Supplement of

Aging of secondary organic aerosol from small aromatic VOCs: changes in chemical composition, mass yield, volatility and hygroscopicity

L. Hildebrandt Ruiz et al.

Correspondence to: L. Hildebrandt Ruiz (lhr@che.utexas.edu)

S1 Modification of Standard Fragmentation Table

Several adjustments were made to the standard fragmentation table (Allan et al., 2004) for the analysis of HR and UMR data. Most importantly, a significant adjustment was made to the treatment of water fragmentation (Section S1.2) and to the fraction of observed $\mathrm{H}_{2} \mathrm{O}$ attributed to organics (Section S1.3).

S1.1 Air Fragmentation

The fragmentation pattern of air at $m / z 44\left(\mathrm{CO}_{2}{ }^{+}\right), m / z 29\left(\mathrm{~N}^{15} \mathrm{~N}^{+}\right), m / z 18\left(\mathrm{H}_{2} \mathrm{O}^{+}\right)$and $m / z 16$ $\left(\mathrm{O}^{+}\right)$was calculated using difference spectra (signal - background) at UMR during filter measurements, which were taken at the beginning (before aerosol formation) and at the end of every experiment. $\mathrm{H}_{2} \mathrm{O}^{+}, \mathrm{N}^{15} \mathrm{~N}^{+}$and $\mathrm{CO}_{2}{ }^{+}$were calculated as constant fractions of the $\mathrm{N}_{2}{ }^{+}$signal at $m / z 28 . \mathrm{O}^{+}$was calculated as a constant fraction of N^{+}. When the fractions were different at the beginning and end of the experiments, a linear function was used to approximate the timedependent fraction throughout the experiment. In all cases the calculated fractions did not differ greatly from the standard values.

S1.2 Water Fragmentation

Water dominates the signal in the background (closed) spectrum at $m / z 16\left(\mathrm{O}^{+}\right), m / z 17\left(\mathrm{HO}^{+}\right)$ and $m / z 18\left(\mathrm{H}_{2} \mathrm{O}^{+}\right)$. It is standard practice to determine the water fragmentation pattern from linear regressions to the closed signal of $m / z 16$ vs. $m / z 18$ and $m / z 17$ vs. $m / z 18$. In this way the $\mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}^{+}$and $\mathrm{HO}^{+} / \mathrm{H}_{2} \mathrm{O}^{+}$ratios were determined for each experiment; the values, summarized in Table S1, differ slightly from the default values of 4% and 25% for $\mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}^{+}$and $\mathrm{HO}^{+} / \mathrm{H}_{2} \mathrm{O}^{+}$, respectively. However, this treatment of water fragmentation does not account for the H -atoms which were bound to HO^{+}and O^{+}before fragmentation. Therefore, H was added to the standard fragmentation table to obtain an $\mathrm{H}: \mathrm{O}$ ratio of 2 in the total signal of $\mathrm{H}_{2} \mathrm{O}$ determined by AMS data analysis (Canagaratna et al., 2014). This addition of H is made in three locations in the fragmentation table (water, organics and sulfate) because observed particle-phase $\mathrm{H}_{2} \mathrm{O}$ is divided between these species. The resulting changes in mass of water, organics and sulfate are low due to the low atomic weight of H . But, the addition of H changes the organic $\mathrm{H}: \mathrm{C}$ ratio calculated in
elemental analysis of the organic aerosol (OA) and therefore the average carbon oxidation state $\left(\overline{\mathrm{OS}}_{\mathrm{C}}\right)$ estimated from $\mathrm{O}: \mathrm{C}$ and $\mathrm{H}: \mathrm{C}$ ratios $\left(\overline{\mathrm{OS}}_{\mathrm{C}} \sim 2 \times \mathrm{O}: \mathrm{C}-\mathrm{H}: \mathrm{C}\right)$ (Kroll et al., 2011).

S1.3 Organic Fragmentation

Important changes were also made to the organic fragmentation table. Based on the recommendation by Aiken et al. (2008), the following fragmentation pattern should be used relative to the $m / z 44$ (or CO_{2}^{+}for HR analysis) signal: $m / z 28\left(\mathrm{CO}^{+}\right)=100 \%, m / z 18\left(\mathrm{H}_{2} \mathrm{O}^{+}\right)=$ 22.5%. Since the experiments presented here contained isotopically labeled species, organic $\mathrm{H}_{2} \mathrm{O}^{+}$was instead set as a function of the $\left({ }^{13} \mathrm{CO}_{2}{ }^{+}+\mathrm{CO}_{2}{ }^{+}\right)$signal. When using 22.5%, the mass attributed to particulate water correlated with organic mass during the experiment, which is unexpected in these dry experiments (RH was less than 10%). There may be some water in the particles if the ammonium sulfate seed particles were not dried completely; however, the particle-phase water signal should not correlate with total organic signal. Thus, the ratio of organic $\mathrm{H}_{2} \mathrm{O}^{+}$to ${ }^{13} \mathrm{CO}_{2}{ }^{+}+\mathrm{CO}_{2}{ }^{+}$was chosen so that the mass of water does not correlate with the mass of organics ($\mathrm{R}<0.01$). The ratios of organic $\mathrm{H}_{2} \mathrm{O}^{+}$to $\left({ }^{13} \mathrm{CO}_{2}^{+}+\mathrm{CO}_{2}{ }^{+}\right)$are provided in Table 2 and ranged from 0.3 to 2.4 , higher than the ratio of 0.225 in the default fragmentation table. Calibration experiments suggest that polyacids, diacids and multifunctional organic molecules have $\mathrm{H}_{2} \mathrm{O}^{+} / \mathrm{CO}_{2}^{+}$ratios of 1,2 and $0.5-1.5$, respectively when analyzed with the AMS, and polyols have $\mathrm{H}_{2} \mathrm{O}^{+} / \mathrm{CO}_{2}^{+}$exceeding 10 (Canagaratna et al., 2014). Thus, the observation of high $\mathrm{H}_{2} \mathrm{O}^{+} / \mathrm{CO}_{2}{ }^{+}$in these experiments may point to an importance of these functional groups in the OA produced. Increasing the amount of organic $\mathrm{H}_{2} \mathrm{O}$ significantly increased organic mass as well as $\mathrm{O}: \mathrm{C}$ in these experiments; it does not increase the approximated oxidation state.

A relative ionization efficiency (RIE) of 2.0 was used for all $\mathrm{H}_{2} \mathrm{O}$ including the organic $\mathrm{H}_{2} \mathrm{O}$. This RIE is the ionization efficiency which has been determined for $\mathrm{H}_{2} \mathrm{O}$ (Mensah et al., 2011) and is correct to use for the $\mathrm{H}_{2} \mathrm{O}$ fragments from dehydration of organics if and only if $\mathrm{H}_{2} \mathrm{O}$ ionizes after fragmentation. If the organic molecule is ionized and then dehydrates and results in $\mathrm{H}_{2} \mathrm{O}^{+}$, an RIE of 1.4 should be used (the RIE of organics). The only place where this uncertainty (whether fragmentation follows or precedes ionization) affects the presented results is in the calculated ratios of $\mathrm{H}_{2} \mathrm{O}^{+} /\left({ }^{13} \mathrm{CO}_{2}^{+}+\mathrm{CO}_{2}^{+}\right)$presented in Table 2; these ratios would be higher by a factor of (2.0/1.4) if dehydration follows ionization. The ratio of ${ }^{13} \mathrm{CO}^{+}$to ${ }^{13} \mathrm{CO}_{2}^{+}$was close to 1
throughout the experiments (Table 2), so the ratio $\mathrm{CO}^{+} / \mathrm{CO}_{2}{ }^{+}=1$ from the standard fragmentation table was used.

S1.4 Treatment of NO^{+}and $\mathrm{NO}_{2}{ }^{+}$

In these experiments, no inorganic nitrate is introduced or anticipated. Hence the ions assigned to the nitrate family in the HR analysis $\left(\mathrm{NO}^{+}, \mathrm{NO}_{2}{ }^{+}\right)$are presumed to be due to organic nitrates and were added to the total organic aerosol mass in the HR batch table. The relative ionization efficiency (RIE) of 1.0 is used to quantify the contribution from these fragments. The elemental analysis examines the oxidation state of the carbon atoms; hence, nitrate fragments $\left(\mathrm{NO}^{+}, \mathrm{NO}_{2}{ }^{+}\right)$ were not included in the calculation of $\mathrm{O}: \mathrm{C}$ and $\mathrm{H}: \mathrm{C}$.

References

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T. and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909-922, doi:10.1016/j.jaerosci.2004.02.007, 2004.

Canagaratna, M. R., Jimenez, J.-L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L., Wilson, K., Surratt, J. D., Donahue, N. M., Jayne, J. T. and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications, Atmos. Chem. Phys. Discuss., 14, 19791-19835, 2014.

Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E. and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol., Nat. Chem., 3(2), 133-9, doi:10.1038/nchem.948, 2011.

Mensah, A. A., Buchholz, A., Mentel, T. F., Tillmann, R. and Kiendler-Scharr, A.: Aerosol mass spectrometric measurements of stable crystal hydrates of oxalates and inferred relative ionization efficiency of water, J. Aerosol Sci., 42(1), 11-19, doi:10.1016/j.jaerosci.2010.10.003, 2011.

1 Table S1. Details on AMS data analysis

Expt $\#$	$\mathrm{O} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{HO} / \mathrm{H}_{2} \mathrm{O}$	AB $\left(\times 10^{5}\right)$	Org <106 ratio	v / w	$\mathrm{CE}_{\mathrm{BP}}$	$\mathrm{CE}_{\text {TD }}$	$\rho_{\text {org } B P}$	$\rho_{\text {org,TD }}$
1	0.027	0.229	5.28	0.966	0.427	0.20	0.20	1.275	1.400
2	0.017	0.232	5.36	0.977	0.478	0.35	0.30	1.350	1.400
3	0.028	0.223	5.33	0.959	0.466	0.25	0.25	1.375	1.425
4	0.020	0.238	5.48	0.970	0.490	0.25	0.25	1.350	1.450
5	0.016	0.234	5.04	0.959	0.504	0.30	0.30	1.325	1.375
6	0.042	0.238	5.09	0.961	0.531	0.25	0.25	1.275	1.375
7	0.036	0.269	4.84	0.971	0.490	0.25	0.25	1.375	1.475
8	0.037	0.227	4.80	0.968	0.504	0.20	0.20	1.325	1.400
9	0.022	0.234	5.05	0.974	0.705	0.40	0.35	1.425	1.400

2

3

4

5

Expt.	Diameter $^{\mathrm{a}}$ (nm)	Concentration $^{\mathrm{b}}$ $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$	OA Density $^{\left(\mathrm{kg} \mathrm{m}^{-3}\right)}$
1	298	42.8	1.28
2	234	6.4	1.35
3	275	51.4	1.38
4	228	26.0	1.35
5	234	11.8	1.33
6	243	94.4	1.28
7	285	41.5	1.38
8	266	30.1	1.33
9	251	22.8	1.43

${ }^{\mathrm{a}}$ Average volumetric mode diameter of the bypass line.
${ }^{\mathrm{b}}$ Average CE corrected concentration of the bypass line .

Enthalpy of Vaporization and Accommodation Coefficient Sensitivity Analysis

Table S3. Normalized shifting factors for all tested values of $\Delta \mathrm{H}_{\text {yap }}$

Normalized Shifting Factors			
Expt	$\boldsymbol{\Delta} \mathbf{H}_{\text {vap }}=\mathbf{2 0} \mathbf{~ k J}$	$\Delta \mathbf{H}_{\text {vap }}=\mathbf{8 0} \mathbf{~ k J}$	$\Delta \mathbf{H}_{\text {vap }}=\mathbf{1 2 0} \mathbf{~ k J}$
1	0.36	0.31	0.29
2	0.08	0.04	0.01
3	0.57	0.31	0.16^{*}
4	0.50	0.25	0.27^{*}
5	0.74^{*}	0.52	0.57
6	0.93	0.53	0.61^{*}
7	1.0	1.00	1.00^{*}
8	0.38^{*}	0.23	0.13
9	0.22^{*}	0.14	0.07

[^0]1 Table S4 Shifting factors and SSR values for the most volatile (Expt. 7) and least volatile (Expt. 2 9) experiments in our dataset estimated using different values of accommodation coefficient.

$\boldsymbol{\alpha}_{\mathbf{m}}$		Shifting Factors		Sum of the Squared Residuals	
	Expt 7	Expt 9	Ratio (Expt 7 / Expt 9)	Expt 7	Expt 9
0.01	1.95	0.32	6.14	0.09	0.079
0.1	0.21	0.03	6.24	0.09	0.078
1.0	0.04	0.006	7.04	0.10	0.075

Figure S1. Estimated CE (solid green and open black circles) and OA density did not change much over the course of an experiment (shown here is experiment 9). The algorithm used is not as sensitive to OA density, and fixing the density at $1.5 \mathrm{~g} \mathrm{~cm}^{-3}$ changes the CE values only slightly for some, and not at all for other time periods.

1

Figure S2. The interpolated fits to the bypass data are shown for each experiment. The blue circles represent the measured organic mass concentration from the bypass line and the red lines represent the interpolated fit, normally an exponential decay.

[^0]: * The sum of squared residuals exceeding 0.10

