and more model consistent fields, which was 397 
due to the fact that, for the EnKF, an ensemble of simulations randomly perturbing only 398 
PM10 precursor emissions highlighted the importance of a consistent emission inventory in 399 
the modeling. EnKF approaches along with surface measurements have also been used for 400 
other models such as CUACE/dust (Lin et al., 2008). The use of such air quality re-analyses 401 
in the context of air quality regulations (e.g., assessment of air quality exceedances over 402 
specific areas, estimation of human exposure to air pollution) has been discussed by Borrego 403 
et al. (in press). 404 
 405 
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Kumar et al. (2012) used a bias-aware optimal interpolation method (OI) in combination with 406 
the Hollingsworth-Lönnberg method to estimate error covariance matrices to perform re-407 
analyses of O3 and NO2 surface concentration fields over Belgium with the regional-scale 408 
CTM AURORA for summer (June) and winter (December) months. Re-analysis results were 409 
evaluated objectively by comparison with a set of surface observations that were not 410 
assimilated. Significant improvements were obtained in terms of correlation and error for 411 
both months and both pollutants. 412 
 413 

Satellite data have also been assimilated into CTM to improve performance in terms of 414 
surface air pollutant concentrations. For example, Wang et al. (2011) assimilated NO2 415 
column data from OMI of the AURA satellite into the Polyphemus/Polair3D CTM to 416 
improve air quality forecasts. Better improvements were obtained in winter than in summer 417 
due to the longer lifetime of NO2 in winter. Several studies have used aerosol optical depth 418 
(AOD, also referred to as aerosol optical thickness or AOT) observations along with CTM to 419 
obtain better air quality re-analyses. Some of these studies used the OI technique along with 420 
models such as STEM (Adhikary et al., 2008; Carmichael et al., 2009), CMAQ (Park et al., 421 
2011; Park et al., 2014), MATCH (Collins et al., 2001), and GOCART (Yu et al., 2003). 422 
Other studies used variational approaches with models such as EURAD (Schroeder-423 
Homscheidt et al., 2010; Nieradzik and Elbern, 2006) and LMDz-INCA (Generoso et al., 424 

2007).  425 
 426 
The question whether assimilation of lidar measurements instead of ground-level 427 
measurements has a longer lasting impact on PM10 forecast, was investigated by Wang et al. 428 
(2013).  They compared the efficiency of assimilating lidar network measurements or 429 
AirBase ground network over Europe using an Observing System Simulation Experiment 430 
(OSSE) framework and an OI assimilation algorithm with the POLAIR3D CTM (Sartelet et 431 
al., 2007) of the air quality platform POLYPHEMUS (Mallet et al., 2007). Compared to the 432 
RMSE for one-day forecasts without DA, the RMSE between one-day forecasts and the truth 433 
states was improved on average by 54% by the DA with data from 12 lidars and by 59% by 434 
the DA with AirBase measurements. Optimizing the locations of 12 lidars, the RMSE was 435 

improved by 57 %, while with 76 lidars the improvement of the RMSE became as high as 436 
65%. For the second forecast days the RMSE was improved on average by 57% by the lidar 437 
data assimilation and by 56% by the AirBase data assimilation, compared to the RMSE for 438 
second forecast days without data assimilation. The authors concluded that assimilation of 439 
lidar data corrected PM10 concentrations at higher levels more accurately than AirBase data, 440 
which caused the spatial and temporal influence of the assimilation of lidar observations to 441 
be larger and longer. Kahnert (2008) is another example of assimilation of lidar data by using 442 
the MATCH model on a 3D-Var framework. 443 
 444 

3.1.2 Initial conditions versus other model input fields 445 
 446 
Pollutant transport and transformations in CTM are strongly driven by uncertain external 447 
parameters, such as emissions, deposition, boundary conditions, and meteorological fields, 448 
which explains why the impact of initial state adjustment is generally limited to the first day 449 
of the forecast. To address this issue, i.e., to improve the analysis capabilities and prolong the 450 
impact of DA on AQ forecasts, Elbern et al. (2007) extended the 4D-Var assimilation for 451 
adjusting emissions fluxes for 19 emitted species with the EURAD mesoscale model in 452 
addition to chemical state estimates as usual objective of DA. Surface in-situ observations of 453 
sulfur dioxide (SO2), O3, NO, NO2, and CO from the EEA AirBase database were assimilated 454 
and forecast performances were compared for pure initial value optimization and joint 455 
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emission rate/initial value optimization for an August 1997 O3 episode. For SO2, the 456 
emission rate optimization nearly perfectly reduced the emission induced bias of 10 ppb after 457 
two days of simulation with pure initial values optimization, and reduced RMS errors by 458 
about 60%, which demonstrated the importance of emission rate rather than initial value 459 
optimization. In the case of photolytically active species, the optimization of emission rates 460 
was shown to be considerably more challenging; for O3, it was attributed mostly to the coarse 461 
model horizontal resolution of 54 km. The authors concluded that grid refinement with 4D-462 
Var applied after introducing nesting techniques should enable more efficient use of NOx 463 

observations and decrease bias and RMSE for a forecast longer than 48 h.  464 
 465 
In limited area modeling, experiments concerning the relative importance of the initial model 466 
state and emissions of primary pollutants have been carried out with the SILAM chemistry 467 
transport model (http://silam.fmi.fi), which includes a subsystem for variational data 468 
assimilation. Both 4D- and 3D-Var methods are implemented and share the common 469 
observation operators, covariance models and minimization algorithms. The main features of 470 
the assimilation system are described by Vira and Sofiev (2012, 2015). In addition to model 471 
initialization, the 4D-Var mode can be set to optimize emission rates either via a location-472 
dependent scaling factor or an arbitrary emission forcing restricted to a single point source. 473 
The former can be used for optimizing emission inventories of anthropogenic or natural 474 

pollutants (see case study 5.4), while the latter has been developed especially for source term 475 
inversion in volcanic eruptions. European-wide in-situ observations are assimilated routinely 476 
to produce daily analysis fields of gas-phase pollutants, while satellite observations have been 477 
used mainly for emission-related case studies. The assimilation of sulfur oxide observations 478 
from the Airbase database showed that for such compounds the effect of initial state 479 
determination, whether with 3D- or 4D-Var, tends to disappear within 10-12 hours, whereas 480 
the effect of emission correction rather starts after a few hours following the assimilation. The 481 
3D-Var assimilation mode, while less versatile then 4D-Var, benefits from very low 482 
computational overhead. The adjoint code, required by 4D-Var, is available for all processes 483 
except aerosol chemistry.  484 
 485 

3.1.3 Inverse modeling 486 
 487 
The possibility to use data assimilation for establishing the initial state of the model as well 488 
as for improving the emission input data connects data assimilation to the source 489 
identification problem, either in the context of accidental releases or for evaluating and 490 
improving emission inventories.  Numerous studies used data assimilation approaches for 491 
estimating or improving emission inventories. Mijling and van der A (2012) presented a new 492 
algorithm (DECSO) specifically designed to use daily satellite observations of column 493 
concentrations for fast updates of emission estimates of short-lived atmospheric constituents. 494 

The algorithm was applied for NOx emission estimates of East China, using the CHIMERE 495 
model on a 0.25 degree resolution together with tropospheric NO2 column retrievals of the 496 
OMI and GOME-2 satellite instruments (see Table 1). The important advantage of this 497 
algorithm over techniques using 4D-Var or the EnKF is the calculation speed of the 498 
algorithm, which facilitates for example its operational application for NO2 concentration 499 
forecasting at mesoscale resolution. The DECSO algorithm needs only one forward model 500 
run from a CTM to calculate the sensitivity of concentration to emission, using trajectory 501 
analysis to account for transport away from the source. By using a Kalman filter in the 502 
inverse step, optimal use of the a priori (background) knowledge and the newly observed 503 
data is made. Tests showed that the algorithm is capable of reconstructing new NOx emission 504 
scenarios from tropospheric NO2 column concentrations and detecting new emission sources 505 
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such as power plants and ship tracks. Using OMI and GOME-2 data, the algorithm was able 506 
to detect emission trends on a monthly resolution, such as during the 2008 Beijing Olympic 507 
Games. Furthermore, the tropospheric NO2 concentrations calculated with the new emission 508 
estimates showed better agreement with the observed concentrations over the period of data 509 
assimilation, both in space and time, as expected, facilitating the use of the algorithm in 510 
operational air quality forecasting. 511 
 512 
Koohkan et al. (2013) have focused on the estimation of emission inventories for different 513 

VOC species via inverse modeling. For the year 2005, they estimated 15 VOC species over 514 
western Europe: five aromatics, six alkanes, two alkenes, one alkyne and one biogenic diene. 515 
For that purpose, the Jacobian matrix was built using the POLAIR3D CTM. In-situ ground-516 
based measurements of 14 VOC species at 11 EMEP stations were assimilated, and for most 517 
species the retrieved emissions led to a significant reduction of the bias. The corrected 518 
emissions were partly validated with a forecast conducted for the year 2006 using 519 
independent observations. The simulations using the corrected emissions often led to 520 
significant improvements in CTM forecasts according to several statistical indicators.  521 
 522 
Barbu et al. (2009) applied a sequential data assimilation scheme to a sulfur cycle version of 523 
the LOTOS–EUROS model using ground-based observations derived from the EMEP 524 

database for 2003 for estimating the concentrations of two closely related chemical 525 
components, SO2 and sulfate (SO4

=), and to gain insight into the behavior of the assimilation 526 
system for a multicomponent setup in contrast to a single component experiment. They 527 
performed extensive simulations with the EnKF in which solely emissions (single or multi 528 
component), or a combination of emissions and the conversion rates of SO2 to SO4

= were 529 
considered uncertain. They showed that two issues are crucial for the assimilation 530 
performance: the available observation data and the choice of stochastic parameters for this 531 
method. The modeling of the conversion rate as a noisy process helped the filter to reduce the 532 
bias because it provides a more accurate description of the model error and enlarges the 533 
ensemble spread, which allows the SO4

= measurements to have more impact. They concluded 534 
that one should move from single component applications of data assimilation to multi-535 

component applications, but the increased complexity associated with this move requires a 536 
very careful specification of the multi-component experiment, which will be a main 537 
challenge for the future. 538 
 539 
Boundary conditions are also one of the crucial parameters. Roustan and Bocquet (2006) 540 
used inverse modeling for optimizing boundary conditions for gaseous elemental mercury 541 
(GEM) dispersion modeling. They applied the adjoint techniques using the POLAIR3D CTM 542 
with Petersen et al. (1995) mercury (Hg) chemistry model and available GEM observations at 543 
4 EMEP stations. They showed that using assimilated boundary conditions improved GEM 544 

forecasts over Europe for all monitoring stations, whereas improvement for the two EMEP 545 
stations that provided the assimilated data was significant. The authors also extended the 546 
inverse modeling approach to cope with a more complex Hg chemistry. The generalization of 547 
the adjoint analysis performed with the Petersen model, showed no significant improvement 548 
for the simulation with the complex scheme model as compared to the complex scheme 549 
model without assimilated boundary conditions. The authors ascribed this result to the 550 
absence of well-known boundary conditions for the oxidized Hg species. They also 551 
concluded that due to the insufficient Hg observation network it was not possible to take the 552 
full benefit of the approach used in the study, for example, they were not able to use the 553 
inverse modeling of GEM to improve the sinks and emissions inventories.  554 
 555 
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Regarding other model input parameters, the work of Storch et al. (2007) is a rare example 556 
that used the inverse analysis techniques for the estimation of micro-meteorological 557 
parameters required for the characterization of atmospheric boundary layers. Bocquet (2012) 558 
focused on the retrieval of single parameters, such as horizontal diffusivity, uniform dry 559 
deposition velocity, and wet-scavenging scaling factor, as well as on joint optimization of 560 
removal-process parameters and source parameters, and on optimization of larger parameter 561 
fields such as horizontal and vertical diffusivities and the dry-deposition velocity field. In 562 
that study, the Polair3D CTM of the Polyphemus platform was used and a fast 4D-Var 563 

scheme was developed. The inverse modeling system was tested on the Chernobyl accident 564 
dispersion event with measurements of activity concentrations in the air performed in 565 
Western Europe with the REM database following Brandt et al. (2002).  Results showed that 566 
the physical parameters used so far in the literature for the Chernobyl dispersion simulation 567 
are partly supported by that study. The question of deciding whether such an inversion 568 
modeling is merely a tuning of parameters or a retrieval of physically meaningful quantities 569 
was also discussed. From that study, it appears that the reconstruction of the physical 570 
parameters is a desirable objective, but it seems reasonable only for the most sensitive fields 571 
or a few scalars, while for large fields of parameters, regularization (background) is needed 572 
to avoid overfitting the observations.   573 
 574 

3.1.4 Global studies 575 
 576 
The benefit of data assimilation is also significant for global applications. Schutgens et al. 577 
(2010) presented the impact of the assimilation of Aerosol Robotic Network (AERONET) 578 
AOD and the Angström exponent (AE) using a global assimilation system for the aerosol 579 
model SPRINTARS (Takemura et al., 2000, 2002, 2005). The application was based on a 580 
Local EnKF approach. To obtain the ensemble of the model simulations different emission 581 
scenarios, which were computed randomly for sulfate, carbon, and desert dust (i.e., the 582 
aerosol species that are considered by SPRINTARS), were used. Simulated fields of AOD 583 
and AE from these experiments were compared to a standard simulation with SPRINTARS 584 
(no assimilation) and independent observations at various geographic locations. In addition to 585 

the AERONET sites, data from SKYNET observations (South-East Asia) and MODIS Aqua 586 
observations of Northern America, Europe and Northern Africa were used for the validation. 587 
The authors show the benefit of the assimilation of AOD compared to the simulation without 588 
considering the measurement data. It was also pointed out that the usefulness of the 589 
assimilation of AE is only limited to high AOD (>0.4) and low AE cases. 590 
 591 
Yumimoto et al. (2013) also used SPRINTARS but presented a different data assimilation 592 
system based on 4D-Var. The aim of that study was to optimize emission estimates, improve 593 
4D descriptions, and obtain the best estimate of the climate effect of airborne aerosols in 594 

conjunction with various observations. The simulations were conducted using an offline and 595 
adjoint model version that was developed in order to save computation time (about 30%). 596 
Comparing the results with the online approach for a 1 year simulation led to a correlation 597 
coefficient of r > 0.97 and an absolute value of normalized mean bias NMB < 7% for the 598 
natural aerosol emissions and AOD of individual aerosol species. The capability of the 599 
assimilation system for inverse modeling applications based on the OSSE framework was 600 
also investigated in that study. The authors showed that the addition of observations over 601 
land improves the impact of the inversion more than the addition of observations over the 602 
ocean (where there are fewer major aerosol sources), which indicates the importance of 603 
reliable observations over land for inverse modeling applications. Observation data over land 604 
provide information from around the source regions. The authors also showed that, for the 605 
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inversion experiments, the aerosol classification is very important over regions where 606 
different aerosol species originate from different sources and that the fine- and coarse-mode 607 
AODs are inadequate for identifying sulfate and carbonaceous aerosols, which are among the 608 
major tropospheric aerosol species. 609 
 610 
In general, the assimilation of different species has a strong influence on both assimilated and 611 
non-assimilated species through the use of interspecies error correlations and through the 612 
chemical model. Over the past few years, numerous measurements of different chemical 613 

species have been made available from satellite instruments. Miyazaki et al. (2012) combined 614 
observations of chemical compounds from multiple satellites through an advanced EnKF 615 
chemical data assimilation system. NO2, O3, CO, and HNO3 measurements from the OMI, 616 
TES, MOPITT, and MLS satellite instruments (see Table 1) were assimilated into the global 617 
CTM CHASER (Sudo et al., 2002). The authors demonstrated a strong improvement by 618 
assimilating multiple species as the data assimilation provides valuable information on 619 
various chemical fields. The analysis (OmF; Observation minus Forecast) showed a 620 
significant reduction of both bias (by 85 %) and RMSE (by 50 %) against independent data 621 
sets when data assimilation was used. The authors showed that data assimilation of a 622 
combination of different observations (including multiple species) is a very effective way to 623 
remove systematic model errors. It was pointed out that the chemical data assimilation 624 

requires observations with sufficient spatial and temporal resolution to capture the 625 
heterogeneous distribution of tropospheric composition. This can be achieved through the 626 
combined use of satellite and surface in-situ data. Surface data may provide strong 627 
constraints on the near-surface analysis at high resolution in both space and time. 628 
 629 

3.2 Data assimilation in coupled chemistry meteorology models 630 
 631 
Since CCMM are more recent than CTM, there are fewer applications of data assimilation 632 
using the former. Nevertheless, there has been a growing number of applications with 633 
CCMM over the past few years and several of those are summarized below. In addition, three 634 
case studies are presented in greater detail in Section 5. Past applications of data assimilation 635 

in CCMM may be grouped into two major categories: applications that used the 4D-Var data 636 
assimilation system of the original meteorological model and applications that used a variety 637 
of techniques (3DVar, Kalman filters) with the CCMM. Examples of the former approach 638 
include applications using the Integrated Forecast System (IFS) of the European Centre for 639 
Medium-range Weather Forecasts (ECMWF), whereas examples of the latter approach 640 
include applications using WRF-Chem. One may also distinguish the assimilation of 641 
chemical data in CCMM with and without feedbacks between the chemical and 642 
meteorological variables. Clearly, data assimilation in a CCMM with chemistry/meteorology 643 
feedbacks is more interesting; it may, however, be more challenging, as discussed in Section 644 

6. 645 
 646 
One of the first applications of data assimilation with a CCMM is the assimilation of vertical 647 
profiles of ozone (O3) concentrations obtained with the AURA/MLS into the 648 
ARPEGE/MOCAGE integrated system (Semane et al., 2009). ARPEGE is a mesoscale 649 
meteorological model and MOCAGE is the CTM that was coupled to ARPEGE for that 650 
application; both models are developed and used by Meteo France. ARPEGE simulated O3 651 
transport and the O3 concentrations were subsequently modified at prescribed time steps with 652 
MOCAGE to account for O3 chemistry. Data assimilation is performed routinely with 653 
ARPEGE using 4D-Var and that approach was used to assimilate the O3 data into ARPEGE. 654 
The data assimilation resulted in better forecasting of wind fields in the lower stratosphere. 655 
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San Jose and Pérez Carmaño 
of the Technical University of 
Madrid (UPM) also performed 
a multi-species data 
assimilation with a CTM. In 
their work, NO2 and O3 data 
from SCanning Imaging 
Absorption SpectroMeter for 
Atmospheric CHartographY  
(SCIAMACHY)  were 
assimilated into a simulation 
conducted with the 
Community Multiscale Air 
Quality CTM (CMAQ) of the 
U.S. Environmental Protection 
Agency. SCIAMACHY makes 
measurements in both nadir 
and limb modes, which allows 
the subtraction of stratospheric 
O3 from the total O3 column 
measurements to obtain 
tropospheric O3 column 
estimates. Figure 1a shows an 
example of O3 SCIAMACHY 
data for 01/08/2007. CMAQ 
was used here in combination 
with MM5 for the 
meteorological fields and 
applied to two domains 
covering the Iberian Peninsula 
with a grid spacing of 27 km 
and the central region of Spain 
including the Madrid 
metropolitan area with a grid 
spacing of 9 km. A vertical 
resolution with 23 layers was 
used in both MM5 and 
CMAQ. Results are presented 
here for the episode of 1 to 8 
August 2007 (see Figure 1b). ¶

¶
The vertical profiles of NO2 
and O3 were assimilated into 
the CMAQ simulation for each 
grid cell using the Cressman 
(1959) method. A comparison 
of model simulation results 
with and without data 
assimilation showed a slight 
improvement from 0.751 to 
0.754 in the correlation 
between the hourly model 
simulation results and O3 
concentrations available from 
the surface monitoring 
network. The results show 
important differences in the 
Madrid region with the most 
important ones (up to 22 
µg/m3) being located over ... [1]
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 656 
This general approach is also used in the chemical data assimilation conducted at ECMWF 657 
with IFS with coupled chemistry since a 4D-Var data assimilation system is operational in 658 
IFS. A presentation of this data assimilation system and its application for re-analyses at 659 
ECMWF is presented in Section 5.1. 660 
 661 
Flemming and Innes (2013) have assimilated SO2 data from GOME2 using 4D-Var into a 662 
version of IFS adapted for SO2 fate and transport. SO2 oxidation was treated with a first-663 

order gas-phase reaction with hydroxyl (OH) radicals and its atmospheric removal was 664 
treated with a first-order scavenging rate. The approach was applied to the SO2 plume of 665 
volcanic eruptions. The simulation results showed improvements following data assimilation 666 
for the plume maximum concentrations but there was a tendency to overestimate the plume 667 
spread, which may be due to predefined horizontal background error correlations. 668 
 669 
Innes et al. (2013) used data assimilation into IFS coupled to the MOZART3 CTM to 670 
produce reanalysis of atmospheric concentrations of four chemical species, CO, NOx, O3, and 671 
formaldehyde (HCHO), over an 8-year period. The 4D-Var system of IFS was used for the 672 
assimilation of data obtained from 8 satellite-borne sensors for CO, NO2 and O3. HCHO 673 
satellite data were not assimilated because retrievals were considered insufficient. In this 674 

application, the influence of those chemical species on meteorological variables was not 675 
taken into account, which is a major difference with the previous application of Semane et al. 676 
(2009). The data assimilation results showed notable improvements for CO and O3, but little 677 
effect for NO2, because of its shorter lifetime compared to those of CO and O3.  678 
 679 
Flemming et al. (2011) used IFS coupled with three distinct O3 chemistry mechanisms, 680 
including a linear chemistry, the MOZART3 chemistry (see above), and the TM5 chemistry. 681 
Using the IFS 4D-Var system, they assimilated O3 data from four satellite-borne sensors 682 
(OMI, SCIAMACHY, MLS, and SBUV2) to improve the simulation of the 2008 683 
stratospheric O3 hole. Notable improvements were obtained with all three O3 chemistry 684 
mechanisms. 685 

 686 
An earlier application was conducted by Engelen and Bauer (2011) with the Radiative 687 
Transfer for the Television Infrared Observation Satellite Operational Vertical Sounder 688 
(RRTOV) model of IFS, where CO2 was treated as a tracer. A variational bias correction was 689 
performed with radiance data from AIRS and IASI. The improvement in the radiative 690 
transfer led to improved temperature values. 691 
 692 
Several applications using data assimilation have been conducted with WRF-Chem. 693 
Scientists at the National Center for Atmospheric Research (NCAR) have assimilated data 694 

into WRF-Chem. The Goddard Aerosol Radiation and Transport (GOCART) module was 695 
used; it includes several PM species, but does not treat gas-phase PM interactions. Liu et al. 696 
(2011) assimilated AOD from MODIS to simulate a 2010 dust episode in Asia using 697 
gridpoint statistical interpolation (GSI) (Wu et al., 2002; a 3D-Var method). The results of 698 
the re-analyses showed improvement in AOD, when compared to MODIS (as expected) and 699 
CALIOP (as a cross-validation), and in surface PM10 concentrations when compared to 700 
AERONET measurements. Chen et al. (2014) used a similar approach to improve 701 
simulations of surface PM2.5 and organic carbon (OC) concentrations during a wild biomass 702 
fire event in the United States. Meteorological data (surface pressure, 3D wind, temperature 703 
and moisture) were assimilated in one simulation, whereas AOD MODIS data were in 704 
addition assimilated in another simulation, both using 6-hour intervals. The AOD 705 
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assimilation significantly improved OC and PM2.5 surface concentrations when compared to 706 
measurements from the Interagency Monitoring of PROtected Visual Environments 707 
(IMPROVE) network. Jiang et al. (2013) also used GSI 3D-Var with WRF-Chem, but 708 
assimilated surface PM10 concentrations instead of satellite data. Their application over 709 
China showed improvement in PM10 concentrations; however, the benefit of the data 710 
assimilation diminished within 12 hours because of the effect of atmospheric transport 711 
(vertical mixing and horizontal advection), thereby suggesting the importance of assimilating 712 
PM data aloft (e.g., AOD) and/or correcting emissions, which are the forcing function for PM 713 

concentrations. Accordingly, Schwartz et al. (2012) used GSI 3D-Var to assimilate both 714 
AOD from MODIS and PM2.5 surface concentrations into WRF-Chem to improve simulated 715 
PM2.5 concentrations over North America. The use of 6-hour re-analyses for initialization led 716 
to notable improvements when both satellite and surface data were assimilated. More 717 
recently, Schwartz et al. (2014) assimilated the same AOD and PM2.5 surface concentration 718 
data using two additional methods: the EnSRF and a hybrid ensemble 3D-Var method. All 719 
three methods led to mostly improved forecasts, with the hybrid method showing the best 720 
performance and 3D-Var generally showing better performance than the EnSRF. However, 721 
the ensemble spread was considered insufficient and it was anticipated that a larger spread 722 
would lead to better results for the ensemble and hybrid methods. 723 
 724 

Scientists at the National Oceanic and Atmospheric Administration (NOAA) also used the 725 
GSI 3D-Var method to assimilate data into WRF-Chem. Their version of WRF-Chem 726 
offered a full treatment of gas-phase chemistry and PM. Pagowski et al. (2010) assimilated 727 
both O3 and PM2.5 surface concentrations over North America. Model performance improved, 728 
but the benefits of data assimilation lasted only for a few hours. Pagowski and Grell (2012) 729 
subsequently compared 3D-Var and the EnKF to assimilate PM2.5 surface concentrations into 730 
WRF-Chem. They concluded that better performance was obtained with the EnKF. A WRF-731 
Chem case study with assimilation of surface data is presented in Section 5.2. 732 
 733 
Saide et al. (2012a) developed the adjoint of the mixing/activation parameterization for the 734 
activation of aerosols into cloud droplets of WRF-Chem and, using 3D-Var data assimilation 735 

of MODIS data, they improved aerosol simulated concentrations. The important result in that 736 
work was the ability to improve aerosol simulations using the assimilation of cloud droplet 737 
number concentration data, which is only possible due to the coupled nature of WRF-Chem 738 
that integrates aerosol indirect effects into the forecasts. Saide et al. (2013) also used a 739 
modified GSI 3DVar to assimilate MODIS AOD data into WRF-Chem for a sectional 740 
aerosol treatment and using the adjoint of the Mie computation for the AOD from aerosol 741 
concentrations. Improvements in aerosol concentrations were obtained at most locations 742 
when compared to measurements at surface monitoring sites in California and Nevada. The 743 
study found that observationally constrained AOD retrievals resulted in improved 744 

performance compared to the raw retrievals and that the use of multiwavelength AOD 745 
satellite data led to improvements in the simulated aerosol size distribution. This assimilation 746 
tool was further used in two studies. First, AOD from the GOCI sensor on board of COMS (a 747 
geostationary satellite observing northeastern Asia) was combined with MODIS AOD 748 
assimilation to show that future geostationary missions are expected to improve air quality 749 
forecasts considerably when included into current systems that assimilate MODIS retrievals 750 
(Saide et al., 2014). Second, AOD assimilation improved forecasts of Central America 751 
biomass burning smoke and was further used to assess smoke impacts on a historical severe 752 
weather outbreak in the southeastern U.S. (Saide et al., 2015). The smoke impacts were 753 
related to aerosol-cloud-radiation interactions, thus this study was only possible via data 754 
assimilation in a CCMM, highlighting the importance of further research and applications in 755 
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this area. Satellite data assimilation into WRF-Chem is presented as a case study in Section 756 
5.3. 757 
 758 
Data assimilation has been conducted with other CCMM. For example, Messina et al. (2011) 759 
used OI to assimilate O3 and NO2 data into BOLCHEM, a one-way CCMM, applied over the 760 
Po Valley. They used an OSSE approach and showed that NO2 data assimilation was 761 
successful in correcting errors due to NOx emission biases. Furthermore, the benefit of the 762 
data assimilation could exceed one day. However, the assimilation of NO2 data increased the 763 

O3 bias at night because of the nocturnal O3/NO2 chemistry. The combination of O3 and NO2 764 
assimilation helped resolve that night-time issue; however, the benefit disappeared after a 765 
few hours due to the short lifetime of those air pollutants as discussed in Section 3.1. 766 
 767 
The treatment of interactions between aerosols and meteorology in the NASA Goddard Earth 768 
Observing System (GEOS-5) model was shown to improve the simulations of the 769 
atmospheric thermal structure and general circulation during Saharan dust events (Reale et 770 
al., 2011) and the assimilation of MODIS-derived AOD was conducted in GEOS-5 with this 771 
interactive aerosol/meteorology treatment (Reale et al., 2014). 772 

 773 
3.3 Optimal monitoring network design 774 
 775 
Atmospheric chemistry (including PM) monitoring networks should ideally be designed 776 
according to a rational criterion.  Such a criterion (called the science criterion) would assess 777 

the ability of the network to provide information in order to optimally estimate physical 778 
quantities.  The overall design criterion could also account for the investment and 779 
maintenance costs of the network or for the technical sustainability and reliability of stations 780 
(Munn, 1981).  This overall design criterion that mixes all of these aspects can be devised in 781 
the form of an objective scalar function evaluating network configuration. 782 
 783 
The science criterion often judges the ability of the network to estimate instantaneous or 784 
average concentrations, or the threshold exceedance of any relevant regulated species.  The 785 
estimation could rely on basic interpolation, more advanced kriging, or data assimilation 786 
techniques (Müller, 2007).  The latter would come with a very high numerical cost, since one 787 
would have to perform a double (nested) optimization on the data assimilation control 788 

variables, as well as on the potential station locations. 789 
 790 
These ideas have been used in air quality to reduce an already existing ozone monitoring 791 
network (Nychka and Saltzman, 1998; Wu et al., 2010) or to extend this network (Wu and 792 
Bocquet, 2011). Ab nihilo station deployment, extension and reduction of networks lead to 793 
problems of different nature. For instance, when extending a network one is forced to guess 794 
physical quantities and their statistics on the new stations to be gauged, requiring a costly 795 
observation campaign or a clever extrapolation from existing sites to tentative sites. The 796 
mathematical criterion to evaluate the skills of the modeling system for a given network, 797 
beyond the choice of the observed physical quantities, also calls for a choice of performance 798 
metrics.  Many attractive criteria have been proposed: root mean square errors of network-799 

based estimation of the field, information-theoretical based criteria, etc. Such criteria have 800 
been investigated in atmospheric chemistry in many studies conducted by environmental 801 
statisticians, more recently for instance by Fuentes et al. (2007) and Osses et al. (2013). 802 
Nowadays, the network design issue also concerns the sparse ground networks of greenhouse 803 
gases monitoring at meso and global scales (Rayner, 2004; Lauvaux et al., 2012), which in 804 
our context can be seen mostly as tracers of atmospheric transport. 805 
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 806 
In meteorology, optimal network design is often studied in an Observing System Simulation 807 
Experiment context, where the impacts of new predefined observations (e.g., data retrieval 808 
from a future satellite) are evaluated rather than the optimal locations of future stations. 809 
Nevertheless, the dynamic placement of new and informative observations (targeting) has 810 
been investigated theoretically (Berliner et al. 1999; and many since then) and experimentally 811 
in field campaigns such as the Fronts and Atlantic Storm-Track Experiment (FASTEX) of 812 
Meteo France (http://www.cnrm.meteo.fr/dbfastex/ftxinfo/) and the Observing System 813 

Research and Predictability Experiment of the World Meteorological Organization 814 
(THORPEX; 815 
http://www.wmo.int/pages/prog/arep/wwrp/new/THORPEXProjectsActivities.html). 816 
Although these adaptive observations were shown to be very informative in the case of severe 817 
events, they are based on monitoring flights and hence are very costly, whereas other 818 
observations are much more abundant and cheaper.   819 
 820 
Targeting has been little investigated in atmospheric chemistry, but recent studies have 821 
demonstrated its potential, especially in an accidental context (Abida and Bocquet, 2009).  It 822 
would certainly be interesting to use a coupled chemical/meteorological targeting system 823 
since targeting of concentration observations could also require meteorological observations 824 

at the same location for a proper assimilation of chemical concentrations into a CCMM. 825 
 826 
 827 

4. Observational data sets 828 
 829 
Observational data sets available for data assimilation and model performance evaluation 830 
include mainly in situ observations, satellite data, and ground-based remote sensing data 831 
(e.g., lidar data). Air quality observation systems include routine surface-based ambient air 832 
and deposition networks, satellites, field campaigns, and programs for monitoring 833 
background concentrations and long-range transport of pollutants.   834 

4.1 Non-satellite observations 835 

4.1.1 Routine air quality monitoring in North America, Eu rope, and worldwide 836 

Dense networks of air quality monitors are available in North America and Europe. They 837 
provide measurements with near real-time availability and a short one-hourly averaging 838 
period. These aspects, together with the link to health policy, make these network 839 
observations especially suitable for chemical data assimilation applications.  840 

In Europe, air quality observations are made available through the Air Quality Database 841 
(AirBase) of the European Environmental Agency (EEA). Access is provided to validated 842 
surface data, with a delay of one to two years. These validated datasets are used primarily for 843 

assessments (e.g., EEA, 2013). The delivery of (unvalidated) data in near-real time through 844 
EEA for data assimilation purposes is receiving much attention recently and is under 845 
development, stimulated by the development of the EU Copernicus Atmosphere Service. Key 846 
species provided by AirBase (http://www.eea.europa.eu/themes/air/air-quality/map/airbase) 847 
are PM10, O3, NO2, NO, CO, and SO2. Apart from these, measurements are available for 848 
ammonium, heavy metals (lead), benzene, and others. Related to more recent EC directives 849 
(e.g. Directive 2008/50/EC), member states are developing networks to measure PM2.5, but 850 
the number of sites with PM2.5 capability is presently significantly smaller (slightly more 851 
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than half) than those for PM10.  852 

It should be noted that PM measurements are often provided on a daily-mean basis, in 853 
contrast to O3 and NO2, for which hourly values are reported. This is not ideal for data 854 
assimilation purposes, where instantaneous observations are preferred. The classification of 855 
the surface observations and representativeness of measurements for larger areas is 856 
important, in order to allow meaningful comparisons of the observations with air quality 857 

models (e.g., Joly and Peuch, 2012). For the measurements of NO2 it should be realized that 858 
in particular sensors with molybdenum converters make the measurement also sensitive to 859 
other oxidized nitrogen compounds such as PAN and nitric acid (HNO3) (e.g., Steinbacher et 860 
al., 2007).  861 

In the context of the Convention of Long-Range Transboundary Air Pollution, the European 862 
Monitoring and Evaluation Programme (EMEP) provides data 863 
(http://www.nilu.no/projects/ccc/emepdata.html) on a selection of sites in Europe, for O3, 864 
NOx, VOC, SO2, Hg, and aerosol (PM10), including additional information on carbonaceous 865 
PM and secondary inorganic aerosol, which is of use for model evaluation in Europe (e.g. 866 

EMEP, 2012 ; Tørseth et al., 2012). Atmospheric deposition is measured for several chemical 867 
species in the EMEP network. 868 

In North America, surface measurements of O3 and PM2.5 are accessible through the U.S. 869 
EPA’s AIRNow gateway (http://www.airnowgateway.org). For a comprehensive description 870 
of air quality observation systems over North America, we refer the reader to a report 871 
(NSTC, 2013), which is available at 872 
http://www.esrl.noaa.gov/csd/AQRS/reports/aqmonitoring.pdf. This report focuses on 873 
observations in the United States, but also provides succinct information on observations in 874 
Canada and Mexico.   875 

Over 1300 surface stations measure hourly concentrations of O3 using a UV absorption 876 

instrument (Williams et al., 2006). The instrument error is bounded by ±2% of the 877 
concentration. The majority of the measurement sites are located in urban and suburban 878 
settings. The highest density of monitors is found in the eastern U.S., followed by California 879 
and eastern Texas, while observations are relatively sparse in the center of the continent.  880 
Hourly PM2.5 concentrations are measured at over 600 locations using Tapered Element 881 
Oscillating Microbalance instruments (TEOM, Thermo Fisher, Continuous particulate 882 
TEOM monitor, Series 1400ab, product detail, 2007, available at 883 
http://www.thermo.com/com/cda/product/detail/1,10122682,00.html). The uncertainty of 884 

PM2.5 measurements is calculated as 1.5 µµµµg m-3 plus an inaccuracy of 0.75% times the 885 

species concentration. We caution that much larger measurement errors can occur, depending 886 
on meteorological conditions, because of the volatility of some aerosol species (Hitzenberger 887 
et al., 2004). Geographic distribution of PM2.5 measuring sites is similar to that of the O3 888 
sites.  889 

Concentrations of the remaining criteria pollutants (NO2, CO, SO2, Pb, and PM10) are 890 
measured at several hundred locations across the continent at varying frequencies and 891 
averaging periods.   892 

The IMPROVE network measures major components of PM2.5 (sulfate, nitrate, organic and 893 
elemental carbon fractions, and trace metals) at over 100 locations in national parks and in 894 
rural settings.  Complementary aerosol measurements in urban and suburban locations are 895 
available at more than 300 EPA’s STN speciation sites. IMPROVE and STN sites typically 896 
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collect 24-hour samples every three days. Since those PM2.5 samples are collected on filters 897 
and need to be sent to analytical laboratories for analysis, data are not available in near real-898 
time. Continuous aerosol species concentrations are only occasionally measured by the 899 
industry-funded SEARCH network, which operates eight sites in the southeastern U.S.  900 
In addition, toxics are monitored by the NATTS network sampling at 27 locations for 24 901 
hours every six days. The NADP, IADN, and CASTNET networks track atmospheric wet 902 
and dry deposition.  903 
 904 

At the global scale, monitoring of atmospheric chemical composition was organized by the 905 
World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program 906 
about 25 years ago. The GAW program currently addresses six classes of variables (O3, UV 907 
radiation, greenhouse gases, aerosols, selected reactive gases, and precipitation chemistry). 908 
The surface-based GAW observational network comprises global and regional stations, 909 
which are operated by WMO members. These stations are complemented by various 910 
contributing networks. Currently, the GAW program coordinates activities and data from 29 911 
global stations, more than 400 regional stations, and about 100 stations operated by 912 
contributing networks. All observations are linked to common references and the 913 
observational data are available in the designated World Data Centers. Information about the 914 
GAW stations and contributing networks is summarized in the GAW Station Information 915 

System (GAWSIS; http://gaw.empa.ch/gawsis/). 916 

4.1.2 Other surface-based, balloon, and aircraft observations  917 

Other types of observations that can be assimilated into atmospheric models include surface-918 
based remote sensing data, such as lidar data, balloon-borne souding systems (sondes), and 919 
aircraft observations. 920 

Lidar data  921 

The GAW Aerosol Lidar Observation Network (GALION) provides information on the 922 
vertical distribution of aerosols through advanced laser remote sensing in a network of 923 
ground-based stations. Several regional lidar networks, such as the Asian Dust and Aerosol 924 
Lidar Observation Network (AD-Net), the Latin America Lidar Network (ALINE), the 925 
Commonwealth of Independent States (Belarus, Russia and Kyrgyz Republic) LIdar 926 
NETwork (CIS-LINET, the Canadian Operational Research Aerosol Lidar Network 927 
(CORALNet),  CREST funded by NOAA and run by the City University of New York 928 
covering eastern North America, the MicroPulse Lidar NETwork (MPLNET) operated by 929 
NASA, the European Aerosol Research Lidar Network (EARLINET), and the Network for 930 
the Detection of Atmospheric Composition Change (NDACC), Global Stratosphere are 931 

participants in GALION. Some of these regional lidar networks are described in greater 932 
detail below. 933 
 934 
MPLNET is a global lidar network of 22 stations operated by NASA with lidars collocated 935 
with the photometers of the NASA AERONET.  The Network for the Detection of 936 
Atmospheric Composition Change (NDACC) is operated by NOAA. It includes a network of 937 
about 30 lidars located world-wide.  AD-Net gathers 13 research lidars that cover East Asia 938 
and operate continuously.  The National Institute for Environmental Studies (NIES) operates 939 
a lidar network in Japan (http://www-lidar.nies.go.jp).  Initiated in 2000, EARLINET now 940 
operates a set of 27 research lidar stations over Europe and is part of the Europe-funded 941 
ACTRIS network (http://actris.nilu.no). Following the eruption of the Eyjafjallajökull 942 
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volcano in 2010 (Chazette et al., 2012), weather operational centers such as Meteo France 943 
and the UK MetOffice are planning to deploy automatic operational lidar networks over 944 
France and the United Kingdom, with the objective to deliver continuous measurements and 945 
to use them in aerosol forecasting systems. 946 
 947 
In order to be assimilated into an aerosol model, the raw aerosol signal can either be 948 
converted into aerosol concentrations using assumptions on their distribution (Raut et al., 949 
2009a, 2009b, Wang et al., 2013), or it can be assimilated directly into the model solving the 950 

lidar equation within the observation operator (Wang et al., 2014). Note that even in the latter 951 
case, the redistribution over the aerosol size bins is carried out following the size 952 
distributions of the first guess used in the analysis.  It is expected that the benefit of 953 
assimilating lidar signals is to last longer (up to a few days) and should propagate farther than 954 
ground-based in situ measurements, owing to this height-resolved information but also owing 955 
to the smaller representativeness error in elevated layers. This has recently been 956 
demonstrated using lidar data from three days of intensive observations over the western 957 
Mediterranean Basin in July 2012 (Wang et al., 2014b). 958 
 959 
Aerosol optical properties 960 

A world-wide routine monitoring of aerosol optical depth and other properties like the 961 
Ångstrom component is provided by the photometers of the Aerosol Robotic Network 962 
(AERONET, http://aeronet.gsfc.nasa.gov) coordinated by NASA (e.g., Holben et al. 1998).  963 

The GAW aerosol network also provides measurements of aerosol properties over the globe. 964 
The GAW in-situ aerosol network contains now more than 34 regional stations and 54 965 
contributing stations, in addition to 21 global stations, reporting data – some of them in near-966 
real-time – to the World Data Center for Aerosols (WDCA) hosted by the Norwegian Center 967 
for Air Research (NILU) and available freely to all. The GAW-PFR network for aerosol 968 
optical depth (AOD), coordinated by the World Optical Depth Research and Calibration 969 

Center (WORCC), includes 21 stations currently providing daily data to WORCC (GAW, 970 
2014).  971 

 SKYNET is a network of radiometers mainly based in Eastern Asia and the database is 972 
hosted by Chiba University in Japan (http://atmos.cr.chiba-u.ac.jp).  973 

Aircraft measurements 974 

In Europe, routine monitoring of the atmosphere is provided by the IAGOS (In-service 975 

Aircraft for a Global Observing System) program (http://www.iagos.org). An increasing 976 
number of aircraft is equipped to measure O3, water vapor, and CO and instruments are 977 
developed to measure NOx, NOy and CO2. This initiative evolved from the successful 978 
MOZAIC (Measurements of OZone, water vapor, CO, NOx by in-service AIrbus airCraft, 979 
http://www.iagos.fr/web/rubrique2.html) project with links to the CARIBIC 980 
(http://www.caribic-atmospheric.com) project. In North America, NOAA-ESRL has a 981 
Tropospheric Aircraft Ozone Measurement Program consisting of O3 measurements 982 
(http://www.esrl.noaa.gov/gmd/ozwv/) and a flask sampling program, measuring greenhouse 983 
gases including CO (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/).   984 

Despite the limited coverage, aircraft chemical observations have the potential to provide 985 
important improvements to models when assimilated (Cathala et al., 2003). 986 
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Ozone sondes 987 

Balloon-borne measurements of O3 are performed on a global scale and the data are collected 988 
by the World Ozone and Ultraviolet Radiation Data Centre (WOUDC, 989 
http://www.woudc.org/index_e.html). The sondes provide very detailed vertical profiles from 990 
the surface to about 30-35 km altitude, with an accuracy of 5-10% (Smit et al., 2007). Apart 991 
from monitoring the stratospheric O3 layer, the data are extensively used to validate global 992 

tropospheric models as well as regional air quality models.  993 

Other sources of tropospheric composition information  994 

Surface-based Multi-AXis Differential Optical Absorption Spectroscopy (MaxDOAS) 995 
measurements are very interesting for atmospheric chemistry applications, because of their 996 
ability to deliver approximately boundary-layer mean concentrations of O3, NO2, HCHO, 997 
glyoxal (CHOCHO), SO2, halogens and aerosols. Measurements are provided at several sites, 998 
but a large-scale network is still missing. 999 

Some regional networks of ceilometer observations exist (e.g., UK Met Office, Deutscher 1000 
Wetterdienst, Météo France). They provide mostly cloud base and cloud layer data. They 1001 
may in some cases (e.g., volcanic plumes) provide useful information on atmospheric 1002 
aerosols. 1003 

The Network for the Detection of Atmospheric Composition Change (NDACC, 1004 
http://www.ndacc.org) provides measurements relevant to evaluate tropospheric composition 1005 
models, such as lidar data, O3 sondes and MaxDOAS.  1006 

Apart from ozone sondes, WMO Global Atmospheric Watch (GAW, 1007 
http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html) coordinates a variety of 1008 
atmospheric observations and the data are provided through the World Data Centres. The 1009 
Earth System Research Laboratory (ESRL) of NOAA provides access to a host of routine 1010 
observations and links to field campaigns.  1011 

For greenhouse gases, the WMO-GAW World Data Centre for Greenhouse Gases (WDCGG, 1012 
http://ds.data.jma.go.jp/gmd/wdcgg/) provides access to data with a global coverage. The 1013 
Global Greenhouse Gas Reference Network (http://www.esrl.noaa.gov/gmd/ccgg/ggrn.php) 1014 

of NOAA provides a backbone of world-wide observations. Data from the Total Carbon 1015 
Column Observing Network (TCCON, http://www.tccon.caltech.edu) is used extensively to 1016 
validate greenhouse gas assimilation and inversion systems as well as satellite data. 1017 

Dedicated measurement campaigns are essential additions to the more routine capabilities 1018 
discussed above. Such campaigns provide dense observations of a larger number of species 1019 
and/or aerosol components with profiling capabilities and often in combination with surface 1020 
in-situ and remote sensing. This provides excellent tests for multiple aspects of the models. 1021 
Examples are the TRACE-P (Talbot et al., 2003; Eisele et al., 2003) and ICARTT 1022 
(Fehsenfeld et al., 2006), the data of which have been used in assimilation studies.  1023 

4.2 Satellite observations 1024 

For atmospheric chemistry modeling and assimilation, the relevant species measured from 1025 
space are NO2, CO, SO2, HCHO, CHOCHO, O3, and aerosol optical properties (optical depth 1026 
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and other properties, aerosol backscatter profiles). The main tropospheric satellite products 1027 
are listed in Table 1 and the acronyms are expanded in Table 2. 1028 
  1029 
The satellite instruments listed in Table 1 are all on polar-orbiting satellites with a fixed 1030 
overpass time. The huge benefit of satellite instruments is the large volume of data. For 1031 
instance, an instrument like OMI provides a full global coverage each day with a mean 1032 
resolution of about 20 km, see Figure 1. The fact that area-averages are observed, as opposed 1033 
to the point measurements of the surface networks, has the advantage that the retrieved 1034 

quantities can be more easily compared to model grid cell value, and the representation error 1035 
is often smaller than for point observations. Another advantage of the satellite data is the 1036 
sensitivity to concentrations in the free troposphere, although retrieving the vertical 1037 
distribution of the concentrations may in some cases be challenging. Air quality models are 1038 
typically evaluated against surface measurements and their performance inside and above the 1039 
planetary boundary layer is generally not well known.  1040 
 1041 
On the other hand, satellite data have limitations. Currently, only one observation per day or 1042 
less is available, as compared to the hourly data from the routine surface networks and there 1043 
is only limited information on the diurnal cycle. Most instruments provide about one piece of 1044 
vertical information in the troposphere and this information is averaged over an extended 1045 

vertical range: typically a total column or average free tropospheric value is retrieved. 1046 
Furthermore, there are error correlations among nearby pixels, which typically requires the 1047 
application of thinning methods. 1048 
 1049 
The retrieval of trace gases in the troposphere is far from trivial, because of the dependence 1050 
on clouds, aerosols, surface albedo, thermal contrast, and other trace gases. Errors in the 1051 
characterization of these interfering aspects will result in sometimes substantial systematic or 1052 
quasi random errors. Furthermore, the detection limit of minor trace gases may exceed 1053 
typical atmospheric concentrations (e.g., SO2 and HCHO over Europe). More work is needed 1054 
to continuously improve existing retrieval algorithms concerning the systematic errors and 1055 
detection limits. 1056 

 1057 
Many of the satellites listed in Table 1 are already past their nominal lifetime. Future follow-1058 
up missions are discussed and coordinated internationally (IGACO 2004; CEOS-ACC, 2011; 1059 
GEOSS, 2014; GCOS, 2010 & 2011). In Europe, the EU Copernicus program will facilitate 1060 
the launch of a series of satellite missions, the Sentinels. Sentinels number 4 and 5 will 1061 
provide observations of atmospheric composition. The sentinel 5 precursor mission with the 1062 
TROPOMI instrument (Veefkind et al., 2012), a successor of OMI with 7 km resolution, will 1063 
fill a possible gap between the present generation of instruments (see Table 1) and the next 1064 
generation of satellite instruments. 1065 

 1066 
An international geostationary constellation of satellites to observe air quality is in 1067 
preparation. This will consist of the European Space Agency (ESA) Sentinel 4 over Europe 1068 
(Ingmann et al., 2012), the Korean Aerospace Research Institute (KARI) GEMS satellite 1069 
over Asia (http://eng.kari.re.kr/sub01_01_02_09), and the National Aeronautics and Space 1070 
Administration (NASA) TEMPO mission over America (Chance et al., 2013). These 1071 
missions will provide unprecedented high-resolution measurement of air pollution with 1072 
hourly observations from space (e.g. Fishman, 2008). 1073 
 1074 
Most retrieval products for the satellite sensors listed in Table 1 are based on the general 1075 
retrieval theory detailed by Rodgers (2000). Retrievals of atmospheric trace gas profiles are 1076 
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fully specified by providing the retrieved profile, the averaging kernel, the covariance matrix 1077 
and the a priori profile. The assimilation observation operator, which relates the model 1078 
profile xmodel to the retrieved profile, is then: 1079 
 1080 
 xr,model ≈ xa-priori + A(xmodel- xa-priori) 1081 
 1082 
The retrieval covariance describes the observation errors. The kernel and covariance together 1083 
describe the altitude dependence of the sensitivity of the measurement to the concentrations, 1084 

the degree of freedom of the signal and the intrinsic vertical resolution of the observation. 1085 
Kernels and covariances are not always provided by the retrieval teams, which will result in a 1086 
loss of information. Even the popular Differential Optical Absorption Spectroscopy (DOAS) 1087 
retrieval approach for total columns may be reformulated in Rodgers’  terminology and 1088 
averaging kernels can be defined (Eskes and Boersma, 2003).   1089 
 1090 

4.3 Use of observations in chemical data assimilation  1091 

 1092 
Combining satellite datasets through data assimilation is a powerful approach to put multiple 1093 
constraints on the chemistry/aerosol model. An example is MACC-II, where most of the 1094 
satellite datasets on O3, CO, NO2, AOD/backscatter, CO2 and CH4, as listed in Table 1, are 1095 
used (e.g. Inness et al., 2013). Another example is a recent study (Miyazaki et al., 2014), 1096 
where satellite observations of NO2, O3, HNO3, and CO from OMI, MLS, TES and MOPITT 1097 

are combined to constrain the production of NOx by lightning. The use of satellite retrievals 1098 
in assimilation applications focused on top-down emission estimates was recently reviewed 1099 
(Streets et al., 2013). 1100 
 1101 
For the use of satellite and surface/in-situ/remote sensing data in operational applications 1102 
such as MACC-II, the availability of data in near-real time is an important requirement. 1103 
 1104 
For regional air quality, the major source of information is provided by the routine surface 1105 
observations, which have been put in place to monitor air quality regulations. In the USA, 1106 
Europe and in parts of Asia (Japan), dense observations networks are in place. For 1107 
concentrations above the surface, the monitoring network is very sparse, with a limited 1108 

amount of aircraft, sonde and surface remote sensing data points. Several groups have started 1109 
to incorporate satellite data to constrain tropospheric concentrations. One major aspect here 1110 
is the lack of diurnal sampling, which is addressed by future geostationary missions, as 1111 
discussed above. Furthermore, the number of species observed routinely from space, or from 1112 
the ground, is limited, and dedicated campaigns (e.g. with aircraft) are crucial to test more 1113 
model aspects. A more systematic approach to this sparseness of above-surface information 1114 
would be important to improve the regional air quality models and to bridge the gap between 1115 
global and regional scale modeling. 1116 
 1117 
Recommendations for global observing systems are discussed internationally. The WMO-1118 
GAW IGACO report provides a useful overview of existing and planned satellite missions 1119 

and the complementary surface, balloon and aircraft observations (IGACO, 2004). GCOS 1120 
discusses the observations needed to monitor the essential climate variables (GCOS, 1121 
2010+2011). The Group on Earth Observations (GEO) is coordinating efforts to build a 1122 
Global Earth Observation System of Systems, or GEOSS 1123 
(http://www.earthobservations.org/geoss.shtml), on the basis of a 10-year implementation 1124 
plan. The Committee on Earth Observation Satellites (CEOS) supports GEO and has an 1125 
acivity on Atmospheric Composition Constellation (ACC). The CEOS ACC White Paper 1126 
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(CEOS-ACC, 2011) discusses the Geostationary Satellite Constellation for Observing Global 1127 
Air Quality. Gaps in observing atmospheric composition are discussed in these international 1128 
activities. 1129 
 1130 
In many parts of the world, pollutant emissions are dominated by the smoke from fires. The 1131 
occurrence and strength of the fires is intrinsically unpredictable, which makes these a major 1132 
source of errors in the models. Recently, satellite observations of fire radiative power and 1133 
burned area have been used to estimate emissions of aerosols, organic and inorganic trace 1134 

gases (Giglio et al., 2013). For instance, within the MACC-II project a near-real time global 1135 
fire product was developed with a resolution of 0.1 degree, which is used for reanalyses, 1136 
nowcasting and even forecasting (Kaiser et al., 2012). Given the importance of fires, the use 1137 
of such fire emission estimates based on observations is recommended. 1138 
 1139 
Sand and dust storms may contribute significantly to PM (mostly PM10) ambient 1140 
concentrations at long distances from their source region. Because the emission source terms 1141 
of sand and dust storm events are difficult to quantify, aerosol data assimilation is a 1142 
promising area for sand and dust storm modeling and forecasting (SDS-WAS, 2014). The 1143 
main efforts have focused on the assimilation of retrieval products (i.e. atmospheric 1144 
parameters inferred from raw measurements), such as AOD retrieved from satellite 1145 

reflectance or from ground-based sun photometer measurements. However, the difficulties 1146 
associated with the operational use of lidar (and potentially ceilometer) observations as well 1147 
as satellite aerosol vertical profiles, is the most limiting aspect in data assimilation to 1148 
improve sand/dust forecasts. Although there are some initial promising non-operational 1149 
experiments to assimilate aerosol vertical profiles (e.g., at the Japan Meteorological Agency), 1150 
more efforts are needed to better represent the initial vertical dust structure in the models.   1151 
 1152 
In numerical weather prediction, a significant step in forecast skill was achieved when the 1153 
assimilation of retrieval products was replaced by the assimilation of satellite radiances. In 1154 
this way a loss of information or introduction of biases through the extra retrieval process is 1155 
avoided. It should be noted, however, that early retrievals often did not follow the full 1156 

retrieval theory (Rodgers, 2000) and it is important to use the kernels, covariances and a-1157 
priori profiles in the observation operator and error matrices. Because of this success it has 1158 
been debated whether to apply similar radiance assimilation approaches to the atmospheric 1159 
chemistry satellite observations. We do not in general recommend such radiance assimilation 1160 
approach for atmospheric composition applications for the following reasons. First, a 1161 
successful radiance assimilation depends crucially on knowledge of the possible systematic 1162 
biases of the instruments, a clever choice of microwindows, and state-of-the-art radiative 1163 
transfer modelling. Secondly, a careful implementation of Rodgers formalism preserves the 1164 
information of the satellite data, and there is a theoretical equivalence between the 1165 

assimilation of retrievals and the assimilation of radiances (Migliorini, 2012). Third, 1166 
retrievals can be stored in an efficient way, which avoids dealing with the large volumes of 1167 
radiance data provided by the satellite instruments (Migliorini, 2012). 1168 
 1169 

 1170 
5. Case Studies 1171 

 1172 

In this section, four case studies are presented. The first three pertain to the 1173 

assimilation of chemical concentrations for forecasting or re-analysis. The fourth one 1174 

highlights inverse modeling to improve emission inventories; although it is performed 1175 

with a CTM, it is relevant to CCMM as well. 1176 



 26

 1177 

5.1 Case Study from ECMWF: MACC re-analysis of atmospheric composition 1178 

 1179 
An important application of data assimilation techniques is to produce consistent 3D gridded 1180 
data sets of the atmospheric state over long periods. These meteorological re-analyses are 1181 
widely used for climatological studies and more specifically to drive offline CTM. 1182 
Meteorological re-analyses have been produced by several centres such as the National 1183 
Centers for Environmental Prediction (NCEP; Kalnay et al. 1996), ECMWF (Gibson et al., 1184 
1997; Uppala et al., 2005, Dee et al., 2011), the Japan Meteorological Agency (JMA; Onogi 1185 
et al., 2007) and the Global Modeling and Assimilation Office (Schubert et al., 1993).   1186 
 1187 
Atmospheric composition, apart from water vapor, is typically not covered in these re-1188 
analysis data sets. Only stratospheric O3 has been included in ECMWFs ERA-40 (Dethof and 1189 
Hólm, 2004) and ERA-Interim (Dragani, 2011).  1190 
 1191 
The availability of global satellite retrievals of reactive traces gases and aerosols from 1192 
satellites such as ENVISAT, Aura, MLS, Metop, Terra and Aqua over the last two decades 1193 

made it possible to produce a re-analysis data set with emphasis on atmospheric composition. 1194 
Within the Monitoring Atmospheric Composition and Climate (MACC) and the Global and 1195 
regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project 1196 
(Hollingsworth et al., 2008),  the Integrated Forecasting System (IFS) of ECWMF, which 1197 
had been used to produce the ERA40 and ERA-Intrim meteorological re-analysis, was 1198 
extended to simulate chemically reactive gases (Flemming et al. 2009), aerosols (Morcrette et 1199 
al. 2009; Benedetti et al. 2008) and greenhouse gases (Engelen et al. 2009), so that 1200 
ECMWF's 4D-Var system (Courtier et al. 1994; Rabier et al., 2000)  could be used to 1201 
assimilate satellite observations of atmospheric composition together with meteorological 1202 
observations at the global scale.  1203 
 1204 

The description of the MACC model and data assimilation system and an evaluation of the 1205 
MACC re-analysis for reactive gases are given by Inness et al. (2013) in full detail. The 1206 
MACC system follows closely the configuration of the ERA-Interim re-analysis (Dee et al., 1207 
2011). Meteorological observations from the surface and sonde networks as well as 1208 
meteorological satellite observations were assimilated together with satellite retrievals of 1209 
total column and O3 profiles, CO total columns, AOD and tropospheric columns of NO2. The 1210 
MACC re-analysis has a horizontal resolution of about 80 km (T255) for the troposphere and 1211 
the stratosphere and covers the period 2003-2012.   1212 
 1213 
The MACC system assimilated more than one observation data set per species if multiple 1214 
data were available. For example, O3 profile retrievals from MLS were assimilated together 1215 

with O3 total column retrievals from OMI, SBUV-2 and SCIAMACHY to exploit synergies 1216 
of different instruments (Flemming et al. 2011). To reduce detrimental effects of inter-1217 
instrument biases, the variational bias correction scheme (Dee and Uppala, 2009) developed 1218 
for the meteorological assimilation was adapted to correct multiple atmospheric composition 1219 
retrievals.  1220 
 1221 
In the context of the 4D-Var approach, it would have been possible to use the information 1222 
content of the atmospheric composition retrievals to correct the dynamic fields as 1223 
demonstrated by Semane et al. (2009).  However, earlier experiments (Morcrette, 2003) with 1224 
IFS did not show a robust benefit for the quality of the meteorological fields. Therefore, this 1225 
feedback was disabled in the MACC re-analysis. A major issue in this respect would be the 1226 
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correct specification of the complex error covariance between meteorological fields and 1227 
atmospheric composition. Also, no error correlation between different chemical species and 1228 
between chemical and meteorological variables was considered.  1229 
 1230 
While the assimilation of radiance observations was the preferred choice for the 1231 
meteorological satellite observations, only retrievals of atmospheric composition total 1232 
columns or profile or AOD were assimilated. Ground-based and profile in-situ observations 1233 
of atmospheric composition were not assimilated but used to evaluate the MACC re-analysis. 1234 

The National Meteorological Center (NMC) method (Parrish and Derber 1992) was used to 1235 
estimate initial background error statistics for the atmospheric constituents apart from O3 for 1236 
which an ensemble method was applied (Fisher and Anderson, 2001).   1237 
 1238 
A key issue for chemical data assimilation with the MACC system is the limited vertical 1239 
signal of the retrievals from the troposphere, in particular from near the surface where the 1240 
highest concentrations of air pollutants occur. Further, the assimilation of AOD does only 1241 
constrain the optical properties of total aerosols but not of individual aerosol components. It 1242 
is therefore important that the assimilating model, i.e., IFS, can simulate the source and sink 1243 
terms in a realistic way. As shown by Huijnen et al. (2012), the chemical data assimilation of 1244 
total column CO and AOD greatly improved the realism of the vertically integrated fields 1245 

during a period of intensive biomass burning in Western Russia in 2010. However, the 1246 
biggest improvement with respect to surface measurements was achieved by using a more 1247 
realistic biomass burning emissions data set (GFAS, Kaiser et al. 2012).    1248 
 1249 
The MACC re-analysis is a widely used data set which is freely available at 1250 
http://www.copernicus-atmosphere.eu. It has been used to provide realistic boundary 1251 
conditions for regional air quality models (e.g. Schere et al., 2012; Zyryanov et al., 2012).  1252 
To demonstrate the long-range transport, Figure 2 shows a cross section of the zonal CO flux 1253 
at 180 E averaged over the 2003-2012 period in the top panel. The bottom panel shows the 1254 
time series of the monthly averaged meridonal CO transported over the Northern Pacific 1255 
(20N-70N, 180 E, up to 300 hPa) for the whole period. The MACC re-analysis was used to 1256 

diagnose the anomalies of the inter-annual variability of global aerosols (e.g. Benedetti et al. 1257 
2013) and CO (Flemming and Inness, 2014). Finally, the MACC AOD re-analysis was 1258 
instrumental to estimate aerosol radiative forcing (Bellouin et al. 2013) and was presented in 1259 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 1260 
2013). As pointed out by Inness et al. (2013), the changes in the assimilated retrieval 1261 
products from different instruments, namely CO and O3, during the 2003-2012 period as well 1262 
as the rather short period of 10 years requires caution if the MACC-re-analysis is used to 1263 
estimate long-term trends.   1264 

 1265 
5.2 Ground-level PM2.5 data assimilation into WRF-Chem 1266 
 1267 
In the following, we demonstrate an application of the EnKF (Whitaker and Hamill, 2002) to 1268 
assimilate surface fine particulate matter (PM2.5) observations with the WRF-Chem model 1269 
(Grell et al., 2005) over the eastern part of North America. The modeling period began on 23 1270 
June 2012, ended on 06 July 2012, and included a five-day spin-up period. During this 1271 
modeling period, weather over the area of interest was influenced by a Bermuda high 1272 
pressure system that contributed to the elevated concentrations of PM2.5. For an illustration of 1273 
such conditions, Figure 3 shows 24-hour average PM2.5 concentrations at AIRNow sites for 1274 
June 29 and July 05 obtained by hourly assimilation of AIRNow observations.  1275 
 1276 
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PM2.5 observations used in the assimilation come from the U.S. EPA AIRNow data exchange 1277 
program (see Section 4). Standard meteorological upper air and surface observations were 1278 
also assimilated.  1279 

The grid resolution of the simulations is equal to 20 km. Initial and lateral boundary 1280 
conditions for meteorology were obtained from the global GFS ensemble that has been 1281 
operational at NCEP since May 2012. The length of ensemble forecasts limited the extent of 1282 
our forecasts to nine hours. Lateral boundary conditions for chemical species were obtained 1283 

from a global CTM (MOZART) simulation (Emmons et al., 2010). Pollution by forest fires 1284 
was derived from the Fire emission INventory from NCAR (FINN, Wiedinmyer et al., 2011). 1285 
Parameterization choices for physical and chemical processes and specification of 1286 
anthropogenic emissions follow those described by Pagowski and Grell (2012) (except for 1287 
emissions of SO2 for 2012 reduced by 40% as recommended by Fioletov et al., 2011). The 1288 
reader is referred to previous work for details given therein (Pagowski and Grell, 2012).  1289 

The six-hour assimilation cycle at 00z, 06z, 12z, and 18z used a one-hour assimilation 1290 
window for PM2.5 and a three-hour assimilation window for meteorological observations. 1291 

Two numerical experiments were performed:  1292 

- NoDA – that included assimilation of meteorological observations only; and  1293 

- EnKF – that included assimilation of both AIRNow PM2.5 and meteorological observations. 1294 
The increments to individual PM2.5 species were distributed according to their a 1295 
priori contributions to the total PM2.5 mass. For the GOCART aerosol module (Chin 1296 
et al., 2000, 2002; Ginoux et al., 2001) employed in the simulations, this approach 1297 
yields better results compared to using individual aerosol species as state variables 1298 
in the EnKF procedure. 1299 

Verification statistics presented below were calculated over the period starting at 00Z June 1300 

28 and ending at 00Z July 07, 2012. 1301 

In Figure 4, bias and temporal correlation of forecasts interpolated to measurement locations 1302 
are shown for the two experiments.  In calculating these verification statistics, all available 1303 
forecasts were matched with corresponding observations. We note that the data assimilation 1304 
significantly reduces negative model bias observed over most of the area of interest. A 1305 
marked improvement in temporal correlation due to the assimilation, in places negative for 1306 
NoDA, is also apparent.  1307 

In Figure 5, time series of bias and spatial correlation of forecasts are shown. It is noteworthy 1308 
that the effect of meteorological observation assimilation on PM2.5 statistics is rather minor. 1309 

That is both a result of the scarcity of PBL profiles available for the assimilation and 1310 
difficulties in assimilating surface observations. A large positive impact of PM2.5 data 1311 
assimilation on PM2.5 concentrations is confirmed in Figure 4, but forecast quality 1312 
deteriorates quickly. Causes for such deterioration include deficiencies of the initial state 1313 
resulting from the lack of observations of the individual PM2.5 species and their vertical 1314 
distribution, and errors due to inaccuracies in chemical and physical parameterizations and 1315 
inaccuracies of emission sources. The application of the GOCART aerosol parameterization 1316 
was only dictated by computational requirements of ensemble simulations. Investigation on 1317 
whether more sophisticated parameterizations of aerosol chemistry maintain the quality of 1318 
forecasts for a longer period is on-going. Fast deterioration of forecasts suggests that, short of 1319 

improving the model formulation and/or the emissions inventory, parameterization of model 1320 
errors within the ensemble and post-processing of forecasts might provide an avenue for 1321 
better PM2.5 prediction. 1322 
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 1323 

5.3 Satellite data assimilation into WRF-Chem 1324 
 1325 
The Gridpoint Statistical Interpolation (GSI) system (Kleist et al., 2009), which uses a 3D-1326 
Var approach, is applied here to perform data assimilation experiments using satellite data to 1327 
improve the initial aerosol state for the WRF-Chem (Grell et al., 2005) model when utilizing 1328 
the MOSAIC aerosol model (Zaveri et al., 2008). We present two case studies, which 1329 
correspond to the use of AOD (Saide et al., 2013) and cloud number droplet satellite 1330 

retrievals (Nd) (Saide et al., 2012a). The WRF-Chem configuration is based on Saide et al. 1331 
(2012b). 1332 
 1333 
Assimilating AOD retrievals. In this case study, simulations were performed over 1334 
California, USA, and its surroundings assimilating AOD retrievals. Figure 6 shows results 1335 
when assimilating two 550 nm AOD retrievals, the MODIS dark target (Remer et al., 2005), 1336 
and the NASA neural network retrieval (http://gmao.gsfc.nasa.gov/forecasts/), which corrects 1337 
biases with respect to AERONET (Holben et al., 2001) and filters odd retrievals. The 1338 
experiment shows that the AOD assimilation is able to correct the biases in the forward 1339 
model providing a better agreement to AQS PM2.5 observations and AERONET AOD 1340 
measurements. PM2.5 concentrations show low bias one hour after assimilation and then the 1341 

assimilation gradually returns towards concentrations and errors found when no assimilation 1342 
is performed getting close to it after 48 hours. Figure 6 also shows that the observationally 1343 
constrained retrieval generally provides better results than the non-corrected AOD. An 1344 
extreme case is where the dark target retrieval has problems due to the bright surfaces 1345 
(Figure 6, bottom-right panel) deteriorating model performance and the corrected retrieval is 1346 
able to partially fix the problem. 1347 
 1348 
Figure 7 illustrates the effects of assimilating multiple-wavelength AOD retrievals comparing 1349 
its performance against just assimilating AOD at 550 nm, which is what is commonly done. 1350 
Error reductions with respect to non-assimilated AOD observations are similar for both 1351 
cases, but notable differences are found when comparing error reductions for the Ångström 1352 

exponent (AE), a proxy for the aerosol size distribution. The simulation assimilating only 1353 
550 nm AOD does not significantly change the AE, while assimilating multiple-wavelength 1354 
AOD improves performance of the AE. 1355 
 1356 
These results demonstrate that satellite AOD assimilation can be used for improving analysis 1357 
and forecast, with additional improvements when using observationally constrained retrievals 1358 
and multiple wavelength data. Thus, future work needs to point towards incorporating 1359 
additional retrievals, which need to be observationally constrained to improve assimilation 1360 
performance. 1361 

 1362 
Assimilating cloud retrievals. Vast regions of the world are constantly covered by clouds, 1363 
which limit our ability to constrain aerosol model estimates with AOD retrievals. In order to 1364 
overcome this limitation, a novel data assimilation approach was developed to use cloud 1365 
satellite retrievals to provide constraints on below-cloud aerosols (Saide et al., 2012a). The 1366 
method consists in using the online coupling and aerosol-cloud interactions within WRF-1367 
Chem to provide cloud droplet number (Nd) estimates, which are compared to satellite 1368 
retrievals through the data assimilation framework. Figure 8 presents results for the 1369 
southeastern Pacific stratocumulus deck, where the MODIS retrieval (Painemal and 1370 
Zuidema, 2011) is assimilated and compared against independent GOES retrievals (Painemal 1371 
et al., 2012). The assimilation is able to correct the low and high biases in Nd found in the 1372 
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guess with these corrections persisting even throughout the second day after assimilation. 1373 
Furthermore, Saide et al. (2012a) show that the corrections made to the below-cloud aerosols 1374 
are in better agreement with in-situ measurements of aerosol mass and number. Future steps 1375 
should try to show the value of this assimilation method on other regions and find potential 1376 
synergies between AOD and Nd assimilation in order to provide better aerosol forecasts and 1377 
analyses. 1378 
 1379 

5.4 Satellite data assimilation for constraining anthropogenic emissions 1380 
 1381 
The case studies performed with the SILAM dispersion model (http://silam.fmi.fi) have 1382 
demonstrated the possibility and efficiency of extension of the data assimilation towards 1383 
source apportionment. The goal of the numerical experiment was to improve the emission 1384 
estimates of PM2.5 via assimilating the MODIS-retrieved column-integrated AOD fields. The 1385 
4D-Var assimilation method generally followed the approach of Vira & Sofiev (2012) with 1386 
several updates: 1387 

- three domains were considered: Europe, Southern Africa, and Southeast Asia 1388 

- the aerosol species included: 1389 

o primary OC, BC (MACCITY emission inventory, non-European domains) or 1390 
primary PM2.5/PM10 (TNO-MACC emission, European domain) 1391 

o sulfate from SO2 oxidation 1392 

o nitrate from NOx oxidation (not adjusted during the assimilation) 1393 

o sea salt (embedded module in SILAM, adjusted by the assimilation) 1394 

o desert dust (embedded module in SILAM, adjusted by the assimilation) 1395 

o PM2.5 from wildfires (IS4FIRES emission inventory, adjusted by the 1396 
assimilation) 1397 

- the assimilation window was 1 month to reduce the noise and random fluctuations of 1398 
the emission corrections 1399 

- the boundary conditions were taken from a global SILAM simulation 1400 

- a complete year, 2008, was analyzed with 0.5° spatial resolution and vertical 1401 
coverage up to the tropopause; the model was driven by ERA-Interim meteorological 1402 

information 1403 

 1404 
An example of SILAM a-priori AOD pattern for Asia, fully collocated with MODIS 1405 
observations (Figure 9) shows the significant initial disagreement between the SILAM and 1406 
MODIS AOD. In particular, the model shows almost no aerosol in northwestern India and 1407 
much too low values over eastern China. Assimilation improves the distribution and reduces 1408 
the negative bias (Figure 9, bottom panel). Since the amount of dust emitted by the 1409 
experimental version of SILAM was quite low, the northern part of China and Mongolia are 1410 
practically not corrected. But the Indian and Chinese industrial and agriculture regions were 1411 
improved very efficiently. A comparison with independent data (AATSR AOD retrievals) 1412 

confirmed the trends: both substantial bias reduction and increase of the correlation 1413 
coefficient (Table 3). 1414 
The resulting emission estimates had substantial seasonal variation, different from the a-1415 
priori estimates (Figure 10). Apart from almost doubling the annual OC emissions (from 7.8 1416 
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Mt to 15 Mt of PM), the inversion also altered the seasonality, clearly suggesting spring and 1417 
autumn as the two periods with strong emission.  1418 

 1419 
The efficiency of the emission inversion varied between the regions and strongly depended 1420 
on quality of the a-priori information. Thus, in Africa strong contribution from wild land fires 1421 
might have affected the final results for other PM species. 1422 
 1423 
The other potential issue in assimilation of total PM is the need to distribute the information 1424 
among individual components that are either emitted or created by chemical transformations. 1425 
In particular, there is a risk of artificial changes in SO2 sources because in many cases the 1426 
total AOD is more sensitive to changing sulfate production than to variations of the primary 1427 

PM emission. A possible way out is to perform simultaneous inversion for several species, 1428 
e.g., for SO2 and PM emissions. 1429 
 1430 
 1431 

6. Potential difficulties for data assimilation in CCMM 1432 
 1433 
Data assimilation in CCMM is recent and has typically been limited to chemical (including 1434 
PM) data assimilation to improve chemical and, in a few cases, meteorological predictions. 1435 
The effect of assimilating jointly meteorological and chemical variables on meteorological 1436 
and chemical predictions has been limited to date and it is worthwhile to discuss the potential 1437 
difficulties that may be associated with such future applications, particularly in the case of 1438 

CCMM with feedbacks between chemistry and meteorology. 1439 

 1440 
The effect of chemical data assimilation on meteorological variables has been investigated in 1441 
a few specific cases, for example the effect of stratospheric O3 assimilation on winds 1442 
(Semane et al., 2009) and that of AOD assimilation on the radiative budget and winds 1443 
(Jacobson and Kaufman, 2006; Reale et al., 2014). It has also been shown to be potentially 1444 
important using a low-order model (Bocquet and Sakov, 2013)However, joint data 1445 
assimilation of both meteorological (e.g. winds or temperature) and chemical data has not 1446 
been conducted to a large extent and it is not clear how much interactions could occur among 1447 
meteorological and chemical state variables when assimilating both chemical and 1448 
meteorological data. Assimilating distinct data sets that influence the same model variable 1449 

could lead to some contradictory information concerning that model variable when the error 1450 
statistics are misspecified (e.g., unknown bias in semi-volatile PM components); therefore, it 1451 
will be essential to properly specify those measurement error statistics. Most likely, one of 1452 
the influential data sources may dominate as being less uncertain and/or more influential. 1453 
Then, either an offline sensitivity analysis could be used to diagnose which input variable to 1454 
retain for data assimilation or the data assimilation process would automatically give more 1455 
weight to the less uncertain/more influential variable. 1456 

 1457 
Another potential difficulty concerns the assimilation of aggregated variables such as PM 1458 
mass concentration or AOD. The effect on the model individual variables (i.e., PM individual 1459 
components) is currently typically performed by modifying all PM components 1460 

proportionally to the model component fractions. This approach may lead to erroneous 1461 
results if the prior chemical composition differs significantly from the one in the model, for 1462 
example, if one component of the aggregated variable (total PM mass) is dominating in the 1463 
model, but is not the one that needs to be corrected. One example is the assimilation of AOD 1464 
in the presence of a volcanic ash plume over the ocean, which may lead to a corrective 1465 
increase in sea salt instead of the addition of volcanic ash in the model. 1466 
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 1467 
An approach to circumvent that problem is to assimilate individual PM component mass 1468 
concentrations. However, the lack of routinely available continuous measurements of PM 1469 
component concentrations has so far prevented the operational use of such information. 1470 
Furthermore, this process could potentially lead to difficulties, when both total mass 1471 
concentration and the mass concentrations of individual PM components are assimilated. The 1472 
sum of individual PM component mass concentrations may not necessarily be consistent with 1473 
the total PM mass concentration because of measurement artifacts (which may affect both the 1474 

individual component mass measurements and the total PM mass measurement). If so, the 1475 
data source with the least observation error should dominate or the forecast may remain little 1476 
affected by the assimilation. This implies that the observation errors need to be correctly 1477 
characterized. In that regard, assimilation of multi-wavelength AOD, single-scattering 1478 
albedo, Ångstrom exponent, and/or absorption optical depth can place additional constraints 1479 
on the aerosol composition by providing information on particle size and absorption. 1480 

 1481 
Similar difficulties could arise when assimilating multiple gaseous species with chemical 1482 
interactions (e.g., O3, NO2, HCHO). However, such multi-species data assimilation 1483 
applications have been conducted successfully so far, which suggests that this process is not 1484 
a major source of difficulties. Typically, the assimilation of additional chemical species (e.g., 1485 

NO2 in addition to O3) shows little improvement over the assimilation of the first species. 1486 

 1487 
The assimilation of both satellite and surface data for chemical species has been conducted 1488 
and previous applications have shown that it works well. It is likely that the satellite data 1489 
correct concentrations in the free troposphere whereas surface data correct concentrations in 1490 
the planetary boundary layer and that the two regions are not strongly coupled. Cases with 1491 
conditions of deep convection when the coupling between those atmospheric regions 1492 
becomes important should be investigated to stress the data assimilation process of distinct 1493 
sources of data having greater interactions on the model variables. 1494 
 1495 
Concerning data assimilation methods, the error cross-correlations, such as wind-chemical 1496 

species or species-species, would be dynamically estimated with the EnKF or another 1497 
ensemble-based method; however, their specification would be complex if not problematic in 1498 
an optimal interpolation, 3D-Var or 4D-Var data assimilation. 1499 
 1500 
Finally, a major difficulty for data assimilation in CCMM is likely to be the paucity of data 1501 
for chemical (including PM) data assimilation. For example, in the case of satellite data, 1502 
insufficient vertical resolution and temporal resolution are a potential difficulty for chemical 1503 
data assimilation.  1504 
 1505 

 1506 

7. Conclusion and Recommendations 1507 
 1508 
Data assimilation has been performed so far mostly as assimilation of meteorological 1509 
observations in numerical weather prediction (NWP) models or as assimilation of chemical 1510 
concentrations in CTM and, to a lesser extent, in CCMM. Improvements in meteorological 1511 
fields typically benefits CTM and CCMM performance and there are some examples of the 1512 
effect of chemical data assimilation on meteorological results; however, little work has been 1513 
conducted so far to assimilate both meteorological and chemical data jointly into CCMM. As 1514 
a result, the potential feedbacks of chemical data assimilation on meteorological forecasts 1515 
have not been fully investigated yet. 1516 
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 1517 
Although most applications of chemical data assimilation have addressed the improvement of 1518 
chemical concentration fields, the correction of emission biases may also be an important 1519 
area of development and applications, in particular for emission terms that carry large 1520 
uncertainties, such as sand/dust storms, biomass fires, allergenic pollen episodes, volcanic 1521 
eruptions, and accidental releases. 1522 
 1523 
A major limitation of data assimilation in CCMM is likely to be the limited availability of 1524 

data, particularly in near-real-time. For example, there has been no assimilation of PM 1525 
component concentration data conducted so far and the assimilation of total PM 1526 
concentrations necessarily involves assumptions that may not reflect reality and, therefore, 1527 
significantly limit the benefits of assimilating those data. Joint assimilation of surface and 1528 
satellite data has proven useful, but rather disconnected, the former affecting mostly the 1529 
boundary layer concentrations while the latter affects the free troposphere concentrations. A 1530 
more thorough investigation of the potential couplings between those tropospheric 1531 
compartments appears warranted. Satellite data are very valuable because of the coverage 1532 
that they can provide; the combination of using data from polar orbiting satellites that 1533 
provide good spatial coverage but with limited temporal resolution and geostationary 1534 
satellites that provide limited spatial coverage and resolution but continuous temporal 1535 

coverage should be investigated (e.g., the future ESA sentinel-4 and sentinel-5 missions 1536 
would provide such complementary information for atmospheric chemical species such as 1537 
O3, NO2, SO2, HCHO, and AOD). 1538 
 1539 
As more chemical data become available in near-real-time, the assimilation of large data sets 1540 
from widely different sources (e.g., surface, ground-based remote and satellite data) into 1541 
CCMM may lead to new challenges to develop optimal and efficient data assimilation 1542 
procedures. However, assimilating a wide variety of data should benefit not only the model 1543 
variable corresponding directly to the data being assimilated, but also other model variables 1544 
influenced via meteorology/chemistry interactions, as exemplified for example by the 1545 
improvement in aerosol concentrations via CCN data assimilation (Saide et al., 2012a) and 1546 

the potential improvement in meteorological variables via AOD data assimilation during dust 1547 
storms (Reale et al., 2011, 2014). 1548 
 1549 
Although data assimilation for CCMM is still in its infancy, results obtained so far suggest 1550 
that it is likely that more work in this area will lead to improvements not only for 1551 
atmospheric chemistry forecasts, but also for numerical weather forecasts. If such results are 1552 
indeed confirmed in future applications, one could hope then that chemical data assimilation 1553 
will become more valuable in terms of operational applications and that more resources, 1554 
particularly in terms of data bases, will be allocated to it. Furthermore, as computer resources 1555 

become increasingly more powerful, global CCMM are likely to become also more common 1556 
and data assimilation in global CCMM could grow accordingly. 1557 
 1558 
In terms of data assimilation methods, two major competing branches for data assimilation 1559 
are likely to emerge for future operational applications: weak constraint 4D-Var with longer 1560 
assimilation windows and ensemble 4D-Var in which covariances are evolved using 1561 
ensembles but minimization of the cost function is obtained with a variational approach. 1562 
 1563 
Finally, this review has focused on data assimilation. Image assimilation is also an important 1564 
field in the geosciences. The assimilation of images such as clouds and large plumes (due to 1565 
volcanic eruptions or large biomass fires) can also provide notable improvements for short-1566 
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term forecasting (nowcasting). Furthermore, the source terms of volcanic eruptions, biomass 1567 
fires, and sand/dust storms could be better determined via image assimilation. This area of 1568 
research would complement nicely current ongoing work on data assimilation and lead to 1569 
better capabilities for CCMM. 1570 
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Table 1: Summary of major satellite instruments for the period 2003 to the near future, and 2302 
the atmospheric composition species detected by these instruments. The focus is on 2303 
tropospheric composition. 2304 
 2305 

Sensor (Satellite) Measurement 
Period 

Species Reference 

SCIAMACHY 
(ENVISAT) 

2002-2012 NO2, SO2, HCHO, CO, 
CH4, CO2, AOD, O3, 
CHOCHO 

Bovensmann et al., 
1999 

OMI (EOS-Aura) 2004- NO2, SO2, HCHO, AOD, 
O3, CHOCHO 

Levelt et al., 2006 

GOME-2 
(METOP-A) 
GOME-2 
(METOP-B) 

2006- 
2012- 

NO2, SO2, HCHO, AOD, 
O3, CHOCHO 

Callies et al., 2000 

AIRS (EOS-Aqua) 2002- O3, SO2, CO, CH4, CO2 Aumann et al., 
2003 

MOPITT (EOS-
Terra) 

2000- CO, CH4 Drummond and 
Mand, 1996 

TES (EOS-Aura) 2004- O3, CO, CH4, NH3, CO2 Beer et al., 2001 
IASI (METOP-A) 
IASI (METOP-B) 

2006- 
2012- 

O3, SO2, CO, CH4, NH3, 
NMVOC, NH3, CO2 

Clerbaux et al., 
2009 

MISR (EOS-Terra) 2000- AOD Diner et al., 2001 
MODIS (EOS-
Terra) 
MODIS (EOS-
Aqua) 

2000- 
2002- 

AOD, fires Barnes et al., 1998 

VIIRS (Suomi-
NPP) 

2011- AOD, fires GSFC (2011) 

POLDER 
(PARASOL) 

2004-2013 AOD, aerosol properties Lier and Bach, 
2008 

CALIOP 
(CALIPSO) 

2006- Aerosol backscatter 
profiles 

Winkler et al., 
2003 

GOCI (COMS) 2010- AOD Lee et al., 2010 
TANSO-FTS 
(GOSAT) 

2009- CH4, CO2 Kuze et al., 2009 

 2306 
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Table 2: Selected list of acronyms 2307 
 2308 

AIRS Atmospheric Infrared Sounder 
AVHRR Advanced Very High-Resolution Radiometer 
CALIOP Cloud-Aerosol LIdar with Orthogonal Polarization 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
COMS Communication, Ocean, and Meteorology Satellite 
GOCI Geostationary Ocean Color Imager 
IASI Infrared Atmospheric Sounding Interferometer 
MISR Multiangle Imaging SpectroRadiometer 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOPITT Measurements Of Pollution In The Troposphere 
NPP National Polar-orbiting Partnership 
OMI Ozone Monitoring Instrument 
PARASOL Polarization & Anisotropy of Reflectances for Atmospheric Sciences 

coupled with Observations from a Lidar 
SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric 

CHartographY 
TES Tropospheric Emission Spectrometer 
VIIRS Visible Infrared Imaging Radiometer Suite 
 2309 
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Table 3. Bias and correlation coefficient for comparison with independent satellite 2310 
observations of AATSR for the considered regions 2311 

 Correlation,  
a priori 

Correlation,  
a posteriori 

Bias, a priori Bias, a posteriori 

Africa 0.44 0.47 -0.02 -0.01 
Asia 0.41 0.50 -0.07 -0.04 
Europe 0.23 0.30 -0.01 -0.005 
 2312 
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Figr Figure captions 2313 

 2314 
Figure 1. Measurements of the tropospheric NO2 column over Europe from the Ozone 2315 

Monitoring Instrument (OMI) on EOS-Aura (Boersma et al., 2011). Top panel: yearly-mean 2316 
observation for 2005. Bottom panel: A sum of all observations available for assimilation on 2317 
one day with little cloud cover (30 August 2005), showing the pixel size (13x24 km at nadir) 2318 
and the overlap between orbits at high latitude. The retrieved cloud fraction is used to fade out 2319 
the measurements (white indicates 100% cloud cover). 2320 

 2321 
Figure 2: Cross section at 180 E of the average zonal CO flux (kg/(m2s)) in the 2003-2012 2322 
period calculated from the CO, U and density fields of the MACC re-analysis (top). Time 2323 
series of monthly mean CO (kg/s) transported over the Northern Pacific through a pane at 180 2324 
E (30N-70N, up 300 hPa) (bottom). 2325 
 2326 

Figure 3. 24-hour average PM2.5 concentrations (µg/m3) for June 29 (left) and July 05, 2012 2327 
(right). 2328 
 2329 

Figure 4. Bias (µg/m3) (top) and temporal correlation (bottom) of forecasts for NoDA (left) 2330 
and EnKF (right) simulations against AIRnow observations for the period 28 June – 6 July 2331 
2012. Black dots denote negative correlations. 2332 
 2333 

Figure 5. Diurnal cycle of bias (µg/m3) (left) and spatial correlation (right) of PM2.5 forecasts 2334 
for the NoDA (blue) and EnKF (red) simulations against AIRnow observations for the period 2335 
28 June – 6 July 2012. The black vertical lines are plotted at assimilation times. 2336 
 2337 
Figure 6. Results when assimilating satellite retrieved AOD over the SW US for the first 10 2338 
days of May 2010. Top-left panel shows time series of model and observed mean PM2.5 over 2339 
AQS sites in California and Nevada. Top-right panel shows mean PM2.5 as a function of 2340 
forecast hour for the same sites. Bottom panels shows AOD time series at two sites for 2341 
AERONET data (500 nm), operational MODIS (550 nm), NASA NNR (550 nm), the non-2342 

assimilated forecast and the two assimilation forecasts (500 nm). Modified from Saide et al. 2343 
(2013).  2344 
 2345 
Figure 7. Fractional error reductions for 550 nm AOD and 550–870 nm Ångström exponent 2346 
(rows) from non-assimilated to assimilation of Terra retrievals computed using Aqua 2347 
retrievals (e.g., errors for a ~3 hour forecast). Figures in the left column assimilate only 2348 
MODIS 550 nm AOD while the ones in the right column assimilate MODIS 550, 660, 870, 2349 
and 1240 nm over ocean and only 550 nm over land. Modified from Saide et al. (2013).  2350 
 2351 
Figure 8. Results when assimilating cloud retrievals to improve below-cloud aerosol state. 2352 
Top panels show observed and model maps of cloud droplet number [Nd, #/cm3] for the 2353 

southeastern Pacific. The bottom panel shows time series of GOES and Nd forecasts after 2354 
assimilation of the MODIS retrieval on the top panels. The time series are presented as box 2355 
and whisker plots computed over the rectangle on the top-left panel; center solid lines indicate 2356 
the median, circles represent the mean, boxes indicate upper and lower quartiles, and whiskers 2357 
show the upper and lower deciles. Time series are shown during day time for 2 days after 2358 
assimilation. 2359 
 2360 
Figure 9. SILAM a priori (top), MODIS observations (middle) and SILAM a posteriori 2361 
(bottom) AOD, mean over 2008, model output fully collocated with MODIS. 2362 
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 2363 
Figure 10. Monthly emissions of OC in Asia, total 2008, unit = Mt PM month-1. 2364 Supprimé Supprimé Supprimé Supprimé : : : : 1
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 2368 
 2369 

Figure 1. Measurements of the tropospheric NO2 column over Europe from the Ozone 2370 
Monitoring Instrument (OMI) on EOS-Aura (Boersma et al., 2011). Top panel: yearly-mean 2371 
observation for 2005. Bottom panel: A sum of all observations available for assimilation on 2372 
one day with little cloud cover (30 August 2005), showing the pixel size (13x24 km at nadir) 2373 
and the overlap between orbits at high latitude. The retrieved cloud fraction is used to fade 2374 
out the measurements (white indicates 100% cloud cover). 2375 
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 2376 

 2377 

Figure 2: Cross section at 180 E of the average zonal CO flux (kg/(m2s)) in the 2003-2012 2378 
period calculated from the CO, U and density fields of the MACC re-analysis (top). Time 2379 
series of monthly mean CO (kg/s) transported over the Northern Pacific through a pane at 2380 
180 E (30N-70N, up 300 hPa) (bottom). 2381 
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 2405 

Figure 3. 24-hour average PM2.5 concentrations (µg/m3) for June 29 (left) and July 05, 2012 2406 
(right). 2407 
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 2451 

Figure 4. Bias (µg/m3) (top) and temporal correlation (bottom) of forecasts for NoDA (left) 2452 
and EnKF (right) simulations against AIRnow observations for the period 28 June – 6 July 2453 
2012. Black dots denote negative correlations. 2454 
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Figure 5. Diurnal cycle of bias (µg/m3) (left) and spatial correlation (right) of PM2.5 forecasts 2476 
for the NoDA (blue) and EnKF (red) simulations against AIRnow observations for the period 2477 
28 June – 6 July 2012. The black vertical lines are plotted at assimilation times. 2478 
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 2497 
Figure 6. Results when assimilating satellite retrieved AOD over the SW US for the first 10 2498 
days of May 2010. Top-left panel shows time series of model and observed mean PM2.5 over 2499 
AQS sites in California and Nevada. Top-right panel shows mean PM2.5 as a function of 2500 
forecast hour for the same sites. Bottom panels shows AOD time series at two sites for 2501 
AERONET data (500 nm), operational MODIS (550 nm), NASA NNR (550 nm), the non-2502 
assimilated forecast and the two assimilation forecasts (500 nm). Modified from Saide et al. 2503 
(2013).  2504 
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 2526 
Figure 7. Fractional error reductions for 550 nm AOD and 550–870 nm Ångström exponent 2527 
(rows) from non-assimilated to assimilation of Terra retrievals computed using Aqua 2528 
retrievals (e.g., errors for a ~3 hour forecast). Figures in the left column assimilate only 2529 
MODIS 550 nm AOD while the ones in the right column assimilate MODIS 550, 660, 870, 2530 
and 1240 nm over ocean and only 550 nm over land. Modified from Saide et al. (2013). 2531 
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 2548 
 2549 
Figure 8. Results when assimilating cloud retrievals to improve below-cloud aerosol state. 2550 
Top panels show observed and model maps of cloud droplet number [Nd, #/cm3] for the 2551 
southeastern Pacific. The bottom panel shows time series of GOES and Nd forecasts after 2552 
assimilation of the MODIS retrieval on the top panels. The time series are presented as box 2553 
and whisker plots computed over the rectangle on the top-left panel; center solid lines 2554 
indicate the median, circles represent the mean, boxes indicate upper and lower quartiles, and 2555 

whiskers show the upper and lower deciles. Time series are shown during day time for 2 days 2556 
after assimilation. 2557 

 

1
st
 day 2

nd
 day 

MODIS Terra Guess Assimilated  

Supprimé Supprimé Supprimé Supprimé : : : : 9



 62

 2558 

 2559 

 2560 

 2561 

 2562 

 2563 

 2564 

 2565 

 2566 

 2567 

 2568 

 2569 

 2570 

 2571 

 2572 

 2573 

 2574 

 2575 

 2576 

 2577 

 2578 

 2579 

 2580 

 2581 

 2582 

 2583 

 2584 

 2585 

 2586 

 2587 

 2588 

 2589 

 2590 

 2591 

 2592 

 2593 

 2594 

 2595 

 2596 

 2597 

 2598 

 2599 

 2600 

 2601 

 2602 

 2603 

Figure 9. SILAM a priori (top), MODIS observations (middle) and SILAM a posteriori 2604 
(bottom) AOD, mean over 2008, model output fully collocated with MODIS. 2605 
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Figure 10. Monthly emissions of OC in Asia, total 2008, unit = Mt PM month-1. 2608 
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San Jose and Pérez Carmaño of the Technical University of Madrid (UPM) also performed a 
multi-species data assimilation with a CTM. In their work, NO2 and O3 data from SCanning 
Imaging Absorption SpectroMeter for Atmospheric CHartographY  (SCIAMACHY)  were 
assimilated into a simulation conducted with the Community Multiscale Air Quality CTM 
(CMAQ) of the U.S. Environmental Protection Agency. SCIAMACHY makes measurements 
in both nadir and limb modes, which allows the subtraction of stratospheric O3 from the total 
O3 column measurements to obtain tropospheric O3 column estimates. Figure 1a shows an 
example of O3 SCIAMACHY data for 01/08/2007. CMAQ was used here in combination 
with MM5 for the meteorological fields and applied to two domains covering the Iberian 
Peninsula with a grid spacing of 27 km and the central region of Spain including the Madrid 
metropolitan area with a grid spacing of 9 km. A vertical resolution with 23 layers was used 
in both MM5 and CMAQ. Results are presented here for the episode of 1 to 8 August 2007 
(see Figure 1b).  

 
The vertical profiles of NO2 and O3 were assimilated into the CMAQ simulation for each 
grid cell using the Cressman (1959) method. A comparison of model simulation results with 
and without data assimilation showed a slight improvement from 0.751 to 0.754 in the 
correlation between the hourly model simulation results and O3 concentrations available from 
the surface monitoring network. The results show important differences in the Madrid region 
with the most important ones (up to 22 µg/m3) being located over downtown Madrid and 
typically decreasing away from the city. A scatter diagram of the simulated and measured O3 
concentrations averaged over the 22 monitoring stations of the Madrid area is shown in 
Figure 1c. 
    

 


