

1 **Sources and fluxes of organic nitrogen in precipitation**
2 **over the southern East/Japan Sea: Potential impacts on**
3 **marine productivity**

4

5 **G. Yan and G. Kim**

6 School of Earth & Environmental Sciences/RIO, Seoul National University, Seoul 151-747,
7 South Korea

8 Correspondence to: G. Kim (gkim@snu.ac.kr)

9

10 **Abstract**

11 We measured total dissolved reactive nitrogen in precipitation samples collected at Uljin, a
12 Korean coastal site upwind of the southern East/Japan Sea (EJS), selected as a representative
13 study site of atmospheric deposition over the northwestern Pacific margin. NO_3^- was found to
14 be the most abundant nitrogen species, followed by NH_4^+ and dissolved organic nitrogen
15 (DON). Air mass back trajectory analysis revealed that a significant fraction of the inorganic
16 nitrogen (NO_3^- and NH_4^+) originated from mainland Asia, whereas the DON was primarily
17 derived from Korea. Using varimax-rotated factor analysis in combination with major ions as
18 tracers, agricultural activities in Korea were identified as the primary sources of DON in these
19 samples. In addition, a positive correlation was found at Uljin between the size of organic
20 fraction in total reactive nitrogen and nitrogen to carbon atomic ratio in organic matter. This
21 correlation has also been observed at other locations worldwide, implying the utilization
22 potential of atmospheric organic nitrogen might increase with its proportion in total nitrogen.
23 Combining wet deposition measurements in this study with literature values for dry
24 deposition observed at a remote island in the EJS, the total atmospheric depositional flux of
25 reactive nitrogen was estimated to be $115 \text{ mmol N m}^{-2} \text{ yr}^{-1}$ over the southern EJS. Our study
26 sheds new light on the potentially significant contribution to primary productivity of the
27 northwestern Pacific Ocean by atmospheric deposition of nitrogen, especially the organic
28 fraction.

29

1 1 Introduction

2 The availability of reactive nitrogen (or fixed nitrogen), including all nitrogen species except
3 N_2 , is often a determinant controlling the primary production in terrestrial and marine
4 ecosystems (Vitousek and Howarth, 1991). However, since the mid-1800s the global nitrogen
5 cycle has been significantly perturbed by excessive production of reactive nitrogen through
6 human activities (at a similar rate to natural biological fixation) (Dentener et al., 2006;
7 Galloway et al., 2008; Fowler et al., 2013), such as the Haber–Bosch process, fossil fuel
8 combustion, and legume cultivation (Grubber and Galloway, 2008). A fraction of the reactive
9 nitrogen is transported from continents to oceans via rivers, groundwater, and the atmosphere,
10 exerting a significant influence on marine ecology and biogeochemistry (e.g., acidification,
11 eutrophication, and oxygen depletion) (Seitzinger et al., 2005; Paytan et al., 2006; Doney et
12 al., 2007; Krishnamurthy et al., 2010). In particular, the supply of external or “new” nitrogen
13 to marine systems through atmospheric deposition can be substantial in some marginal and
14 coastal seas (Beddig et al., 1997; Castro and Driscoll, 2002; de Leeuw et al., 2003; Uno et al.,
15 2007, Zhang et al., 2010), as well as the open ocean (Galloway et al., 2004; Duce et al.,
16 2008).

17 The East/Japan Sea (EJS) is a semi-closed marginal sea (covering an area of $1.01 \times 10^6 \text{ km}^2$)
18 surrounded by Russia, Korea, and Japan, which has been suggested to be an ideal site to
19 investigate the impacts of atmospheric nutrient deposition on the northwestern Pacific Ocean
20 (Kim and Kim, 2013). It is a highly productive region where nitrogen is severely limited
21 (Talley et al., 2004; Jenkins, 2008; Kim and Kim, 2013). Therefore, the supply of reactive
22 nitrogen is particularly important in determining the primary productivity of this marine
23 ecosystem. In addition to the upwelling of deep waters and N_2 fixation by diazotrophs within
24 the ocean, land-derived reactive nitrogen (which is largely anthropogenic) can also contribute
25 to the nitrogen required for primary production in the EJS. Since no major rivers flow into the
26 EJS from the surrounding coasts, the fluvial inputs of nitrogen can be ignored (Kang et al.,
27 2009; Yoo and Park, 2009). Nevertheless, terrigenous nitrogen transported via the atmosphere
28 may reach the open ocean, contributing to the nitrogen inventory across the EJS. In fact, the
29 mid- and long-range atmospheric transport of dust and pollutants from land to the
30 northwestern Pacific Ocean (including the EJS) has been shown to be remarkable (Jo et al.,
31 2007; Kang et al., 2009; Kang et al., 2011, Kim et al., 2011a; Zhang et al., 2011), particularly
32 since this region is located downwind of East Asia, a densely populated area characterized by

1 intensive emissions of aerosols and gases by anthropogenic and natural processes(Cooke et al.,
2 1999; Richter et al., 2005; Kim, 2008). Recently, Kim et al. (2011a) suggested the significant
3 atmospheric nitrogen deposition has switched extensive parts of the northwestern Pacific
4 Ocean (including the EJS) from being nitrogen-limited to phosphorous-limited during the last
5 three decades. A follow-up study by Kim et al. (2013), however, attributed this increasing
6 trend in relative abundance of nitrogen over phosphorous to nutrient transport by ocean
7 currents. Nevertheless, Kim and Kim (2013) argued that this oceanic region would remain
8 nitrogen-limited for the next 100 years, based on observational data and model predictions.
9 The debate aroused here signifies the importance of an unambiguous budget of nitrogen in the
10 EJS, especially the fraction transported by the atmosphere, which is poorly constrained due to
11 a lack of data (Zhang et al., 2011).

12 The atmospheric deposition of nitrogen over the southern EJS was previously evaluated by
13 Kang et al. (2010) using dry deposition observations combined with estimates for wet
14 deposition. However, their approximation on nitrogen deposition was an underestimate, since
15 it did not take into account organic nitrogen, which is a globally significant constituent of
16 total reactive nitrogen in the atmosphere (ca. 30% on average) (Jickells, 2006; Cape et al.,
17 2011; Cornell, 2011). Indeed, the growing weight of evidence from global observational
18 studies suggests that a considerable fraction of deposited nitrogen is in organic form (Cornell,
19 2011, and references therein), which is able to stimulate the productivity of bacteria and
20 phytoplankton in the receiving marine ecosystems (Seitzinger and Sanders, 1999, Bronk et al.,
21 2007). In particular, atmospheric organic nitrogen deposition was shown to be especially high
22 over Asia (Cornell, 2011; Ito et al., 2014), implying it is imperative to incorporate this
23 fraction into the budget of atmospheric nitrogen input to the EJS. Nevertheless, although
24 quantitatively significant, the sources, chemical compositions, and bioavailability of
25 atmospheric organic nitrogen are largely unknown (Mace et al., 2003a; Duce et al., 2008;
26 Jickells et al., 2013), hindering our understanding of its biogeochemical role in the receiving
27 ecosystems.

28 In order to provide better constraints on atmospheric nitrogen deposition to the EJS, we
29 analyzed reactive nitrogen species (inorganic and organic) and major ions in precipitation
30 samples collected at a coastal site upwind of this marginal sea. The emphasis of the present
31 work was placed on organic nitrogen, which has been ignored in previous study and is
32 generally poorly characterized in comparison with its inorganic counterpart. With the aid of

1 air mass back trajectory and factor analysis, the geographical and emission sources of organic
2 nitrogen were explored. Moreover, using the calculated total nitrogen depositional flux, the
3 fraction of new primary production of the EJS which is potentially supported by atmospheric
4 nitrogen deposition was estimated.

5 **2 Materials and methods**

6 **2.1 Study site and sample collection**

7 The sampling campaign was conducted at Uljin (37°N, 129.4°E), which is located on the
8 eastern coastline of Korea (Fig. 1). It is a rural area with a small population of around 52,000
9 inhabiting an area of 989.06 km². Precipitation samples (N = 33) were collected on an event
10 basis on the rooftop of a four-storey research facility (ca. 16 m above the ground) at the
11 Korean Institute of Ocean Science and Technology (East Sea branch) from February 2011 to
12 January 2012. A home-made sampler was employed, which is composed of a polypropylene
13 funnel (dia. 250 mm) connected by Tygon FEP-lined tubing to a high-density polyethylene
14 (HDPE) bottle placed in a covered bucket. Prior to use, the apparatus was thoroughly cleaned
15 using dilute hydrochloric acid and rinsed with deionized (Milli-Q) water (18.2 MΩ cm). The
16 sampler was manually deployed at the onset of the precipitation events and retrieved after
17 cessation. The impacts of dry deposition were minimized by restricting the exposure time to
18 dry conditions (i.e., <1 h for daytime events or ≤5 h for overnight events). After collection,
19 the samples were transferred to a laminar flow clean room and filtered through pre-combusted
20 (5 h at 500°C) Whatman 0.7 µm GF/F glass fiber filters. Subsamples for dissolved organic
21 carbon (DOC) analysis were placed in 20 mL pre-muffled glass ampoules (5 h at 500 °C) and
22 chemically preserved with 6 M pure hydrochloric acid, followed by fire sealing. Aliquots for
23 dissolved nitrogen species and major ions were stored in pre-cleaned HDPE bottles and kept
24 frozen at –20 °C until analysis.

25 **2.2 Analytical methods**

26 Total dissolved nitrogen (TDN) and DOC concentrations were measured simultaneously by
27 high temperature catalytic oxidation (HTCO) using a Shimadzu TOC/TN analyzer (Model
28 TOC-V_{CPH/CPN}) equipped with an ASI-V auto-sampler. The acidified samples (pH < 2 using
29 HCl) were sparged with carbon dioxide free carrier gas (UHP oxygen) at a flow rate of 150
30 ml/min for 2 min to remove inorganic carbon. Then the samples were injected into a
31 combustion column packed with Pt coated alumina beads heated to 720 °C. The carbon

1 dioxide and nitrogen monoxide evolving from combustion were detected by a non-dispersive
2 infrared detector and a chemiluminescence detector, respectively. Major ions including
3 inorganic nitrogen species were determined by high performance liquid chromatography
4 using a Waters 2695 HPLC system equipped with a Waters 432 conductivity detector. Cation
5 analysis (i.e., Na^+ , K^+ , Ca^{2+} , Mg^{2+} , and NH_4^+) was carried out using a mobile phase consisting
6 of $3.0 \text{ mmol L}^{-1} \text{ HNO}_3$ and $0.1 \text{ mmol L}^{-1} \text{ EDTA}$, and a Waters IC-Pak C M/D column ($150 \times$
7 $3.9 \text{ mm, } 5 \text{ } \mu\text{m}$). Anions (i.e., Cl^- , NO_3^- , NO_2^- , and SO_4^{2-}) were analyzed using a
8 borate/gluconate eluent containing 12% acetonitrile and a Waters IC-Pak A HR column ($75 \times$
9 $4.6 \text{ mm, } 6 \text{ } \mu\text{m}$). The column was maintained at 30°C and the detector at 35°C . Dissolved
10 organic nitrogen (DON) was quantified as the difference between TDN and dissolved
11 inorganic nitrogen (DIN), which is the sum of NO_3^- and NH_4^+ (NO_2^- in our samples was
12 always below the detection limit and is therefore not included). This approach could yield
13 large uncertainties for DON, especially when DIN dominates the nitrogen pool, as being
14 suggested by previous studies (Cornell et al., 2003; Lesworth et al., 2010). The average
15 relative standard deviations associated with replicate measurements of standards were 4%,
16 2%, and 3% for TDN, NO_3^- , and NH_4^+ , respectively. Based on error propagation using
17 uncertainties of each analyte, the precision of DON was estimated to be less than 18% when
18 DON% is greater than 20%, 18–60% when DON% varies from 5% to 20%, and greater than
19 100% when DON% is less than 5% (e.g., 18/3/2011, 30/5/2011, and 16/8/2011). The limits of
20 detection calculated as three times the standard deviation of blanks are $0.5 \text{ } \mu\text{mol L}^{-1}$ for NH_4^+ ,
21 $0.2 \text{ } \mu\text{mol L}^{-1}$ for NO_3^- , $0.2 \text{ } \mu\text{mol L}^{-1}$ for NO_2^- , $1.1 \text{ } \mu\text{mol L}^{-1}$ for TDN, and $5.0 \text{ } \mu\text{mol L}^{-1}$ for
22 DOC, respectively. The detection limit for DON was estimated to be $1 \text{ } \mu\text{mol L}^{-1}$, (Cornell et
23 al., 1998; Zhang et al., 2001; Walker et al., 2012), by using detection limits of relevant
24 nitrogen species following error propagation rules for standard deviations. Certified reference
25 materials (from University of Miami for DOC and TDN, and from National Research Council
26 of Canada for DIN) were employed during the sample analysis to confirm the data quality.

1 **3 Results and discussion**

2 **3.1 Distributions of dissolved reactive nitrogen in precipitation**

3 **3.1.1 Concentrations and speciation**

4 The concentrations of dissolved reactive nitrogen showed considerable variations during the
5 sampling year, ranging from 2 to 428 $\mu\text{mol L}^{-1}$ for NO_3^- , from 1 to 139 $\mu\text{mol L}^{-1}$ for NH_4^+ ,
6 and from below the detection limit to 145 $\mu\text{mol L}^{-1}$ for DON, respectively (Table 1 and Fig.
7 2). Rather similar temporal trends were found for all three nitrogen species, with high
8 abundances observed in spring and fall (Fig. 2). Aside from the source strength, the
9 distribution pattern displayed here is likely to be influenced by several factors specific to this
10 location. The precipitation amount might be one of the most important factors, because the
11 variation patterns of these nitrogen species are in general accordance with the precipitation
12 regime of Korea (particularly high in summer), in a manner that the concentrations decrease
13 as the precipitation depth increases. In addition, the wind systems (or air mass origins) of
14 Korea may also contribute significantly to the observed temporal trend (see section 3.1.2.).
15 The northwesterly prevails in most time of the year, transporting large amounts of
16 terrestrially-derived nitrogen from inland Korea and the Asian continent (especially China) to
17 Uljin and the EJS. In contrast, the prevailing wind over the summer blows from the Pacific
18 Ocean, carrying precipitation associated with relatively pristine air masses.

19 Overall, NO_3^- is the most abundant nitrogen species with an annual average concentration
20 (AVG) of 58 $\mu\text{mol L}^{-1}$ and a volume-weighted average (VWA) (Topol et al., 1985) of 20
21 $\mu\text{mol L}^{-1}$, followed by NH_4^+ (AVG = 39 $\mu\text{mol L}^{-1}$; VWA = 14 $\mu\text{mol L}^{-1}$) and DON (AVG =
22 30 $\mu\text{mol L}^{-1}$; VWA = 13 $\mu\text{mol L}^{-1}$) (Table 1). The reactive nitrogen concentrations in
23 precipitation observed in this study are generally at the upper end of the range of literature
24 values reported for coastal sites globally over the past decade (Keene et al., 2002; Luo et al.,
25 2002; Mace et al., 2003b; Kieber et al., 2005; Calderon et al., 2007; Violaki et al., 2010; Cape
26 et al., 2011; Zamora et al., 2011). However, much higher concentrations have been found in
27 rainwater over coastal areas of China, which were attributed to significant pollutions
28 associated with the rapid economic development (Chen et al., 2011; Zhang et al., 2012). The
29 relatively high levels of reactive nitrogen in the atmosphere at Uljin probably can be linked to
30 the anthropogenic emissions of nitrogen in East Asia including Korea and subsequent
31 atmospheric transport.

1 In contrast to observations from regions characterized by intensive agricultural practices (e.g.,
2 China and midwestern USA) (Fahey et al., 1999; Zhang et al., 2008), NO_3^- showed higher
3 abundances with respect to NH_4^+ , implying that combustion processes contributed more
4 significantly than agricultural activities to reactive inorganic nitrogen in our samples
5 (Galloway et al., 2004; Spokes and Jickells, 2005; Lee et al., 2012). A few exceptions were
6 observed in April, May, October, and November (Fig. 2), when concentrations of NH_4^+ were
7 similar to or higher than those of NO_3^- . These exceptions can be attributed to enhanced
8 agricultural activities (i.e., application of N fertilizer and livestock manure to the farmland)
9 during these time periods in Korea (Lee et al., 2012). Although being a minor component,
10 DON made up a considerable fraction (28% on average) of the TDN in our samples,
11 approximating to that contributed by NH_4^+ (30% on average). In comparison with NO_3^- and
12 NH_4^+ , the relative proportion of DON showed remarkable variations from sample to sample,
13 which were found to be relatively lower from April to August (Fig. 2). The seasonality and air
14 mass origins might contribute to the pattern observed here to some extent. However, the
15 major factors that control the proportion of organic nitrogen in atmospheric reactive nitrogen
16 pool remain rather ambiguous (Cornell, 2011) (see section 3.3.1 for further discussion).

17 **3.1.2 Potential source regions based on air mass origins**

18 Atmospheric deposition plays an important role in global biogeochemical cycles, as it allows
19 chemical substances to be transported to locations remote from their source regions over
20 relatively short time scales. Therefore, the reactive nitrogen found in our samples was
21 presumably subject to influences of air masses originating from distant areas. In order to
22 explore the potential source regions and to assess the contributions by long-range atmospheric
23 transport, the provenances of the air masses corresponding to each of the precipitation events
24 were determined based on air mass back trajectory (AMBT) analysis, using the GDAS dataset
25 and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (version
26 4) developed at the Air Resources Laboratory of NOAA (Draxler and Hess, 1998). Apart
27 from the nearby continental regions (i.e., the Korean Peninsula), reactive nitrogen could be
28 transported over long distance to Uljin from mainland Asia as well as the surrounding oceans,
29 as observed for other airborne species in Korea (Kim et al., 2005; Kim, 2008). Accordingly,
30 based on calculated AMBTs, air mass origins were sorted into three groups: Korean Peninsula
31 (Type I), Asian Continent (Type II), and Pacific Ocean (Type III) (Fig. 3). A similar
32 classification regime can be found in our previous study (Yan and Kim, 2012), in which

1 detailed descriptions for each group were presented. It is noteworthy that the reactive nitrogen
2 in each group does not exclusively come from the corresponding source region identified. For
3 example, the precipitation events associated with long-range transported air masses inevitably
4 receive some contributions from local sources.

5 The distribution patterns of VWA concentrations for the three groups were consistent for
6 NO_3^- and NH_4^+ , with the highest concentrations observed in Type II and the lowest in Type III
7 (Fig. 4). As these two nitrogen species are known to be predominantly anthropogenic, this
8 pattern is consistent with the air-mass origins proposed for these groups. Type II air masses
9 also account for the largest fraction (47%) of sampled precipitation events, suggesting a
10 significant contribution to inorganic nitrogen at Uljin from the highly industrialized and
11 urbanized areas of East Asia, especially eastern and northeastern China (Richter et al., 2005;
12 Jeong and Park, 2008; Lee et al., 2014). The lowest VWA DON concentration was also
13 observed for air masses derived from surrounding marine areas (Type III), implying that
14 marine biogenic emission is an insignificant source for DON at Uljin. In contrast to the
15 pattern seen for inorganic nitrogen, the highest abundances of DON were associated with
16 Type I air masses. It is thereby inferred that the emission sources within Korea play a
17 dominant role in supplying organic nitrogen to the atmosphere at our location. Despite the
18 fact that the largest concentrations of atmospheric organic nitrogen worldwide have been
19 observed in China (Cornell, 2011), Type II air masses at Uljin were characterized by
20 relatively lower DON abundances than Type I. This could be partially due to the inclusion of
21 clean marine air masses and/or the loss of the labile portion of organic nitrogen during the
22 long-range transport. In addition, the highest proportion of DON (32%) was also observed in
23 Type I air masses, confirming the importance of organic nitrogen from emissions in Korea.

24 **3.2 Source identification for DON**

25 Whilst the major sources for inorganic reactive nitrogen in the atmosphere are known to be
26 anthropogenic (Galloway et al., 2004; Fowler et al., 2013), the primary origins of the organic
27 fraction remain poorly characterized (Cape et al., 2011; Cornell, 2011). Previous studies have
28 suggested that atmospheric organic nitrogen may stem from a variety of natural and
29 anthropogenic processes, including resuspension of soil dust, marine emissions, biomass
30 burning, agricultural activities, industrial production, and fossil fuel combustion (Jickells et
31 al., 2013 and references therein). In this study, attempts were made to identify the major

1 sources of DON in our precipitation samples, on the basis of factor analysis in combination
2 with major ions as tracers. The results obtained from varimax-rotated factor analysis suggest
3 that most variations (91%) in the nine variables included can be accounted for by three
4 extracted factors (eigenvalue > 1) (Table 2).

5 The first factor is characterized by high loadings of Na^+ , K^+ , Mg^{2+} , Cl^- , and SO_4^{2-} . The
6 enrichment factors (EFs) for these ions (except Na^+) with respect to average seawater
7 composition were calculated using sodium as a reference element (Keene et al., 1986). The
8 EFs fall in between 1 and 10 (Table 3), suggesting these chemical species are primarily
9 derived from marine emissions (Poissant et al., 1994). This interpretation is confirmed by the
10 significant positive correlations between the abundances of these ions and Na^+ ($R^2 = 0.86$ for
11 K^+ , 0.93 for Mg^{2+} , 0.98 for Cl^- , and 0.51 for SO_4^{2-}). Therefore, this factor probably can be
12 attributed to the contributions from marine sources. The largest fraction of variance (50%)
13 (Table 2) in the nine variables explained by this factor is consistent with the marine feature of
14 Uljin. The second factor has high loadings of NO_3^- and Ca^{2+} , which are generally considered
15 to be of different origins. In addition, moderate loadings are shown for NH_4^+ and SO_4^{2-} on this
16 factor. In the atmosphere, NO_3^- is mainly derived from NO_2 emitted by fossil fuel combustion
17 (Dentener et al., 2006), whereas Ca^{2+} comes from both crustal and marine sources (Gabriel et
18 al., 2002). The relatively high EF value (19.17) indicates that crustal contribution is more
19 important for Ca^{2+} in our samples. This factor is therefore likely to represent a mixed source
20 involving inputs from combustion processes as well as soil resuspension. The association of
21 these ions (i.e., Ca^{2+} , NH_4^+ , NO_3^- , and SO_4^{2-}) has frequently been observed in factor analysis
22 conducted in previous studies (Hu et al., 2003; Wai et al., 2008; Song and Gao, 2009), and is
23 attributed to the neutralization of acidic anions by alkaline cations in precipitation (Wai et al.,
24 2008). Since the loadings of DON on these two factors are rather low, the contributions from
25 marine emissions, soil dust, and combustion-related processes to DON are expected to be less
26 significant.

27 The third factor is associated with a moderate loading of NH_4^+ and a high loading of DON.
28 NH_4^+ in precipitation is derived from its gaseous precursor NH_3 , which is primarily released
29 during agricultural activities such as animal husbandry and the application of synthetic
30 fertilizer (Galloway et al., 2004). These activities are also known to be the origins of several
31 important atmospheric organic nitrogen species (e.g., urea) (Cornell et al., 1998). According
32 to statistical data from International Fertilizer Industry Association (2013), a considerable

1 fraction of the nitrogen fertilizer consumed in Korea each year is in the form of urea. In
2 addition, Lee et al. (2012) found NH_4^+ and DON in precipitation collected in a southern
3 Korean city were mainly derived from fertilizer use and livestock excretion in surrounding
4 rural areas using nitrogen isotopic analysis. This suggests that agricultural practices conducted
5 within Korea could be a crucial source of NH_3 and organic nitrogen in the atmosphere, which
6 is in line with the conclusions drawn from AMBT analysis that the Korean Peninsula
7 contributes significantly to NH_4^+ and DON in our samples (Fig. 4). Taken together, it is
8 concluded that the primary fraction of DON in our samples originated from agricultural
9 activities in Korea, albeit contributions from other anthropogenic and biogenic sources cannot
10 be ruled out.

11 **3.3 Biogeochemical impacts of atmospheric nitrogen deposition on the EJS**

12 **3.3.1 Seasonal variations in nitrogen fluxes and DON proportions**

13 The wet depositional fluxes (defined as the product of concentration and precipitation depth)
14 of the three reactive nitrogen species showed remarkable seasonal variations, with relatively
15 high values observed in spring and fall for NO_3^- and NH_4^+ , and in fall and winter for DON,
16 respectively (Fig. 5). While being a minor component in spring and summer, DON made up
17 the largest fraction of the TDN fluxes in fall and winter. Precipitation amount is discounted as
18 the cause of this temporal trend as it shows no correlation with the variations in nitrogen
19 fluxes. The seasonal variations in nitrogen fluxes are mainly attributed to the strength of
20 emission sources located in Korea as well as other distant regions (see the discussion in
21 Section 3.1.2).

22 In addition, the relative distributions of DON, TDN, and DOC fluxes were found to be in
23 good agreement over all seasons (Fig. 5), implying there might exist an inherent link among
24 these species. A statistically significant positive correlation ($R^2 = 0.64$) was observed between
25 the proportion of organic nitrogen (ON) in total reactive nitrogen (TN) and ON to organic
26 carbon (OC) atomic ratio in dissolved organic matter in precipitation (Fig. 6). This study is
27 the first to point out this correlation, but analysis of a larger dataset consisting of the available
28 literature values and data obtained at our site and another location in Korea (Seoul) shows an
29 even stronger correlation ($R^2 = 0.72$) (Fig. 6). The correlation found in this dataset is
30 significant, since the data incorporate rainwater and aerosol samples collected worldwide
31 from geographically varied locations (e.g., urban vs. rural, terrestrial vs. marine, and

1 anthropogenic vs. pristine) (Jordan et al., 1995; Eklund and McDowell, 1997; Campbell et al.,
2 2000; Kieber et al., 2005; Miyazaki et al., 2010; Gioda et al., 2011). Therefore, the trend
3 observed herein is likely not simply coincidental, but universal.

4 Variations in the ON/OC ratio of airborne organic matter could reflect source variations, as
5 being suggested by previous studies (Neff et al., 2002; Cape et al., 2011; Kanakidou et al.,
6 2012). Specifically, the highest ON/OC ratios were observed for aerosols (total concentrations
7 for aerosol sizes between 0.39 and 10.0 μm) over the remote North Pacific Ocean by
8 Miyazaki et al. (2010), who also proposed that aerosols subject to increased biological
9 influences were associated with higher ON/OC ratios. In contrast, the lowest ON/OC ratios
10 were mostly found for dissolved organic matter in precipitation samples collected in Seoul,
11 where atmospheric organic matter is mainly derived from anthropogenic processes, especially
12 fossil-fuel combustion (Yan and Kim, 2012). Atmospheric processing may also affect ON/OC
13 ratios, as being seen in different types of aerosols that undergo various physical and
14 photochemical atmospheric processes (Sun et al., 2011). In addition, it has been suggested
15 that organic nitrogen tends to be less effectively removed from the atmosphere than inorganic
16 nitrogen (Cornell, 2011 and references therein). Therefore, higher proportions of organic
17 nitrogen might be linked to higher contributions from aged aerosols characterized by elevated
18 ON/OC ratios (Sun et al., 2011).

19 The organic fraction of total reactive nitrogen in the atmosphere is highly variable in time and
20 space, lacking a consistent trend on a global scale (Cornell, 2011; Jickells et al., 2013). In
21 addition, the bioavailability of atmospheric organic nitrogen is poorly constrained (Duce et al.,
22 2008; Kanakidou et al., 2012). Therefore, despite the fact that organic nitrogen is increasingly
23 recognized as a significant factor in the atmospheric deposition of reactive nitrogen, its
24 biogeochemical impact on receiving ecosystems (especially the ocean) remains unclear. The
25 empirical relationship found in the present study between ON/TN and ON/OC (Fig. 6)
26 suggests that the utilization potential (evaluated using ON/OC ratios) of atmospheric
27 deposited organic nitrogen by marine biota is positively correlated with its proportion in total
28 atmospheric reactive nitrogen. Thus, atmospheric deposition of organic nitrogen may play a
29 vital role in supplying bioavailable nitrogen to the surface layer of marine systems, especially
30 when inorganic nitrogen is less abundant, as is the case for the northwestern Pacific Ocean.

3.3.2 Annual depositional fluxes of TDN at Uljin and over the EJS

The annual wet depositional flux is calculated to be 28 mmol N m⁻² yr⁻¹ for NO₃⁻, 20 mmol N m⁻² yr⁻¹ for NH₄⁺, and 19 mmol N m⁻² yr⁻¹ for DON, respectively (Table 4). Our estimates of inorganic nitrogen fluxes are higher than those obtained for dry deposition by Kang et al. (2010) at Donghae (Fig. 1), a coastal site adjacent to our sampling location. This is mainly due to the higher scavenging efficiency of airborne species by wet deposition comparing with dry deposition. In addition, the increasing anthropogenic emissions in East Asia may also contribute to this discrepancy (Galloway et al., 2004), as the sampling campaign by Kang et al. (2010) was conducted a decade ago. However, the fluxes of NO₃⁻ for both deposition modes were similar, which can be attributed to the effective dry scavenging of NO₃⁻ associated with coarse mode aerosols (Nakamura et al., 2005; Matsumoto et al., 2009). In general, atmospheric depositional fluxes of reactive nitrogen are higher in the coastal areas of East Asia (including the western coast of the EJS) than at other coastal locations around the world (Table 4). This is in agreement with the distribution of oceanic regions characterized by the most intensive atmospheric nitrogen deposition on a global basis (Dentener et al., 2006; Krishnamurthy et al., 2007). The considerable contributions by DON to atmospheric TDN fluxes (7–50%) at these coastal/marine sites suggest the significant role of DON in supplying nitrogen to surface waters of the ocean.

Since our sampling site is located on the eastern coast of Korea, potential losses during transport must be considered when using the results of this study as a proxy for atmospheric depositional fluxes of reactive nitrogen over the remote EJS. Oki Island (Japan), an island located downwind of Uljin in the eastern section of the southern EJS (Fig. 1), is mainly influenced by air masses originating from China and Korea, and shows a similar wet depositional flux of inorganic nitrogen to the values found in this study (45 mmol N m⁻² yr⁻¹, Japanese Acid Deposition Survey) (Kitayama et al., 2012). This implies that losses between the coast of Korea and offshore areas are small for wet depositional fluxes, as being shown for wet depositions of nitrogen over the eastern China Sea (Zhang et al., 2010). Therefore, our estimated atmospheric wet deposition flux can be extrapolated to the offshore region in the southern EJS. By taking the dry depositional flux of inorganic nitrogen observed at Oki Island (35 mmol N m⁻² yr⁻¹ for gases plus particles in 2003–2008) (Endo et al., 2011), the total (wet plus dry) inorganic nitrogen flux was calculated to be 83 mmol N m⁻² yr⁻¹. Further, if assuming the same DON/TDN ratio in dry deposition as in wet deposition, the total

1 atmospheric depositional flux of reactive nitrogen (organic plus inorganic) amounts to 115
2 $\text{mmol N m}^{-2} \text{ yr}^{-1}$ over the southern EJS.

3 **3.3.3 Biogeochemical implications**

4 Considering the prevailing westerly winds and the anthropogenic origins of these atmospheric
5 reactive nitrogen species, their atmospheric deposition represents a source of new rather than
6 recycled oceanic nitrogen to the EJS. Therefore, the atmospheric deposition of this nitrogen
7 could presumably fuel the new primary production of this marine ecosystem. While inorganic
8 nitrogen is readily utilized by marine biota, organic nitrogen is only partially available. The
9 bioavailability of atmospheric organic nitrogen is largely determined by its chemical
10 composition. Specifically, most reduced organic nitrogen species (e.g., amino acids, urea, and
11 amines) can be taken up by marine microorganisms on very short timescales, whereas the
12 organic nitrogen associated with humic-like substances is probably refractory (Bronk et al.,
13 2007). Incubation experiments estimate the bioavailability of atmospheric organic nitrogen to
14 be 20–80% (Peierls and Paerl, 1997; Seitzinger and Sanders, 1999; Wedyan et al., 2007).
15 Although not explicitly measured for the DON in our samples, a significant fraction is
16 expected to be bioavailable, since it is mostly derived from agricultural activities that are
17 known to produce large amounts of atmospheric reduced organic nitrogen, especially urea.
18 Moreover, the severely N-limited conditions of the EJS are likely to promote the utilization of
19 atmospheric organic nitrogen. Assuming a bioavailability of 20–80% for DON and 100% for
20 inorganic nitrogen, atmospheric deposition can supply approximately $89\text{--}109 \text{ mmol m}^{-2} \text{ yr}^{-1}$
21 of reactive nitrogen to support primary production in the southern EJS.

22 Using a Redfield C/N ratio of 6.625, this nitrogen flux can be converted to $7.1\text{--}8.7 \text{ g C m}^{-2} \text{ yr}^{-1}$ fixed by marine phytoplankton. This would account for 12–14% of new primary
23 production in the southern EJS annually, which is taken to be $62 \text{ g C m}^{-2} \text{ yr}^{-1}$ based on the
24 particulate organic carbon export fluxes reported by Hahm and Kim (2001) (using tritium and
25 helium isotopes) and Kim et al. (2011) (using $^{234}\text{Th}/^{238}\text{U}$ disequilibrium). Our estimate is
26 higher than those obtained by Onitsuka et al. (2009) using a coupled physical-ecosystem
27 model (6–12% for the southern EJS from 1996 to 2003) and by Kang et al. (2010) based on
28 field observations (ca. 10%) (Table 5). These discrepancies can be ascribed to the inclusion of
29 organic nitrogen in our study as well as a potential increase of nitrogen deposition resulting
30 from growing anthropogenic emissions over the past decade. On a global scale, the value

1 obtained for the southern EJS is generally at the higher level, comparing with other oceanic
2 regions (Table 5). Taking into account that the southern EJS (especially the Ulleung Basin) is
3 highly productive (Hyun et al., 2009), the estimate obtained in this study is rather remarkable.
4 Such high estimates can be explained by the exceptionally high levels of atmospheric
5 anthropogenic nitrogen deposition over the coastal seas downwind of East Asia
6 (Krishnamurthy et al., 2007; Duce et al., 2008). Moreover, the contribution of atmospheric
7 reactive nitrogen to biological productivity in the southern EJS is expected to be more
8 pronounced during summer to fall, when the upward flux of nitrogen from the deep layer is
9 suppressed by water column stratification (Kang et al., 2010; Kim et al., 2011b).

10 The results presented here might be subject to large uncertainties, such as those associated
11 with spatial variations of depositional fluxes across the EJS, the proportions of organic
12 nitrogen in dry deposition, and the bioavailability of organic nitrogen in the atmosphere.
13 Nevertheless, our estimation evidently suggests atmospheric transport represents a significant
14 source of external nitrogen input to the southern EJS. Previous studies indicate that N_2
15 fixation is insignificant to the nitrogen budget of this marine system (Yanagi, 2002; Kang et
16 al., 2010). Therefore, in addition to nitrogen upwelled from below the euphotic zone and
17 transported by the Tsushima Warm Current through the Korea/Tsushima Strait (Onitsuka et
18 al., 2007; Yoo and Park, 2009), atmospheric deposition could sustain a considerable fraction
19 of the nitrogen demand by primary productivity in the southern EJS, especially the offshore
20 region. Moreover, the elevated nitrogen deposition may modify the nutrient limitation regime
21 (Duce et al., 2008) of the EJS and thus impact the phytoplankton community structure therein
22 (Krishnamurthy et al., 2007; Galloway et al., 2008). Due to climate warming, El Niño is
23 likely to become more prevalent in future, which could result in suppression of the nutricline
24 and thus restriction of nutrient upwelling from deep waters (Mackey et al., 2010). Conversely,
25 the anthropogenic nitrogen deposition over the northwestern Pacific Ocean is predicted to
26 increase in the near future (Duce et al., 2008). Consequently, atmospheric deposition of
27 nitrogen is expected to play an increasingly important role in the biogeochemistry of the
28 northwestern Pacific Ocean and the EJS over the coming decades. Special attentions should
29 be given to the organic fraction, since little is known with respect to its sources and
30 distributions, rendering the regulation of emission as well as the prediction on its future trend
31 rather difficult.

1 **4 Conclusions**

2 Dissolved reactive nitrogen species were investigated in precipitation samples collected over
3 a one-year period (2011–2012) at Uljin, a coastal site upwind of the southern EJS. Inorganic
4 nitrogen was found to be mostly derived from the Asian Continent (particularly eastern and
5 northeastern China) through long-range atmospheric transport, whereas the primary sources
6 of DON are distributed within Korea. Furthermore, agricultural activities (e.g., animal
7 husbandry and the application of synthetic fertilizer) were identified as the major emission
8 source for DON. A positive correlation was found between the proportion of organic nitrogen
9 in total reactive nitrogen and nitrogen to carbon ratio in organic matter, implying that the
10 biogeochemical impact of organic nitrogen deposition is especially significant (i.e., more
11 bioavailable) when inorganic nitrogen is less abundant. By combining the wet depositional
12 flux recorded at Uljin with the dry depositional flux reported for Oki Island, the total (wet
13 plus dry) atmospheric deposition of reactive inorganic and organic nitrogen to the southern
14 EJS was estimated to be $115 \text{ mmol N m}^{-2} \text{ yr}^{-1}$. This flux could potentially support 12–14% of
15 the new primary production of the southern EJS on an annual basis, of which up to 3.4%
16 would be attributed to organic nitrogen. The results presented in this paper emphasize the
17 significant impact of atmospheric nitrogen deposition on the biogeochemistry of the EJS and
18 by extension the northwestern Pacific Ocean. The development of this impact in response to
19 climate change and growing anthropogenic emissions should be routinely monitored,
20 especially in the case of organic nitrogen. More extensive information might be required to
21 better understand the biogeochemical role of atmospheric nitrogen deposition, such as
22 microorganisms community structure, the availability of other limiting nutrients (e.g., Fe and
23 P), and the quantity and bioavailability of the insoluble fraction of organic nitrogen.

24 **Acknowledgements**

25 This research was supported by the Korea Meteorological Administration Research and
26 Development Program under Grant CATER 2012-7170 and the National Research
27 Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-
28 2013R1A2A1A05004343). Ge Yan was partially supported by the BK21 scholarship through
29 School of Earth and Environmental Sciences, Seoul National University, Korea. We are
30 grateful to Yonghwa Oh and Jeonghyun Kim for their assistance with sample collection. We
31 also acknowledge the NOAA Air Resources Laboratory for provision of HYSPLIT transport
32 model.

1 **References**

2 Beddig, S., Brockmann, U., Dannecker, W., Korner, D., Pohlmann, T., Puls, W., Radach, G.,
3 Rebers, A., Rick, H. J., Schatzmann, M., Schlunzen, H., and Schulz, M.: Nitrogen fluxes
4 in the German Bight, *Mar. Pollut. Bull.*, 34, 382–394, 1997.

5 Bronk, D. A., See, J. H., Bradley, P., and Killberg, L.: DON as a source of bioavailable
6 nitrogen for phytoplankton, *Biogeosciences*, 4, 283–296, 2007.

7 Calderon, S. M., Poor, N. D., and Campbell, S. W.: Estimation of the particle and gas
8 scavenging contributions to wet deposition of organic nitrogen, *Atmos. Environ.*, 41,
9 4281–4290, 2007.

10 Campbell, J. L., Hornbeck, J. W., McDowell, W. H., Buso, D. C., Shanley, J. B., and Likens,
11 G. E.: Dissolved organic nitrogen budgets for upland, forested ecosystems in New
12 England, *Biogeochemistry*, 49, 123–142, 2000.

13 Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in the atmosphere
14 – Where does it come from? A review of sources and methods, *Atmos. Res.*, 102, 30–48,
15 2011.

16 Castro, M. S. and Driscoll, C. T.: Atmospheric nitrogen deposition to estuaries in the mid-
17 Atlantic and northeastern United States, *Environ. Sci. Technol.*, 36, 3242–3249, 2002.

18 Chen, H. Y., Chen, L. D., Chiang, Z. Y., Hung, C. C., Lin, F. J., Chou, W. C., Gong, G. C.,
19 and Wen, L. S.: Size fractionation and molecular composition of water-soluble inorganic
20 and organic nitrogen in aerosols of a coastal environment, *J. Geophys. Res.-Atmos.*, 115,
21 D22307, doi: 10.1029/2010JD014157, 2010.

22 Chen, N. W., Hong, H. S., Huang, Q. J., and Wu, J. Z.: Atmospheric nitrogen deposition and
23 its long-term dynamics in a southeast China coastal area, *J. Environ. Manage.*, 92, 1663–
24 1667, 2011.

25 Cooke, W. F., Lioussse, C., Cachier, H., and Feichter, J.: Construction of a $1^\circ \times 1^\circ$ fossil fuel
26 emission data set for carbonaceous aerosol and implementation and radiative impact in the
27 ECHAM4 model, *J. Geophys. Res.-Atmos.*, 104, 22137–22162, doi:
28 10.1029/1999JD900187, 1999.

29 Cornell, S. E., Jickells, T. D., and Thornton, C. A.: Urea in rainwater and atmospheric
30 aerosol, *Atmos. Environ.*, 32, 1903–1910, 1998.

1 Cornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P., and Duce, R.A.: Organic nitrogen
2 deposition on land and coastal environments: a review of methods and data, *Atmos.*
3 *Environ.*, 37, 2173–2191, 2003.

4 Cornell, S. E.: Atmospheric nitrogen deposition: Revisiting the question of the importance of
5 the organic component, *Environ. Pollut.*, 159, 2214–2222, 2011.

6 de Leeuw, G., Spokes, L., Jickells, T., Skjoth, C. A., Hertel, O., Vignati, E., Tamm, S.,
7 Schulz, M., Sorensen, L. L., Pedersen, B., Klein, L., and Schlunzen, K. H.: Atmospheric
8 nitrogen inputs into the North Sea: effect on productivity, *Cont. Shelf Res.*, 23, 1743–
9 1755, 2003.

10 Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D.,
11 Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S.,
12 Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T.,
13 Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V.,
14 Muller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz,
15 M., Sudo, K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and
16 global scales: A multimodel evaluation, *Global Biogeochem. Cy.*, 20, Gb4003, doi:
17 10.1029/2005GB002672, 2006.

18 Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J. F., and
19 Rasch, P. J.: Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean
20 acidification and the inorganic carbon system, *P. Natl. Acad. Sci. USA*, 104, 14580–
21 14585, 2007.

22 Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for
23 trajectories, dispersion and deposition, *Aust. Meteorol. Mag.*, 47, 295–308, 1998.

24 Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S.,
25 Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuyper, M. M.,
26 Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S.,
27 Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L.,
28 Uematsu, M., Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric
29 anthropogenic nitrogen on the open ocean, *Science*, 320, 893–897, 2008.

30 Eklund, T. J., McDowell, W. H., and Pringle, C. M.: Seasonal variation of tropical
31 precipitation chemistry: La Selva, Costa Rica, *Atmos. Environ.*, 31, 3903–3910, 1997.

1 Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.:
2 Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET
3 sites in Japan from 2003 to 2008, *Atmos. Environ.*, 45, 1259–1267, 2011.

4 Fahey, T. J., Williams, C. J., Rooney-Varga, J. N., Cleveland, C. C., Postek, K. M., Smith, S.
5 D., and Bouldin, D. R.: Nitrogen deposition in and around an intensive agricultural district
6 in central New York, *J. Environ. Qual.*, 28, 1585–1600, 1999.

7 Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J.,
8 Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F.,
9 Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M.: The global
10 nitrogen cycle in the twenty-first century, *Phil. Trans. R. Soc. B*, 368, 20130164, available
11 at: <http://dx.doi.org/10.1098/rstb.2013.0164/>, 2013.

12 Gabriel, R., Mayol-Bracero, O. L., and Andreae, M. O.: Chemical characterization of
13 submicron aerosol particles collected over the Indian Ocean, *J. Geophys. Res.-Atmos.*,
14 107, 8005, doi: 10.1029/2000JD000034, 2002.

15 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S.
16 P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A.
17 F., Porter, J. H., Townsend, A. R., and Vorusmarty, C. J.: Nitrogen cycles: past, present,
18 and future, *Biogeochemistry*, 70, 153–226, 2004.

19 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R.,
20 Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen
21 cycle: Recent trends, questions, and potential solutions, *Science*, 320, 889–892, 2008.

22 Gao, Y. A.: Atmospheric nitrogen deposition to Barnegat Bay, *Atmos. Environ.*, 36, 5783–
23 5794, 2002.

24 Gioda, A., Reyes-Rodriguez, G. J., Santos-Figueroa, G., Collett, J. L., Decesari, S., Ramos,
25 M. D. K. V., Netto, H. J. C. B., Neto, F. R. D., and Mayol-Bracero, O. L.: Speciation of
26 water-soluble inorganic, organic, and total nitrogen in a background marine environment:
27 Cloud water, rainwater, and aerosol particles, *J. Geophys. Res.-Atmos.*, 116, D05203, doi:
28 10.1029/2010JD015010, 2011.

29 Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle,
30 *Nature*, 451, 293–296, 2008.

1 Hahm, D. and Kim, K.-R.: An estimation of the new production in the southern East Sea
2 using helium isotopes, *J. Korean Soc. Oceanogr.*, 36(1), 19–26, 2001.

3 He, J., Balasubramanian, R., Burger, D. F., Hicks, K., Kuylestierna, J. C. I., and Palani, S.:
4 Dry and wet atmospheric deposition of nitrogen and phosphorus in Singapore, *Atmos.*
5 *Environ.*, 45, 2760–2768, 2011.

6 Herut, B., Krom, M. D., Pan, G., and Mortimer, R.: Atmospheric input of nitrogen and
7 phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact, *Limnol.*
8 *Oceanogr.*, 44, 1683–1692, 1999.

9 Hu, G. P., Balasubramanian, R., and Wu, C. D.: Chemical characterization of rainwater at
10 Singapore, *Chemosphere*, 51, 747–755, 2003.

11 Huang, Y. L., Lu, X. X., and Chen, K.: Wet atmospheric deposition of nitrogen: 20 years
12 measurement in Shenzhen City, China, *Environ. Monit. Assess.*, 185, 113–122, 2013.

13 Hyun, J. H., Kim, D., Shin, C. W., Noh, J. H., Yang, E. J., Mok, J. S., Kim, S. H., Kim, H. C.,
14 and Yoo, S.: Enhanced phytoplankton and bacterioplankton production coupled to coastal
15 upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea, *Aquat. Microb. Ecol.*,
16 54, 45–54, 2009.

17 Ito, A., Lin, G., and Penner, J. E.: Reconciling modeled and observed atmospheric deposition
18 of soluble organic nitrogen at coastal locations, *Global Biogeochem. Cy.*, 28, 617–630,
19 doi:10.1002/2013GB004721, 2014.

20 Jenkins, W. J.: The biogeochemical consequences of changing ventilation in the Japan/East
21 Sea, *Mar. Chem.*, 108, 137–147, 2008.

22 Jeong, J. I. and Park, S. U.: Interaction of gaseous pollutants with aerosols in Asia during
23 March 2002, *Sci. Total Environ.*, 392, 262–276, 2008.

24 Jickells, T.: The role of air-sea exchange in the marine nitrogen cycle, *Biogeosciences*, 3,
25 271–280, 2006.

26 Jickells, T., Baker, A. R., Cape, J. N., Cornell, S. E., and Nemitz, E.: The cycling of organic
27 nitrogen through the atmosphere, *Phil. Trans. R. Soc. B*, 368, 20130115, available at:
28 <http://dx.doi.org/10.1098/rstb.2013.0115/>, 2013.

1 Jo, C. O., Lee, J. Y., Park, K. A., Kim, Y. H., and Kim, K. R.: Asian dust initiated early
2 spring bloom in the northern East/Japan Sea, *Geophys. Res. Lett.*, 34, L05602, doi:
3 10.1029/2006GL027395, 2007.

4 Jordan, T. E., Correll, D. L., Weller, D. E., and Goff, N. M.: Temporal Variation in
5 Precipitation Chemistry on the Shore of the Chesapeake Bay, *Water Air Soil Poll.*, 83,
6 263–284, 1995.

7 Kanakidou, M., Duce, R. A., Prospero, J. M., Baker, A. R., Benitez-Nelson, C., Dentener, F.
8 J., Hunter, K. A., Liss, P. S., Mahowald, N., Okin, G. S., Sarin, M., Tsagirisidis, K.,
9 Uematsu, M., Zamora, L. M., and Zhu, T.: Atmospheric fluxes of organic N and P to the
10 global ocean, *Global Biogeochem. Cy.*, 26, Gb3026, doi: 10.1029/2011GB004277, 2012.

11 Kang, J., Choi, M. S., and Lee, C. B.: Atmospheric metal and phosphorus concentrations,
12 inputs, and their biogeochemical significances in the Japan/East Sea, *Sci. Total Environ.*,
13 407, 2270–2284, 2009.

14 Kang, J., Cho, B. C., and Lee, C. B.: Atmospheric transport of water-soluble ions (NO_3^- , NH_4^+
15 and nss-SO_4^{2-}) to the southern East Sea (Sea of Japan), *Sci. Total. Environ.*, 408, 2369–
16 2377, 2010.

17 Kang, J., Choi, M. S., Yi, H. I., Song, Y. H., Lee, D., and Cho, J. H.: A five-year observation
18 of atmospheric metals on Ulleung Island in the East/Japan Sea: Temporal variability and
19 source identification, *Atmos. Environ.*, 45, 4252–4262, 2011.

20 Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea-Salt Corrections
21 and Interpretation of Constituent Ratios in Marine Precipitation, *J. Geophys. Res.-Atmos.*,
22 91, 6647–6658, doi: 10.1029/JD091ID06P06647, 1986.

23 Keene, W. C., Montag, J. A., Maben, J. R., Southwell, M., Leonard, J., Church, T. M.,
24 Moody, J. L., and Galloway, J. N.: Organic nitrogen in precipitation over Eastern North
25 America, *Atmos. Environ.*, 36, 4529–4540, 2002.

26 Kieber, R. J., Long, M. S., and Willey, J. D.: Factors influencing nitrogen speciation in
27 coastal rainwater, *J. Atmos. Chem.*, 52, 81–99, 2005.

28 Kim, D., Choi, M. S., Oh, H. Y., Song, Y. H., Noh, J. H., and Kim, K. H.: Seasonal export
29 fluxes of particulate organic carbon from Th-234/U-238 disequilibrium measurements in

1 the Ulleung Basin (Tsushima Basin) of the East Sea (Sea of Japan), *J. Oceanogr.*, 67, 577–
2 588, 2011b.

3 Kim, J., Yoon, S. C., Jefferson, A., Zahorowski, W., and Kang, C. H.: Air mass
4 characterization and source region analysis for the Gosan super-site, Korea, during the
5 ACE-Asia 2001 field campaign, *Atmos. Environ.*, 39, 6513–6523, 2005.

6 Kim, J.: Transport routes and source regions of Asian dust observed in Korea during the past
7 40 years (1965–2004), *Atmos. Environ.*, 42, 4778–4789, 2008.

8 Kim, S. K., Chang, K. I., Kim, B., and Cho, Y. K.: Contribution of ocean current to the
9 increase in N abundance in the Northwestern Pacific marginal seas, *Geophys. Res. Lett.*,
10 40, 143–148, doi: 10.1029/2012GL054545, 2013.

11 Kim, T. H. and Kim, G.: Changes in seawater N : P ratios in the northwestern Pacific Ocean
12 in response to increasing atmospheric N deposition: Results from the East (Japan) Sea,
13 *Limnol. Oceanogr.*, 58, 1907–1914, 2013.

14 Kim, T. W., Lee, K., Najjar, R. G., Jeong, H. D., and Jeong, H. J.: Increasing N Abundance in
15 the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition, *Science*, 334,
16 505–509, 2011a.

17 Kim, T. W., Lee, K., Duce, R., and Liss, P.: Impact of atmospheric nitrogen deposition on
18 phytoplankton productivity in the South China Sea, *Geophys. Res. Lett.*, 41, 3156–3162,
19 doi: 10.1002/2014GL059665, 2014a.

20 Kim, T. W., Najjar, R. G., and Lee, K.: Influence of precipitation events on phytoplankton
21 biomass in coastal waters of the eastern United States, *Global Biogeochem. Cy.*, 28, 1–13,
22 doi: 10.1002/2013GB004712, 2014b.

23 Kitayama, K., Seto, S., Sato, M., and Hara, H.: Increases of wet deposition at remote sites in
24 Japan from 1991 to 2009, *J. Atmos. Chem.*, 69, 33–46, 2012.

25 Krishnamurthy, A., Moore, J. K., Zender, C. S., and Luo, C.: Effects of atmospheric inorganic
26 nitrogen deposition on ocean biogeochemistry, *J. Geophys. Res.-Biogeo.*, 112, G02019,
27 doi: 10.1029/2006JG000334, 2007.

28 Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C., and Zender, C. S.: Impacts of
29 atmospheric nutrient inputs on marine biogeochemistry, *J. Geophys. Res.-Biogeo.*, 115,
30 G01006, doi: 10.1029/2009JG001115, 2010.

1 Lee, H. J., Kim, S. W., Brioude, J., Cooper, O. R., Frost, G. J., Kim, C. H., Park, R. J.,
2 Trainer, M., and Woo, J. H.: Transport of NO_x in East Asia identified by satellite and in
3 situ measurements and Lagrangian particle dispersion model simulations, *J. Geophys.*
4 *Res.-Atmos.*, 119, 2574–2596, doi: 10.1002/2013JD021185, 2014.

5 Lee, K. S., Lee, D. S., Lim, S. S., Kwak, J. H., Jeon, B. J., Lee, S. I., Lee, S. M., and Choi, W.
6 J.: Nitrogen isotope ratios of dissolved organic nitrogen in wet precipitation in a
7 metropolis surrounded by agricultural areas in southern Korea, *Agr. Ecosyst. Environ.*,
8 159, 161–169, 2012.

9 Lesworth, T., Baker, A. R., and Jickells, T.: Aerosol organic nitrogen over the remote Atlantic
10 Ocean, *Atmos. Environ.*, 44, 1887–1893, 2010.

11 Loyer-Pilot, M. D., Klein, C., and Martin, J. M.: Major inorganic elements in north western
12 Mediterranean aerosols: Concentrations and sources, Estimation of dry deposition of
13 soluble inorganic nitrogen, in: *Water Pollution Reports, Rep. 20*, edited by: Martin, J. M.
14 and Barth, H., Eur. Union, Brussels, 271–277, 1993.

15 Luo, Y. Z., Yang, X. S., Carley, R. J., and Perkins, C.: Atmospheric deposition of nitrogen
16 along the Connecticut coastline of Long Island Sound: a decade of measurements, *Atmos.*
17 *Environ.*, 36, 4517–4528, 2002.

18 Lv, X., Song, J., Yuan, H., Li, X., Zhan, T., Li, N., and Gao, X.: Distribution characteristics
19 of nitrogen in the southern Yellow sea surface sediments and nitrogen functions in
20 biogeochemical cycling, *Geol. Rev.*, 51(2), 212–218, 2005.

21 Mace, K. A., Duce, R. A., and Tindale, N. W.: Organic nitrogen in rain and aerosol at Cape
22 Grim, Tasmania, Australia, *J. Geophys. Res.-Atmos.*, 108, 4338, doi:
23 10.1029/2002JD003051, 2003a.

24 Mace, K. A., Kubilay, N., and Duce, R. A.: Organic nitrogen in rain and aerosol in the eastern
25 Mediterranean atmosphere: An association with atmospheric dust, *J. Geophys. Res.-*
26 *Atmos.*, 108, 4320, doi: 10.1029/2002JD002997, 2003b.

27 Mackey, K. R. M., van Dijken, G. L., Mazloom, S., Erhardt, A. M., Ryan, J., Arrigo, K. R.,
28 and Paytan, A.: Influence of atmospheric nutrients on primary productivity in a coastal
29 upwelling region, *Global Biogeochem. Cy.*, 24, Gb4027, doi: 10.1029/2009GB003737,
30 2010.

1 Matsumoto, K., Minami, H., Uyama, Y., and Uematsu, M.: Size partitioning of particulate
2 inorganic nitrogen species between the fine and coarse mode ranges and its implication to
3 their deposition on the surface ocean, *Atmos. Environ.*, 43, 4259–4265, 2009.

4 Miyazaki, Y., Kawamura, K., and Sawano, M.: Size distributions of organic nitrogen and
5 carbon in remote marine aerosols: Evidence of marine biological origin based on their
6 isotopic ratios, *Geophys. Res. Lett.*, 37, L06803, doi: 10.1029/2010GL042483, 2010.

7 Nakamura, T., Matsumoto, K., and Uematsu, M.: Chemical characteristics of aerosols
8 transported from Asia to the East China Sea: an evaluation of anthropogenic combined
9 nitrogen deposition in autumn, *Atmos. Environ.*, 39, 1749–1758, 2005.

10 Neff, J. C., Holland, E. A., Dentener, F. J., McDowell, W. H., and Russell, K. M.: The origin,
11 composition and rates of organic nitrogen deposition: A missing piece of the nitrogen
12 cycle?, *Biogeochemistry*, 57, 99–136, 2002.

13 Neuer, S., Torres-Padron, M. E., Gelado-Caballero, M. D., Rueda, M. J., Hernandez-Brito, J.,
14 Davenport, R., and Wefer, G.: Dust deposition pulses to the eastern subtropical North
15 Atlantic gyre: Does ocean's biogeochemistry respond?, *Global Biogeochem. Cy.*, 18,
16 Gb4020, doi: 10.1029/2004GB002228, 2004.

17 Onitsuka, G., Yanagi, T., and Yoon, J. H.: A numerical study on nutrient sources in the
18 surface layer of the Japan Sea using a coupled physical-ecosystem model, *J. Geophys.*
19 *Res.-Oceans*, 112, C05042, doi: 10.1029/2006JC003981, 2007.

20 Onitsuka, G., Uno, I., Yanagi, T., and Yoon, J. H.: Modeling the effects of atmospheric
21 nitrogen input on biological production in the Japan Sea, *J. Oceanogr.*, 65, 433–438, 2009.

22 Paytan, A., Shellenbarger, G. G., Street, J. H., Gonreea, M. E., Davis, K., Young, M. B., and
23 Moore, W. S.: Submarine groundwater discharge: An important source of new inorganic
24 nitrogen to coral reef ecosystems, *Limnol. Oceanogr.*, 51, 343–348, 2006.

25 Peierls, B. L. and Paerl, H. W.: Bioavailability of atmospheric organic nitrogen deposition to
26 coastal phytoplankton, *Limnol. Oceanogr.*, 42, 1819–1823, 1997.

27 Poissant, L., Schmit, J. P., and Beron, P.: Trace Inorganic Elements in Rainfall in the
28 Montreal Island, *Atmos. Environ.*, 28, 339–346, 1994.

1 Qi, J. H., Shi, J. H., Gao, H. W., and Sun, Z.: Atmospheric dry and wet deposition of nitrogen
2 species and its implication for primary productivity in coastal region of the Yellow Sea,
3 China, *Atmos. Environ.*, 81, 600–608, 2013.

4 Richter, A., Burrows, J. P., Nuss, H., Granier, C., and Niemeier, U.: Increase in tropospheric
5 nitrogen dioxide over China observed from space, *Nature*, 437, 129–132, 2005.

6 Rolff, C., Elmgren, R., and Voss, M.: Deposition of nitrogen and phosphorus on the Baltic
7 Sea: seasonal patterns and nitrogen isotope composition, *Biogeosciences*, 5, 1657–1667,
8 2008.

9 Seitzinger, S. P. and Sanders, R. W.: Atmospheric inputs of dissolved organic nitrogen
10 stimulate estuarine bacteria and phytoplankton, *Limnol. Oceanogr.*, 44, 721–730, 1999.

11 Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman, A. F.:
12 Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An
13 overview of Global Nutrient Export from Watersheds (NEWS) models and their
14 application, *Global Biogeochem. Cy.*, 19, Gb4s01, doi: 10.1029/2005GB002606, 2005.

15 Song, F. and Gao, Y.: Chemical characteristics of precipitation at metropolitan Newark in the
16 US East Coast, *Atmos. Environ.*, 43, 4903–4913, 2009.

17 Spokes, L. J. and Jickells, T. D.: Is the atmosphere really an important source of reactive
18 nitrogen to coastal waters?, *Cont. Shelf Res.*, 25, 2022–2035, 2005.

19 Srinivas, B. and Sarin, M. M.: Atmospheric deposition of N, P and Fe to the Northern Indian
20 Ocean: Implications to C- and N-fixation, *Sci. Total Environ.*, 456, 104–114, 2013.

21 Statistics Databases. International Fertilizer Industry Association (IFA):
22 <http://www.fertilizer.org/>, last access: 1 August 2014.

23 Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M.,
24 Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization of the sources
25 and processes of organic and inorganic aerosols in New York city with a high-resolution
26 time-of-flight aerosol mass spectrometer, *Atmos. Chem. Phys.*, 11, 1581–1602, 2011.

27 Talley, L. D., Tishchenko, P., Luchin, V., Nedashkovskiy, A., Sagalaev, S., Kang, D. J.,
28 Warner, M., and Min, D. H.: Atlas of Japan (East) Sea hydrographic properties in
29 summer, 1999, *Prog. Oceanogr.*, 61, 277–348, 2004.

1 Topol, L., Levon, M., Flanagan, J., Schwall, R., and Jackson, A.: Quality Assurance
2 Management for Precipitation Systems, EPA/600/4-82-042a, Environmental Protection
3 Agency, Research Triangle Park, North Carolina, 1985.

4 Uno, I., Uematsu, M., Hara, Y., He, Y. J., Ohara, T., Mori, A., Kamaya, T., Murano, K.,
5 Sadanaga, Y., and Bandow, H.: Numerical study of the atmospheric input of
6 anthropogenic total nitrate to the marginal seas in the western North Pacific region,
7 Geophys. Res. Lett., 34, L17817, doi: 10.1029/2007GL030338, 2007.

8 Violaki, K., Zarbas, P., and Mihalopoulos, N.: Long-term measurements of dissolved organic
9 nitrogen (DON) in atmospheric deposition in the Eastern Mediterranean: Fluxes, origin
10 and biogeochemical implications, Mar. Chem., 120, 179–186, 2010.

11 Vitousek, P. M. and Howarth, R. W.: Nitrogen Limitation on Land and in the Sea – How Can
12 It Occur?, Biogeochemistry, 13, 87–115, 1991.

13 Wai, K. M., Lin, N. H., Wang, S. H., and Dokiya, Y.: Rainwater chemistry at a high-altitude
14 station, Mt. Lulin, Taiwan: comparison with a background station, Mt. Fuji, J. Geophys.
15 Res.-Atmos., 113, D06305, doi: 10.1029/2006JD008248, 2008.

16 Walker, J. T., Dombek, T. L., Green, L. A., Gartman, N., and Lehmann, C. M. B.: Stability of
17 organic nitrogen in NADP wet deposition samples, Atmo. Environ., 60, 573–582, 2012.

18 Wedyan, M. A., Fandi, K. G., and Al-Rousan, S.: Bioavailability of atmospheric dissolved
19 organic nitrogen in the marine aerosols over the Gulf of Aqaba, Australian Journal Basic
20 and Applied Sciences, 1(3), 208–212, 2007.

21 Yan, G. and Kim, G.: Dissolved organic carbon in the precipitation of Seoul, Korea:
22 Implications for global wet depositional flux of fossil-fuel derived organic carbon, Atmos.
23 Environ., 59, 117–124, 2012.

24 Yanagi, T.: Water, salt, phosphorus and nitrogen budgets of the Japan Sea, J. Oceanogr., 58,
25 797–804, 2002.

26 Yoo, S. and Park, J.: Why is the southwest the most productive region of the East Sea/Sea of
27 Japan?, J. Marine Syst., 78, 301–315, 2009.

28 Zamora, L. M., Prospero, J. M., and Hansell, D. A.: Organic nitrogen in aerosols and
29 precipitation at Barbados and Miami: Implications regarding sources, transport and

1 deposition to the western subtropical North Atlantic, *J. Geophys. Res.-Atmos.*, 116,
2 D20309, doi: 10.1029/2011JD015660, 2011.

3 Zhang, J., Zhang, G. S., Bi, Y. F., and Liu, S. M.: Nitrogen species in rainwater and aerosols
4 of the Yellow and East China seas: Effects of the East Asian monsoon and anthropogenic
5 emissions and relevance for the NW Pacific Ocean, *Global Biogeochem. Cy.*, 25, Gb3020,
6 doi: 10.1029/2010GB003896, 2011.

7 Zhang, Q. and Anastasio, C.: Chemistry of fog waters in California's Central Valley – Part 3:
8 concentrations and speciation of organic and inorganic nitrogen, *Atmos. Environ.*, 35,
9 5629–5643, 2001.

10 Zhang, Y., Zheng, L. X., Liu, X. J., Jickells, T., Cape, J. N., Goulding, K., Fangmeier, A., and
11 Zhang, F. S.: Evidence for organic N deposition and its anthropogenic sources in China,
12 *Atmos. Environ.*, 42, 1035–1041, 2008.

13 Zhang, Y., Yu, Q., Ma, W. C., and Chen, L. M.: Atmospheric deposition of inorganic nitrogen
14 to the eastern China seas and its implications to marine biogeochemistry, *J. Geophys.
15 Res.-Atmos.*, 115, D00k10, doi: 10.1029/2009JD012814, 2010.

16 Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lu, S. H., Zheng, L. X., Bai, Z. C., Cai, G. Y., and
17 Zhang, F. S.: Atmospheric organic nitrogen deposition in China, *Atmos. Environ.*, 46,
18 195–204, 2012.

19

20

21

22

23

24

25

26

27

28

1 **Table 1.** Statistical summary of concentrations of dissolved chemical species in precipitation
 2 analyzed in this study (unit: $\mu\text{mol L}^{-1}$).

	NO_3^-	NH_4^+	ON	Na^+	K^+	Mg^{2+}	Ca^{2+}	Cl^-	SO_4^{2-}	OC
Min.	2	1	BD ^a	8	2	2	7	13	4	9
1 st quartile	12	5	7	55	8	7	18	82	23	61
Median	31	24	13	138	15	28	46	206	58	156
3 rd quartile	74	34	40	900	25	108	68	1580	117	296
Max.	428	139	145	2930	69	337	259	3780	215	849
Mean	58	39	30	635	21	76	57	894	83	219
VWA ^b	20	14	13	430	13	47	25	578	43	97

3 ^a Below detection limit.

4 ^b Volume-weighted average.

5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

1 **Table 2.** Varimax-rotated principal factor matrix.^a

	Factor 1	Factor 2	Factor 3
NO ₃ ⁻	-0.12	0.94	0.25
NH ₄ ⁺	-0.12	0.59	0.46
ON	0.20	0.27	0.93
Na ⁺	0.98	-0.05	0.10
K ⁺	0.97	0.12	0.10
Mg ²⁺	0.99	0.02	0.02
Ca ²⁺	0.22	0.95	0.09
Cl ⁻	0.99	-0.03	0.07
SO ₄ ²⁻	0.75	0.45	0.26
Eigenvalue	4.53	2.44	1.21
% Variance	50.35	27.09	13.47

2

3 ^aThe software package used for principal factor analysis is SPSS 16.0.

4 Factor loadings exceeding 0.7 are shown in bold.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 **Table 3.** Enrichment factors of major ions in precipitation at Uljin relative to seawater.

	K^+ / Na^+	Mg^{2+} / Na^+	Ca^{2+} / Na^+	Cl^- / Na^+	SO_4^{2-} / Na^+
Ratios in seawater	0.022	0.227	0.044	1.160	0.121
Ratios in precipitation	0.124	0.298	0.844	1.384	0.847
EF ^a	5.64	1.31	19.17	1.19	7.00

2 ^a The enrichment factor for a given ionic species X is calculated using the following equation:

3
$$EF = [X/Na^+]_{\text{precipitation}} / [X/Na^+]_{\text{seawater}}$$

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

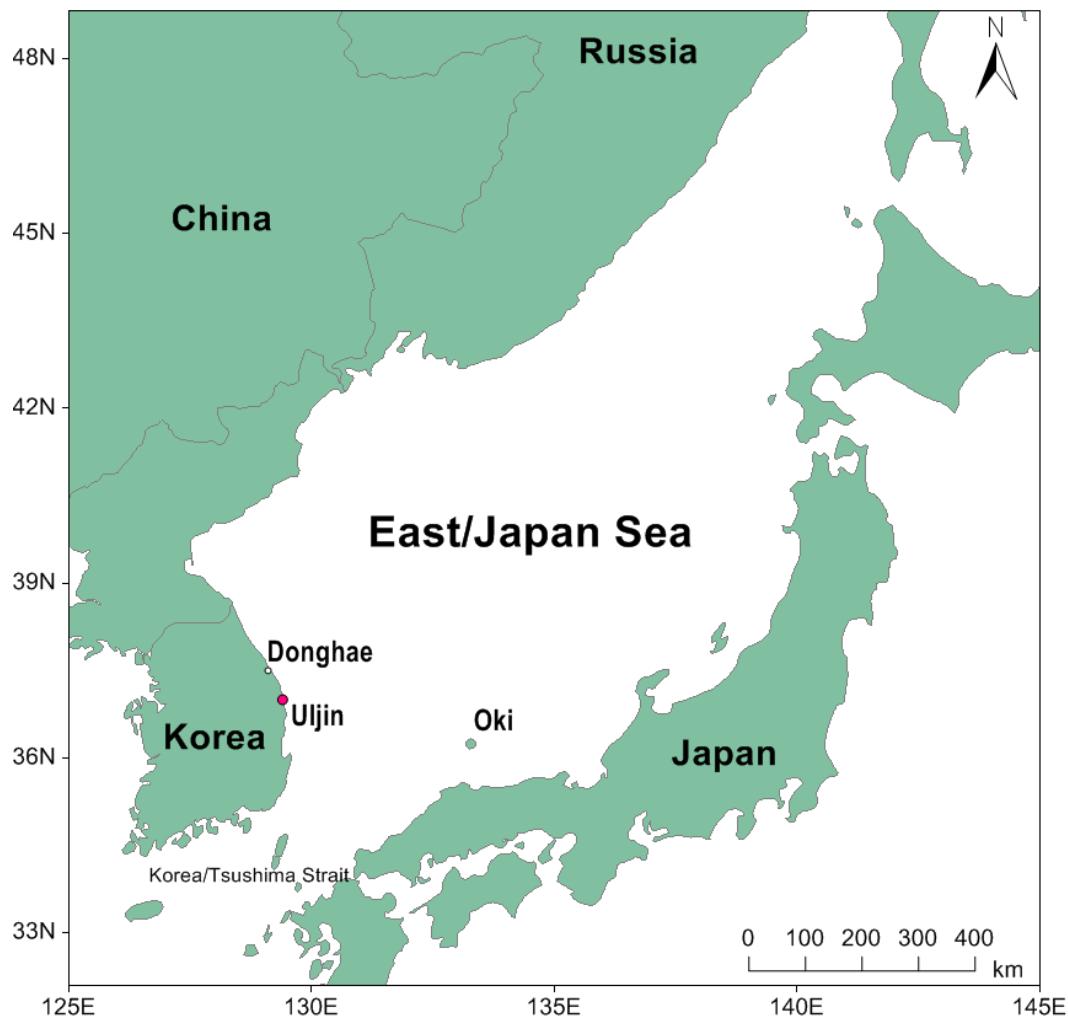
20

21

22

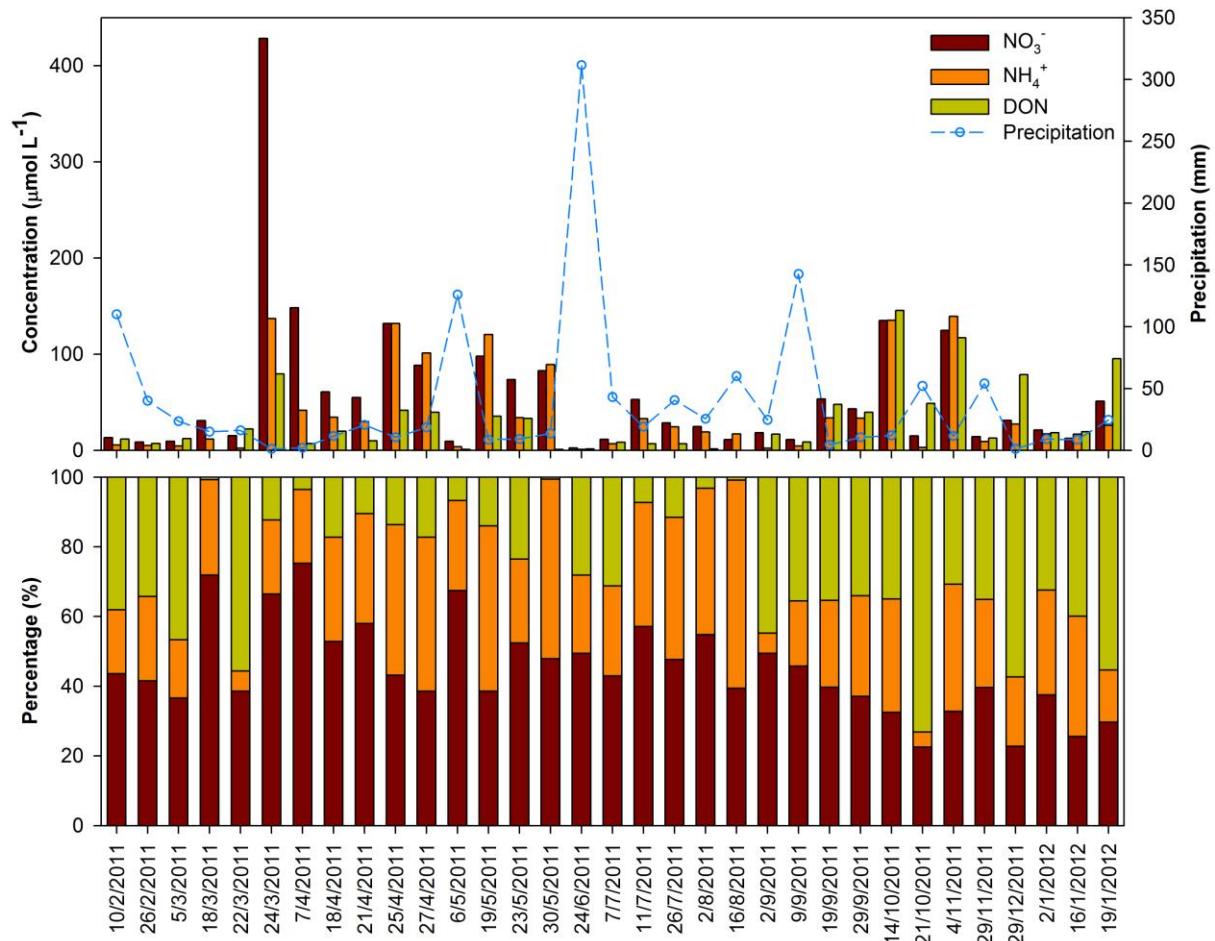
1 **Table 4.** Annual atmospheric deposition fluxes of reactive nitrogen (mmol N m⁻² yr⁻¹) at coastal and marine locations estimated based on
 2 long-term measurements during the last decade.

Location	Period	Deposition Mode	NO ₃ ⁻	NH ₄ ⁺	DIN	DON	%DON	Reference
Uljin, Korea	2011-2012	wet	28	20	48	19	28	This study
Donghae, Korea	2002-2003	dry	27	6	33	—	—	Kang et al. (2010)
Taiwan	2006	dry	—	—	39	22	36	Chen et al. (2010)
Shenzhen, China	1986-2006	wet	37	58	95	—	—	Huang et al. (2013)
Singapore	2007-2008	wet	51	26	77	34	31	He et al. (2011)
		dry	19	3	21	21	50	
Crete, Greece	2003-2006	wet	10	7	17	5	23	Violaki et al. (2010)
		dry	25	2	27	17	39	
Baltic Sea	2001-2002	wet plus dry	21	19	40	4	9	Rolff et al. (2008)
Tampa Bay, USA	2005	wet	23	10	33	2	6	Calderon et al. (2007)
Barneget Bay, USA	1999-2001	wet	29	19	48	—	—	Gao (2002)
		dry	4	2	6	—	—	
Miami, USA	2007-2009	wet	15	12	27	2	7	Zamora et al. (2011)
Puerto Rico	2004-2007	wet	6	4	10	7	41	Gioda et al. (2011)

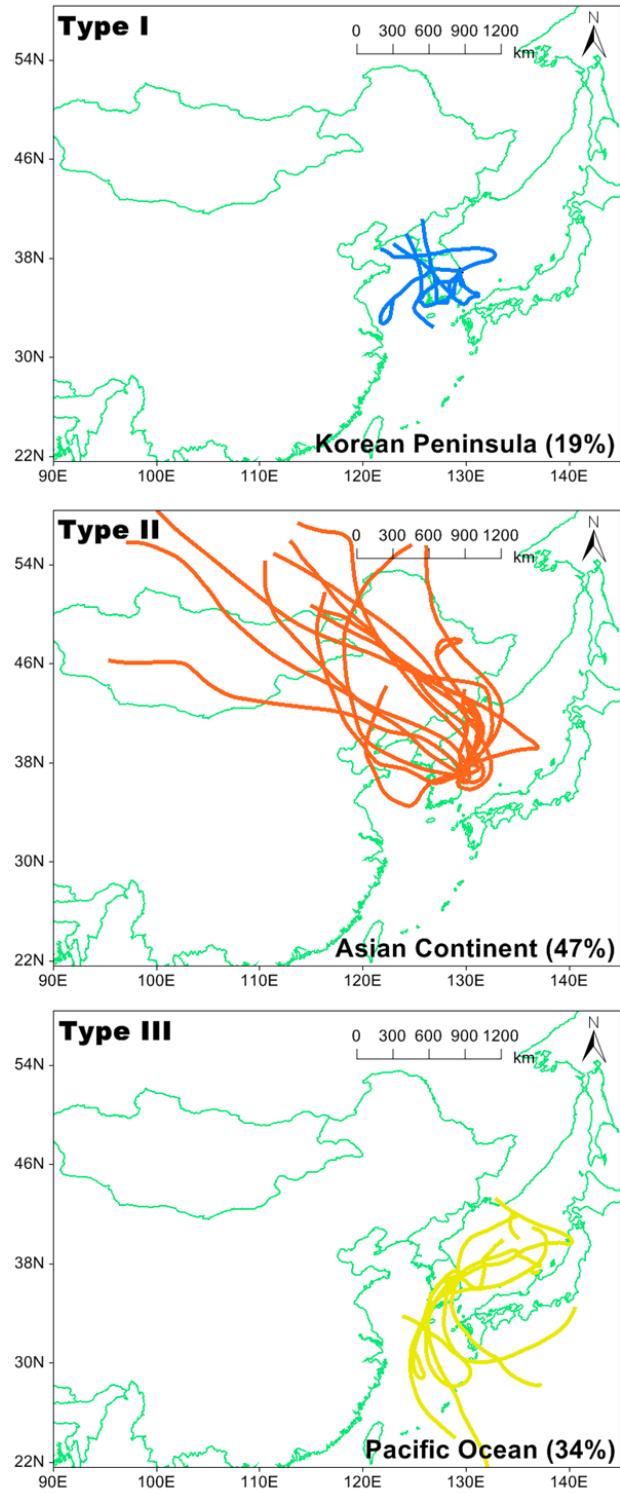

3

4

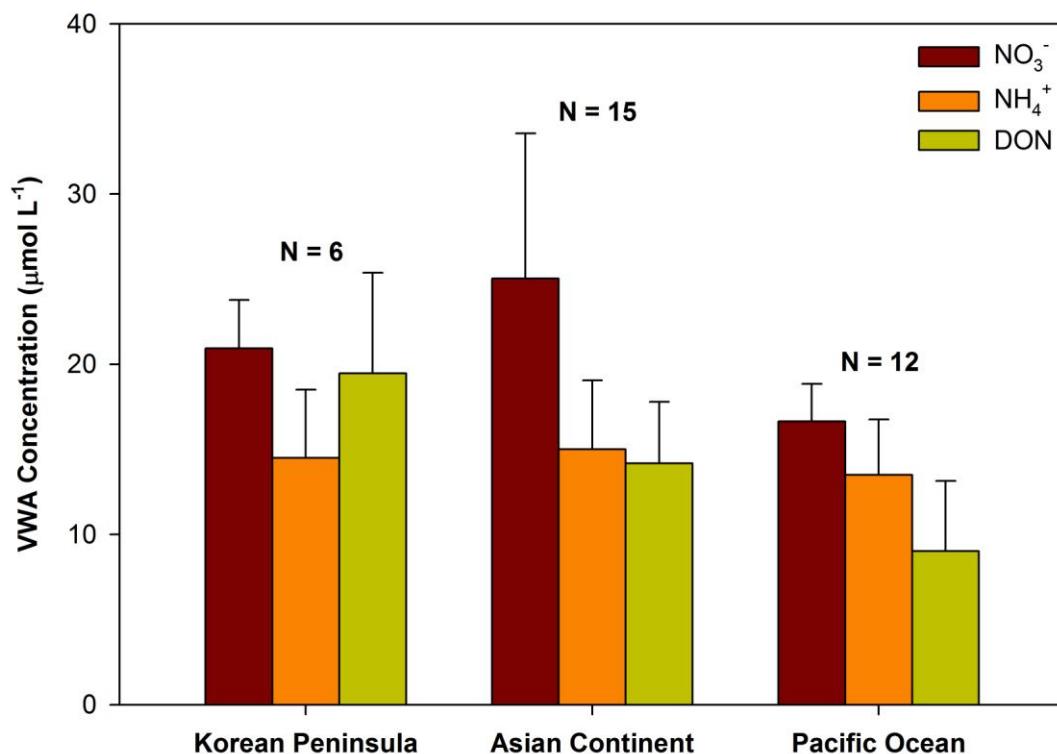
5


1 **Table 5.** Fractions of new primary production supported by atmospheric nitrogen input in world oceans on an annual basis.

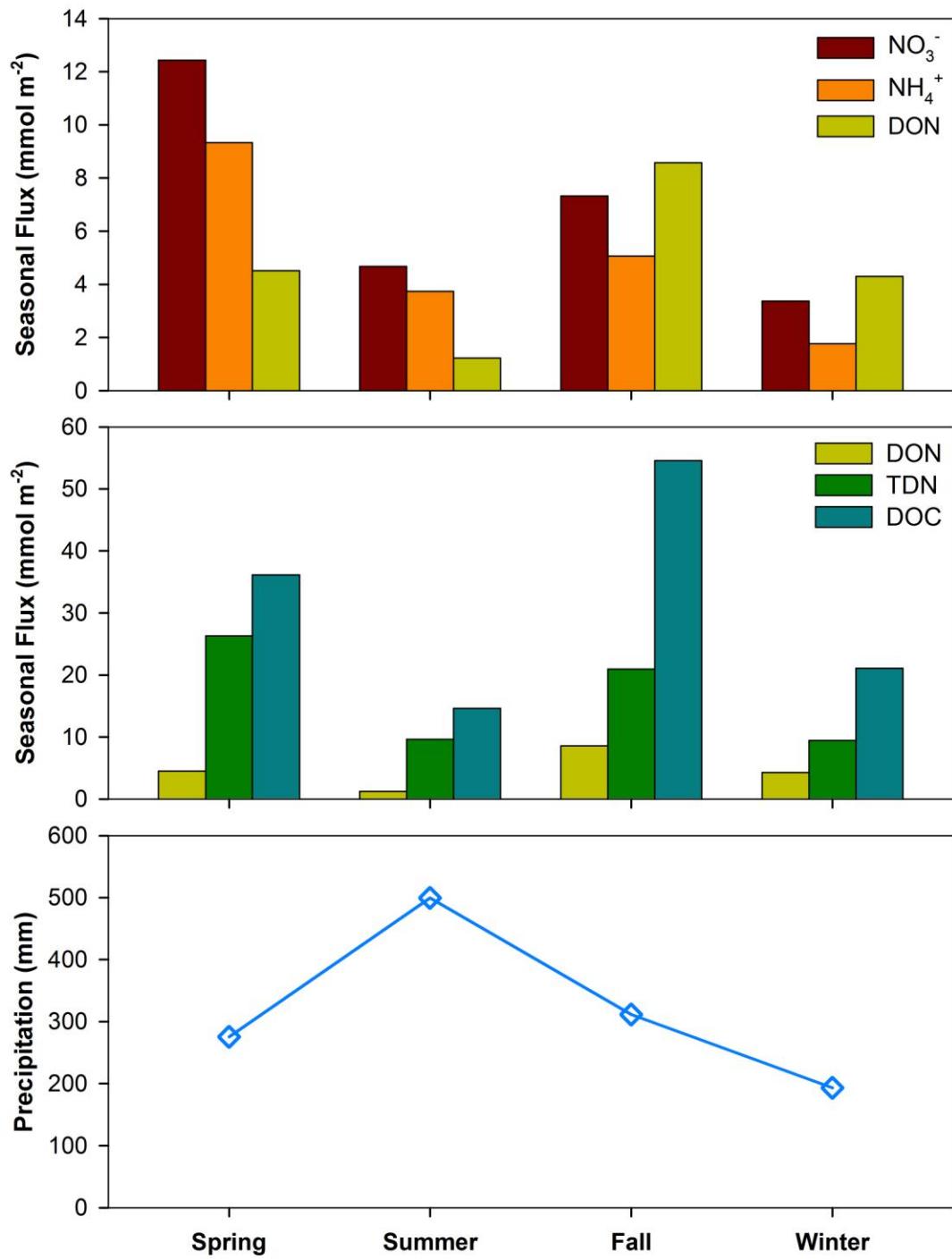
Ocean Regions	Deposition Mode	Nitrogen Species	Contribution to New Production	Method	Reference
Southern East/Japan Sea	wet plus dry	TDN	12–14%	field observation	This study
Southern East/Japan Sea	wet plus dry	DIN	~10%	field observation	Kang et al. (2010)
East/Japan Sea	wet plus dry	DIN	2–12%	modeling	Onitsuka et al. (2009)
Southern Yellow Sea	wet plus dry	DIN	10.5%	field observation	Lv et al. (2005)
Yellow Sea	wet plus dry	TDN	0.3–6.7%	field observation	Qi et al. (2013)
Southern East China Sea	dry	TDN	8.3%	field observation	Chen et al. (2010)
East China Sea	wet plus dry	DIN	1.1–3.9%	modeling	Zhang et al. (2010)
East China Sea	dry	DIN	0.1–9%	field observation	Nakamura et al. (2005)
South China Sea	wet plus dry	TDN	20%	modeling	Kim et al. (2014a)
Bay of Bengal	dry	TDN	up to 25%	field observation	Srinivas and Sarin (2013)
Arabian Sea	dry	TDN	<1%	field observation	Srinivas and Sarin (2013)
Southeast Mediterranean Sea	wet plus dry	DIN	8–20%	field observation	Herut et al. (1999)
Western Mediterranean Sea	wet	DIN	10–20%	field observation	Loye-Pilot et al. (1993)
Eastern Atlantic	wet plus dry	DIN	4–6%	field observation	Neuer et al. (2004)
Bermuda	wet	TDN	7–15%	field observation	Kim et al. (2014b)
World Oceans	wet plus dry	TDN	1.5–6.9%	modeling	Duce et al. (2008)
World Oceans	wet plus dry	DIN	5.1%	modeling	Krishnamurthy et al. (2010)


1
2 **Fig. 1.** Map showing the location of Uljin (sampling site, 37°N, 129.4°E), Donghae (37.5°N,
3
4 129.1°E), and Oki Island (36.3°N, 133.2°E).

5
6
7
8
9
10
11


1
2 **Fig. 2.** Concentrations (top) and percentages (bottom) of each reactive nitrogen species in
3 precipitation samples collected at Uljin from 2011 to 2012.

4
5
6
7
8
9
10
11
12


1

2 **Fig. 3.** Three-day air mass backward trajectories at 500 m (above ground level) for
 3 precipitation events at Uljin during the sampling period, obtained using the HYSPLIT model.
 4 The air mass provenances are sorted into three groups: Korean Peninsula (Type I), Asian
 5 Continent (Type II), and Pacific Ocean (Type III). The percentage values in parentheses
 6 indicate the occurring frequencies of each type.

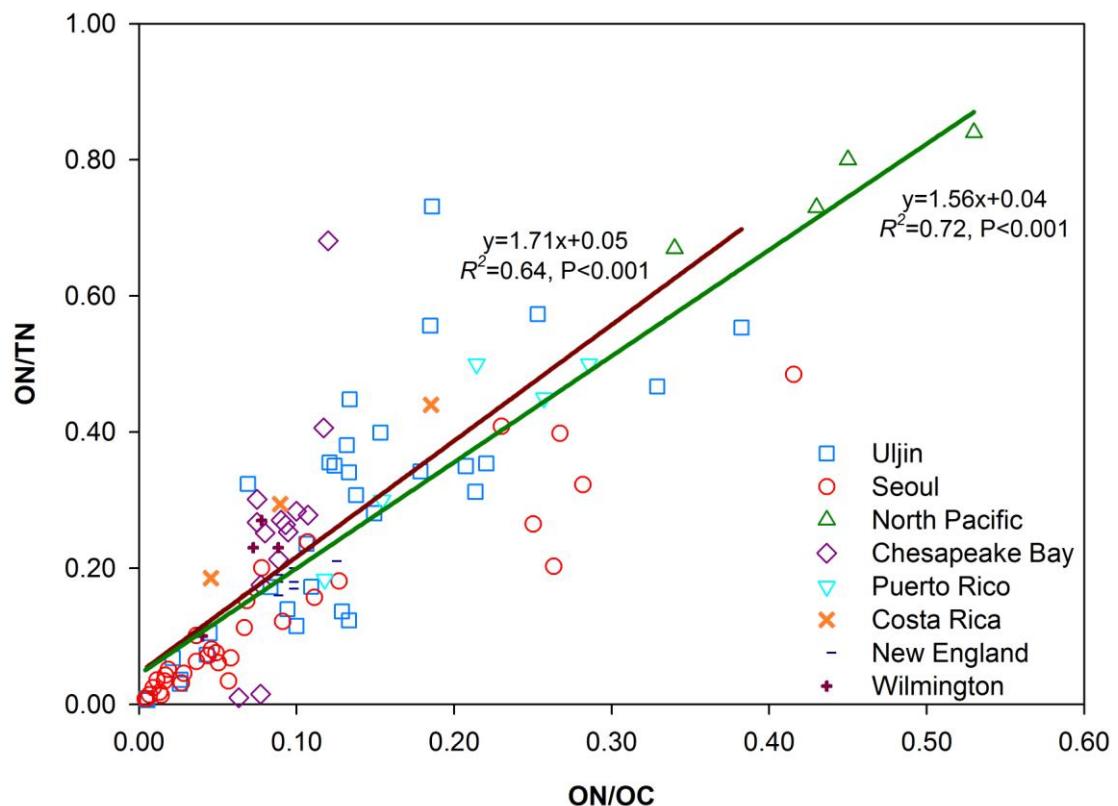


Fig. 4. Volume-weighted average concentrations of reactive nitrogen species for precipitation events associated with the three types of air mass at Uljin. Error bars represent standard deviations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2 **Fig. 5.** Seasonal wet depositional fluxes of NO_3^- , NH_4^+ , DON, TDN, and DOC at Uljin. The
3 precipitation amounts for each season are also shown.
4
5
6

1

2 **Fig. 6.** Plot of ON/TN versus ON/OC in precipitation samples collected at Uljin (N = 33) and
 3 Seoul (N = 33) in Korea and other locations worldwide, including the western North Pacific
 4 (aerosols, N = 4), Chesapeake Bay (N = 14), Puerto Rico (N = 5), Costa Rica (N = 3), New
 5 England (N = 15), and Wilmington (N = 4). The solid lines denote the best-fit correlations for
 6 Uljin data (red) and the entire dataset (green).