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Abstract 1 

The transitory nature of the atmospheric boundary layer few hours before and after the time of 2 

sunset has been studied comprehensively over a tropical station, Gadanki (13.45
o
N, 79.18

o
E), 3 

using a suite of in situ and remote sensing devices. This study addresses the following 4 

fundamental and important issues related to the afternoon transition (AT): Which state variable 5 

first identifies the AT? Which variable best identifies the AT? Does the start time of the AT vary 6 

with season and height? If so, which physical mechanism is responsible for the observed height 7 

variation in the start time of transition?     8 

 At the surface, the transition is first seen in temperature (T) and wind variance (σ
2

WS), 9 

~100 min prior to the time of local sunset, then in vertical temperature gradient and finally in 10 

water vapour mixing ratio variations. Aloft, both signal-to-noise ratio (SNR) and spectral width 11 

(σ) show the AT nearly at the same time. The T at the surface and SNR aloft are found to be the 12 

best indicators of transition. Their distributions for start time of AT with reference to time of 13 

sunset are narrow and consistent in both total and seasonal plots.  The start time of transition 14 

shows some seasonal variation with delayed transitions occurring mostly in the rainy and humid 15 

season of northeast monsoon. Interestingly, in contrast to the general perception, the signature of 16 

the transition is first seen in the profiler data then in the sodar data and finally in the surface data. 17 

This suggests that the transition follows a top-to-bottom evolution. It indicates that other 18 

processes, like entrainment, could also play a role in altering the structure of ABL during the AT, 19 

when the sensible heat flux decreases progressively.  These mechanisms are quantified using a 20 

unique high-resolution dataset to understand their variation in light of the intriguing height 21 

dependency of the start time of AT.  22 

 23 
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1 Introduction 1 

The behaviour of atmospheric boundary layer (ABL) during the transition from a well-mixed 2 

layer during the day to a stably stratified layer during the night is quite complex and is also 3 

poorly understood. In recent years, the afternoon transition (AT) and evening transition (ET) of 4 

the ABL have gained attention for various reasons (Lothon et al., 2014).  These transitional 5 

regimes are found to be important for the vertical transport of species, like pollutants, water 6 

vapour and ozone (Klein et al., 2014), the inception and strength of the nocturnal low level jet 7 

(LLJ) (Mahrt, 1981; Van De Wiel et al., 2010), and the whole structure of the nocturnal 8 

boundary layer. Further, identification of the ABL becomes uncertain and there is no consensus 9 

on which scaling laws (day-time convective scaling due to surface buoyancy flux? or nocturnal 10 

boundary layer scaling due to surface wind stress?) would work well during this period (Pino et 11 

al., 2006).  Further, the start time of transition and its duration could be different at the surface 12 

and aloft because the turbulence may not immediately dissipate after the sunset (Busse and 13 

Knupp, 2012).  14 

 Researchers defined the transition in a variety of ways employing various parameters 15 

obtained from different instruments. Some of them treated the transition as an instantaneous 16 

process, while the others considered it as a process of few hours. The most popular and widely 17 

used definition is the reversal of surface heat flux (positive to negative) (Grant, 1997; Acevedo 18 

and Fitzjarrald, 2001; Beare et al., 2006; Angevine, 2008). A similar technique is employed by 19 

Nieuwstadt and Brost (1986), in which the AT is assumed to occur following the cessation of 20 

upward surface sensible heat flux. Edwards et al. (2006) noted that the shortwave heating starts 21 

to decrease much before the surface heat flux changes its sign. They included the shortwave 22 

heating in the definition of AT, which shifted the start of afternoon transition to an earlier time. 23 
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Acevedo and Fitzjarrald (2001) identified the start time of the transition from a sharp decrease in 1 

the spatial temperature difference and end from the maximum spatial standard deviation  of 2 

temperature. As seen above, all these definitions are based on surface measurements and do not 3 

account the physical processes occurring aloft during the transition.  4 

The studies that used remote sensing measurements like wind profiling radars, sodars and 5 

lidars focused more on the processes aloft (mostly in the lower part of ABL) to define the AT. In 6 

a seminal study, Mahrt (1981) used a kinematic definition for AT period. According to Mahrt 7 

(1981) the AT is a 4-5 h time period, starts from the time of low-level wind deceleration 8 

(typically 2 h before the sunset) and ends when the flow at all levels turned towards the high 9 

pressure. Grimsdell and Angevine (2002) and Angevine (2008), using radar wind profiler 10 

measurements, noticed that both reflectivity (range-corrected signal-to-noise-ratio (SNR)) and 11 

the spectral width (σ) (a measure of turbulence) decrease sharply during the AT. The 12 

applicability of these approaches is always an issue, particularly when the turbulence is either 13 

weak or strong throughout the day or when the turbulence increases due to some other processes 14 

associated with katabatic winds or land see-breeze circulations (Sastre et al., 2012). Instead of 15 

defining the start and end times for AT, Busse and Knupp (2012) studied the variations in 16 

meteorological parameters with reference to the sunset time. They noted an increase in wind 17 

speed and a decrease in sodar return power in the lower ABL. They found that the AT has a 18 

relatively consistent pattern regardless of season.    19 

A few studies employed models to understand or validate the occurrence of different 20 

types of transition (Brazel et al., 2005; Edwards et al., 2006; Pino et al., 2006; Sorbjan, 2007; 21 

Nadeau et al., 2011; Sastre et al., 2012). Brazel et al. (2005) studied the evening transition under 22 

weak synoptic forcing that favours the local thermal circulations and compared the observed 23 
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transitions with models. Recently, Sastre et al. (2012) identified 3 types of evening transitions 1 

and evaluated performance of the Weather Research and Forecasting Advanced Research (WRF-2 

ARW) model in reproducing these transitions by varying PBL parameterization schemes. They 3 

noted that all parameterizations reproduced the observed behaviour of AT in certain 4 

circumstances. Noting the need to understand the transitions in a better way, several field 5 

campaigns were conducted in recent years, employing both in situ and remote sensors, 6 

exclusively for better characterisation and modelling of the transitions. For instance, Cooperative 7 

Atmosphere-Surface Exchange Study (CASES-99) (Poulos et al., 2002), Boundary Layer Late 8 

Afternoon and Sunset Turbulence (BLLAST) (http://bllast.sedoo.fr/)(Lothon et al., 2014) and 9 

Phoenix Evening Transition Flow Experiment (TRANSFLEX) (Fernando et al., 2013).  10 

Recently, manned and unmanned aerial vehicles were used to study the vertical structure of 11 

lowest part of ABL during the AT (Bonin et al., 2013; Lothon et al., 2014).   12 

 Most of the above studies focussed on the variations in state variables like temperature, 13 

humidity, wind and turbulence, in the surface layer as they are easily accessible.  Other studies 14 

characterized the evening transitions aloft, but neglecting the variations at the surface. Only a 15 

few studies that were based on campaign data and/or a few months of data dealt the transitions in 16 

totality, i.e., studied the variations at the surface and aloft (Busse and Knupp, 2012; Fernando et 17 

al., 2013; Lothon et al., 2014). Again, the data employed in those studies were limited, few days 18 

to 2 months. Certainly there is a need to characterize and understand the transitions at the surface 19 

and aloft in different seasons through systematic observations on a long-term basis.  Further, 20 

earlier studies used different state variables to define the transition. Only a few studies focused 21 

on how these state variables vary with reference to the time of sunset (Busse and Knupp, 2012).  22 

Although some tower-based observations exist in the literature, the complete understanding of 23 
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the transition over a deeper layer is certainly far from complete. This forms the basis for the 1 

present study. In particular, the study tries to answer the following questions: How do the surface 2 

state variables and radar/sodar attributes vary during the transition and with reference to the time 3 

of sunset? Which state variable better identifies the transition? How does the start time of 4 

transition varies with height and season?  Which physical processes are responsible for the 5 

vertical evolution of the transition? 6 

 The paper is organized as follows: Sect. 2. introduces the measurement site, data and 7 

instrumentation employed.  The variation of different state variables at the surface and aloft is 8 

studied with the help of a typical case study in Sect. 3. The start time of AT as identified by 9 

different state variables and their mean characteristics at the surface and aloft are studied with 10 

reference to the time of sunset. The questions posed above are discussed in light of present 11 

observations in Sect. 4. The important forcing terms on the ABL are estimated using a unique 12 

dataset to understand the role of entrainment in the afternoon transition.  The important results 13 

are concluded in Sect. 5. 14 

 15 

2 Data and site description 16 

The present study follows an integrated approach, wherein several instruments available at 17 

National Atmospheric Research Laboratory (NARL), Gadanki (13.45
o 

N, 79.18
o 

E) are 18 

extensively used. This site is located ~375 m above the mean sea level in a rural area in southeast 19 

peninsular India and is surrounded by hillocks (300-800 m within 10 km region) distributed in a 20 

complex fashion. The rainfall in this region is influenced primarily by two monsoons, southwest 21 

(June-September) and northeast (October-December) (Rao et al., 2009). Summer and winter are 22 

the other two seasons, covering the months of March-May and January-February, respectively.  23 
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 The present study relies on a variety of instruments, both in situ and remote sensors 1 

(Table 1), whose measurements cover the entire ABL. Though these instruments provide several 2 

other parameters, those used in the present study are only listed in Table 1.  Two kinds of 3 

datasets (we refer them here as dataset 1 and dataset 2) are used in the present study, but for 4 

different purposes. Dataset 1 was collected with a suite of non-continuously operated 5 

instruments, spanning a 3 year period. This dataset is being used to examine the seasonality and 6 

height dependence of AT. It includes long-term observations made by an instrumented 15 m 7 

tower (hereafter referred to as Mini Boundary Layer Mast – MBLM), a Doppler sodar and three 8 

UHF wind profilers (operated at NARL, but during different years).  Dataset 2 is comprised of 9 

the intense observations, which include the instrumentation of dataset 1 along with a flux tower 10 

having a sonic anemometer (RM Young 8100) at 8 m level and radiosondes (Meisei 90) 11 

launched every three hours. Dataset 2 was collected over two, three day campaigns (one during 12 

the monsoon and one during the winter).  This dataset is being used to understand the role of 13 

surface forcing and entrainment in triggering the AT. 14 

The MBLM provides temperature (T), relative humidity (RH), wind speed (WS) and 15 

wind direction (WD) data at 3 levels (5, 10 and 15 m) with 1 s temporal resolution. The type of 16 

sensors used and their accuracies are given in Table 2. A Doppler sodar operating at a frequency 17 

of 1.8 kHz and a peak power of 100 W provides the SNR, σ and wind information at 27 s and 30 18 

m temporal and height resolutions, respectively (Anandan et al., 2008) (see Table 3 for more 19 

details about different remote sensing instruments). The UHF wind profiler data consists of the 20 

data from 3 wind profilers, operated during different years. An old UHF wind profiler (referred 21 

to as Lower Atmospheric Wind Profiler - LAWP) was operated at a frequency of 1.375 GHz 22 

during the period 1999-2000. Complete description of the system and specifications can be found 23 



8 
 

in Reddy et al. (2001) and Rao et al. (2001).  It was operated in two modes; low mode covering 1 

0.3 to 4.8 km and high mode covering 0.9 to 6.8 km, sequentially switching between each mode, 2 

providing a temporal resolution of ~11 min. Recently, NARL has indigenously developed two 3 

UHF wind profilers with the same frequency (1.28 GHz) but with different antenna dimensions 4 

and transmitted powers. The smaller UHF wind profiler that uses an 8 x 8 antenna array covering 5 

an area of 1.4 m x 1.4 m transmits a power of 0.8 kW (hereafter referred to as WPR8x8). 6 

Whereas, the larger profiler has a bigger antenna array of 2.8 m x 2.8 m with 16 x 16 elements 7 

and high-transmitting power of 1.2 kW (hereafter referred to as WPR16x16). Complete description 8 

of these systems and their capabilities can be found in Srinivasulu et al. (2011, 2012).  The 9 

WPR8x8 was operated at NARL during May-September 2010, while the bigger WPR16x16 has 10 

been in operation from October 2010. It can be seen from Tables 1 and 3 that these instruments 11 

provide a unique long-term dataset from the surface to top of the ABL.  12 

 A series of automated tests were performed on tower time series data to identify 13 

instrumentation problems, flux sampling problems, and physically plausible but unusual 14 

situations (Burba, 2013). Further, clear-sky days are identified from shortwave radiation 15 

measurements made by a pyranometer (Kipp and Zonen CMP6) located near the MBLM.  16 

Omitting the days with large data gaps and rain/dense clouds, 423 days of surface data were 17 

available for further analysis from 3 years of MBLM measurements. The range-time plots of 18 

spectral moments (SNR, vertical velocity (w) and σ) from sodar and wind profiler are examined 19 

for the clear growth and decay of ABL and convection/precipitation contamination (Grimsdell et 20 

al., 2002; Rao et al., 2008). Based on the above criteria, a total of 530 and 482 clear-sky days of 21 

sodar and profiler, respectively, were only selected (from dataset 1) for further analysis. To 22 

examine whether the filtering of data for clear-sky days has caused any bias towards the dry 23 



9 
 

season (winter and summer), the data are segregated on the basis of season. Table 4 shows the 1 

number of days for which the measurements were available, number of discarded days due to 2 

rain/dense cloud or bad data quality and the number of days considered for the present study as a 3 

function of season. Though considerable data were filtered out in the rainy seasons (southwest 4 

and northeast monsoons), the number of available days is large enough to represent the season. 5 

Also, the number of days available in the rainy season is of the same order as that of in other 6 

seasons, indicating that the filtering has not biased the results towards any season.  7 

Note that MBLM, sodar and wind profilers were operated during different years. Only 19 8 

days of simultaneous clear-sky measurements (without large data gaps) from all the above 9 

sensors were available. Measurements from these 19 days are used to understand the behavior of 10 

AT at different altitudes. The total data (from different years, i.e., dataset 1) are used to obtain 11 

robust statistics on the mean behavior of AT.  12 

 13 

3 Results and discussion 14 

3.1 Typical evolution of AT from the surface to top of the ABL 15 

Figure 1 shows the diurnal variation of surface state variables (T, water vapour mixing ratio (r), 16 

WS, wind variance (σ
2

WS) and wind direction (WD)) and sodar and profiler attributes (range-17 

corrected SNR (hereafter referred to simply as SNR), horizontal wind speed, σ, w and wind 18 

direction) on 11 May 2010, providing a comprehensive paradigm of the typical evolution of  19 

transitional boundary layer at the surface and aloft (up to 3.6 km). The surface state variables (at 20 

5 m level) exhibit larger variations during the transition period than during rest of the night. 21 

During the AT, as the shortwave heating decreases, the temperature decreases monotonically 22 

(Fig. 1a) in clear-sky conditions, if temperature advection is neutral. Another signature of this 23 
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transition can be seen in short-term variability of surface parameters, highly variable during the 1 

noon (associated with thermals) to smaller fluctuations in the night. The weakening of thermals 2 

(both magnitude and their vertical extent) in the afternoon reduces the convective turbulence and 3 

σ
2

WS (Fig. 1d).  This reduction weakens the downward transport of momentum and low-level 4 

wind speed (Fig. 1c) (Mahrt, 1981; Acevedo and Fitzjarrald, 2001).  The surface winds also 5 

became less gusty during the transition. During the day, when the convective turbulence is 6 

active, the low-level moisture gets diluted because of the transport of moisture by turbulence.  As 7 

the turbulence decreases during the transition, the low-level moisture having most of its sources 8 

on the earth’s surface increases in the absence of strong mixing (Fig. 1b).  On some days, this 9 

increase appears as a sudden jump, as also noted by earlier studies (Busse and Knupp, 2012), and 10 

on the other days it is more gradual. The wind direction nearly remains the same from ~14 IST 11 

(Indian Standard Time (IST) = UTC + 05:30) to mid-night (Fig. 1e).     12 

To understand the transitions aloft, variation of sodar and profiler attributes are examined 13 

in detail (Fig. 1f-o). Figure 1 clearly shows the transition of the ABL from a highly convective to 14 

a more stable regime. When the convective turbulence is active during the day time, the thermals 15 

are clearly apparent as columns of enhanced backscatter in the time-height SNR plot (Fig. 1k). 16 

Though the thermals do not appear clearly in the SNR of sodar in this case, they appear very 17 

clearly in other cases. These plumes are also visible in the w plot (Fig. 1i and n) as enhanced up- 18 

and down-ward motions with w values exceeding ±2 m s
-1

 and as columns of enhanced 19 

turbulence (Fig. 1g and l). The backscatter for sodar and profiler depends on the refractive index 20 

irregularities caused primarily by turbulence-driven temperature and humidity variations.  The 21 

SNR is, therefore, high during the day, when the convectively-driven turbulence is active. 22 

Nevertheless, about 2 h before the sunset, both the intensity and vertical extent of thermals start 23 
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to decrease continuously till the sunset occurs.. The minimum backscatter (SNR) is seen just 1 

before the sunset, mainly due to the weak turbulence. The magnitude of backscatter and vertical 2 

extent of sodar data again increase in accordance with the deepening of the inversion layer. As 3 

noted by Busse and Knupp (2012), the winds within the nocturnal boundary layer generally 4 

decrease during the AT, but increase above the nocturnal boundary layer.  It makes the 5 

identification of start time of AT using wind speed somewhat ambiguous.  On the other hand, it 6 

is rather easy to identify the start time of AT from the variations of SNR and σ.  The wind 7 

direction does not change much with altitude below 1.5 km and remains mostly easterly to 8 

southeasterly (Fig. 1j and o). It doesn’t change much with time also around the time of sunset 9 

(few hours before and after the time of sunset), ruling out the possibility of advection of different 10 

air masses causing the above changes.   11 

When the surface heating reverses to cooling in the evening, both convection and 12 

turbulence gradually reduces till the subsequent development of a stable boundary layer with 13 

well-defined surface inversion layer.  As a result, all state variables at the surface and aloft, 14 

manifested primarily by the turbulence, vary considerably during this period. To better depict 15 

this variability, MBLM- (T, r, σ
2

WS and ΔT (T5-T10, indicating the stability of the lower ABL, the 16 

suffixes 5 and 10 indicate the height of temperature measurements in m)), sodar- and profiler-17 

derived state variables (SNR and σ at 3 representative levels; 150, 300 and 450 m for sodar and 18 

900, 1500 and 2100 m for profiler) during the period 15:00–21:00 IST  are plotted in Fig. 2.  To 19 

minimize random fluctuations and the chosen level more representative, the data are averaged 20 

both in time (5 min for sodar and no temporal integration for profiler) and height (3 heights 21 

centred on the chosen level). The time series surface data are then low-pass filtered using local 22 

regression using weighted linear least squares and a 1
st
 order polynomial model (using the 23 
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function ‘lowess’ in matlab). On 11 May 2010, the temperature (Fig. 2a) starts to decrease 1 

monotonically, at the rate of 1-1.5 °C per 1 h, from 16:10 IST (dashed line), 152 min prior to the 2 

time of sunset (solid vertical black line).  Though the temperature decrement starts little early, 3 

but is not consistent and also weak in magnitude. Another surface characteristic showing a 4 

significant change during the AT is the mixing ratio (Fig. 2b), which clearly shows a gradual 5 

increase from 16:10 IST. The temperature gradient (Fig. 2c) also reverses from positive to 6 

negative few minutes after the 5 m level temperature starts to decrease.  The wind variance (Fig. 7 

2d), representing small-scale wind fluctuations and turbulence, also shows a decreasing trend 8 

from 16:25 IST. 9 

The sodar and profiler backscatter, depends primarily on turbulent irregularities of 10 

refractive index, decreases with the waning of sensible heat flux (and thermals) during the 11 

afternoon transition. On 11 May 2010, the SNR of sodar starts to decrease ~2 h 40 min prior to 12 

the time of sunset at all heights.  Interestingly, the start time of SNR reduction shows height 13 

dependence with higher altitudes showing the reduction earlier. The SNR minimum is observed 14 

10-20 min before the sunset at all heights, mainly due to the reduction in turbulent fluctuations in 15 

temperature. Nevertheless, the SNR increases again after the sunset, following the formation of 16 

an inversion layer. The σ (Fig. 2f) variations are quite similar to that of SNR during the 17 

transition. The σ shows a decreasing trend 2 h 10-20 min prior to the sunset, whereas its 18 

minimum is observed 10-30 min from the time of sunset. The profiler SNR and σ variations are 19 

similar to that of sodar, except that their reduction starts little early. The profiler SNR and σ start 20 

to decrease ~3 h prior to the time of sunset. Also, the SNR and σ minima are observed at around 21 

the time of sunset. It is very interesting to note the height dependency in the time at which state 22 
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variables show large variation, i.e., it is seen first in profiler attributes then in sodar attributes and 1 

finally in surface parameters.   2 

3.2 Distributions for start time of transition with reference to the time of sunset 3 

It is clear from the case study that surface parameters and sodar/profiler attributes show large 4 

variations during the AT.  The first and foremost problem, therefore, is to properly and 5 

objectively identify the start time of AT from these state variables.  It is also important to 6 

recognize the state variable that unambiguously identifies the start time of transition. As seen in 7 

case studies, state variables like T, ∆T, r and σ
2

WS at the surface and SNR and σ aloft can be used 8 

for this purpose.  For identifying the start time of AT, 19 days on which measurements of all 9 

instruments (MBLM, sodar and profiler) are available are considered.  The start time of AT is 10 

identified manually from temporal variation of each state variable (like those shown in Fig. 2). 11 

The temporal gradients are estimated for each state variable from all 19 cases, which are then 12 

finally used to fix the thresholds. The start time of AT is identified from the variation of the each 13 

state variable as follows.  14 

Temperature: the time at which T starts to decrease by ≥ 0.5°C in 30 min. 15 

Water vapour mixing ratio: the time at which r increases by ≥ 0.5 g kg
-1

 in 30 min. 16 

Wind variance: the time at which σ
2

WS decreases by ≥ 0.1 m
2
 s

-2
 in 30 min. 17 

Temperature gradient: the time at which ∆T becomes positive to negative and remains negative 18 

for at least an hour.  19 

SNR: the time at which SNR decreases by > 1 dB in 30 min. 20 

Spectral width: the time at which σ decreases by ≥ 0.1 m s
-1

 in 30 min. 21 
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Note that all the above conditions should hold good for at least an hour from the start time of 1 

transition. Also, all the above conditions are checked only in the data during 15:00-20:00 IST.  2 

First, the average behaviour of the start time of AT, as identified by selected state 3 

variables, with reference to the sunset (i.e., start time of AT – time of sunset) has been studied at 4 

the surface and aloft. The distributions (from dataset 1) for start time of AT with reference to the 5 

sunset (hereafter referred to as Transsunset (start time of AT – time of sunset)) as obtained by 6 

various state variables are shown in Fig. 3. These distributions are shown as box plots, where the 7 

box comprises 50 % of values (25 and 75 percentile) and whiskers represent 5 and 95  percentile 8 

values. On average, σ
2

WS and T show the first signature of AT among all surface state variables 9 

(Fig. 3a), ~1 h 40 min prior to the time of sunset, followed by ∆T (1 h 18 min before sunset). The 10 

last characteristic for transition is seen in r as a gradual increase (or jump) occurring, 1 h 10 min 11 

prior to the time of sunset. The signature of transition can be seen as early (late) as 165 (45) min 12 

before (after) the sunset in σ
2

WS  (r) on some days. Except for temperature, all other surface state 13 

variables show signature of transition even after the sunset. Though not many such cases are 14 

found at Gadanki (can be seen from Fig. 3a), but late transitions are not uncommon, as they are 15 

widely reported elsewhere (Acevedo and Fitzjarrald, 2001).  The distribution of Transsunset is 16 

wider for r than for any other state variable, indicating that the jump in r occurs at different 17 

timings with reference to the time of sunset. On the other hand, the start time of AT as obtained 18 

by T is relatively consistent throughout the year, as evidenced by the narrow distribution (Fig. 19 

3a).   20 

Figure 3b-g shows distributions for Transsunset as identified by selected sodar and profiler 21 

attributes (SNR and σ) at 3 selected altitudes (150, 300 and 450 m for sodar and 900, 1500 and 22 

2100 m for profiler).  At any particular altitude, both SNR and σ shows the signature of transition 23 
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around the same time. Though small differences exist, they are not significant. Nevertheless, the 1 

identification of transition start time is somewhat easy with SNR and is also consistent, as 2 

evidenced by its relatively narrow distribution.  3 

As seen in the case study, the mean start time of AT also shows height dependency and 4 

follows top-to-bottom evolution, i.e., the signature of AT is seen first in the profiler data (~2 h 40 5 

min before the time of sunset) then in sodar data (~2 h before the time of sunset) and finally in 6 

MBLM measurements. Angevine (2008) also noted the deterioration of ABL structure aloft with 7 

wind profiler preceding the start time of AT at the surface. It contradicts the general perception 8 

that the entire ABL is controlled primarily by the underlying earth’s surface and the start time of 9 

transition should follow a bottom-up evolution. It is true that surface forcing is the defining 10 

mechanism during the day, but it seems not the case during the transition, the time during which 11 

other forces could also be important.  12 

A sensitivity analysis is carried out to know the impact of the above chosen thresholds on 13 

Transsunset as obtained by different state variables. The chosen thresholds are varied by ± 20% in 14 

steps of 10% and the mean Transsunset as obtained by different state variables is estimated at 15 

different altitudes. The mean Transsunset as a function of altitude is plotted in Fig. 4, which clearly 16 

shows that the important results do not change much, even if we vary the thresholds by ± 20%.  17 

For instance, the mean Transsunset does not change much with the variation of thresholds.  Also, 18 

the height dependence of Transsunset is strikingly apparent with all used thresholds.  It suggests 19 

that the observed variability in Transsunset, like top-to-bottom evolution, is not an artefact arising 20 

due to the chosen thresholds. Regarding the usability of these thresholds at other sites, it appears 21 

(from Fig. 4) that they possibly can be used at other tropical sites, which are in similar climatic 22 

conditions as Gadanki region.  Although we expect similar variations in most of the state 23 
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parameters at mid- and high-latitudes, the magnitude of variation could be different because of 1 

the differences in the solar zenith angle and rate of reduction of solar radiation during the 2 

transition. Therefore, some tuning of thresholds may be required at different latitudes.    3 

3.3 Seasonal variation in the start time of transition 4 

Since Gadanki experiences different seasonal patterns: very hot and dry summer, hot and rainy 5 

southwest monsoon, cool and rainy northeast monsoon and cool and dry winter.  These seasonal 6 

factors (solar exposure, synoptic flow, soil condition, etc.) will have a different impact on ABL, 7 

in general, transitions, in particular. Therefore, the distributions of Transsunset for different 8 

seasons (Fig. 5) have been studied to understand the impact of the above factors on the start time 9 

of transition.  Figure 5a-d reveals that the order in which the surface state variables show the 10 

transition remain nearly the same (monsoon season is an exception), but their occurrence time 11 

with reference to the sunset varies considerably.  Although reduced compared to the total data 12 

(Fig. 3), the distribution, representing the variability within the season, of transition start time for 13 

each state variable is quite wide.  The Transsunset distribution for T shows a consistent pattern 14 

regardless of season with small variability within the season and the transition starts 80-100 min 15 

prior to the time of sunset. Nevertheless, it exhibits a clear seasonal variation with dry seasons 16 

(winter and summer) showing the transition early (~110 min prior to the sunset time) compared 17 

to rainy seasons (80 min prior to the sunset time). The distributions for other state variables also 18 

show some seasonal variation with warm seasons showing the transition little earlier than cold 19 

seasons. But their distributions are much wider than the observed weak seasonal variation.  20 

Among all state variables, Transsunset distribution for r shows not only large seasonal variability 21 

but also a wide distribution, indicating highly variable nature of r jump (i.e., starts at different 22 

timings with reference to the sunset).   23 
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Two representative heights, 300 m from sodar and 1500 m from wind profiler, are chosen 1 

to study the seasonal variation in transition start time aloft (Fig. 5e-l).  Like in Fig. 3, there is not 2 

much difference in the start time of transition by SNR and σ in any season and at any particular 3 

altitude.  Two observations are strikingly apparent from Fig. 5. 1. Both profiler- and sodar-4 

derived start time of transition shows some seasonal variation with delayed transition during the 5 

northeast monsoon, consistent with the seasonal variation at the surface. 2. Irrespective of the 6 

season, the height dependency in transition start time is intact. Both these issues are discussed in 7 

detail in Sect. 4.  8 

 9 

4 Discussion 10 

The four major questions related to the start time of transition that the paper tries to answer are, 11 

(i) which state variable better identifies it, (ii) does it exhibits any seasonal variation (iii) does it 12 

shows any height dependency?, and (iv) which physical mechanism is responsible for the 13 

observed height variation of Transsunset?   14 

(i) Among all state variables, the decrease of temperature at the surface and SNR aloft are 15 

strikingly apparent in all case studies, which makes them ideal to identify the start time of AT. 16 

Further, the distributions of Transsunset for T and SNR are somewhat consistent and narrower than 17 

that for other state variables. Although several earlier studies employed reversal of sign in 18 

surface heat flux as a criterion for transition (Lothon et al., 2014 and references therein), it is 19 

now well known that such a reversal not always occurs during the transition (Busse and Knupp, 20 

2012). The formation of an inversion depends on several other factors and therefore the 21 

formation of inversion alone cannot be used to define the transition.  A few studies used 22 

deceleration of low-level wind as a criterion for identifying the transition (Mahrt, 1981).  The 23 
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above criterion works well in the lower portion of ABL, but fails above the nocturnal boundary 1 

layer, where the wind accelerates in the frictionless fluid. Therefore, T at the surface and SNR 2 

aloft can be used to identify the start time of transition, as also suggested by Edwards et al. 3 

(2006). 4 

(ii) The start time of transition as defined by different state variables shows some seasonal 5 

variation, with late transitions during the northeast monsoon season. Though Gadanki receives 6 

55% of the annual rainfall in the southwest monsoon, rising instantaneous soil moisture levels, 7 

but the high insolation and temperatures immediately consume the soil moisture for latent 8 

heating. On the other hand, this region also gets good amount of rainfall during the cool 9 

northeast monsoon (Rao et al., 2009). The soil moisture levels, therefore, remain high in this 10 

season. It is known from earlier studies that the abundance of soil moisture not only produces 11 

shallow ABL but also delays the growth of the ABL (Sandeep et al., 2014). It appears from 12 

present observations that not only the growth but also the descend (or transition) is getting 13 

delayed due to the excess soil moisture.  14 

(iii) The total and seasonal distributions of Transsunset for different state variables at the surface 15 

and aloft clearly show the height dependency in the start time of transition, following a top-to-16 

bottom evolution. It is known from the literature that there exists an apparent contradiction 17 

between those who think the transition starts in the afternoon at high levels (Angevine, 2008) and 18 

others who believe the AT occurs around the sunset and follows a bottom-up evolution. The 19 

present study supports the former view, as similar evolution is seen in total and seasonal plots 20 

(Figs. 3 and 5).  During the AT, when the surface buoyancy flux decreases toward zero, the 21 

influence of other competing processes like advection, and entrainment becomes relatively more 22 

important (Bosveld et al., 2014). Therefore an attempt has been made to estimate these fluxes 23 
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(buoyancy and entrainment) to understand their roles in the observed height dependency in 1 

transition start time.  2 

 The ratio between the vertical kinematic eddy heat flux at the top of ABL and kinematic 3 

eddy heat flux at the surface (entrainment ratio) (Sun et al., 2008), as given below, therefore, 4 

becomes a fundamental and decisive parameter. 5 

   𝐴𝑅 = −
(𝑤|Ɵ| )

𝑧𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑤|Ɵ| )
𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          … (1) 6 

The heat flux at the top of ABL (or entrainment flux) is estimated following Angevine (1999). 7 

The entrainment can occur due to any or all of these factors, (1) when there is a shift in the ABL 8 

height (2) due to wind shear at the surface, (3) due to wind shear at the top of the ABL and (4) 9 

advection.  10 

  - (𝑤|Ɵ|̅̅ ̅̅ ̅̅ )𝑧𝑖 = A0 + (A2 𝑢∗
2
u + A3 ∆uh

3 
).(θvo/gd1) + (𝑈

𝜕𝑇

𝜕𝑥
+  𝑉 

𝜕𝑇

𝜕𝑦
)        … (2) 11 

where 𝑢∗ is the friction velocity, u the surface horizontal velocity (8 m in our case), ∆uh the wind 12 

shear at the top of ABL, g the acceleration due to gravity, θvo the virtual potential temperature at 13 

the surface, d1 is the depth of entrainment zone and A2 and A3 are empirical constants, A2=0.005 14 

and A3=0.01 (Stull, 1976). For the estimation of advection (last term in Eq. 2), the temperature 15 

(T), horizontal distance in zonal and meridional planes (∂x and ∂y, respectively, and is equal to 16 

0.5°) and zonal (U) and meridional (V) wind velocities near the top of ABL are taken from 17 

ECMWF Interim Reanalysis data (Dee et al., 2011). A0 is the entrainment flux in the absence of 18 

any mechanical term contribution and is expressed as we ∆Ɵ, we is the entrainment velocity and is 19 

estimated as follows.  20 

   we = 
𝑑𝑧𝑖

𝑑𝑡
 −  𝑤̅             … (3) 21 
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where 𝑤̅ is the average vertical velocity at the top of ABL and ∆θ the vertical gradient in θv at 1 

the top of ABL.  As seen above, the time and space scales of different entrainment processes 2 

cover a wide range, which makes it difficult to measure or model accurately (Angevine 1999). 3 

Although it is possible to quantify the entrainment flux from heat budget equation (Eq. 2), the 4 

uncertainties in the basic parameters (for instance, those in the advection term and w) hamper the 5 

accuracy of the flux. Therefore, as also pointed by Angevine (1999), these numbers need to be 6 

considered as ‘best available estimates’.   7 

 It is clear from above equations that profiles of meteorological parameters such as T, 8 

RH/r and w are essential to estimate the entrainment ratio. Though w can be obtained 9 

continuously from the wind profiler, continuous measurement of T and RH/r at the top of ABL is 10 

a difficult task. We, therefore, considered two 3 days campaign data (one each from southwest 11 

monsoon and winter), wherein radiosonde ascents were made once in ~3 h, for a detailed study 12 

(dataset 2). 13 

Figure 6a-c shows the time-height variation of SNR, w and σ on 22 July 2011, depicting 14 

the typical diurnal evolution of ABL during the campaign period. The θv profiles during 15 

morning-evening (at 08:24, 11:54, 14:25 and 17:15 IST) period are shown in Fig. 6d to depict 16 

the height of ABL (and also the gradients in θv at the top of the ABL). Clearly, the height of 17 

ABL as obtained by the profiler (shown with dots on SNR plot) and radiosonde (the gradient in 18 

θv profile) corresponds well. The agreement between them is also good in the diurnal variation, 19 

with both the measurements showing shallow ABL in the morning and evening transition periods 20 

and deep ABL during the day, when the ABL is convectively active.     21 

The start time of AT as seen by different state variables at the surface and aloft on all 22 

days during the two campaigns is shown in Fig. 7a and b.  It clearly reiterates the height 23 
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dependency of start time of AT seen in Figs. 2-5, i.e., the start time of AT observed by profiler 1 

precedes surface state variables on all days and in both seasons.  Though the same pattern is seen 2 

on all days, but the time at which the transition starts varies considerably from day to day.  3 

The entrainment flux at the top of ABL is estimated by combining the measurements of 4 

radiosonde (Δθ, d1), profiler (w, Δuh), MBLM (u, θvo) and a meteorological flux tower (𝑢∗) with 5 

ECMWF interim data (advection term). The sensible heat flux and 𝑢∗ at the surface required to 6 

quantify the entrainment ratio (Eq. 1) are estimated following the eddy covariance method by 7 

using 20 Hz resolution ultrasonic anemometer measurements at 8 m level. These fluxes are 8 

evaluated at 30 min resolution.  9 

Figures 8a and b shows the sensible and entrainment fluxes at ~3 h resolution during the 10 

day, depicting the forcing on the ABL from bottom and top. The sensible heat flux varies 11 

considerably during the day, with fluxes varying from 0.15-0.25 K ms
-1

 around noon (~11:00 12 

and ~14:00 IST) to 0.02-0.07 K ms
-1 

during the morning and evening transitions (~08:00 and 13 

~17:00 IST). On the other hand, the entrainment flux neither changes drastically during the day 14 

nor shows a clear diurnal cycle (compared to sensible heat flux). The magnitude of entrainment 15 

flux depends mostly on the first term in Eq. 2, while the shear (2 and 3 terms in Eq. 2) 16 

contributes very little to the total entrainment flux (not shown). Since the buoyancy flux changes 17 

considerably, the entrainment ratio varies significantly during the course of the day. The 18 

entrainment ratio increases to 0.5-1.1 during the morning and evening transitions. Therefore, it is 19 

very clear from these observations that the forcing from the top (i.e., entrainment flux) becomes 20 

very important, when the buoyancy flux is weak (i.e., during the transitions and night) A few 21 

earlier studies also underscored the importance of buoyancy flux in altering the structure of 22 

ABL.  The entrainment not only modifies the top of the ABL but also impacts the entire depth of 23 
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the ABL (Lohou et al., 2010).  Caughey and Kaimal (1977), have shown experimentally that the 1 

heat flux descents suddenly during the transition, approximately an hour before the sunset, and 2 

the reversal of heat flux (from positive to negative) first occurs at higher altitudes and then 3 

propagates downwards to the surface, indicating the importance of entrainment heat flux in the 4 

top-to-bottom evolution of the transition.  Also, with continuous waning of sensible heat flux 5 

during the AT, both the vertical extent and strength of thermals (can be seen in Figs. 1 and 6) 6 

decrease monotonously.  At the same time, the surface forcing (heating) remains good enough to 7 

maintain the turbulence close to the surface and therefore does not show the signature of 8 

transition, but delays it at the surface (Angevine, 2008). 9 

 10 

5  Conclusions 11 

This study presents a comprehensive view on the AT in terms of understanding the variability of 12 

different state variables using a suite of in-situ and remote sensing measurements at Gadanki.  13 

The study aims to address the following issues related to the start time of AT with a unique and 14 

statistically robust data set (~3 years).  Which parameter first shows the signature of transition at 15 

the surface and aloft? Which parameter better defines or identifies it? How does it varies with 16 

altitude and season? Which physical mechanism explains the observed vertical variation of 17 

transition?   18 

(i) Among the surface state variables, the signature of transition is first seen in σ
2

WS and T data, 19 

both of which start decreasing monotonically ~100 min prior to the time of sunset.  The r 20 

increase is the last signature of transition, while the reversal of ΔT variation from positive to 21 

negative falls in between these extremes. Aloft, both SNR and σ identify the start of AT at the 22 

same time, 120-160 min prior to the time of sunset, depending on the height considered.  The 23 
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observed mean start time of AT (2 h prior to the sunset), obtained from SNR and σ variations, 1 

matches well with that obtained by Mahrt (1981), who used horizontal wind reduction for 2 

identifying the transition. 3 

(ii) At the surface, the start time of AT can be discerned more easily from variations of T than 4 

from that of σ
2

WS, r and ΔT. While σ
2

WS and ΔT variations show large modulations with time, r 5 

variation is ambiguous at times. Also, the temperature reduction is more consistent with 6 

relatively narrow distribution and occurs always before the sunset.  Aloft, SNR variation is 7 

robust in identifying the transition compared to ambiguous variations in horizontal wind velocity 8 

(decreases at lower altitudes and increases at higher altitudes).   9 

(iii) The start time of AT as defined by different state variables show some seasonal variation, 10 

with delayed transitions during the northeast monsoon at the surface and aloft. Though there is 11 

some seasonal variation in the start time of AT relative to sunset time, the order in which the 12 

signature of AT is seen in different state variables (first in T, and σ
2

WS followed by ΔT and r) 13 

remained nearly the same in all seasons.  14 

(iv) Interestingly, the start time of AT exhibits a clear height dependency, i.e., the signature of 15 

transition is seen first in profiler attributes (~160 min) followed by sodar attributes (~120 min) 16 

and finally in surface state variables (~100 min), suggesting that the transition follows a top-to-17 

bottom evolution (Angevine, 2008). The fact that the first signatures of transition are seen at 18 

higher altitudes by profiler/sodars than at the surface suggests that the forces other than the 19 

buoyancy could also play an important role during the transition. With continuous waning of 20 

sensible heat flux (and surface forcing) during the AT, both the vertical extent and strength of 21 

thermals decrease steadily (as seen in Figs. 1 and 6), triggering the descend of ABL or transition.  22 

However, the surface heating is good enough to maintain the state variables and delay the 23 
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decrease of T and σ
2

WS (considered to be the signatures of transition). Further, the impact of 1 

forcings from top and bottom on the ABL is studied by quantifying the sensible and entrainment 2 

fluxes, using a flux tower and profiler-radiosonde measurements, respectively. Though the 3 

sensible heat flux varied significantly during the day, the entrainment flux remained nearly the 4 

same throughout the day. The entrainment ratio increases considerably during the morning and 5 

evening transitional periods, primarily due to the weak sensible heat flux.  Therefore, the 6 

entrainment flux appears to be playing a major role during the transition period (and in the night) 7 

during which the sensible heat flux continuously weakens.     8 
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Table 1. Instruments used in the integrated approach, their operating frequency, height coverage, vertical and temporal resolutions and 21 

duration of data.   22 

Instrument 
Frequency of 

operation 

Measured 

parameters 
Height coverage 

Vertical 

resolution 

Temporal 

resolution 

Period used 

SODAR 1.8 kHz SNR, winds and σ 0.03 - 1.5 km 30 m 27 sec 2007-2010 

LAWP 1.357 GHz SNR, winds and σ 0.3 - 4.2 km 150 m ~11 min 1999-2000 

WPR8x8 1.280 GHz SNR, winds and σ 0.3 - 6.15 km 150 m ~10 min 2010 

WPR16x16 1.280 GHz SNR, winds and σ 0.75 - 5.025 km 75 m ~10 min 2010-2011 

MBLM 

 T, r, pressure, WS, 

WD and short wave 

radiation 

5 - 15 m 5 m 1 s 2009-2011 

GPS  

Radiosonde 

 T, RH, pressure 
0 - 30 km 100 m 3 h 

17-19 January 2011 

 21-24 July 2011 

50 m Tower 
 Sonic temperature, 

vertical wind  
8 m  0.05 s 

17-19 January 2011 

 21-24 July 2011 

 23 

 24 

 25 

 26 
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Table 2. Details of measured parameters and sensors (make, model number, resolution and accuracy) on MBLM. 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 Parameter Make Model No. Resolution 
Measurement 

height 

Accuracy 

Wind Speed and 

Wind Direction  

RM Young 05103V 1 Hz 5, 10 and 15m 0.3 m s
-1

 and 2° 

Temperature and 

Relative Humidity  

Rotronics Hygroclip S3 1 Hz 5, 10 and 15m 0.3° C and 2% 

Pressure  Komoline KDS-021 1 Hz 1.2 m 1hPa 

Short Wave 

Radiation 

Kipp & 

Zonen 

CMP 6 1 Hz 1.2 m 1 W m
-2
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Table 3. Major specifications of SODAR, LAWP, WPR8x8 and WPR16x16   56 

Parameter SODAR LAWP WPR16X16 WPR8X8 

Operating frequency  1.8 kHz 1357.5 MHz 1280 MHz 1280 MHz 

Peak power 100 W 1 kW 1.2 kW 0.8 kW 

Antenna array 1 m x 1 m 3.8 m x 3.8 m 2.8 m x 2.8 m 1.4 m x 1.4 m 

Pulse width  180 ms 1 μs 

(uncoded) 

4 μs 

(coded) 

1 μs 

(uncoded) 

Inter pulse period (μs) 9x10
6
 40 55 55 

No. of Coherent Integrations 1 70 64 32 

No. of Incoherent Integrations 1 100 20 20 

No. of FFT points 4096 128 1024 1024 

Beam width (deg) 4 3 5 6.5 

Range resolution (m) 30 150 75 150 

Beam directions* N16, Z, E16 E15, Z, N15 E15, W15, Z, 

N15, S15 

E10N10, 

W10S10, Z, 

W10N10, 

E10S10 

* E, W, Z, N and S denote east, west, zenith, north and south directions, respectively, and the number indicates the off-zenith angle. 57 
 58 
 59 

 60 

 61 
 62 
 63 
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 1 

Table 4: Details of dataset 1 grouped as a function of season, showing the total number of days for which data are available, number of 2 

discarded days due to cloudy sky/rain or data gaps and number of clear days finally used in the present study.  Win, Sum, SWM and 3 

NEM stand for, respectively, winter, summer, southwest monsoon and northeast monsoon. 4 

 5 

 15m Tower (2009-2011) Sodar (2007-2010) Profiler ( 1999-00, 2010-11) 

Season Win Sum SWM NEM Win Sum SWM NEM Win Sum SWM NEM 

Total  no. of days 113 195 263 221 207 333 414 255 108 238 381 264 

Discarded days 25 55 158 130 105 152 282 189 41 101 227 140 

Clear days  88 140 105 91 102 181 132 66 67 137 154 124 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

  16 

 17 
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 1 

 2 

Figure 1: Diurnal variation of state variables at the surface and aloft on 11 May 2010, MBLM-derived surface (a) T, (b) r, (c) WS (d) 3 

σ
2

WS  and (e) WD and sodar-derived (f) range-corrected SNR, (g) σ, (h) WS, (i) w and (j) WD. (k-o) same as (f-j), except for profiler-4 

derived state variables. The solid vertical line indicates the time of sunset.  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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 15 
 16 

Figure 2: Temporal variation of state variables (at the surface and aloft) few hours before and 17 

after the time of sunset (indicated with a black solid vertical line).  Temporal variation of 18 

MBLM-derived (a) T, (b) r, (c) ∆T and (d) σ
2

WS, sodar-derived (e) range-corrected SNR and (f) σ 19 

and profiler-derived (g) range-corrected SNR and (h) σ. The sodar- and profiler-derived 20 

parameters are plotted at 3 representative levels each (150, 300 and 450 m for sodar and 900, 21 

1500 and 2100 m for profiler).   Vertical dashed lines indicate the start time of the transition as 22 

identified by different state variables. 23 

 24 

 25 

 26 



37 
 

 27 
 28 

Figure 3: Distributions (in terms of box plot) of Transsunset ( = start time of AT - time of sunset) 29 

for different state variables, depicting the behaviour of transition start time with reference to the 30 

sunset time.  Distributions for Transsunset at (a) the surface (obtained from T, r, ∆T and σ
2

WS), (b)-31 

(d) 150 m, 300 m and 450 m, respectively (obtained from sodar-derived range-corrected SNR 32 

and σ)  and (e)-(g) 900 m, 1500 m and 2100 m, respectively (obtained from profiler-derived 33 

range-corrected SNR and σ).   34 

 35 

 36 

 37 

 38 
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 39 
Figure 4:  Variation of mean Transsunset as obtained by different state variables for different 40 

thresholds, depicting the sensitivity of thresholds used in the present study on the start time of 41 

transition. 42 

 43 
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 44 
 45 

Figure 5:  The distributions of Transsunset as obtained by different surface state variables for (a) 46 

winter (b) summer, (c) southwest monsoon and (d) northeast monsoon, depicting the seasonal 47 

variability in the start time of transition. The distributions for Transsunset as obtained by sodar-48 

derived range-corrected SNR and σ at 300 m for (e) winter, (g) summer, (i) southwest monsoon 49 

and (k) northeast monsoon, respectively. (f), (h), (j) and (l) are same as (e), (g), (i) and (k), 50 

except for profiler-derived range-corrected SNR and σ at 1500 m.           51 

 52 

 53 

 54 

 55 
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 56 
 57 

Figure 6: Diurnal variation of profiler attributes (a) range-corrected SNR (b) w and (c) σ on 22 58 

July 2011, illustrating the evolution of ABL and afternoon transition. (d) The vertical variation of 59 

radiosonde-derived θv at ~3 h intervals. The solid symbols on (a) indicate the height of ABL. 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 
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 68 
 69 

Figure 7: The start time of AT with reference to the time of sunset as obtained by different state 70 

variables at the surface and aloft during (a) 17-19 January 2011 and (b) 21 - 23 July 2011.     71 

 72 

 73 



42 
 

 74 
Figure 8: Sensible and entrainment fluxes (left axis) and entrainment ratio (right axis) estimated 75 

at ~3 h. intervals during (a) 17-19 January 2011 and (b) 21-23 July 2011, indicating the forcings 76 

on ABL from the bottom and top.  77 


