Reply to comments by Referee #1

Summary

This manuscript presents a review of data assimilation in atmospheric chemistry models
and contains a wealth of information.

I appreciate that the authors addressed some of my comments from my “short review”
before this manuscript was published in ACPD. Nonetheless, my overall opinion is

nearly unchanged—I still think the manuscript is too long and unfocused and that the
writing and presentation are the main shortcomings of this manuscript. However, I have
little concern regarding the scientific content, as I believe the authors appropriately
encapsulated most of the work to date on data assimilation in atmospheric chemistry
models.

I have identified several places where I think the authors can shorten their paper.
However, ultimately, I will defer to the authors’ choices. If the authors do not wish to
make any substantial omissions, that is fine, but I expect that many readers will be
turned-off from this article because of its size and often unfocused writing.

Reply: Since this is a review paper, we feel that it is appropriate to provide fairly
comprehensive descriptions of methods, data sets, past applications, and selected case
studies. Nevertheless, we eliminated some material where we felt that it was
appropriate to do so and we also followed some recommendations concerning the
organization of Section 3.

Bigger comments and suggestions

1. I feel you should strongly consider removing section 5 and all the figures because they
add little to the paper. Section 5.2 is essentially just Pagowski and Grell (2012) restated,
and section 5.3 is already-published work from P. Saide. I found section 5.4 to be the
most interesting of the case studies, but even that can be safely removed, in my opinion.
While it’s nice to have figures in an article, I feel that in this case, they don’t contribute to
further understanding of the topics already described in the text.

I feel that section 2.4 can be omitted. A few lines about nonlinearity and non-Gaussianity
can easily be slipped into other earlier material in section 2.

Is section 2.5 really necessary? The point of this paper is data assimilation, not
verification approaches. If you're going to keep section 2.5, then, within it, I suggest
removing the “leave-one-out-approach” because, as you mention, this approach is very
expensive, and quite frankly, I believe a bit silly and unpractical.

Can section 3.3 be omitted? I felt it added little to the text.

The first paragraph of section 4.2 can be safely omitted. Further, I feel that the text in
section 4.2 beginning “Most retrieval products” through the end of the section can be
removed.

I feel that section 4.3 can be safely omitted too—of course observations are used in
chemical data assimilation. Most of this content has been said somehow earlier.

Reply: We feel that it is important to show some examples of data assimilation in
atmospheric chemistry models, as those illustrate some of the associated advantages
and limitations. We debated whether the case studies could be incorporated into Section
3. However, we decided to keep them as a separate section because they not only
provide illustrations of the data assimilation methods, but also exemplify the use of



observational data sets (ground-level and satellite data), which have been described in
Section 4.

We agree that section 2.4 is rather short. Nevertheless, we believe it deserves a
subsection on its own because this issue is likely to become a major mathematical and
technical hardship of CCMM, when coupling heterogeneous variables, some of them
physically bounded. These assumptions often contradict mathematical axioms of
standard data assimilation methods such as Gaussianity of the errors. Coupled climate
models (with sea ice for instance) and coupled ocean-biogeochemical models also face
the same class of issues and addressing this non-Gaussianity issue is already considered
a major challenge.

We agree that the leave-one-out approach is not numerically feasible and we have
modified Section 2.5 accordingly.

Section 3.3 is useful as a link between the data assimilation methods, which are
described in Section 3 and the observational data sets, which are described in Section 4.

The first paragraph of Section 4.2 introduced the major agencies operating satellites.
This paragraph has been removed. Acronyms have been defined in other parts of the
texts where needed.

The end of Section 4.2 starting with “Most retrieval products...” is useful as a reminder of
the necessary components of the retrieval products. In particular, DOAS is a popular
retrieval approach, but providing kernels with the DOAS approach has become common
practice only very recently.

Section 4.3 is important as it exemplifies the methods to use observations for data
assimilation in an optimal manner. Therefore, it is complementary, rather than
redundant, of the earlier section and it provides a bridge with the case studies section.

2. Section 3.1 should be broken into subsections to make it easier to read. Perhaps one
subsection could contain studies looking at inverse modeling and another those that
examined modifying initial conditions.

Similarly, section 3.2 should also be broken into subsections. I'd suggest one subsection
for gaseous chemistry data assimilation and another for aerosol data assimilation.

Reply: We have reorganized Section 3.1 along the suggested lines. However, it was not
possible to break it down into only two sub-sections and it has been organized into four
sub-sections.

It was not possible to break down Section 3.2 into sub-sections along the same lines as
Section 3.1 since inverse modeling has not been performed with CCMM yet. To break it
down into assimilation of gaseous and aerosol data was not feasible either, because
some applications have assimilated both gaseous and aerosol data. Furthermore, it
appears that data assimilation into CCMM tends to differ at the moment by their data
assimilation techniques (4D-Var, 3D-Var, Kalman filter) as mentioned in the



introductory paragraph. Therefore, we kept the current organization. Since Section 3.2 is
shorter than Section 3.1, it seems appropriate not to break it down into sub-sections.

3. In general, I strongly urge you to remove all unnecessary text, primarily in section 3.
The details of the various studies do not have to be mentioned here. For example, in the
paragraph about Schutgens et al. (2010), beginning on page 32253, the sentences starting
with “To obtain” and “In addition” can probably be safely removed without detracting
from the main point of this study. If readers want more information, they can consult the
reference.

Reply: We feel that some summary description of the cited studies is needed in order to

provide sufficient information regarding those applications. Therefore, only minimal
text removal was performed.

Smaller comments and suggestions
1. P 32236, L 24: Clarify how this paper differs from Zhang et al. (2012b)

Reply: We added the following text: “..., however, only data assimilation in CTM was
addressed”.

2. 1 feel the paragraph beginning on line 17 on page 32237 can be shortened.
Reply: This paragraph was slightly reduced.
3. Suggest rewriting the first sentence of section 2.1

Reply: This sentence was rewritten as follows: “Data assimilation in geosciences has
been initially applied to meteorology where methods...”.

4. P 32238, L 14: 90’s should be “1990s”
Reply: This has been corrected.
5. P 32238, L 18-20: What errors? Please be precise.

Reply: We meant all errors (background, observation, posterior). This has been
rewritten as: “...on all errors...”.

6. P32239,L27: “of not “in”, specify it’s the background error covariances

Reply: “in” is correct; “of” is appropriate only when several elements are listed after
“consist of...”, meaning “composed of...".

The definition of inflation is valid for any type of errors. In practice, inflation could be
(and often is) applied to any type of error covariance: background, posterior but also
observation.



7. P 32240, L 20: This sentence can probably be omitted.

Reply: We feel that this sentence is a crucial remark backed up by recent numerical
experiments: It tells that 4D-Var has an advantage over EnKF. Because of the popularity
of EnKEF, it is often forgotten that 4D-Var should outperform EnKF in strongly nonlinear
conditions if it were not for the flow dependence. Therefore, this remark is quite
relevant for CTM and perhaps also for CCMM.

8. P 32241, L 5-10: How are the “hybrid ensemble/variational” and “ensemble
variational schemes” different? I believe you're referring to the same thing.

Reply: Hybrid methods consist in coupling two different data assimilation schemes such
as an ensemble scheme (EnKF), and a variational scheme (3D-Var and 4D-Var). Because
of the use of 3D-Var and 4D-Var, it usually entails using climatological information.
Ensemble variational schemes are not always the result of the coupling of two data
assimilation schemes, and/or do not necessarily use climatological information (for
instance, the iterative ensemble Kalman smoother). There is a very smart account on the
issue by Andrew Lorenc (however, it is meteorology-oriented): http://www.wcrp-
climate.org/WGNE/BlueBook/2013/individual-
articles/01_Lorenc_Andrew_EnVar_nomenclature.pdf. We changed "hybrid
ensemble/variational” into "hybrid" to avoid any confusion.

9. In section 2.3, it might be appropriate to mention the NMC method as a way of
obtaining background errors.

Reply: Yes, we agree.

"Algorithms relying on consistency check, cross validation and statistical likelihood have
been used in meteorology (Hollingsworth and Lonnberg,1986; Desroziers and Ivanov,
2001; Chapnik et al., 2004; Desroziers et al., 2005) to better assess those pivotal
statistics."

was modified as follows:

"Algorithms relying on consistency check, cross validation, statistical likelihood
(Hollingsworth and Lénnberg, 1986; Desroziers and Ivanov, 2001; Chapnik et al., 2004;
Desroziers et al., 2005) or the empirical but efficient National Meteorological Center
(NMC) technique (Parrish and Derber, 1992) have been used in meteorology to better
assess those pivotal statistics.”

10. P 32250: Suggest omitting the paragraph beginning in line 14.
Reply: The first sentence has been deleted.

11. P32252, L 12: “led” not “lead”

Reply: This has been corrected.



12. P 32255: Please rewrite the sentence beginning in line 11. I suggest omitting
lines 13-17.

Reply: This sentence has been rewritten as follows: “The authors showed that data
assimilation of a combination of different observations (including multiple species) is a
very effective way to remove systematic model errors.”

We preferred to keep the end of that paragraph. Although it sounds intuitive, it is
nevertheless relevant to future prospects of data assimilation in CCMM as data from
different sources are more and more likely to be used.

13. Isuggest omitting the text beginning in line 18 on page 32255 through the end of
the section. Seems out of place to me.

Reply: This paragraph and the following one have been deleted, along with the
associated figures.

14. I believe lines 4-15 on page 32265 could be removed, since IMPROVE and STN
network observations are not suitable for data assimilation purposes.

Reply: Such data, which are not available in near real-time, are not suitable for air
quality forecasting; however, they can be used for re-analyses of air pollutant
concentrations.

15. Suggest omitting the paragraph beginning “MPLNET is a global lidar” on page
32266.

Reply: Assimilation of lidar data has recently been shown to improve air quality
forecasts; therefore, it seems appropriate to keep this paragraph on lidar networks
unchanged.

16. P32271,L 18, “past” not “passed”
Reply: This has been corrected.
17. P 32284, L 18: Please rewrite this sentence.

Reply: This sentence has been rewritten as follows: “Assimilating distinct data sets that
influence the same model variable could lead to some contradictory information
concerning that model variable when the error statistics are misspecified (e.g., unknown
bias in semi-volatile PM components); therefore, it will be essential to properly specify
those measurement error statistics.”

18. P 32287, Lines 1-9: This material was just said nearly verbatim in section 6.
Please consider removing.

Reply: It is not uncommon for the main conclusions of an article to appear in the main
text, the conclusion, and the abstract. Some journals accordingly do not accept



conclusion sections. However, since Atmos. Chem. Phys. articles typically include a
conclusion section, we prefer to keep this part of the conclusion unchanged.



Reply to comments of Referee #2

This paper presents a large review of data assimilation in atmospheric chemistry models
with a special focus on coupled chemistry meteorology models (CCMM). First the

author proposes a review of assimilation methods used/developed for chemical data
applications. A very complete review of chemical data assimilation studies is presented.
Also a very interesting review of available chemical observations is given by

the authors. Moreover, authors present specific case studies to illustrate the state of
data assimilation science for atmospheric chemistry. The paper is in general clear and
well written and it is probably a review that will serve the community of atmospheric
chemistry and more specifically the community of chemical weather prediction. I m

then favorable to the publication of this paper but i have the feeling that the paper could
be more “efficient” and clear with some minor modifications. Hereafter, i make few
remarks that, I hope, could help to improve the paper.

Page 32255 - Line 18: At the end of the section 3.1, you are presenting the results of

a study where SCHIAMACHY observations have been assimilated. This study is probably
very interesting but it seems that, contrary to the other examples of the section,

the results are not related to a publication. The consequence is that the readers do

not have the possibility to understand/evaluate the results. Maybe, the corresponding
publication is missing but under this form it is like you were presenting results almost
without description of the model, the assimilation, the case study, the set-up of the
assimilation experiment, the nature of the observation used. In this state, i would
recommend

you to skip this section and the corresponding figure.

Reply: The two paragraphs referring to this data assimilation study and the associated
figures have been deleted.

Page 32275 - Line 9: The case studies presented within section 5 are more documented
than the case study mentioned above. Nevertheless, the interest to have such

examples in the paper is not obvious. Maybe these case studies (at least one or two)
should be used to illustrate a paragraph more focused on CCMM. Indeed, It is not clear
from the paper what are the applications/processes that could be targeted with the use
of data assimilation in CCMM. The example of the use of CCN to improve aerosol is
relatively unexpected but very interesting and I think we would like to have a more
exhaustive list of the domain that could benefit assimilation in CCMM. Which of these
potential applications could be expected in a very near future when considering current
available observations ?

Reply: We feel that it is important to show some examples of data assimilation in
atmospheric chemistry models, as those illustrate some of the associated advantages
and limitations. We debated whether the case studies could be incorporated into Section
3. However, we decided to keep them as a separate section because they not only
provide illustrations of the data assimilation methods, but also exemplify the use of
observational data sets (ground-level and satellite data), which have been described in
Section 4.



It is difficult to anticipate which indirect effects of data assimilation would benefit
various model variables via meteorology/chemistry interactions and, therefore, it does
not seem feasible to develop an exhaustive list of such potential benefits at this point.
Nevertheless, we added a sentence in the conclusion pointing out such potential benefits
and giving as examples the improvement in aerosol concentrations following CCN data
assimilation and the potential improvement in meteorology (thermal structure and
circulation) following AOD data assimilation during dust storms.

A last remark, you mention that CCMM are costly in term of time calculation which
combined with assimilation is even more critical. Is there a tendency to have simplified
chemistry compared to off-line CTM ?

Reply: CCMM typically use the same gas-phase chemical kinetic mechanisms as CTM.
There are some versions of CCMM that use simplified representations of aerosol
processes (in terms of particle size resolution and/or chemical composition); however,
some CCMM use fairly detailed representations of both particle size resolution and
chemical composition.
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Abstract

Data assimilation is used in atmospheric chemistgets to improve air quality forecasts,
construct re-analyses of three-dimensional chenfiieelluding aerosol) concentrations and
perform inverse modeling of input variables or mgumiameters (e.g., emissions). Coupled
chemistry meteorology models (CCMM) are atmosphehmemistry models that simulate
meteorological processes and chemical transformajiamtty. They offer the possibility to
assimilate both meteorological and chemical dataever, because CCMM are fairly
recent, data assimilation in CCMM has been limiteddte. We review here the current
status of data assimilation in atmospheric chemistrgels with a particular focus on future
prospects for data assimilation in CCMM. We fimstiew the methods available for data
assimilation in atmospheric models, including vidoizal methods, ensemble Kalman filters,
and hybrid methods. Next, we review past applicetithat have included chemical data
assimilation in chemical transport models (CTM) an€@CMM. Observational data sets
available for chemical data assimilation are désclj including surface data, surface-based
remote sensing, airborne data, and satellite @ateeral case studies of chemical data
assimilation in CCMM are presented to highlight kiemefits obtained by assimilating
chemical data in CCMM. A case study of data assitioih to constrain emissions is also
presented. There are few examples to date of jogteorological and chemical data
assimilation in CCMM and potential difficulties astated with data assimilation in CCMM
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are discussed. As the number of variables beingdated increases, it is essential to
characterize correctly the errors; in particulbe $pecification of error cross-correlations
may be problematic. In some cases, offline diagnoatiesiecessary to ensure that data
assimilation can truly improve model performance. Haavethe main challenge is likely to
be the paucity of chemical data available for agation in CCMM.
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1. Introduction

Data assimilation pertains to the combination ofiglimg with observational data to produce
a most probable representation of the state ofdhiables considered. For atmospheric
applications, the objective of data assimilatiotoisbtain a better representation of the
atmosphere in terms of meteorological and atmospbkemistry variables (particulate
matter (PM) is included here as part of atmospharamistry).

Data assimilation has been used for many decadgmamic meteorology to improve
weather forecasts and construct re-analyses ofymsgher. Several recent reviews of data
assimilation methods used routinely in meteorolagyavailable (e.g., Kalnay, 2003; Navon,
2009; Lahoz et al., 2010). The use of data assiimilah atmospheric chemistry is more
recent, because numerical deterministic modelsnobspheric chemistry have been used
routinely for air quality forecasting only sinceetimid 1990’s; previously, most air quality
forecasts were conducted with statistical approaéfibang et al., 2012a). Data assimilation
is also used in air quality since the 1990’s feanalysis to produce air pollutant
concentration maps (e.g., Elbern and Schmidt, 200:¢rse modeling to improve (or
identify errors in) emission rates (e.g., Elberalet2007; Vira and Sofiev, 2012; Yumimoto
et al., 2012), boundary conditions (e.g., RoustahBocquet, 2006) and model parameters
(e.g., Barbu et al., 2009; Bocquet, 2012). Regardinquality re-analyses, the 2008/50
European Union (EU) Air Quality Directive (AQD) sgests the use of modeling in
combination with fixed measurements “to provide add¢ information on the spatial
distribution of the ambient air quality” (Borrega,press; OJEU, 2008). An overview of data
assimilation of atmospheric species concentrationair quality forecasting was recently
provided by Zhang et al. (2012i)owever, only data assimilation in CTM was addgdss
We address here data assimilation in atmospherimisiny models, which we define to
include both atmospheric chemical transport mofeldV), which use meteorological fields
as inputs (e.g., Seinfeld and Pandis, 2006), angled chemistry meteorology models
(CCMM), which simulate meteorology and atmosphehieristry jointly (Zhang, 2008;
Baklanov et al., 2014). In particular, we are iagted in the future prospects and potential
difficulties associated with data assimilation in\Z¥&.

In spite of available previous experience in daimailation for meteorological modeling on
one hand and chemical transport modeling on therdtand, conducting data assimilation in
CCMM can be challenging because of interactions gnmoeteorological and chemical
variables. Assimilating large bodies of various @eblogical and air quality data may lead
to a point of diminishing return. The objectivetbis review is to present the current state of
the science in data assimilation in atmospheric chigyninodels. Because of the limited
experience available with CCMM, our review coverismarily data assimilation in CTM

and, to a lesser extent, in CCMM. The emphasifuftire prospects is placed on the
preferred approaches for CCMM and the challengescésted with the combined
assimilation of data for meteorology and atmosghelemistry. Potential difficulties are
identified based on currently available experieace recommendations are provided on the
most appropriate approaches (methods and datd@etigta assimilation in CCMM.
Recommendations for method development are also maithce current efforts are
ongoing in this area of geosciences.

We present in Section 2 an overview of the dataréisgion techniques that are used in ,

Section 3; most applications to date pertain toem@iogy and atmospheric chemistry

Supprimé :, including
techniques that are currently
used operationally as well as
techniques that have been
developed recently (or are
under development) and may
be used operationally in the
next few years
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separately, nevertheless a few recent applicafiertaining to CCMM are described. Data
assimilation in the context of optimal network desig also discussed because it may be
used to improve the representativeness of obsenahtioonitoring networks. The

observational data sets available for data assiomlaire described in Section 4. Selected - 4 Supprimé: Those include

case studies of data assimilation in CCMM are priestin Section 5 to illustrate the current | mainly satellte data, ground-
based remote sensing data

state of the science. A case study of data assiamilgaerformed in the context of inverse (e.g., lidar data) and in situ
modeling of the emissions is also presented. Potedlitiigulties associated with data observations; data gaps are
assimilation in CCMM are discussed in Section &afy, recommendations for future identified and

. . ] . . . recommendations are made tp
method _develc_)pmen.t, method applications and per_tutmm_ _set_s are provided in Section 7, improve the completeness of
along with a discussion of future prospects foadegsimilation in CCMM. the observational networks in

the context of CCMM. The us|
of data indirectly related to
model variables (e.g., satellite
2. Methods of data assimilation in meteorology andtmospheric chemistry data on biomass fire intensity,
is also discussed.

[}

2.1  Overview of the methods

Data assimilatiopn geosciencebas beemitially applied tometeorology where methods < { Supprimé : D J
have been very soon operationally implemented (Lor&d86; Daley, 1991; Ghil and ;{s“ppdmé;naturm p|aygroundJ

Malanotte-Rizzoli, 1991; Kalnay, 2003; Evensen,20dhoz et al., 2010). Building on
established data assimilation methodology, asdiimilaf observations in offline CTM has
emerged in the laté990’s (Carmichael et al., 2008; Zhang et al., 201R&)e, we briefly
describe the most common techniques used in botls figld comment on their differences
when appropriate.

\{ Supprimé : always J

As far as spatial analysis is concerned, most conutata assimilation methods hardly differ.
They are mainly based on statistical Gaussian asmapﬁ@gzﬁrrfoﬁrg@nﬁdﬁ[hﬁeﬁg[\@lyfslfsf ~_—{ supprimé:the )
relies on the simple but efficient Best Linear Urgad Estimator (BLUE). At a given time,

BLUE strikes the optimal compromise between the slagimns and a background estimate

of the system state, often given by a previous fseSuch BLUE analysis can be

performed solving for the gain matrix (that balantesobservations and the background)

using linear algebra, a procedure called Optimati€ical Interpolation (Ol) (Fedorov,

1989; Daley, 1991), or it can be obtained througfiree-dimensional (3D) variational spatial

analysis, usually called 3D-Var. Within BLUE, itiisandatory to provide a priori statistics

for both the observation errors and the errorfieftackground.

When time is accounted for, these methods need getheralized. In particular, errors (or
their statistics) attached to the best estimate igropagated in time, which leads to
substantial hardships in both statistical interpoiaand variational approaches. The Ol
approach may be generalized to the (extended) Kafiten(Ghil and Malanotte-Rizzoli,
1991), while 3D-Var is generalized to 4D-Var (Pereand Obraztsov, 1976; Le Dimet and
Talagrand, 1986; Talagrand and Courtier, 1987; &attial., 2000). Kalman filters and
3D/4D-Var can be combined to address deficiendiemth methods: divergence of the filter
and static covariance in variational methods (adtlestially for 4D-Var) (Lorenc, 2003).

2.1.1 Filtering approaches

The extended Kalman filter requires the propagatifoiihe error covariance matrix of rank

the dimension of state-space, which can become udafite beyond a few hundred. Yet,
when the analysis happens to be strongly localitedmethod becomes affordable such as
in land surface data assimilation. For higher dineemei applications, it has been replaced by
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the reduced-rank Kalman filter and the ensembleni&al filter, and many variants thereof
(Evensen, 1994; Verlaan and Heemink, 1997). In basies, the uncertainty is propagated
through a limited number of modes that are forebgshe model. This makes these methods
affordable even with large dimensional models, egfigdecause of the natural parallel
architecture of such ensemble filtering. Unfortuhatine fact that the ensemble is of finite
size entails a deficient estimation of the erroostly due to undersampling, which may lead
to divergence of the filter. This needs to be figed has been so through the use of inflation
(Pham et al., 1998; Anderson and Anderson, 1999)aualization (Houtekamer and
Mitchell, 2001; Hamill et al., 2001).

Inflation consists in additively or multiplicatiseinflating the error covariance matrices so
as to compensate for an underestimation of the eragmitude. The inflation can be fixed or
adaptive, or it can be rendered by physically-drigechastic perturbations of the ensemble
members. Localization is made necessary when the fiise of the ensemble whose
variability is too small in high-dimensional systemakes the analysis inoperative.
Localization can be performed by either filterihg ensemble empirical error covariance
matrix and making it full-rank using a Schur prodwith a short-range correlation function
(Houtekamer and Mitchell, 2001) or performing paadipatially local analyzes (Ott et al.,
2004). Those methodological advances have beartédsted and weighted with offline

CTM (Hanea et al., 2004; Constantinescu et al.7a80f) Wu et al., 2008).

2.1.2 Variational approaches

Four-dimensional (4D) variational data assimilatfd®-Var) that minimizes a cost function
defined in space and in time, requires the ushetjoint of the forward and observation
models, which may be costly to derive and maintaialsid requires the often complex
modeling of the background error covariance matricélinear algebra operations on this
huge matrix are prohibitive, the background errarac@nce matrix is usually modeled as a
series of operators, whose correlation part caingiance be approximated as a diffusion
operator (Weaver and Courtier, 2001). This moddkrngven more so pregnant in air quality
data assimilation when the statistics of the eroorshe parameters also need prior statistical
assumptions (Elbern et al., 2007). However, as a#mq 4D-Var could theoretically
outperform ensemble Kalman filtering in nonlineaoegh systems, if it was not for the
absence of flow-dependence in the background titati®ocquet and Sakov, 2013). It also
easily accounts for asynchronous observationsatteasurely met in an operational context.

Most operational 4D-Var are strong-constraint 40r;Wehich implies that the model is
assumed to be perfect. Accounting for model errdf@rextending the length of the data
assimilation window would require generalizingatweak-constraint 4D-Var (Penenko,
1996; Fisher et al., 2005, Penenko, 2009). Howesesferal difficulties arise, such as the
necessity to characterize model error and to sagmifly extend control space. On the
contrary, filtering approaches quite easily incogte model errors that nevertheless still
need to be assessed. 4DVar has been rapidly esdlaat promoted in the context of air
quality forecasting (Fisher and Lary, 1995; Elbanmd Schmidt, 1999, 2001; Quélo et al.,
2006; Chai et al., 2006; Elbern et al., 2007; Walgt2008).

New data assimilation methods that have been recaetigloped are currently being tested

2007), particle filters (van Leeuwen, 2009; Bocagtedl., 2010) and ensemble variational
schemes (Buehner et al., 2010a, 2010b). Howeveflalvedependence of the methods in air

_- { Supprimé : ensemble/variationaﬂl
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quality is not as strong as in meteorology, andrtains to be seen whether those methods
have a potential in offline atmospheric chemistrydelmng and, in the long term, in online
CCMM (Bocquet and Sakov, 2013).

2.2 From state estimation to physical parameter eshation

As soon as time is introduced, differences appeave®mn meteorological models and
offline CTM. For instance, the dynamics of a symoptale meteorological model is chaotic
while the non-chaotic dynamics of offline CTM, evtiough possibly very non-linear, is
mainly driven by forcings, such as emissions andlat®n. As a consequence, a combined
estimation of state and parameters might be an #alyain CTM data assimilation. A
possible difference is also in the proven bendfihodel error schemes where stochastic
parameterizations offer variability that most CTMKaMore generally, one should
determine which parameters have a strong influende forecasts and, at the same time,
are not sufficiently known. Whereas pure initialueaestimation might be a satisfying
answer for synoptic meteorological models, emisgleposition, and transformation rates as
well as boundary conditions are in competition vititial values for CTM for medium- to
long-range forecasts.

With model parameter estimation, which is desirableffline atmospheric data assimilation,
the filtering and variational methods come with tiypes of solution. The (ensemble)

filtering approach requires the augmentation ofstiage variables with the parameters (Ruiz
et al., 2013). 4D-Var easily lends itself to dataimilation since the parameter variables can
often be accounted for in the cost function (Pepegtkal., 2002; Elbern et al., 2007; Bocquet,
2012; Penenko et al., 2012). However, it is ofeguired to derive new adjoint operators
corresponding to the gradient of the cost functigh respect to these parameters if the
driving mechanisms are not external forcings. Qftatjoint models and operators can
nonetheless be obtained through a simplifying apgpration (Issartel and Baverel, 2003;
Krysta and Bocquet, 2007; Bocquet, 2012; SinghSentiu, 2012).

2.3 Accounting for errors and diagnosing their staistics

All the above schemes rely on the knowledge of ther statistics for the observations and
the background (state or parameters). Yet, inléstieacontext, it is always imperfect. The
performance of the data assimilation schemes is geitsitive to the specification of these
errors. Algorithms relying on consistency checkssrealidation and statistical likelihood

-| Supprimé : have been used in

meteorology

pivotal statistics. Paradoxically, they have slopércolated in air quality data assimilation ' ',

where they should be crucial given the uncertagmtynost forcings or the sparsity of VN

\

observations for in situ concentration measurements =

The error covariance matrices can be parameterigtbdawestricted set of hyper-parameters,\\
and those hyper-parameters can be estimated throagimume-likelihood or L-curve tests
(Ménard et al., 2000; Davoine and Bocquet, 200Bef et al., 2007). Alternatively, with
sufficient data, the whole structure of the ermvariance matrices in the observation space
can be diagnosed using consistency matrix idestiiee for example Schwinger and Elbern
(2010) who applied the approach of Desroziers.4R8D5) to a stratospheric chemistry 4D-
Var system.
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As mentioned above, stochastic perturbations, asasehulti-physics parameterizations
(within ensemble methods) can be implemented to ofteemariability and counteract
model error. More dedicated parameterizations ofehedor are possible and occasionally
bring in substantial improvement. Kinetic energyksaatter (Shutts, 2005) or physical
tendency perturbations at the ECMWF (Buizza etl&199) are used in numerical weather
predictions. In air quality, a subgrid statistioathod has been successful in quantitatively
estimating and removing representativeness erkarshkan and Bocquet, 2012).

2.4 Nonlinearity and non-Gaussianity and the need fadvanced methods

The aforementioned methods that are essentiallyaetefrom the BLUE paradigm may be
far from optimal when dealing with significant navdirities or significantly non-Gaussian
statistics. This surely happens when accountinghi@iconvective scale or for the
hydrometeors in meteorology. It also occurs whenatind aerosols and assimilating
aerosols/optical observations. It is also bounidappen whenever positive variables are dealt
with (which is the case for most of the variablegimnquality). It could become important
when error estimates of species concentrationscemenensurate with those concentrations.
It will happen with online coupling of meteorologgdhatmospheric chemistry. Possible
solutions are a change of variables, the (relaBsd)ssian anamorphosis, maximum entropy
on the mean inference, particles filters or theafseriational schemes that account for
nonlinearity well within the data assimilation wind@¢Bocquet et al., 2010).

2.5 Verification of the data assimilation process

Clearly, one would expect that model performancelevouprove with data assimilation.
However, comparing model simulation results agdimstobservations that have been
assimilated is only a test of internal consisteoicthe data assimilation process and it cannot
be construed as a verification of the improvemeat @ the data assimilation. Verification
must involve testing the model against observatibashave not been used in the data
assimilation process. One may distinguish two bizddgories of verification.

One approach is to test the result of a model sitinnl for a different time window than that
used for the data assimilation. Since data assionilég used routinely in meteorology to

J‘ Supprimé : One may mentio
/| the following approaches:

improve weather forecast, a large amount of workbes conducted to develop procedures ' supprims: 1 )

K

to assess the improvement in the forecast resutimg the data assimilation. The model "
forecast with and without data assimilation maydsted in the forecast range (i.e., following 1/

P!
|
il

the data assimilation window) either against obstions or against reanalyses. Numerical
weather forecast centers perform such verificatimecgdures routinely and various
perforamnce parameters have been developed to thaSea for example Table 6 in Yang e
al. (2012a) for a non-exhaustive list of such patanse Ongoing research continuously add
to such procedures (e.g., Rodwell et al., 2010roF@nd Stevenson, 2011). Similar procedur;
may be used with CCMM to evaluate the improvementigenl by data assimilation in a
forecasting mode (e.g., see case studies in Se&igrand 5.3).
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307 available (usually 15% to 25% of the total numbiestations) is selected at the beginning of
308 the verification process; those stations are netluis the data assimilation process and are
309 used only for model performance evaluation with astiout data assimilation. Clearly, the
310 group selection approach is sensitive to the deledf that subset of stations.

311

312 The methods mentioned above can be applied in Seafaifferent observational sources
313 (e.g., ground based observations, satellite dde, data). They can also be applied in cases
314 where data assimilation is used to conduct inversedeling to estimate emissions or model
315 parameters. For example, Koohkan et al. (2013) he#dan evaluation in a forecast mode
316 and a leave-one-out approach to evaluate the ineprent in model performance resulting
317 from arevised emission inventory obtained via iseanodeling.

318

319 One must note that the availability of chemicakdatsignificantly less than that of

320 meteorological data and, for all approaches, thigipaof chemical data will place some
321 limits on the depth of the verification of the impement due to data assimilation that can be
322  conducted.

323

324

325 3. Applications

326

327 3.1 Data assimilation in CTM

328

329 Many successful applications have demonstratedehefits of data assimilation applied in
330 CTM either with the purpose to produce re-analfisigs or with the focus on improvement
331 of accuracy of model inputs (IC, BC, and emissiarg) forecasts. To represent the current
332 status and to illustrate the performance of dagarakation for these purposes, we provide
333 examples from regional and global studies, usinfgigint types of observational data,

334 including in-situ, airborne, and satellite data.

335

336 | 3.1.1 Initial conditions and re-analysis fields

337

338 Arange of techniques have been used for estimimbest known estimate for the state
339 space variables, such as ozong)(@itrogen dioxide (Ng), carbon monoxide (CO) or

340 aerosols (particulate matter, PM), with the purpaiieer to conduct air quality assessments
341  orto improve the initial conditions for forecaspéipations. Elbern and Schmidt (2001) in
342  one of the pioneer studies providing a chemicaésiaalysis for the real casg €pisode

343  with the use of a 4D-Var based optimal analysis, BDRCTM model, with surface ©

344  observations and radiosonde measurements. Analjtles chemical state of the atmosphere
345 obtained on the basis of a 6 hour data assimilétitenval were validated with observational
346 data withheld from the variational DA algorithm. Téathors showed that the initial value
347  optimization by 4D-Var provides a considerable ioy@ment for the 6 to 12 hourO

348 forecast including the afternoon peak values, bnishing improvements afterwards. A

349  similar conclusion was later reached in other gside.g., Wu et al., 2008; Tombette et al.
350 2009; Wang et al. 2011; Curier et al. 2012). Chail €2006), with the STEM-2K1 model
351 and 4D-Var technique applied to assimilate airarefasurements during the TRACE-P

352  experiment showed not only that adjusting initialds after assimilating £measurements
353 improves Q@ predictions, but also that assimilation of N@easurements improves

354  predictions of nitric oxide (NO), NQand peroxy acetyl nitrate (PAN). In this studye t

355 | concentration upper bounds were enforced ysitanstrained limited memojgroyden- -~ {{ Supprimé : the
~ 7| Supprimé:—




356 | Fletcher-Goldfarb-Shanpminimizerfo speed up the optimization process in the 4Dav@r - { Supprimé:-B

357 the same approach was later used also by Chai(@08I7) for assimilating @measurements - { Supprimé ; (L-BFGS-B)

358 from various platforms (aircraft, surface, and azgonndes) during the International

359  Consortium for Atmospheric Research on Transpatt&ansformation (ICARTT)

360 operations in the summer of 2004. Here, the aliilitynprove the predictions against the
361 withheld data was shown for every single type festsations. A final analysis where all the
362 observations were simultaneously assimilated redudta reduction in model bias forO
363 from 11.3 ppbv (the case without assimilation) todpbv, and in a reduction of 10.3 ppbv
364 in RMSE. It was also demonstrated that the poséffect in air quality forecast for the near
365 ground Q was seen even out to 48 hours after assimilation.

366

367 In addition to the variational data assimilationrly@ number of atmospheric chemistry data
368 assimilation applications used sequential appraadheluding various Kalman filter

369 methods. Coman et al. (2012) in their study useBresemble Square Root Kalman Filter

370 | (EnSRF) to assimilate partial lower tropospheriorazcolumns (0 - 6 km) provided by the { Supprimé : K

371 IASI (Infrared Atmospheric Sounding Interferomet&strument into a continental-scale
372 CTM, CHIMERE, for July 2007. In spite of the fab&t IASI shows higher sensitivity forsO
373 in the free troposphere and lower sensitivity atdhound, validations of analyses with

374 assimilated @observations from ozone sondes, MOZAIC aircraft ARBASE ground

375 based measurements, showed 19% reduction of the RIM&B3 % reduction of the bias at
376 the surface. The more pronounced reduction of ttegsein the afternoon than in the

377  morning was attributed to the fact that theilormation introduced into the system needs
378 some time to be transported downward.

379

380 The limitations and potentials of different datsiaslation algorithms with the aim of

381 designing suitable assimilation algorithms for $frange Q forecasts in realistic

382 applications have been demonstrated by Wu et @8R Four assimilation methods were
383 considered and compared under the same experimetitags: optimal interpolation (Ol),
384 reduced-rank square root Kalman filter (RRSQRT)eande Kalman filter (EnKF), and

385 strong-constraint 4D-Var. The comparison resulteaéed the limitations and the potentials
386  of each assimilation algorithm. The 4D-Var approdak to low dependency of model

387 simulations on initial conditions leads to modenag¢eformances. The best performance
388 | during assimilation periods was obtained by thel@brithm, whilethe EnKF had better

389 forecasts than Ol during the prediction periodse @&bthors concluded that serious

390 investigations on error modeling are needed fodisgn of better DA algorithms.

391

392 Data assimilation approaches have been used allsdhei purpose of combining the

393 measurements and model results in the context ofialitg assessments. Candiani et al.
394  (2013) formalized and applied two types of offluteta assimilation approaches (Ol and
395 EnKEF) to integrate the results of the TCAM CTM (@ewale et al., 2008) and ground-level
396 measurements and produce f3k&-analysis fields for a regional domain locatedanthern
397 ltaly. The EnKF delivered slightly better resultelamore model consistent fields, which was
398 | due to the fact that, fahe EnKF, an ensemble of simulations randomly perturloinig

399  PMy precursor emissions highlighted the importance ajrssistent emission inventory in
400 the modeling. EnKF approaches along with surfacesareaents have also been used for
401 other models such as CUACE/dust (Lin et al., 200Bg use of such air quality re-analyses
402 in the context of air quality regulations (e.gsessment of air quality exceedances over
403  specific areas, estimation of human exposure tpdlintion) has been discussed by Borrego
404 etal. (in press).

405
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Kumar et al. (2012) used a bias-aware optimal intatifpm method (Ol) in combination with
the Hollingsworth-Lénnberg method to estimate erowatciance matrices to perform re-
analyses of @and NQ surface concentration fields over Belgium with tegional-scale
CTM AURORA for summer (June) and winter (Decemberhths. Re-analysis results were
evaluated objectively by comparison with a setuwface observations that were not
assimilated. Significant improvements were obtaiimetgrms of correlation and error for
both months and both pollutants.

Satellite data have also been assimilated into G vhprove performance in terms of
surface air pollutant concentrations. For examyang et al. (2011) assimilated MO
column data from OMI of the AURA satellite into tRelyphemus/Polair3D CTM to
improve air quality forecasts. Better improvemengsenobtained in winter than in summer
due to the longer lifetime of NOn winter. Several studies have used aerosol apdiepth
(AOD, also referred to as aerosol optical thickras80T) observations along with CTM to
obtain better air quality re-analyses. Some ofdlstadies used the Ol technique along with
models such as STEM (Adhikary et al., 2008; Carmetbaal., 2009), CMAQ (Park et al.,
2011; Park et al., 2014), MATCH (Collins et al.(020, and GOCART (Yu et al., 2003).
Other studies used variational approaches with rs®ielh as EURAD (Schroeder-
Homscheidt et al., 2010; Nieradzik and Elbern, 2G0®) LMDz-INCA (Generoso et al.,
2007).

The question whether assimilation of lidar measurésnestead of ground-level
measurements has a longer lasting impact o Rivecast, was investigated by Wang et al.
(2013). They compared the efficiency of assimilgtidar network measurements or
AirBase ground network over Europe using an Obsgr@ystem Simulation Experiment
(OSSE) framework and an Ol assimilation algorithmhwiite POLAIR3D CTM (Sartelet et
al., 2007) of the air quality platform POLYPHEMUBdllet et al., 2007). Compared to the
RMSE for one-day forecasts without DA, the RMSEn®#Nn one-day forecasts and the truth
states was improved on average by 54% by the DA déth from 12 lidars and by 59% by
the DA with AirBase measurements. Optimizing theations of 12 lidars, the RMSE was
improved by 57 %, while with 76 lidars the improvernehthe RMSE became as high as
65%. For the second forecast days the RMSE wasiegron average by 57% by the lidar
data assimilation and by 56% by the AirBase dasavaktion, compared to the RMSE for
second forecast days without data assimilation.athkors concluded that assimilation of
lidar data corrected P)glconcentrations at higher levels more accurately &ieBase data,
which caused the spatial and temporal influendb®fssimilation of lidar observations to
be larger and longer. Kahnert (2008) is anothemgsta of assimilation of lidar data by using
the MATCH model on a 3D-Var framework.

3.1.2 Initial conditions versus other model ingatds

Pollutant transport and transformations in CTMstrengly driven by uncertain external
parameters, such as emissions, deposition, boundadjtions, and meteorological fields,
which explains why the impact of initial state atjnent is generally limited to the first day
of the forecast. To address this issue, i.e., taorgthe analysis capabilities and prolong the
impact of DA on AQ forecasts, Elbern et al. (200@eaded the 4D-Var assimilation for
adjusting emissions fluxes for 19 emitted speciis the EURAD mesoscale model in
addition to chemical state estimates as usual tgeaf DA. Surface in-situ observations of
sulfur dioxide (SQ), O3, NO, NG,, and CO from the EEA AirBase database were assetila
and forecast performances were compared for pitial walue optimization and joint
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emission rate/initial value optimization for an Augli897 Q episode. For SQthe

emission rate optimization nearly perfectly redutterlemission induced bias of 10 ppb after
two days of simulation with pure initial values iopization, and reduced RMS errors by
about 60%, which demonstrated the importance of énisate rather than initial value
optimization. In the case of photolytically actiseecies, the optimization of emission rates
was shown to be considerably more challengingQOkpiit was attributed mostly to the coarse
model horizontal resolution of 54 km. The authomsataded that grid refinement with 4D-
Var applied after introducing nesting techniquesusth enable more efficient use of NO
observations and decrease bias and RMSE for aafstranger than 48 h.

In limited area modeling, experiments concerningréiative importance of the initial model
transport modelhttp://silam.fmi.f), which includes a subsystem for variational data

assimilation. Both 4D- and 3D-Var methods are imgatad and share the common
observatlon operators, covarlance models and m|atmrz algorithms. The maln features of

initialization, the 4D-Var mode can be set to optmmznlssmn rates either via a location-
dependent scaling factor or an arbitrary emissioairfig restricted to a single point source. |
The former can be used for optimizing emission ineBes of anthropogenic or natural

poIIutants (see case study 5.4), while the Iamtheen developed espeC|aIIy for source term

]

to produce daily analysis flelds of gas- phase petits, while satellite observations have been
used mainly for emission-related case studies.aBsemilation of sulfur oxide observations
from the Airbase database showed that for such cangmthe effect of initial state r
determination, whether with 3D- or 4D-Var, tendslisappear within 10-12 hours, whereas |
the effect of emission correction rather starteradtfew hours following the assimilation. The
3D-Var assimilation mode, while less versatile td€nVar, benefits from very low )
computational overhead. The adjoint code, requised»Var, is available for all processes r
except aerosol chemistry. ‘

3.1.3 Inverse modeling

Th,e,QQS:S:'@'J'EX to use 7d7ajaasfsrrprlatf|gn for essitihg the initial state of the model as ,V‘leJL
as for improving the emission input data connecta dasimilation to the source
identification problem, either in the context otatental releases or for evaluating and
improving emission inventories. Numerous studiesl wisga assimilation approaches for
estimating or improving emission inventories. Migiand van der A (2012) presented a new
algorithm (DECSO) specifically designed to use da#sellite observations of column
concentrations for fast updates of emission estisnaitshort-lived atmospheric constituents.
The algorithm was applied for N@mission estimates of East China, using the CHIRER
model on a 0.25 degree resolution together withogspperic NQ column retrievals of the
OMI and GOME-2 satellite instruments (see TableThe important advantage of this
algorithm over techniques using 4D-Vartbe EnKF is the calculation speed of the
algorithm, which facilitates for example its operatibapplication for N@concentration
forecasting at mesoscale resolution. The DECSO ithgomeeds only one forward model
run from a CTM to calculate the sensitivity of contration to emission, using trajectory
analysis to account for transport away from the@@uBy using a Kalman filter in the
inverse step, optimal use of the a priori (backgd)lkmowledge and the newly observed
data is made. Tests showed that the algorithm iabtef reconstructing new N@mission
scenarios from tropospheric NGolumn concentrations and detecting new emissiances
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506 such as power plants and ship tracks. Using OMIGO#IE-2 data, the algorithm was able
507 to detect emission trends on a monthly resolutiooh ®s during the 2008 Beijing Olympic
508 Games. Furthermore, the tropospheric,M@ncentrations calculated with the new emission
509 estimates showed better agreement with the obseorexkntrations over the period of data
510 assimilation, both in space and time, as expecteiljtating the use of the algorithm in

511 operational air quality forecasting.

512

513 Koohkan et al. (2013) have focused on the estimati@mission inventories for different
514 VOC species via inverse modeling. For the year 208, estimated 15 VOC species over
515 western Europe: five aromatics, six alkanes, twerats, one alkyne and one biogenic diene.
516  For that purpose, the Jacobian matrix was buitigitfie POLAIR3D CTM. In-situ ground-
517 based measurements of 14 VOC species at 11 EME&hstatere assimilated, and for most

518 | species the retrieved emissions led to a significauction of the bias. The corrected - {Supprimé:a

519 emissions were partly validated with a forecast cotet] for the year 2006 using

520 independent observations. The simulations usingah@cted emissions often led to

521 significant improvements in CTM forecasts accordimgeveral statistical indicators.

522

523  Barbu et al. (2009) applied a sequential data alsgion scheme to a sulfur cycle version of
524 the LOTOS-EUROS model using ground-based obsensterived from the EMEP

525 database for 2003 for estimating the concentratidiwo closely related chemical

526  components, S£and sulfate (SE), and to gain insight into the behavior of theiradation

527  system for a multicomponent setup in contrast timgles component experiment. They

528 | performed extensive simulations witie EnKF in which solely emissions (single or multi

529 component), or a combination of emissions and teewsion rates of SQo SQ~ were

530 considered uncertain. They showed that two isstesracial for the assimilation

531 performance: the available observation data andhbée of stochastic parameters for this
532 method. The modeling of the conversion rate as syrmmiocess helped the filter to reduce the
533  bias because it provides a more accurate descriptitre model error and enlarges the

534 ensemble spread, which allows the,S@easurements to have more impact. They concluded
535 that one should move from single component applinataf data assimilation to multi-

536 component applications, but the increased complasispciated with this move requires a
537  very careful specification of the multi-componerperiment, which will be a main

538 challenge for the future.

539
540 | Boundary conditions are also one of the cruciahpeaters. Roustan and Bocquet (2006)
541 | used inverse modeling for optimizing boundary cdodd for gaseous elemental mercury
542 | (GEM) dispersion modeling. They applied the adjdéahniques using the POLAIR3D CTM
543 | with Petersen et al. (1995) mercury (Hg) chemistrglehand available GEM observations at
544 | 4 EMEP stations. They showed that using assimilladeshdary conditions improved GEM
545 | forecasts over Europe for all monitoring stationsereas improvement for the two EMEP
546 | stations that provided the assimilated data wasifgignt. The authors also extended the
547 | inverse modeling approach to cope with a more cerblg chemistry. The generalization of
548 | the adjoint analysis performed with the Petersen msHewed no significant improvement
549 | for the simulation with the complex scheme modeti@spared to the complex scheme

550 | model without assimilated boundary conditions. Thithars ascribed this result to the

551 | absence of well-known boundary conditions for thieliged Hg species. They also

552 | concluded that due to the insufficient Hg obsepratietwork it was not possible to take the
553 | full benefit of the approach used in the study,d@eample, they were not able to use the
554 | inverse modeling of GEM to improve the sinks andssions inventories.

555
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556 | Regarding other model input parameténs, work ofStorch et al. (2007) is a rare example

557 | thatused the inverse analysis techniques for the estimaf micro-meteorological { Supprimé : who

558 parameters required for the characterization of speric boundary layers. Bocquet (2012)
559 focused on the retrieval of single parameters, ssdmorizontal diffusivity, uniform dry

560 deposition velocity, and wet-scavenging scalingdaas well as on joint optimization of
561 removal-process parameters and source parametdrsnaiptimization of larger parameter
562 fields such as horizontal and vertical diffusivitiend the dry-deposition velocity field. In
563 that study, the Polair3D CTM of the Polyphemus plaif was used and a fast 4D-Var

564 scheme was developed. The inverse modeling systertestasl on the Chernobyl accident
565  dispersion event with measurements of activity comatans in the air performed in

566  Western Europe with the REM database following Btaat al. (2002). Results showed that
567 the physical parameters used so far in the litegdturthe Chernobyl dispersion simulation
568 are partly supported by that study. The questioteafding whether such an inversion

569 modeling is merely a tuning of parameters or a regtief’physically meaningful quantities
570 was also discussed. From that study, it appeatshibaeconstruction of the physical

571 parameters is a desirable objective, but it seeasorable only for the most sensitive fields
572  or afew scalars, while for large fields of paraengt regularization (background) is needed

573 togypquvzsfﬁt,tlpgfthfefqtgsiqrygyQn§777777777777777777”””””””””””{ -~ { supprimé : consider
574 \\ { Supprimé :ing
575 | 3.1.4 Global studies h

{ Supprimé : tuning

576

577  The benefit of data assimilation is also significmtglobal applications. Schutgens et al.
578 (2010) presented the impact of the assimilation@fosol Robotic Network (AERONET)
579  AOD and the Angstrom exponent (AE) using a glolsaimilation system for the aerosol
580 model SPRINTARS (Takemura et al., 2000, 2002, 20Di8¢. application was based on a
581 Local EnKF approach. To obtain the ensemble of tbdehsimulations different emission
582  scenarios, which were computed randomly for sulfzaehon, and desert dust (i.e., the

583  aerosol species that are considered by SPRINTARSE used. Simulated fields of AOD
584 and AE from these experiments were compared tonalatd simulation with SPRINTARS
585  (no assimilation) and independent observationgdbus geographic locations. In addition to
586 the AERONET sites, data from SKYNET observationsu{8-East Asia) and MODIS Aqua
587  observations of Northern America, Europe and Norti#drica were used for the validation.
588  The authors show the benefit of the assimilatioA©D compared to the simulation without
589  considering the measurement data. It was alsogubmt that the usefulness of the

590 assimilation of AE is only limited to high AOD (4).and low AE cases.

591

592  Yumimoto et al. (2013) also used SPRINTARS but preska different data assimilation
593 system based on 4D-Var. The aim of that study waptimize emission estimates, improve
594 4D descriptions, and obtain the best estimate ofliheate effect of airborne aerosols in
595 conjunction with various observations. The simulagiavere conducted using an offline and
596 adjoint model version that was developed in ordevatce computation time (about 30%).
597  Comparing the results with the online approachaf@ryear simulation led to a correlation
598 coefficient of r > 0.97 and an absolute value ahmalized mean bias NMB < 7% for the
599 natural aerosol emissions and AOD of individuabaet species. The capability of the

600 assimilation system for inverse modeling applicatibased on the OSSE framework was
601 also investigated in that study. The authors shalatithe addition of observations over
602 land improves the impact of the inversion more thenaddition of observations over the
603 ocean (where there are fewer major aerosol soungb&h indicates the importance of

604 reliable observations over land for inverse modgépplications. Observation data over land
605 provide information from around the source regidrte authors also showed that, for the
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inversion experiments, the aerosol classificattonery important over regions where

Supprimé : the

/| Supprimé : using

AODs are inadequate for identifying sulfate andoaaceous aerosols, which are among the ||
major tropospheric aerosol species.

;|| Supprimé : also

different aerosol species originate from differgotirces and that the fine- and coarse-mode %

/| Supprimé : via data assimilatio

M

In general, the assimilation of different specias h strong influence on both assimilated and
non-assimilated species through the use of intelspecror correlations and through the
chemical model. Over the past few years, numeroasunements of different chemical
species have been made available from satelliteimsints. Miyazaki et al. (2012) combined
observations of chemical compounds from multipleltgs through an advanced EnKF
chemical data assimilation system. NOs, CO, and HN@ measurements from the OMI,
TES, MOPITT, and MLS satellite instruments (see &dhlwere assimilated into the global
CTM CHASER (Sudo et al., 2002). The authors dematesira strong improvement by ‘
assimilating multiple species as the data assimilgtrovides valuable information on e
various chemical fields. The analysis (OmF; ObsBuaninus Forecast) showed a I
significant reduction of both bias (by 85 %) and 8 (by 50 %) against independent data“ !
sets When data aSS|m|Iat|on was used The authovmhthaﬁata assimilation ot a c; ;

remove systematic model errors. It was pointedlmattthe chemical data assimilation
requires observations with sufficient spatial agwhporal resolution to capture the
heterogeneous distribution of tropospheric commsifThis can be achieved through the
combined use of satellite and surface in-situ dat@face data may provide strong
constraints on the near-surface analysis at highlugon in both space and time.

Data assimilation in coupled chemistry meteoroby models

Since CCMM are more recent than CTM, there are fapplications of data assimilation
using the former. Nevertheless, there has beeovaiigy number of applications with

CCMM over the past few years and several of thosesammarized below. In addition, three
case studies are presented in greater detail io&dc Past applications of data assimilation
in CCMM may be grouped into two major categoriggpliations that used the 4D-Var data
assimilation system of the original meteorologicaldel and applications that used a variety
of techniques (3DVar, Kalman filters) with the CCMBxamples of the former approach
include applications using the Integrated ForeSgstem (IFS) of the European Centre for
Medium-range Weather Forecasts (ECMWF), whereaspbes of the latter approach
include applications using WRF-Chem. One may aistngjuish the assimilation of
chemical data in CCMM with and without feedbacksasen the chemical and
meteorological variables. Clearly, data assimilatitoa CCMM with chemistry/meteorology
feedbacks is more interesting; it may, howevemloee challenging, as discussed in Section
6.

One of the first applications of data assimilatiath a CCMM is the assimilation of vertical
profiles of ozone (€ concentrations obtained with the AURA/MLS int@th
ARPEGE/MOCAGE integrated system (Semane et al., R@IRPEGE is a mesoscale
meteorological model and MOCAGE is the CTM that waspled to ARPEGE for that
application; both models are developed and used étgdFrance. ARPEGE simulated O
transport and the {roncentrations were subsequently modified at piteet time steps with
MOCAGE to account for @chemistry. Data assimilation is performed routineith
ARPEGE using 4D-Var and that approach was useddionélate the @data into ARPEGE.
The data assimilation resulted in better forecgstinwind fields in the lower stratosphere.

Supprimé : 1
San Jose and Pérez Carmafio
of the Technical University of
Madrid (UPM) also performed
a multi-species data
assimilation with a CTM. In
their work, NQ and Q data
from SCanning Imaging
Absorption SpectroMeter for
Atmospheric CHartographY
(SCIAMACHY) were
assimilated into a simulation
conducted with the
Community Multiscale Air
Quality CTM (CMAQ) of the
U.S. Environmental Protection
Agency. SCIAMACHY makes|
measurements in both nadir
and limb modes, which allows
the subtraction of stratospher
O3 from the total @ column
measurements to obtain
tropospheric @column
estimates. Figure 1a shows a
example of @ SCIAMACHY
data for 01/08/2007. CMAQ
was used here in combination
with MM5 for the
meteorological fields and
applied to two domains
covering the Iberian Peninsul
with a grid spacing of 27 km
and the central region of Spai
including the Madrid
metropolitan area with a grid
spacing of 9 km. A vertical
resolution with 23 layers was
used in both MM5 and
CMAQ. Results are presented
here for the episode of 1 to 8
August 2007 (see Figure 11).

3]

=

Q

=]

il

The vertical profiles of N
and Q were assimilated into
the CMAQ simulation for eac
grid cell using the Cressman
(21959) method. A comparison
of model simulation results
with and without data
assimilation showed a slight
improvement from 0.751 to
0.754 in the correlation
between the hourly model
simulation results andO
concentrations available from
the surface monitoring
network. The results show
important differences in the
Madrid region with the most
important ones (up to 22

Hg/nT) being located of 17’
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This general approach is also used in the cherdatal assimilation conducted at ECMWF
with IFS with coupled chemistry since a 4D-Var dasaimilation system is operational in
IFS. A presentation of this data assimilation syséeh its application for re-analyses at
ECMWEF is presented in Section 5.1.

Flemming and Innes (2013) have assimilated &®a from GOME2 using 4D-Var into a
version of IFS adapted for S@te and transport. S@xidation was treated with a first-
order gas-phase reaction with hydroxyl (OH) radi@ald its atmospheric removal was
treated with a first-order scavenging rate. Therapagh was applied to the $@lume of
volcanic eruptions. The simulation results showeprowvements following data assimilation
for the plume maximum concentrations but there wasdency to overestimate the plume
spread, which may be due to predefined horizontdraund error correlations.

Innes et al. (2013) used data assimilation intod&%led to the MOZART3 CTM to

produce reanalysis of atmospheric concentratiofisusfchemical species, CO, N@Ds, and
formaldehyde (HCHO), over an 8-year period. The 4&-8ystem of IFS was used for the
assimilation of data obtained from 8 satellite-basaasors for CO, NCand Q. HCHO
satellite data were not assimilated because raeldevere considered insufficient. In this
application, the influence of those chemical speo® meteorological variables was not
taken into account, which is a major difference wfith previous application of Semane et al.
(2009). The data assimilation results showed nofaigeovements for CO andsCout little
effect for NQ, because of its shorter lifetime compared to thé€and Q.

Flemming et al. (2011) used IFS coupled with thdiséinct & chemistry mechanisms,
including a linear chemistry, the MOZART3 chemigfsge above), and the TM5 chemistry.
Using the IFS 4D-Var system, they assimilatedd@ta from four satellite-borne sensors
(OMI, SCIAMACHY, MLS, and SBUV?2) to improve the sirfation of the 2008
stratospheric @hole. Notable improvements were obtained with aé¢hQ chemistry
mechanisms.

An earlier application was conducted by EngelenBagder (2011) with the Radiative
Transfer for the Television Infrared Observatione8iie Operational Vertical Sounder
(RRTOV) model of IFS, where CQvas treated as a tracer. A variational bias ctomeaevas
performed with radiance data from AIRS and IASI. Tinprovement in the radiative
transfer led to improved temperature values.

Several applications using data assimilation haea lsenducted with WRF-Chem.
Scientists at the National Center for Atmosphegsé&arch (NCAR) have assimilated data
into WRF-Chem. The Goddard Aerosol Radiation anch3part (GOCART) module was
used; it includes several PM species, but doefr@att gas-phase PM interactions. Liu et al.
(2011) assimilated AOD from MODIS to simulate a 2@L&t episode in Asia using
gridpoint statistical interpolation (GSI) (Wu et,&002; a 3D-Var method). The results of
the re-analyses showed improvement in AOD, when epetpto MODIS (as expected) and
CALIOP (as a cross-validation), and in surface;Pébncentrations when compared to
AERONET measurements. Chen et al. (2014) used aasiapproach to improve
simulations of surface PMand organic carbon (OC) concentrations during d bhibmass
fire event in the United States. Meteorologicabd@urface pressure, 3D wind, temperature
and moisture) were assimilated in one simulation,redee AOD MODIS data were in
addition assimilated in another simulation, botthg$-hour intervals. The AOD
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assimilation significantly improved OC and Risurface concentrations when compared to
measurements from the Interagency Monitoring of PR®tEVisual Environments
(IMPROVE) network. Jiang et al. (2013) also used &% Var with WRF-Chem, but
assimilated surface Plylconcentrations instead of satellite data. Thepliegtion over

China showed improvement in Rjpconcentrations; however, the benefit of the data
assimilation diminished within 12 hours becausehefdffect of atmospheric transport
(vertical mixing and horizontal advection), thereduggesting the importance of assimilating
PM data aloft (e.g., AOD) and/or correcting emissionhich are the forcing function for PM
concentrations. Accordingly, Schwartz et al. (20d2yd GSI 3D-Var to assimilate both
AOD from MODIS and PMssurface concentrations into WRF-Chem to improveutated
PM, sconcentrations over North America. The use of 6rlmetanalyses for initialization led
to notable improvements when both satellite ancaserfiata were assimilated. More
recently, Schwartz et al. (2014) assimilated theesA@D and PMssurface concentration

three methods led to mostly improved forecasts, wighhtybrid method showing the best .
performance and 3D-Var generally showing bettefoperance thathe EnSRF. However, {Suppﬂmé:) ]
the ensemble spread was considered insufficienitaves anticipated that a larger spread

would lead to better results for the ensemble amlith methods.

Supprimé : an ensemble square-
root Kalman filter (

Scientists at the National Oceanic and Atmosph&diministration (NOAA) also used the
GSI 3D-Var method to assimilate data into WRF-Cheheifversion of WRF-Chem
offered a full treatment of gas-phase chemistryRNd Pagowski et al. (2010) assimilated
both G and PM ssurface concentrations over North America. Modelggenance improved,
but the benefits of data assimilation lasted ontyaffew hours. Pagowski and Grell (2012)
subsequently compared 3D-Var g¢hd EnKF to assimilate Pl surface concentrations into
WRF-Chem. They concluded that better performanceovtsned withthe EnKF. A WRF-
Chem case study with assimilation of surface dapagsented in Section 5.2.

Saide et al. (2012a) developed the adjoint of theng/activation parameterization for the
activation of aerosols into cloud droplets of WRRe@ and, using 3D-Var data assimilation
of MODIS data, they improved aerosol simulated catre¢ions. The important result in that
work was the ability to improve aerosol simulatiasing the assimilation of cloud droplet
number concentration data, which is only possibke tduthe coupled nature of WRF-Chem
that integrates aerosol indirect effects into thre¢asts. Saide et al. (2013) also used a
modified GSI 3DVar to assimilate MODIS AOD data iMéRF-Chem for a sectional
aerosol treatment and using the adjoint of the &dmmputation for the AOD from aerosol
concentrations. Improvements in aerosol concentrativere obtained at most locations
when compared to measurements at surface monitotegjisiCalifornia and Nevada. The
study found that observationally constrained AODiegals resulted in improved
performance compared to the raw retrievals andttigatise of multiwavelength AOD
satellite data led to improvements in the simulatrosol size distribution. This assimilation
tool was further useih two studies. First, AOD from the GOCI sensorbmard of COMS (a
geostationary satellite observing northeastern)Asé&s combined with MODIS AOD
assimilatiorto show that future geostationary missions are ergeto improve air quality
forecasts considerably when included into currgstesns that assimilate MODIS retrievals
(Saide et al., 2014¥econd, AOD assimilation improved forecasts of G#mtmerica
biomass burning smoke and was further used to @ssaske impacts on a historical severe
weather outbreak in the southeastern U.S. (Saide, &015). The smoke impacts were
related to aerosol-cloud-radiation interactionsstthis study was only possible via data
assimilation in a CCMM, highlighting the importangifurther research and applications in
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53.

Data assimilation has been conducted with other GICKbor example, Messina et al. (2011)
used Ol to assimilatedand NQ data into BOLCHEM, a one-way CCMM, applied oves th
Po Valley. They used an OSSE approach and showaed@ data assimilation was
successful in correcting errors due to,N#nission biases. Furthermore, the benefit of the
data assimilation could exceed one day. Howevera#isimilation of N@data increased the
Os bias at night because of the nocturngN®, chemistry. The combination of;@nd NQ
assimilation helped resolve that night-time issuaydwver, the benefit disappeared after a
few hours due to the short lifetime of those aiiytants as discussed in Section 3.1.

The treatment of interactions between aerosolgwatdorology in the NASA Goddard Earth
Observing System (GEOS-5) model was shown to impiteeesimulations of the
atmospheric thermal structure and general circulatiring Saharan dust events (Reale et
al., 2011) and the assimilation of MODIS-derived B@as conducted in GEOS-5 with this
interactive aerosol/meteorology treatment (Reald.e014).

3.3  Optimal monitoring network design

Atmospheric chemistry (including PM) monitoring netk® should ideally be designed
according to a rational criterion. Such a criter{oalled the science criterion) would assess
the ability of the network to provide informationander to optimally estimate physical
guantities. The overall design criterion couldascount for the investment and
maintenance costs of the network or for the techsigstainability and reliability of stations
(Munn, 1981). This overall design criterion thakes all of these aspects can be devised in
the form of an objective scalar function evaluatiregwork configuration.

The science criterion often judges the abilitytaf hetwork to estimate instantaneous or
average concentrations, or the threshold exceeddrargy relevant regulated species. The
estimation could rely on basic interpolation, madganced kriging, or data assimilation
techniques (Miller, 2007). The latter would coméhvei very high numerical cost, since one
would have to perform a double (nested) optimizatiorthe data assimilation control
variables, as well as on the potential stationtlooa.

These ideas have been used in air quality to reglu@dready existing ozone monitoring
network (Nychka and Saltzman, 1998; Wu et al., 2@t@p extend this network (Wu and
Bocquet, 2011). Ab nihilo station deployment, exiengnd reduction of networks lead to
problems of different nature. For instance, wheterding a network one is forced to guess
physical quantities and their statistics on the s&ations to be gauged, requiring a costly
observation campaign or a clever extrapolation fexisting sites to tentative sites. The
mathematical criterion to evaluate the skills of thadeling system for a given network,
beyond the choice of the observed physical quasfitilso calls for a choice of performance
metrics. Many attractive criteria have been prodosaot mean square errors of network-
based estimation of the field, information-theordtizssed criteria, etc. Such criteria have
been investigated in atmospheric chemistry in méingiss conducted by environmental
statisticians, more recently for instance by Fugeteal. (2007) and Osses et al. (2013).
Nowadays, the network design issue also concemsgharse ground networks of greenhouse
gases monitoring at meso and global scales (Ragf64; Lauvaux et al., 2012), which in
our context can be seen mostly as tracers of atmeoisptransport.
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In meteorology, optimal network design is often stddin an Observing System Simulation
Experiment context, where the impacts of new preddfwbservations (e.g., data retrieval
from a future satellite) are evaluated rather thanaptimal locations of future stations.
Nevertheless, the dynamic placement of new andrivdtive observations (targeting) has
been investigated theoretically (Berliner et aB9;9and many since then) and experimentally
in field campaigns such as the Fronts and Atladtarm-Track Experiment (FASTEX) of
Meteo France (http://www.cnrm.meteo.fr/dbfastexrffgi) and the Observing System
Research and Predictability Experiment of the Wititeorological Organization
(THORPEX;
http://www.wmao.int/pages/prog/arep/wwrp/new/THORHAEXjectsActivities.html).

Although these adaptive observations were shovire teery informative in the case of severe
events, they are based on monitoring flights and¢éane very costly, whereas other
observations are much more abundant and cheaper.

Targeting has been little investigated in atmosgheremistry, but recent studies have
demonstrated its potential, especially in an accal@ontext (Abida and Bocquet, 2009). It
would certainly be interesting to use a coupledrhbal/meteorological targeting system
since targeting of concentration observations caigd require meteorological observations
at the same location for a proper assimilation eheical concentrations into a CCMM.

4. Observational data sets

Observational data sets available for data assionland model performance evaluation
include mainly in situ observations, satellite datag ground-based remote sensing data
(e.g., lidar data). Air quality observation systemdude routine surface-based ambient air
and deposition networks, satellites, field campsigmd programs for monitoring
background concentrations and long-range trangiqllutants.

4.1 Non-satellite observations

4.1.1 Routine air quality monitoring in North America, Eu rope, and worldwide

Dense networks of air quality monitors are availablslorth America and Europe. They
provide measurements with near real-time availalality a short one-hourly averaging
period. These aspects, together with the link &dtheolicy, make these network
observations especially suitable for chemical datmilation applications.

In Europe, air quality observations are made avildiyvough the Air Quality Database
(AirBase) of the European Environmental Agency (BEEXccess is provided to validated
surface data, with a delay of one to two yearss&éhalidated datasets are used primarily for
assessments (e.g., EEA, 2013). The delivery of (idatad) data in near-real time through
EEA for data assimilation purposes is receiving matténtion recently and is under
development, stimulated by the development of theCBpernicus Atmosphere Service. Key
species provided by AirBase (http://www.eea.eurepghemes/air/air-quality/map/airbase)
are PMy, O3, NO,, NO, CO, and S Apart from these, measurements are available for
ammonium, heavy metals (lead), benzene, and othdeteRéo more recent EC directives
(e.g. Directive 2008/50/EC), member states areldpireg networks to measure BM but

the number of sites with PM capability is presently significantly smaller ($itty more
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than half) than those for Py

It should be noted that PM measurements are oft@nded on a daily-mean basis, in
contrast to @and NQ, for which hourly values are reported. This is ide@al for data
assimilation purposes, where instantaneous obsemgadre preferred. The classification of
the surface observations and representativeneasagurements for larger areas is
important, in order to allow meaningful comparisohthe observations with air quality
models (e.g., Joly and Peuch, 2012). For the measmitsrof NQ it should be realized that
in particular sensors with molybdenum converters nth&eneasurement also sensitive to
other oxidized nitrogen compounds such as PAN é&mni¢ acid (HNG;) (e.g., Steinbacher et
al., 2007).

In the context of the Convention of Long-Range Ekaundary Air Pollution, the European
Monitoring and Evaluation Programme (EMEP) providata
(http://www.nilu.no/projects/ccc/emepdata.html) osetection of sites in Europe, fos0

NOy, VOC, SQ, Hg, and aerosol (P}, including additional information on carbonaceous
PM and secondary inorganic aerosol, which is offasenodel evaluation in Europe (e.g.
EMEP, 2012 ; Tarseth et al., 2012). Atmosphericodémn is measured for several chemical
species in the EMEP network.

In North America, surface measurements gb@d PM s are accessible through the U.S.
EPA’s AIRNow gateway (http://www.airnowgateway.ar§pr a comprehensive description
of air quality observation systems over North Ameriwe refer the reader to a report
(NSTC, 2013), which is available at
http://www.esrl.noaa.gov/csd/AQRS/reports/agmomtppdf. This report focuses on
observations in the United States, but also previdecinct information on observations in
Canada and Mexico.

Over 1300 surface stations measure hourly condentsaof Q using a UV absorption
instrument (Williams et al., 2006). The instrumembeis bounded by2% of the
concentration. The majority of the measurement sitesocated in urban and suburban
settings. The highest density of monitors is founthe eastern U.S., followed by California
and eastern Texas, while observations are relgtsperse in the center of the continent.
Hourly PM, sconcentrations are measured at over 600 locatiang iapered Element
Oscillating Microbalance instruments (TEOM, Ther&isher, Continuous particulate

TEOM monitor, Series 1400ab, product detail, 2G3/ajlable at
http://www.thermo.com/com/cda/product/detail/1,1012260.html). The uncertainty of
PM, s measurements is calculated asugEm'3 plus an inaccuracy of 0.75% times the
species concentration. We caution that much largegsurement errors can occur, depending
on meteorological conditions, because of the Vdlatif some aerosol species (Hitzenberger
et al., 2004). Geographic distribution of PMneasuring sites is similar to that of the O
sites.

Concentrations of the remaining criteria pollutaiiN®,, CO, SQ, Pb, and Plyw) are
measured at several hundred locations across thi@eohat varying frequencies and
averaging periods.

The IMPROVE network measures major components of fMlfate, nitrate, organic and
elemental carbon fractions, and trace metals) at td@idocations in national parks and in
rural settings. Complementary aerosol measurementban and suburban locations are
available at more than 300 EPA’s STN speciatiorssitdPROVE and STN sites typically
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897  collect 24-hour samples every three days. SinceetRd4 ssamples are collected on filters
898 and need to be sent to analytical laboratorieafiatysis, data are not available in near real-
899 time. Continuous aerosol species concentrationsrdyeoccasionally measured by the

900 industry-funded SEARCH network, which operates egtes in the southeastern U.S.

901 In addition, toxics are monitored by the NATTS netkveampling at 27 locations for 24

902 hours every six days. The NADP, IADN, and CASTNEEworks track atmospheric wet
903 and dry deposition.

904

905 Atthe global scale, monitoring of atmospheric clemihcomposition was organized by the
906 World Meteorological Organization (WMO) Global Atsgheric Watch (GAW) program
907 about 25 years ago. The GAW program currently adedr® six classes of variables,(OV
908 radiation, greenhouse gases, aerosols, selectetiveegases, and precipitation chemistry).
909 The surface-based GAW observational network comgpgsebal and regional stations,

910 which are operated by WMO members. These statiesmmplemented by various

911  contributing networks. Currently, the GAW progracordinates activities and data from 29
912 global stations, more than 400 regional stationd,about 100 stations operated by

913  contributing networks. All observations are linkedcommon references and the

914  observational data are available in the designatedd Data Centers. Information about the
915 GAW stations and contributing networks is summaripeithe GAW Station Information

916  System (GAWSIS; http://gaw.empa.ch/gawsis/).

917 4.1.2 Other surface-based, balloon, and aircraft observadns

918 Other types of observations that can be assimilatedatmospheric models include surface-
919 based remote sensing data, such as lidar datapbdilorne souding systems (sondes), and
920 aircraft observations.

921 Lidar data

922 The GAW Aerosol Lidar Observation Network (GALION)ovides information on the

923  vertical distribution of aerosols through advankzesr remote sensing in a network of

924 ground-based stations. Several regional lidar netsyguch as the Asian Dust and Aerosol
925 Lidar Observation Network (AD-Net), the Latin Amaaitidar Network (ALINE), the

926 Commonwealth of Independent States (Belarus, Rassi&yrgyz Republic) Lidar

927 NETwork (CIS-LINET, the Canadian Operational Reskakerosol Lidar Network

928 (CORALNet), CREST funded by NOAA and run by theéyGQiniversity of New York

929 covering eastern North America, the MicroPulse Lid&Twork (MPLNET) operated by
930 NASA, the European Aerosol Research Lidar Netw&&RLINET), and the Network for
931 the Detection of Atmospheric Composition Change fIIT), Global Stratosphere are

932 participants in GALION. Some of these regional lidatworks are described in greater
933  detail below.

934

935 MPLNET is a global lidar network of 22 stations ogted by NASA with lidars collocated
936  with the photometers of the NASA AERONET. The Netwfor the Detection of

937  Atmospheric Composition Change (NDACC) is operate®N®AA. It includes a network of
938 about 30 lidars located world-wide. AD-Net gath&Bsresearch lidars that cover East Asia
939 and operate continuously. The National InstitoreEnvironmental Studies (NIES) operates
940 alidar network in Japan (http://www-lidar.niesjgd. Initiated in 2000, EARLINET now
941 operates a set of 27 research lidar stations oweapde and is part of the Europe-funded
942  ACTRIS network (http://actris.nilu.no). Followinbe eruption of the Eyjafjallajokull
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volcano in 2010 (Chazette et al., 2012), weatheratjpnal centers such as Meteo France
and the UK MetOffice are planning to deploy autdmaperational lidar networks over
France and the United Kingdom, with the objectivé¢liver continuous measurements and
to use them in aerosol forecasting systems.

In order to be assimilated into an aerosol modelrdlaeaerosol signal can either be
converted into aerosol concentrations using assomgpbn their distribution (Raut et al.,
2009a, 2009b, Wang et al., 2013), or it can bevakged directly into the model solving the
lidar equation within the observation operator (\Wahal., 2014). Note that even in the latter
case, the redistribution over the aerosol size isigarried out following the size

distributions of the first guess used in the arialy# is expected that the benefit of
assimilating lidar signals is to last longer (umttew days) and should propagate farther than
ground-based in situ measurements, owing to thisheggolved information but also owing
to the smaller representativeness error in eleMatents. This has recently been
demonstrated using lidar data from three days ehsive observations over the western
Mediterranean Basin in July 2012 (Wang et al., 2014

Aerosol optical properties

A world-wide routine monitoring of aerosol opticpth and other properties like the
Angstrom component is provided by the photometeth@®erosol Robotic Network
(AERONET, http://aeronet.gsfc.nasa.gov) coordindiedNASA (e.g., Holben et al. 1998).

The GAW aerosol network also provides measurenwdrderosol properties over the globe.
The GAW in-situ aerosol network contains now moantB4 regional stations and 54
contributing stations, in addition to 21 globalt&tas, reporting data — some of them in near-
real-time — to the World Data Center for Aerosold®A) hosted by the Norwegian Center
for Air Research (NILU) and available freely to.alhe GAW-PFR network for aerosol
optical depth (AOD), coordinated by the World OptiDepth Research and Calibration
Center (WORCC), includes 21 stations currently jatioyg daily data to WORCC (GAW,
2014).

SKYNET is a network of radiometers mainly based astérn Asia and the database is
hosted by Chiba University in Japan (http://atmoshtba-u.ac.jp).

Aircraft measurements

In Europe, routine monitoring of the atmosphereres/jgled by the IAGOS (In-service
Aircraft for a Global Observing System) prograntghfwww.iagos.org). An increasing
number of aircraft is equipped to measuggater vapor, and CO and instruments are
developed to measure NONG, and CQ. This initiative evolved from the successful
MOZAIC (Measurements of OZone, water vapor, COxM@in-service Alrbus airCraft,
http://www.iagos.friweb/rubrique2.html) project wiihks to the CARIBIC
(http://www.caribic-atmospheric.com) project. InfdoAmerica, NOAA-ESRL has a
Tropospheric Aircraft Ozone Measurement Progransisting of @ measurements
(http://www.esrl.noaa.gov/gmd/ozwv/) and a flasknpling program, measuring greenhouse
gases including CO (http://www.esrl.noaa.gov/gmgidtaircraft/).

Despite the limited coverage, aircraft chemical oks#ons have the potential to provide
important improvements to models when assimilatedh@atet al., 2003).
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Ozone sondes

Balloon-borne measurements of &e performed on a global scale and the data #ezizul
by the World Ozone and Ultraviolet Radiation Daen@e (WOUDC,
http://www.woudc.org/index_e.html). The sondes jaewery detailed vertical profiles from
the surface to about 30-35 km altitude, with an esyof 5-10% (Smit et al., 2007). Apart
from monitoring the stratospherig@uyer, the data are extensively used to validtiead
tropospheric models as well as regional air quatibdels.

Other sources of tropospheric composition infornmatio

Surface-based Multi-AXis Differential Optical Abgion Spectroscopy (MaxDOAS)
measurements are very interesting for atmospheriniskry applications, because of their
ability to deliver approximately boundary-layer meamcentrations of § NO,, HCHO,
glyoxal (CHOCHO), S@ halogens and aerosols. Measurements are progtdseral sites,
but a large-scale network is still missing.

Some regional networks of ceilometer observationstégig., UK Met Office, Deutscher
Wetterdienst, Météo France). They provide mosthydibase and cloud layer data. They
may in some cases (e.g., volcanic plumes) provideiLisdébrmation on atmospheric
aerosols.

The Network for the Detection of Atmospheric CompositChange (NDACC,
http://www.ndacc.org) provides measurements releteaavaluate tropospheric composition
models, such as lidar datag €bndes and MaxDOAS.

Apart from ozone sondes, WMO Global Atmospheric WgBAW,
http://www.wmo.int/pages/prog/arep/gaw/gaw_home_tem)rcoordinates a variety of
atmospheric observations and the data are provideddh the World Data Centres. The
Earth System Research Laboratory (ESRL) of NOAA/jates access to a host of routine
observations and links to field campaigns.

For greenhouse gases, the WMO-GAW World Data Cdotr&reenhouse Gases (WDCGG,
http://ds.data.jma.go.jp/gmd/wdcgg/) provides asteslata with a global coverage. The
Global Greenhouse Gas Reference Network (http://vestknoaa.gov/gmd/ccgg/ggrn.php)
of NOAA provides a backbone of world-wide obseroat. Data from the Total Carbon
Column Observing Network (TCCON, http://www.tccorteeh.edu) is used extensively to
validate greenhouse gas assimilation and invesistems as well as satellite data.

Dedicated measurement campaigns are essential addiitime more routine capabilities
discussed above. Such campaigns provide dense atieasvof a larger number of species
and/or aerosol components with profiling capaleiitand often in combination with surface
in-situ and remote sensing. This provides excetlests for multiple aspects of the models.
Examples are the TRACE-P (Talbot et al., 2003; [Eistal., 2003) and ICARTT
(Fehsenfeld et al., 2006), the data of which haenhused in assimilation studies.

4.2 Satellite observations

space are N§ CO, SQ, HCHO, CHOCHO, @ and aerosol optical properties (optical debth
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'l North America and Europe th
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/| used in the remote sensing of

air quality include the Nationg
Aeronautics and Space
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National Oceanic and
Atmospheric Administration
(NOAA), the Canadian Space
Agency (CSA), the European
Space Agency (ESA), the
French Centre National
dEtudes Spatiales (CNES),
and the Swedish Space
Corporation (SSC). In Asia,
the Japanese Aerospace
Exploration Agency (JAXA)
and the Korean Aerospace
Research Institute (KARI)
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observing system, with recen
contributions from the China
National Space Administratio
(CNSA). 1
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and other properties, aerosol backscatter profilds main tropospheric satellite products
are listed in Table 1 and the acronyms are expaindédble 2.

The satellite instruments listed in Table 1 arealpolar-orbiting satellites with a fixed
overpass time. The huge benefit of satellite insemtmis the large volume of data. For
instance, an instrument like OMI provides a fublghl coverage each day with a mean

to the point measurements of the surface netwbdsthe advantage that the retrieved
quantities can be more easily compared to modelogiidzalue, and the representation error
is often smaller than for point observations. Anotdvantage of the satellite data is the
sensitivity to concentrations in the free troposphalthough retrieving the vertical
distribution of the concentrations may in some sdsechallenging. Air quality models are
typically evaluated against surface measurementshandperformance inside and above the
planetary boundary layer is generally not well know

On the other hand, satellite data have limitati@wwrently, only one observation per day or
less is available, as compared to the hourly data the routine surface networks and there
is only limited information on the diurnal cycle.dgt instruments provide about one piece of
vertical information in the troposphere and thiomifation is averaged over an extended
vertical range: typically a total column or averdige tropospheric value is retrieved.
Furthermore, there are error correlations amondoygaixels, which typically requires the
application of thinning methods.

The retrieval of trace gases in the troposphefarifom trivial, because of the dependence
on clouds, aerosols, surface albedo, thermal cem@ad other trace gases. Errors in the
characterization of these interfering aspectsgllt in sometimes substantial systematic or
guasi random errors. Furthermore, the detectiont bfnininor trace gases may exceed
typical atmospheric concentrations (e.g.,&@d HCHO over Europe). More work is needed
to continuously improve existing retrieval algorithiconcerning the systematic errors and
detection limits.

up missions are discussed and coordinated interrely (IGACO 2004; CEOS-ACC, 2011;
GEOSS, 2014; GCOS, 2010 & 2011). In Europe, the&d®Pernicus program will facilitate
the launch of a series of satellite missions, thatiBels. Sentinels number 4 and 5 will
provide observations of atmospheric compositiore $éntinel 5 precursor mission with the
TROPOMI instrument (Veefkind et al., 2012), a sssoe of OMI with 7 km resolution, will
fill a possible gap between the present generationstruments (see Table 1) and the next
generation of satellite instruments.

An international geostationary constellation ok#iges to observe air quality is in
preparation. This will consist of thieuropean Space Agendy$A) Sentinel 4 over Europe
(Ingmann et al., 2012), theorean Aerospace Research InstitiKARI) GEMS satellite
over Asia (http://feng.kari.re.kr/sub01_01_02_08y theNational Aeronautics and Space
Administration NASA) TEMPO mission over America (Chance et al., 2018gsE
missions will provide unprecedented high-resolutiasurement of air pollution with
hourly observations from space (e.g. Fishman, 2008).

Most retrieval products for the satellite sensimtetl in Table 1 are based on the general
retrieval theory detailed by Rodgers (2000). Re#ig of atmospheric trace gas profiles are
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fully specified by providing the retrieved profiliie averaging kernel, the covariance matrix
and the a priori profile. The assimilation obsematbperator, which relates the model
profile Xmoda t0 the retrieved profile, is then:

Xr moddl ~ Xa-priori A(Xmoda- Xa—priori)

The retrieval covariance describes the observatimors. The kernel and covariance together
describe the altitude dependence of the sensitithie measurement to the concentrations,
the degree of freedom of the signal and the intimsritical resolution of the observation.
Kernels and covariances are not always providetthéyetrieval teams, which will result in a
loss of information. Even the popular Different@btical Absorption Spectroscopy (DOAS)
retrieval approach for total columns may be refoated in Rodgetgterminology and
averaging kernels can be defined (Eskes and BoefZ008).

4.3 Use of observations in chemical data assimilation

Combining satellite datasets through data assiimilas a powerful approach to put multiple
constraints on the chemistry/aerosol model. An exanspMACC-II, where most of the
satellite datasets onsCO, NQ, AOD/backscatter, C£and CH, as listed in Table 1, are
used (e.g. Inness et al., 2013). Another exam@eésent study (Miyazaki et al., 2014),
where satellite observations of @5, HNO3;, and CO from OMI, MLS, TES and MOPITT
are combined to constrain the production ofN@ lightning. The use of satellite retrievals
in assimilation applications focused on top-down siois estimates was recently reviewed
(Streets et al., 2013).

For the use of satellite and surface/in-situ/rensetesing data in operational applications
such as MACC-II, the availability of data in neagttime is an important requirement.

For regional air quality, the major source of infation is provided by the routine surface
observations, which have been put in place to moait quality regulations. In the USA,
Europe and in parts of Asia (Japan), dense obsemgatetworks are in place. For
concentrations above the surface, the monitoritgyark is very sparse, with a limited
amount of aircraft, sonde and surface remote seusitegpoints. Several groups have started
to incorporate satellite data to constrain tropesjghconcentrations. One major aspect here
is the lack of diurnal sampling, which is addresisgduture geostationary missions, as
discussed above. Furthermore, the number of spebs&ved routinely from space, or from
the ground, is limited, and dedicated campaigns (@t aircraft) are crucial to test more
model aspects. A more systematic approach to thisepass of above-surface information
would be important to improve the regional air dyahodels and to bridge the gap between
global and regional scale modeling.

Recommendations for global observing systems aoeiskgd internationally. The WMO-
GAW IGACO report provides a useful overview of éxig and planned satellite missions
and the complementary surface, balloon and airotadférvations (IGACO, 2004). GCOS
discusses the observations needed to monitor femtal climate variables (GCOS,
2010+2011). The Group on Earth Observations (GE®@pordinating efforts to build a
Global Earth Observation System of Systems, or GEOS
(http://www.earthobservations.org/geoss.shtml)thenbasis of a 10-year implementation
plan. The Committee on Earth Observation Satel(itd#s0S) supports GEO and has an
acivity on Atmospheric Composition Constellationrd®). The CEOS ACC White Paper
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(CEOS-ACC, 2011) discusses the Geostationary &at€lbnstellation for Observing Global
Air Quality. Gaps in observing atmospheric compoasitire discussed in these international
activities.

In many parts of the world, pollutant emissions ammihated by the smoke from fires. The
occurrence and strength of the fires is intringycahpredictable, which makes these a major
source of errors in the models. Recently, satallitgervations of fire radiative power and
burned area have been used to estimate emissi@aesasiols, organic and inorganic trace
gases (Giglio et al., 2013). For instance, withiea MACC-II project a near-real time global
fire product was developed with a resolution of @efjree, which is used for reanalyses,
nowcasting and even forecasting (Kaiser et al.2p0&iven the importance of fires, the use
of such fire emission estimates based on obsensitorecommended.

Sand and dust storms may contribute significantlb(mostly PMg) ambient
concentrations at long distances from their souggen. Because the emission source terms
of sand and dust storm events are difficult to gf\graerosol data assimilation is a
promising area for sand and dust storm modelingfaretasting (SDS-WAS, 2014). The
main efforts have focused on the assimilation afexeal products (i.e. atmospheric
parameters inferred from raw measurements), such asr@&t@Bved from satellite
reflectance or from ground-based sun photometesurements. However, the difficulties
associated with the operational use of lidar (aotetially ceilometer) observations as well
as satellite aerosol vertical profiles, is the nlimsiting aspect in data assimilation to

improve sand/dust forecasts. Although there are soiti@ promising non-operational
experiments to assimilate aerosol vertical profigeg., at the Japan Meteorological Agency),
more efforts are needed to better represent thalimértical dust structure in the models.

In numerical weather prediction, a significant steforecast skill was achieved when the
assimilation of retrieval products was replacedHhgyassimilation of satellite radiances. In
this way a loss of information or introduction oébés through the extra retrieval process is
avoided. It should be noted, however, that eatiyeneals often did not follow the full
retrieval theory (Rodgers, 2000) and it is importantse the kernels, covariances and a-
priori profiles in the observation operator ancbematrices. Because of this success it has
been debated whether to apply similar radiancerélssion approaches to the atmospheric
chemistry satellite observations. We do not in genecommend such radiance assimilation
approach for atmospheric composition applicatiomgte following reasons. First, a
successful radiance assimilation depends cruaallignowledge of the possible systematic
biases of the instruments, a clever choice of miordaws, and state-of-the-art radiative
transfer modelling. Secondly, a careful implemeatabf Rodgers formalism preserves the
information of the satellite data, and there ibeotetical equivalence between the
assimilation of retrievals and the assimilatiomaddiances (Migliorini, 2012). Third,
retrievals can be stored in an efficient way, whagbids dealing with the large volumes of
radiance data provided by the satellite instrum@vigliorini, 2012).

5. Case Studies

In this section, four case studies are presented. The first three pertain to the
assimilation of chemical concentrations for forecasting or re-analysis. The fourth one
highlights inverse modeling to improve emission inventories; although it is performed
with a CT}, it is relevant to CCMM as well.
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5.1 Case Study from ECMWF: MACC re-analysis of atmospheric composition

An important application of data assimilation teicjues is to produce consistent 3D gridded
data sets of the atmospheric state over long peridesse meteorological re-analyses are
widely used for climatological studies and morecseally to drive offline CTM.
Meteorological re-analyses have been produced\srakcentres such as the National
Centers for Environmental Prediction (NCEP; Kalnbgle1996), ECMWF (Gibson et al.,
1997; Uppala et al., 2005, Dee et al., 2011), &pad Meteorological Agency (JMA; Onogi
et al., 2007) and the Global Modeling and AssirolaiOffice (Schubert et al., 1993).

Atmospheric composition, apart from water vaporysdally not covered in these re-
analysis data sets. Only stratospherich@s been included in ECMWFs ERA-40 (Dethof and
Hélm, 2004) and ERA-Interim (Dragani, 2011).

The availability of global satellite retrievals i&active traces gases and aerosols from
satellites such as ENVISAT, Aura, MLS, Metop, Tearad Aqua over the last two decades
made it possible to produce a re-analysis datailielemphasis on atmospheric composition.
Within the Monitoring Atmospheric Composition andr@dte (MACC) and the Global and
regional Earth-system Monitoring using Satellite anditu data (GEMS) project
(Hollingsworth et al., 2008), the Integrated Fasiing System (IFS) of ECWMF, which

had been used to produce the ERA40 and ERA-Intrineonelogical re-analysis, was
extended to simulate chemically reactive gases (Flemat al. 2009), aerosols (Morcrette et
al. 2009; Benedetti et al. 2008) and greenhousesg@&sigelen et al. 2009), so that
ECMWEF's 4D-Var system (Courtier et al. 19%Rkbier et al., 2000could be used to
assimilate satellite observations of atmosphenopmsition together with meteorological
observations at the global scale.

The description of the MACC model and data asstinitesystem and an evaluation of the
MACC re-analysis for reactive gases are given Iogés et al. (2013) in full detail. The
MACC system follows closely the configuration of tBRA-Interim re-analysis (Dee et al.,
2011). Meteorological observations from the surfaced sonde networks as well as
meteorological satellite observations were assigtlabgether with satellite retrievals of
total column and @profiles, CO total columns, AOD and troposphentumns of NQ. The
MACC re-analysis has a horizontal resolution of#t®0 km (T255) for the troposphere and
the stratosphere and covers the period 2003-2012.

The MACC system assimilated more than one observdatmset per species if multiple
data were available. For example, @ofile retrievals from MLS were assimilated togethe
with Os total column retrievals from OMI, SBUV-2 and SCIANIAIY to exploit synergies

of different instruments (Flemming et al. 2011). €duce detrimental effects of inter-
instrument biases, the variational bias correctii,eme (Dee and Uppala, 2009) developed
for the meteorological assimilation was adaptedtoect multiple atmospheric composition
retrievals.

In the context of the 4D-Var approach, it would é&een possible to use the information
content of the atmospheric composition retrievalsdrrect the dynamic fields as
demonstrated by Semane et al. (2009). Howeveieeadperiments (Morcrette, 2003) with
IFS did not show a robust benefit for the qualityte meteorological fields. Therefore, this
feedback was disabled in the MACC re-analysis. Aomigsue in this respect would be the
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correct specification of the complex error covacbetween meteorological fields and
atmospheric composition. Also, no error correlatieiween different chemical species and
between chemical and meteorological variables wasidered.

While the assimilation of radiance observations thaspreferred choice for the
meteorological satellite observations, only retriswd atmospheric composition total
columns or profile or AOD were assimilated. Grouraddd and profile in-situ observations
of atmospheric composition were not assimilated Batiuo evaluate the MACC re-analysis.
The National Meteorological Center (NMC) method (Rarand Derber 1992) was used to
estimate initial background error statistics fag Htmospheric constituents apart frogf@
which an ensemble method was applied (Fisher an@isod, 2001).

A key issue for chemical data assimilation with B&CC system is the limited vertical
signal of the retrievals from the troposphere, intipalar from near the surface where the
highest concentrations of air pollutants occurtlien, the assimilation of AOD does only
constrain the optical properties of total aerosoisnot of individual aerosol components. It
is therefore important that the assimilating model, IFS, can simulate the source and sink
terms inarealistic way. As shown by Huijnen et al. (2018 themical data assimilation of
total column CO and AOD greatly improved the realithe vertically integrated fields
during a period of intensive biomass burning in \WesRussia in 2010. However, the
biggest improvement with respect to surface measemés was achieved by using a more
realistic biomass burning emissions data set (GHRs&er et al. 2012).

The MACC re-analysis is a widely used data set wigdreely available at
http://www.copernicus-atmosphere.eu. It has beed tsprovide realistic boundary
conditions for regional air quality models (e.gh8 et al., 2012; Zyryanov et al., 2012).

at 180 E averaged over the 2003-2012 period inagh@anel. The bottom panel shows the
time series of the monthly averaged meridonal G@gported over the Northern Pacific
(20N-70N, 180 E, up to 300 hPa) for the whole pkrithe MACC re-analysis was used to
diagnose the anomalies of the inter-annual vartstwfi global aerosols (e.g. Benedetti et al.
2013) and CO (Flemming and Inness, 2014). Findly, MACC AOD re-analysis was
instrumental to estimate aerosol radiative forgBellouin et al. 2013) and was presented in
the Fifth Assessment Report of the Intergovernmeé®dalel on Climate Change (IPCC,
2013). As pointed out by Inness et al. (2013) di@nges in the assimilated retrieval
products from different instruments, namely CO andddring the 2003-2012 period as well
as the rather short period of 10 years requiresaraif the MACC-re-analysis is used to
estimate long-term trends.

5.2 Ground-level PM, sdata assimilation into WRF-Chem

In the following, we demonstrate an applicationtefEnKF (Whitaker and Hamill, 2002) to
assimilate surface fine particulate matter gRMbbservations with the WRF-Chem model
(Grell et al., 2005) over the eastern part of Néwtherica. The modeling period began on 23
June 2012, ended on 06 July 2012, and includegeadfay spin-up period. During this
modeling period, weather over the area of interest wfluenced by a Bermuda high
pressure system that contributed to the elevatederdrations of Pl For an illustration of

June 29 and July 05 obtained by hourly assimiladiioflRNow observations.

27

_ - { Supprimé : 4




1277 PM;sobservations used in the assimilation come fromg EPA AIRNow data exchange
1278  program (see Section 4). Standard meteorologicatrgip and surface observations were
1279  also assimilated.

1280  The grid resolution of the simulations is equal @oken. Initial and lateral boundary

1281  conditions for meteorology were obtained from thabgl GFS ensemble that has been
1282  operational at NCEP since May 2012. The lengtingkenble forecasts limited the extent of
1283  our forecasts to nine hours. Lateral boundary dandi for chemical species were obtained
1284  from a global CTM (MOZART) simulation (Emmons et &010). Pollution by forest fires
1285 was derived from the Fire emission INventory fromARC(FINN, Wiedinmyer et al., 2011).
1286  Parameterization choices for physical and chemicalgsses and specification of

1287  anthropogenic emissions follow those describeddgolski and Grell (2012) (except for
1288  emissions of Sg¥or 2012 reduced by 40% as recommended by Fioldtal,,2011). The
1289 reader is referred to previous work for detailsegitherein (Pagowski and Grell, 2012).

1290 The six-hour assimilation cycle at 00z, 06z, 12w} 48z used a one-hour assimilation
1291 window for PM s and a three-hour assimilation window for meteagalal observations.

1292  Two numerical experiments were performed:
1293 - NoDA - that included assimilation of meteorologdjichservations only; and
1294 - EnKF —that included assimilation of both AIRNoWPs and meteorological observations.

1295 The increments to individual PMspecies were distributed according to their a
1296 priori contributions to the total PM mass. For the GOCART aerosol module (Chin
1297 et al., 2000, 2002; Ginoux et al., 2001) employethesimulations, this approach
1298 yields better results compared to using indivicheabsol species as state variables
1299 in the EnKF procedure.

1300 Verification statistics presented below were calted over the period starting at 00Z June
1301 28 and ending at 00Z July 07, 2012.

1302 | In Figure4, bias and temporal correlation of forecasts intieied to measurement locations - { Supprimé : 5 ]

1303  are shown for the two experiments. In calculathrgse verification statistics, all available
1304 forecasts were matched with corresponding obsemn&tWe note that the data assimilation
1305 significantly reduces negative model bias obseoxagrt most of the area of interest. A
1306 marked improvement in temporal correlation due toessmilation, in places negative for
1307 NoDA, is also apparent.

1308 | In Figure, time series of bias and spatial correlation oédasts are shown. It is noteworthy - - { supprimé:6 )
1309 that the effect of meteorological observation adsitioin on PM s statistics is rather minor.
1310 That is both a result of the scarcity of PBL pmedilavailable for the assimilation and
1311 difficulties in assimilating surface observatioAdarge positive impact of Pp4 data

1312 | assimilationon PN sconcentrations is confirmed Figure4, but forecast quality __— { supprimé : observec

1313  deteriorates quickly. Causes for such deteriordtiolude deficiencies of the initial state S;C;{s“ppdmé:s
1314 resulting from the lack of observations of the indidal PM, sspecies and their vertical .
1315  distribution, and errors due to inaccuracies imuical and physical parameterizations and
1316 inaccuracies of emission sources. The applicatiahefSOCART aerosol parameterization
1317  was only dictated by computational requirementsnsEenble simulations. Investigation on
1318 whether more sophisticated parameterizations of akcbemistry maintain the quality of
1319 forecasts for a longer period is on-going. Fastril@tation of forecasts suggests that, short of
1320 improving the model formulation and/or the emission&ntory, parameterization of model
1321 errors within the ensemble and post-processingrefchsts might provide an avenue for

1322  better PMsprediction.
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1323

1324 5.3  Satellite data assimilation into WRF-Chem

1325

1326  The Gridpoint Statistical Interpolation (GSI) systéKleistet al., 2009), which uses a 3D-
1327  Var approach, is applied here to perform data akstiom experiments using satellite data to
1328 improve the initial aerosol state for the WRF-Ch&ng(l et al., 2005) model when utilizing
1329 the MOSAIC aerosol model (Zavettial., 2008). We present two case studies, which
1330 | correspond to the usd# AOD (Saideet al., 2013) and cloud number droplet satellite
1331 retrievals (N) (Saideet al., 2012a). The WRF-Chem configuration is based odeSial.
1332 (2012b).

1333

1334  Assimilating AOD retrievals. In this case study, simulations were performeetr ov

1335 | California, USA, and its surroundings assimilatinQB retrievals. Figur@ shows results /,,/{Suppriméﬂ
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1336  when assimilating two 550 nm AOD retrievals, the MGllark target (Remet al., 2005),
1337 and the NASA neural network retrievaltip://gmao.gsfc.nasa.qgov/forecagts/hich corrects
1338  biases with respect to AERONET (Holberal., 2001) and filters odd retrievals. The

1339  experiment shows that the AOD assimilation is &bleorrect the biases in the forward
1340 model providing a better agreement to AQS,Bbbservations and AERONET AOD

1341 measurements. PMconcentrations show low bias one hour after asatmoi and then the
1342  assimilation gradually returns towards concentregiand errors found when no assimilation

1343 | is performed getting close to it after 48 hourguF&s also shows that the observationally { Supprimé : 7

1344  constrained retrieval generally provides betteultsghan the non-corrected AOD. An
1345 extreme case is where the dark target retrievaph@sdems due to the bright surfaces

1346 | (Figures, bottom-right panel) deteriorating model performeand the corrected retrieval is { Supprimé : 7

1347  able to partially fix the problem.
1348

1349 | FigureZ illustrates the effects of assimilating multiplewetength AOD retrievals comparing - - { Supprimé :8

1350 its performance against just assimilating AOD at B61) which is what is commonly done.
1351  Error reductions with respect to non-assimilated@bservations are similar for both

1352  cases, but notable differences are found when congparror reductions for the Angstrém
1353  exponent (AE), a proxy for the aerosol size distiitn. The simulation assimilating only
1354 550 nm AOD does not significantly change the AE lgvhissimilating multiple-wavelength
1355  AOD improves performance of the AE.

1356

1357  These results demonstrate that satellite AOD asgiorilaan be used for improving analysis
1358 and forecast, with additional improvements whemgisibservationally constrained retrievals
1359 and multiple wavelength data. Thus, future workdset® point towards incorporating

1360 additional retrievals, which need to be observatilgrconstrained to improve assimilation
1361 performance.

1362

1363  Assimilating cloud retrievals. Vast regions of the world are constantly covédrgdlouds,
1364  which limit our ability to constrain aerosol modstienates with AOD retrievals. In order to
1365  overcome this limitation, a novel data assimila@é@proach was developed to use cloud
1366  satellite retrievals to provide constraints on beldoud aerosols (Saidet al., 2012a). The
1367 method consists in using the online coupling ands®cloud interactions within WRF-
1368 Chem to provide cloud droplet numberg(Nstimates, which are compared to satellite

1369 | retrievals through the data assimilation frameworgufe8 presents results for the
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1370 southeastern Pacific stratocumulus deck, wherdMBBIS retrieval (Painemal and
1371  Zuidema, 2011) is assimilated and compared agmdspendent GOES retrievals (Painemal
1372 etal., 2012). The assimilation is able to correct the émd high biases inNound in the
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guess with these corrections persisting even thvouigthe second day after assimilation.
Furthermore, Saidet al. (2012a) show that the corrections made to thenseloud aerosols
are in better agreement with in-situ measuremenggsol mass and number. Future steps
should try to show the value of this assimilationmoeton other regions and find potential
synergies between AOD ang Bissimilation in order to provide better aerosotéaists and
analyses.

5.4  Satellite data assimilation for constraining athropogenic emissions

The case studies performed with the SILAM dispersimdel bttp://silam.fmi.f) have
demonstrated the possibility and efficiency of exien of the data assimilation towards
source apportionment. The goal of the numericaéerpent was to improve the emission
estimates of Pl via assimilating the MODIS-retrieved column-integd AOD fields. The
4D-Var assimilation method generally followed th@mgach of Vira & Sofiev (2012) with
several updates:

- three domains were considered: Europe, Southeinafand Southeast Asia
- the aerosol species included:

0 primary OC, BC (MACCITY emission inventory, non-Bpean domains) or
primary PM s/PM;o (TNO-MACC emission, European domain)

sulfate from S@oxidation

nitrate from NQ oxidation (not adjusted during the assimilation)
sea salt (embedded module in SILAM, adjusted bya#iggmilation)
desert dust (embedded module in SILAM, adjustethbyassimilation)

PM s from wildfires (IS4FIRES emission inventory, adpstby the
assimilation)

O O O o o

- the assimilation window was 1 month to reduce thissnand random fluctuations of
the emission corrections

- the boundary conditions were taken from a globbAM simulation

- acomplete year, 2008, was analyzed witli 8datial resolution and vertical
coverage up to the tropopause; the model was dboyd&fRA-Interim meteorological
information

An example of SILAM a-priori AOD pattern for Asifylly collocated with MODIS

| observations (Figuig) shows the significant initial disagreement betwtrenSILAM and - { Supprimé : 10

MODIS AOD. In particular, the model shows almost Boogol in northwestern India and
much too low values over eastern China. Assimilaitioproves the distribution and reduces

| the negative bias (Figug bottom panel). Since the amount of dust emittethby o { Supprimé : 10

experimental version of SILAM was quite low, thethern part of China and Mongolia are
practically not corrected. But the Indian and Ceaéndustrial and agriculture regions were
improved very efficiently. A comparison with indegemt data (AATSR AOD retrievals)
confirmed the trends: both substantial bias redodaitd increase of the correlation
coefficient (Table 3).

The resulting emission estimates had substantiabsehvariation, different from the a-

| priori estimates (Figurg0). Apart from almost doubling the annual OC emissi@rsn 7.8 - { supprimé: 11
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Mt to 15 Mt of PM), the inversion also altered Beasonality, clearly suggesting spring and
autumn as the two periods with strong emission.

The efficiency of the emission inversion variedvietn the regions and strongly depended
on quality of the a-priori information. Thus, in Afa strong contribution from wild land fires
might have affected the final results for other Ridaes.

The other potential issue in assimilation of totsl B the need to distribute the information
among individual components that are either emittecteated by chemical transformations.
In particular, there is a risk of artificial charsge SQ sources because in many cases the
total AOD is more sensitive to changing sulfate picitbn than to variations of the primary
PM emission. A possible way out is to perform simuoétous inversion for several species,
e.g., for S@Qand PM emissions.

6. Potential difficulties for data assimilation in CCMM

Data assimilation in CCMM is recent and has typychéen limited to chemical (including
PM) data assimilation to improve chemical and, ieva €ases, meteorological predictions.
The effect of assimilating jointly meteorologicaldachemical variables on meteorological
and chemical predictions has been limited to datkitain worthwhile to discuss the potential
difficulties that may be associated with such fatapplications, particularly in the case of
CCMM with feedbacks between chemistry and meteosolog

The effect of chemical data assimilation on meteajiokd variables has been investigated in
a few specific cases, for example the effect @itefipheric @assimilation on winds
(Semane et al., 2009) and that of AOD assimiladiorthe radiative budget and winds
(Jacobson and Kaufman, 2Q0@&eale et al., 2034t has also been shown to be potentially
important using a low-order model (Bocquet and Sak6i13However, joint data
assimilation of both meteorological (e.g. windsemperature) and chemical data has not
been conducted to a large extent and it is not tlea much interactions could occur among
meteorological and chemical state variables whemdlasing both chemical and

meteorological datgdssimilating distinct data sets that influence tame model variable - { Supprimé : In the worst case, ]

statistics are misspecified (e.g., unknown biaseimi-volatile PM components); therefore, it~

will be essential to properly specify those measienat error statisticgvost likely, one of
the influential data sources may dominate as besgjuacertain and/or more influential.
Then, either an offline sensitivity analysis cohllused to diagnose which input variable to
retain for data assimilation or the data assimilagimtess would automatically give more

weight to the less uncertain/more influential vialga

Another potential difficulty concerns the assimiatof aggregated variables such as PM
mass concentration or AOD. The effect on the modbVidual variables (i.e., PM individual
components) is currently typically performed by myiti§ all PM components
proportionally to the model component fractionsisTdpproach may lead to erroneous
results if the prior chemical composition differgrsficantly from the one in the model, for
example, if one component of the aggregated varighial PM mass) is dominating in the
model, but is not the one that needs to be corre€ied example is the assimilation of AOD
in the presence of a volcanic ash plume over thargaghich may lead to a corrective
increase in sea salt instead of the addition afardt ash in the model.
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An approach to circumvent that problem is to assiiladividual PM component mass
concentrations. However, the lack of routinely &alde continuous measurements of PM
component concentrations has so far prevented #@tpnal use of such information.
Furthermore, this process could potentially leadifficulties, when both total mass
concentration and the mass concentrations of iddaliPM components are assimilated. The
sum of individual PM component mass concentratinag not necessarily be consistent with
the total PM mass concentration because of measuotarigacts (which may affect both the
individual component mass measurements and thieltbtamass measurement). If so, the
data source with the least observation error shdaldinate or the forecast may remain little
affected by the assimilation. This implies that dfsservation errors need to be correctly
characterized. In that regard, assimilation of mulivelength AOD, single-scattering
albedo, Angstrom exponent, and/or absorption olpdiepth can place additional constraints
on the aerosol composition by providing informat@mnpatrticle size and absorption.

Similar difficulties could arise when assimilatimgltiple gaseous species with chemical
interactions (e.g., Y NO,, HCHO). However, such multi-species data assiinifat
applications have been conducted successfullyrsavfach suggests that this process is not
a major source of difficulties. Typically, the asdetion of additional chemical species (e.qg.,
NO, in addition to @) shows little improvement over the assimilatiortha first species.

The assimilation of both satellite and surface d@atahemical species has been conducted
and previous applications have shown that it werkH. It is likely that the satellite data
correct concentrations in the free troposphere gdsesurface data correct concentrations in
the planetary boundary layer and that the two regjare not strongly coupled. Cases with
conditions of deep convection when the couplingveen those atmospheric regions
becomes important should be investigated to sthesdata assimilation process of distinct
sources of data having greater interactions ombeel variables.

Concerning data assimilation methods, the errorsecosrelations, such as wind-chemical
species or species-species, would be dynamicdilpa&gd withthe EnKF or another
ensemble-based methdwbwever, their specification would be complexadt problematic in
an optimal interpolation, 3D-Var or 4D-Var data asition.

Finally, a major difficulty for data assimilation @CMM is likely to be the paucity of data
for chemical (including PM) data assimilation. Example, in the case of satellite data,
insufficient vertical resolution and temporal regan are a potential difficulty for chemical
data assimilation.

7. Conclusion and Recommendations

Data assimilation has been performed so far mosthssisnilation of meteorological
observations in numerical weather prediction (NW#Yels or as assimilation of chemical
concentrations in CTM and, to a lesser extent,@M®. Improvements in meteorological
fields typically benefits CTM and CCMM performanaed there are some examples of the
effect of chemical data assimilation on meteorolalgiesults; however, little work has been
conducted so far to assimilate both meteorologicdldmemical data jointly into CCMM. As
a result, the potential feedbacks of chemical dagamilation on meteorological forecasts
have not been fully investigated yet.
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Although most applications of chemical data assititehave addressed the improvement of
chemical concentration fields, the correction of&siun biases may also be an important
area of development and applications, in particdi@iaemission terms that carry large
uncertainties, such as sand/dust storms, bioma&ss élergenic pollen episodeslcanic
eruptionsand accidental releases.

A major limitation of data assimilation in CCMM ig&ély to be the limited availability of
data, particularly in near-real-time. For exampheré has been no assimilation of PM
component concentration data conducted so far andssimilation of total PM
concentrations necessarily involves assumptiortantg not reflect reality and, therefore,
significantly limit the benefits of assimilatingdbe data. Joint assimilation of surface and
satellite data has proven useful, but rather diseoted, the former affecting mostly the
boundary layer concentrations while the latter@ffehe free troposphere concentrations. A
more thorough investigation of the potential cougditbetween those tropospheric
compartments appears warranted. Satellite data eyevakiable because of the coverage
that they can provide; the combination of using diata polar orbiting satellites that
provide good spatial coverage but with limited temab resolution and geostationary
satellites that provide limited spatial coverage agwblution but continuous temporal
coverage should be investigated (e.g., the fut@4 gentinel-4 and sentinel-5 missions
would provide such complementary information for adptueric chemical species such as
O3, NO, SO, HCHO, and AOD).

As more chemical data become available in near-eal-the assimilation of large data sets
from widely different sources (e.g., surface, grobbaded remote and satellite data) into
CCMM may lead to new challenges to develop optimadl efficient data assimilation
proceduresHowever, assimilating a wide variety of data shdaddefit not only the model
variable corresponding directly to the data beisgjrailated, but also other model variables
influenced via meteorology/chemistry interactiorsegemplified for example by the
improvement in aerosol concentrations via CCN datarasition (Saide et al., 2012a) and
the potential improvement in meteorological variabiesAOD data assimilation during dust
storms (Reale et al., 2011, 2014).

Although data assimilation for CCMM is still in itsfancy, results obtained so far suggest
that it is likely that more work in this area wilad to improvements not only for

atmospheric chemistry forecasts, but also for nurakeweather forecasts. If such results are
indeed confirmed in future applications, one cow@éthen that chemical data assimilation
will become more valuable in terms of operationglligations and that more resources,
particularly in terms of data bases, will be allechto it. Furthermore, as computer resources
become increasingly more powerful, global CCMM lgtely to become also more common
and data assimilation in global CCMM could growadingly.

In terms of data assimilation methods, two major getimg branches for data assimilation
are likely to emerge for future operational apglmas: weak constraint 4D-Var with longer
assimilation windows and ensemble 4D-Var in whioliariances are evolved using
ensembles but minimization of the cost functionbgined with a variational approach.

Finally, this review has focused on data assingtatimage assimilation is also an important

field in the geosciences. The assimilation of imagesh as clouds and large plumes (due to
volcanic eruptions or large biomass fires) can plewide notable improvements for short-
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term forecasting (nowcasting). Furthermore, thes®terms of volcanic eruptions, biomass
fires, and sand/dust storms could be better detexiniia image assimilation. This area of
research would complement nicely current ongoingkveaor data assimilation and lead to
better capabilities for CCMM.
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Table 1: Summary of major satellite instruments lier period 2003 to the near future, and
the atmospheric composition species detected Ipetimstruments. The focus is on
tropospheric composition.

Sensor (Satellite) | Measurement Species Reference
Period
SCIAMACHY 2002-2012 N@ SQ, HCHO, CO, Bovensmann et al.,
(ENVISAT) CH,, CO,, AOD, G;, 1999
CHOCHO
OMI (EOS-Aura) 2004- Ng@ SQ, HCHO, AOD, Levelt et al., 2006
03, CHOCHO

GOME-2 2006- NO,, SG, HCHO, AOD, Callies et al., 2000
(METOP-A) 2012- 03, CHOCHO
GOME-2
(METOP-B)
AIRS (EOS-Aqua) | 2002- £SO, CO, CH, CO, Aumann et al.,

2003
MOPITT (EOS- 2000- CO, CH Drummond and
Terra) Mand, 1996
TES (EOS-Aura) 2004- £CO, CH, NH;, CG, Beer et al., 2001
IASI (METOP-A) | 2006- 03, SQ, CO, CH, NHjs, Clerbaux et al.,
IASI (METOP-B) | 2012- NMVOC, NH3z, CO; 2009
MISR (EOS-Terra) | 2000- AOD Diner et al., 2001
MODIS (EOS- 2000- AOD, fires Barnes et al., 1998
Terra) 2002-
MODIS (EOS-
Aqua)
VIIRS (Suomi- 2011- AOD, fires GSFC (2011)
NPP)
POLDER 2004-2013 AOD, aerosol properties Lier and Bach,
(PARASOL) 2008
CALIOP 2006- Aerosol backscatter Winkler et al.,
(CALIPSO) profiles 2003
GOCI (COMS) 2010- AOD Lee et al., 2010
TANSO-FTS 2009- CH, CG, Kuze et al., 2009
(GOSAT)
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Table 2: Selected list of acronyms

AIRS Atmospheric Infrared Sounder

AVHRR Advanced Very High-Resolution Radiometer

CALIOP Cloud-Aerosol Lldar with Orthogonal Polariizan

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfind@atellite Observations

COMS

Communication, Ocean, and Meteorology Satellite

GOCI

Geostationary Ocean Color Imager

IASI Infrared Atmospheric Sounding Interferometer

MISR Multiangle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

MOPITT Measurements Of Pollution In The Troposphere

NPP National Polar-orbiting Partnership

OMI Ozone Monitoring Instrument

PARASOL Polarization & Anisotropy of Reflectances A&tmospheric Sciences
coupled with Observations from a Lidar

SCIAMACHY | SCanning Imaging Absorption SpectroMefar Atmospheric
CHartographY

TES Tropospheric Emission Spectrometer

VIIRS Visible Infrared Imaging Radiometer Suite
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Table 3. Bias and correlation coefficient for conigam with independent satellite

observations of AATSR for the considered regions

Correlation, Correlation, Bias, a priori Bias, a posterio
a priori a posteriori

Africa 0.44 0.47 -0.02 -0.01

Asia 0.41 0.50 -0.07 -0.04

Europe 0.23 0.30 -0.01 -0.005
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Figure captions

Monltorlng Instrument (OMI) on EOS-Aura (Boersmaakt 2011). Top panel: yearly—mean
observation for 2005. Bottom panel: A sum of albetvations available for assimilation on
one day with little cloud cover (30 August 2003)pwing the pixel size (13x24 km at nadlr)
and the overlap between orbits at high latitudes fétrieved cloud fraction is used to fade out
the measurements (white indicates 100% cloud cover). ‘

penod calculated from the CO, U and density fieddshe MACC re-analysis (top) Tlme
series of monthly mean CO (kg/s) transported dveMorthern Pacific through a pane at 180
E (30N-70N, up 300 hPa) (bottom).

by
' |
|

(right).

| \
\ |
Vo
Vot

| Figure4. Bias (1g/m?) (top) and temporal correlation (bottom) of forasaf®r NoDA (Ieft)

and EnKF (right) simulations against AIRnow obsé¢iovgs for the period 28 June — 6 July\

2012. Black dots denote negative correlations. Y

| Figures. Results when assimilating satellite retrieved A@Rr the SW US for the first lQ
days of May 2010. Top-left panel shows time serfesadel and observed mean Pibver
AQS sites in California and Nevada. Top-right pastelws mean Pptas a function of
forecast hour for the same sites. Bottom panels siA@®D time series at two sites for
AERONET data (500 nm), operational MODIS (550 nm),SANNR (550 nm), the non-
assimilated forecast and the two assimilation fasex (500 nm). Modified from Saide et al.

(2013).

| Figure7. Fractional error reductions for 550 nm AOD @DQ,@,QWAUQSU Om exponent _
(rows) from non-assimilated to assimilation of Terttievals computed using Aqua
retrievals (e.g., errors for a ~3 hour forecasgufes in the left column assimilate only
MODIS 550 nm AOD while the ones in the right colunssienilate MODIS 550, 660, 870,

and 1240 nm over ocean and only 550 nm over landlifidd from Saide et al. (2013).

southeastern Pacific. The bottom panel shows timessef GOES and Nforecasts after
assimilation of the MODIS retrieval on the top plan&he time series are presented as box
and whisker plots computed over the rectangle onagrdeft panel; center solid lines indicate
the median, circles represent the mean, boxes iedigger and lower quartiles, and whiskers
show the upper and lower deciles. Time series aerstluring day time for 2 days after
assimilation.

(bottom) AOD, mean over 2008 model output fully colited with MODIS.
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Assimilation of SCIAMACHY
data in the CMAQ CTM for a
simulation of Q
concentrations over the Madr|
Region, Spain. Top (a):
data from SCIAMANCHY on
01/08/2007. Middle (b):
Monthly-average @
concentrations simulated with
MM5-CMAQ prior to data
assimilation, August 2007.
Bottom (c): Linear regression
between simulated and
measured @concentrations
averaged over all Madrid
monitoring stations for the
week of 1 to 8 August 2007.
Model simulation results were
obtained with assimilation of
SCIAMACHY data. The
correlation coefficient is 0.75%.
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2364 | Figure P. Monthly emissions of OC in Asia, total 2008, uniMt PM montht. - { Supprimé : 1
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Monitoring Instrument (OMI) on EOS-Aura (Boersmaakt 2011). Top panel: yearly-mean,
observation for 2005. Bottom panel: A sum of albetvations available for assimilation on
one day with little cloud cover (30 August 2008)pwing the pixel size (13x24 km at nadir) \\
and the overlap between orbits at high latitudes fétrieved cloud fraction is used to fade

out the measurements (white indicates 100% clowdrgo
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Figure 1. Assimilation of
SCIAMACHY data in the
CMAQ CTM for a simulation
of O3 concentrations over the
Madrid Region, Spain. Top (a):
O; data from SCIAMANCHY
on 01/08/2007. Middle (b):
Monthly-average @
concentrations simulated with
MM5-CMAQ prior to data
assimilation, August 2007.
Bottom (c): Linear regression
between simulated and
measured @concentrations
averaged over all Madrid
monitoring stations for the
week of 1 to 8 August 2007.
Model simulation results were
obtained with assimilation of
SCIAMACHY data. The
correlation coefficient is 0.75!:].
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days of May 2010. Top-left panel shows time serfeaadel and observed mean RPdbver

AQS sites in California and Nevada. Top-right pastedws mean Pptas a function of
forecast hour for the same sites. Bottom panels si®D time series at two sites for

AERONET data (500 nm), operational MODIS (550 nmA3 NNR (550 nm), the non-

assimilated forecast and the two assimilation fasex (500 nm). Modified from Saide et al.

(2013).
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2551  Top panels show observed and model maps of cloudednmpmber [N, #/cn?] for the

2552  southeastern Pacific. The bottom panel shows timessef GOES and iNforecasts after

2553  assimilation of the MODIS retrieval on the top plan&he time series are presented as box
2554  and whisker plots computed over the rectangle onaddeft panel; center solid lines

2555 indicate the median, circles represent the meargsimdicate upper and lower quartiles, and
2556  whiskers show the upper and lower deciles. Timeesanie shown during day time for 2 days
2557  after assimilation.
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San Jose and Pérez Carmaiio of the Technical UitywefdMadrid (UPM) also performed a
multi-species data assimilation with a CTM. In theork, NG, and Q data from SCanning
Imaging Absorption SpectroMeter for Atmospheric @dgraphY (SCIAMACHY) were
assimilated into a simulation conducted with then@anity Multiscale Air Quality CTM
(CMAQ) of the U.S. Environmental Protection AgenSCIAMACHY makes measurements
in both nadir and limb modes, which allows the satiton of stratospheric{rom the total
O3 column measurements to obtain troposphegicdumn estimates. Figure 1a shows an
example of @ SCIAMACHY data for 01/08/2007. CMAQ was used hereombination
with MM5 for the meteorological fields and appliedtwo domains covering the Iberian
Peninsula with a grid spacing of 27 km and there¢négion of Spain including the Madrid
metropolitan area with a grid spacing of 9 km. Atieal resolution with 23 layers was used
in both MM5 and CMAQ. Results are presented her¢hfe episode of 1 to 8 August 2007
(see Figure 1b).

The vertical profiles of N@and Q were assimilated into the CMAQ simulation for each
grid cell using the Cressman (1959) method. A campa of model simulation results with
and without data assimilation showed a slight improent from 0.751 to 0.754 in the
correlation between the hourly model simulatiorultssand @ concentrations available from
the surface monitoring network. The results showartant differences in the Madrid region
with the most important ones (up to 2§/m°) being located over downtown Madrid and
typically decreasing away from the city. A scattexgram of the simulated and measurgd O
concentrations averaged over the 22 monitoringostaibf the Madrid area is shown in
Figure 1c.



