

Supplement of

Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation

H. A. C. Denier van der Gon et al.

Correspondence to: H. A. C. Denier van der Gon (hugo.deniervandergon@tno.nl)

Point sources	Area sources
• Power plants (>20MW; coal, oil and gas-	• Population, split into an urban and
fired)	a rural part
 Petroleum refineries 	• Land cover and land use, including
• Oil and gas production sites (including off-	arable land
shore)	• Road maps (location and traffic
 Large surface and underground coal mines 	intensity) of larger roads
 Coke ovens 	 Rail network
• Primary and secondary iron and steel plants	 Inland waterways
(Blast furnaces, Open hearth furnaces, Basic	• Sea shipping routes and intensities
oxygen furnaces, Electric arc furnaces)	• Farm animal populations (pigs,
• Primary and secondary non-ferrous metal	poultry, cattle, sheep & goats,
smelters (Copper, Aluminium, Lead, Nickel,	horses)
Zinc/cadmium	• A specific map for residential
 Cement factories 	wood combustion (see section 2. 3)
 Large chemical plants 	
 Fertilize manufacture 	
 Major airports 	
 Sea harbours 	

Table S1. Point sources and area sources distinguished in the gridding of the emissions.

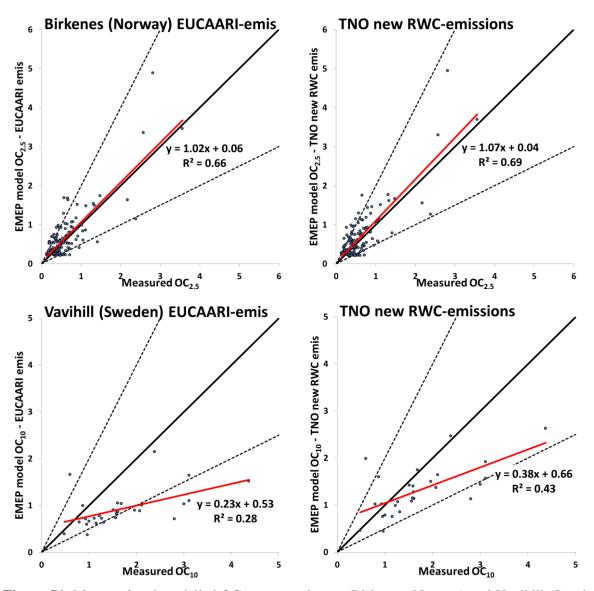

	Central and	Former		
	Eastern Europe	Yugoslavia		
Fire place	5%	5%		
Traditional heating stove	83%	55%		
Single house boiler manual	2%	20%		
Single house boiler automatic	0%	5%		
Medium boiler manual	10%	5%		
Medium boiler automatic	1%	10%		

Table S2. Types of devices usage assumed for specific countries.

Table S3. Evaluation of EMEP MSC-W model prediction results (with two different inventories for residential wood combustion emissions) to data from available observations in 2007–2009 (all seasons). N = number of measurements, Obsvd = Average Measured OC concentration, Model = Average modelled OC concentration (for the periods with measurements), R²=coefficient of determination, MAE=Mean of Absolute Error. Unit for Obsvd, Model and MAE: $\mu g(C) m^{-3}$. The relative MAE (in %, within brackets) = MAE/Obsvd.

			EUCAARI emissions			TNO new RWC emissions		
Site	Ν	Obsvd	Model	\mathbf{R}^2	MAE	Model	\mathbf{R}^2	MAE
Hyytiälä (FI) ^a	248	1.06	0.86	0.54	0.36 (34%)	1.13	0.62	0.39 (37%)
Aspvreten	277	1.75	1.01	0.37	0.82 (47%)	1.24	0.44	0.70 (40%)
$(SE)^{b}$								
Vavihill (SE) ^c	73	1.55	1.00	0.25	0.63 (41%)	1.20	0.38	0.50 (32%)
Melpitz (DE) ^d	105	1.81	1.18	0.25	0.91 (50%)	1.58	0.41	0.75 (42%)
	1							
Overtoom	140	2.12	1.05	0.44	1.16 (55%)	1.34	0.60	0.95 (45%)
$(NL)^{e}$								
Birkenes	265	0.68	0.73	0.57	0.29 (43%)	0.72	0.58	0.30 (44%)
(NO) ^f								

^{a)} 20070214-20080218: Measured OC₁, Model OC_{2.5}, Aurela et al. (2011); ^{b)} 20080418-20091230: OC₁₀; ^{c)} 20080424-20091231: OC₁₀, Genberg et al. (2011); ^{d)} 20070101-20091231: OC_{2.5}; ^{e)} Note: Urban background station, Amsterdam (the station is not heavily influenced by RWC and OC concentrations are similar to surrounding rural background sites, Schaap and Denier van der Gon, 2007), 20070218-20081231: OC_{2.5}; ^{f)} 20070102-20091229: OC_{2.5}.

Figure S1. Measured and modelled OC concentrations at Birkenes (Norway) and Vavihill (Sweden) during winter half-year periods (November-April). The left-side plots show EMEP MSC-W model results using the EUCAARI emissions and the right-side plots results using the new residential wood combustion emissions. For Birkenes OC in $PM_{2.5}$ is shown and for Vavihill OC in PM_{10} . Unit: $\mu g C m^{-3}$. Further details see Table 4.