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Abstract. We present a comprehensive comparison of polar processing diagnostics derived from the

National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Re-

search and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts

(ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological con-

ditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics,5

and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing

studies. Our results show that the agreement between MERRA and ERA-Interim changes signifi-

cantly over the 34 years from 1979 through 2013 in both hemispheres, and in many cases improves.

By comparing our diagnostics during five time periods when an increasing number of higher qual-

ity observations were brought into these reanalyses, we show how changes in the data assimilation10

systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our strato-

spheric temperature diagnostics show a convergence toward significantly better agreement, in both

hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite)

radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air

with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnos-15

tics of polar vortex size and strength, do not show improved agreement between the two reanalyses

in recent years when data inputs into the DAS were more comprehensive. The polar processing di-

agnostics calculated from MERRA and ERA-Interim agree much better than those calculated from

earlier reanalysis datasets. We still, however, see fairly large differences in many of the diagnostics

in years prior to 2002, raising the possibility that the choice of one reanalysis over another could20

significantly influence the results of polar processing studies. After 2002, we see overall good agree-
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ment among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are

equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.

1 Introduction

The depletion of stratospheric ozone in the polar regions is a consequence of chemical processing25

that is strongly dependent upon meteorological conditions (e.g., Solomon, 1999). This polar process-

ing takes place within the stratospheric vortices that form over the Earth’s poles in the fall and persist

into spring. These polar vortices act as strong barriers to transport and mixing of air across their edges

(e.g., Schoeberl et al., 1992; Manney et al., 1994a, 2011; Strahan et al., 2013; and references therein),

providing a pool of isolated air inside them where polar processing can take place (e.g., Schoeberl30

et al., 1992). The lower stratospheric processes that lead to chemical ozone destruction include the

development of polar stratospheric clouds (PSCs), denitrification via sedimentation of PSCs, and

conversion of inert chlorine reservoirs to ozone-destroying forms by reactions on the surfaces of

PSCs (e.g., Solomon, 1999). Because these phenomena depend critically on temperatures and winds

throughout the lower stratosphere (e.g., WMO, 2011, 2015; Brakebusch et al., 2013; Manney et al.,35

2011; Sinnhuber et al., 2011; and references therein), diagnostics related to ozone loss require fields

(e.g., winds) and data coverage (e.g., vertically-resolved, hemispheric, multiannual) that cannot be

obtained from individual measurement systems such as satellites and radiosonde networks. As a re-

sult, the global analyses of meteorological fields provided by data assimilation systems (DAS) that

combine many of these measurements are invaluable for polar processing and ozone loss studies.40

Numerous such DAS analyses are now available, facilitating both observational and modeling stud-

ies of polar processing (e.g., WMO, 2011, 2015, and references therein). However, variations in the

representation of meteorological conditions are expected because of differences in the model formu-

lations and resolutions, assimilation methods, and assimilated products (Fujiwara et al., 2012). The

existence of these differences raises the possibility of conflicting results and conclusions between45

similar studies conducted using different DAS analyses.

Polar ozone loss has been the subject of extensive research aimed at quantifying its dependence on

dynamical and chemical processes (e.g., WMO, 2015). Diagnostics using meteorological conditions

to assess the potential for chemical processing, especially PSC formation and chlorine activation,

are commonly used. Some of these diagnostics, such as the volume of air below PSC temperature50

thresholds (VPSC), have been found to have strong links to total column ozone depletion (e.g., Rex

et al., 2004; Tilmes et al., 2006; Harris et al., 2010). While some studies have linked changes in VPSC

to an expectation of colder winters and greater ozone loss in the Arctic with global climate change

(Rex et al., 2004, 2006), others do not support this conclusion (Hitchcock et al., 2009; Pommereau

et al., 2013; Rieder and Polvani, 2013). Climate model projections of future ozone loss are also55

highly uncertain (e.g., Charlton-Perez et al., 2010). Thus, the prediction of future ozone loss is
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still problematic, and improvements in such predictions will require better understanding of the

uncertainties and potential biases in representation of the meteorological conditions upon which

polar processing depends so critically in commonly-used DAS.

Previous studies have recognized the importance of understanding the sensitivity of polar pro-60

cessing and ozone loss quantification to different datasets: Davies et al. (2002) showed that two

SLIMCAT chemical transport model (CTM) runs driven by horizontal winds and temperatures from

the ECMWF (European Centre for Medium-Range Weather Forecasts) and Met Office DAS led

to significantly different patterns of denitrification and chlorine activation, and consequently large

differences in ozone loss of nearly 20%. Similarly, Santee et al. (2002) found significant discrep-65

ancies in PSC formation and composition between model runs that used Met Office temperatures

with and without a 3 K reduction. Sinnhuber et al. (2011) found that reducing the temperatures from

the ECMWF operational analyses by 1 K in CTM runs for the 2010/2011 Arctic winter resulted

in a substantial increase in ozone loss. Brakebusch et al. (2013) reduced GEOS-5 (Goddard Earth

Observing System model, version 5) temperatures by 1.5 K in a Whole Atmosphere Community70

Climate Model simulation of ozone for the 2004/2005 Arctic winter; applying this temperature bias

improved the agreement of simulated ozone with measurements from the Aura Microwave Limb

Sounder satellite instrument. In other cases, some DAS analyses have been shown to have signifi-

cant shortcomings for use in polar processing and ozone loss research. For example, Manney et al.

(2005b) and Feng et al. (2005) discuss many issues with polar temperatures from the ECMWF 40-75

year reanalysis (ERA-40), including periods with large spurious vertical oscillations in polar winter

temperature profiles (e.g., Simmons et al., 2005). In intercomparisons of temperature diagnostics

related to Arctic polar processing of several meteorological analyses, Manney et al. (2003) found

that the area with temperatures below PSC thresholds varied by up to 50% between different analy-

ses, and potential PSC lifetimes differed by several days. Manney et al. (2005a) argued that several80

reanalyses (the datasets referred to therein as the National Centers for Environmental Prediction and

National Center for Atmospheric Research (NCEP-NCAR) reanalysis, NCEP–DOE reanalysis-2,

and ERA-40) were unsuitable for stratospheric and polar processing studies.

Since the above-mentioned studies, significant advances have been made in modeling and data

assimilation, and several additional datasets have become available for constraining the DAS. Long-85

term reanalysis systems have become much more widely used, and the long-term records of global

meteorology based on observational data that they provide are increasingly critical for climate stud-

ies. The growing use of reanalysis datasets demands intercomparisons that quantify the differences

between them. While numerous intercomparisons have been done (see, e.g., https://reanalyses.org/atmosphere/inter-

reanalysis-studies-0), most focus primarily on tropospheric and/or near-surface processes. A few90

studies have also compared tropical upper tropospheric processes in commonly used reanalyses (e.g.,

Schoeberl and Dessler, 2011; Fueglistaler et al., 2013). Rieder and Polvani (2013) showed calcula-

tions of one polar processing diagnostic, VPSC, from three reanalyses. However, no comprehensive
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intercomparisons of diagnostics pertinent to polar processing in the winter lower stratosphere have

been done for the reanalyses that are currently in widespread use. In this paper, we present intercom-95

parisons of polar processing diagnostics derived from the National Aeronautics and Space Admin-

istration (NASA) Modern Era Retrospective analysis for Research and Applications (MERRA), and

the ECMWF Interim Reanalysis (ERA-Interim). These datasets were chosen for this initial study

because of their extensive application in numerous stratospheric studies. Rather than focusing on

specific seasons and/or a single hemisphere, we present most of our diagnostics for the 1979 – 2013100

record of the reanalyses for both Arctic and Antarctic winters. We examine the potential correla-

tion of differences between the analyses over the above time period with the timing of changes in

observations ingested by their DAS.

In general, it can be difficult to directly assess the accuracy of reanalyses because there are few in-

dependent (i.e., not used in the assimilation) measurements that span the full periods of the available105

reanalysis data. In the context of polar processing, this difficulty is far greater because most of the

commonly used polar processing diagnostics require temperature data over large spatial areas and

with horizontal resolutions greater than ground-based measurements, such as those from the Net-

work for the Detection of Atmospheric Composition Change (NDACC, see www.ndacc.org), can

provide. Large-scale independent temperature measurements can be obtained from some satellite110

instruments like the Upper Atmosphere Research Satellite Microwave Limb Sounder (MLS), Aura

MLS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), but

these measurements typically have biases of their own (e.g., Schwartz et al., 2008; Sica et al., 2008).

Many polar processing diagnostics also require information about the polar vortex from potential

vorticity data, which cannot be provided by any measurement system. The degree of agreement115

between reanalyses is thus an important indicator of their inherent uncertainties and the potential

impact of those uncertainties on polar processing studies. Therefore, one of the intentions of this

study is to show when the use of multiple reanalyses is recommended to estimate uncertainties of

quantities related to polar processing, and when the use of a single reanalysis is sufficient.

In Section 2 we describe the datasets, relevant aspects of the assimilated observations, and the120

diagnostics and comparison methods we use. The results, presented in Section 3, comprise compar-

isons of polar processing diagnostics based on temperatures, polar vortex dynamics, and trajectory-

based temperature histories. Our conclusions are then summarized and discussed in Section 4.

2 Data and Analysis

2.1 NASA Modern Era Retrospective analysis for Research and Applications125

MERRA is a global atmospheric reanalysis that uses version 5.2 of the Goddard Earth Observing

System (GEOS) model and assimilation system. It utilizes a combination of 3D-Var assimilation and

Incremental Analysis Update (IAU) (Bloom et al., 1996) to apply corrections from analysis to the
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forecast model. The MERRA system operates natively on a 0.5° × 0.667° latitude/longitude grid

(361 × 540 gridpoints) and uses a hybrid sigma-pressure scheme with 72 vertical levels; the vertical130

resolution in the lower stratosphere is near 1 km. Further details about the MERRA system are given

by Rienecker et al. (2011). The MERRA data files available from NASA’s Global Modeling and

Assimilation Office (GMAO) are described by Lucchesi (2012). Except where specified otherwise,

the MERRA temperature data used here are from instantaneous daily files at 12UT on the model

levels and grid. However, the potential vorticity (PV) data from MERRA are available from GMAO135

only on a reduced 1° × 1.25° latitude/longitude grid (181 × 288 gridpoints) with 42 pressure levels;

for the purposes of this study, MERRA PV is linearly interpolated to match the model levels and grid

as was done in Manney et al. (2011). Although these interpolations of the MERRA PV data cause

some smoothing in the resulting PV fields, they preserve the strong PV gradients that define the

polar vortex edge. All of the PV-based polar processing diagnostics we use depend strongly on the140

vortex edge and PV gradients (see Section 2.4.1), so these diagnostics are unlikely to be significantly

affected by the errors introduced from interpolating MERRA PV to the model grid and levels.

2.2 ECMWF Interim Reanalysis

ERA-Interim (hereinafter ERA-I) is another global atmospheric data assimilation system. The goal

of the ERA-I project was to improve upon ECMWF’s previous reanalysis, ERA-40, in advance of145

their planned next-generation reanalysis. It uses 12-hour cycles of 4D-Var assimilation and a T255

spectral model with 60 vertical levels; the vertical resolution in the lower stratosphere is comparable

to that of MERRA. The ERA-I system is described in detail by Dee et al. (2011), and the datasets

provided by ECMWF from the ERA-I archive are described by Berrisford et al. (2009). Here, ERA-I

data are used on the highest resolution regular latitude/longitude grid publicly available at 0.75° ×150

0.75° (241 × 480 gridpoints) on the 60 model vertical levels; this grid has spacing closest to that of

the Gaussian grid associated with the spectral model. As with MERRA, unless stated otherwise, the

ERA-I temperature and PV data used in this study are instantaneous at 12UT. However, in this case

the PV is derived from the provided relative vorticity, temperature, and pressure fields.

2.3 Timelines of Assimilated Observations155

Since satellite observations are the primary constraint on reanalysis products at stratospheric levels,

it is useful to consider how the data evolve with the introduction of new missions and instruments:

Pawson (2012) noted the effect of the TOVS (Tiros Operational Vertical Sounder) to Advanced

TOVS (ATOVS) transition in 1998 on middle and upper stratospheric global temperature anomalies

from MERRA and ERA-I. At 5 hPa, he shows that ERA-I temperatures dropped suddenly by about160

2 K, while in MERRA the mean annual cycle changed noticeably. Pawson asserts that these distinct

discontinuities suggest that more work is needed to properly handle SSU (Stratospheric Sounding

Unit) radiances in reanalyses. Fueglistaler et al. (2013) mention that the introduction of COSMIC
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(Constellation Observing System for Meteorology, Ionosphere, and Climate) GPSRO (Global Po-

sitioning Satellite Radio Occultation) temperature data into ERA-I in 2006 caused a temperature165

shift in the tropics of about 0.5 K at 100 hPa. Simmons et al. (2014) discuss in detail the various

effects of the different satellite missions and instruments on ERA-I temperature data, and perform

intercomparisons with MERRA and the Japanese 55-year Reanalysis (JRA55).

In many of our diagnostics, we examine how well MERRA and ERA-I agree over the 1979 to 2013

time period. The observations assimilated in the reanalyses change dramatically over this period, and170

in some cases there are differences between MERRA and ERA-I in the timing of the changes and

the observations included. Figure 1 shows a comparison of the primary satellite datasets assimilated

in MERRA and ERA-I, compiled from information in Rienecker et al. (2011), Dee et al. (2011) and

Simmons et al. (2014). (See Table 1 for the full names of the instruments/satellites listed in Figure

1 and throughout this paper.) The colored regions indicate periods of years between which the data175

input streams change significantly; in other words, marking times when the differences between

MERRA and ERA-I might be expected to shift. In this case, we have chosen boundaries at 1987

(when SSM/I was introduced), 1998 (when ATOVS was introduced), 2002 (inclusion of CHAMP

in ERA-I, and AIRS and AMSU-A in both reanalyses), and 2007 (when COSMIC was included in

ERA-I).180

2.4 Polar Processing Diagnostics and Intercomparisons

The diagnostics we use are designed to assess a wide range of conditions related to polar processing;

many of them have been described previously (Manney et al., 2003, 2005a, 2011). These diagnos-

tics fall into three categories, focusing on assessment of temperatures, vortex characteristics, or air

parcel histories. Taken together, the diagnostics used here provide a comprehensive evaluation of185

the meteorological conditions pertinent to chemical processing and ozone destruction in the polar

stratosphere. Because our focus is on assessing the effects of reanalysis differences on studies of po-

lar processing that takes place in the lower stratosphere, we focus in this paper on isentropic levels

below about 600 K (approximately 25 km, or 30 hPa).

2.4.1 Temperature and Vortex Diagnostics190

The importance of stratospheric temperatures to the formation of PSCs gives rise to the need for

temperature diagnostics. Although some recent studies have suggested that liquid PSCs play a dom-

inant dominant role in activating chlorine (e.g., Wegner et al., 2012; Wohltmann et al., 2013), the

formation temperatures of solid nitric acid trihydrate (NAT, Hanson and Mauersberger, 1988) and

ice particles remain convenient thresholds for the initiation of chlorine activation processes. In this195

study, we examine daily 12 UT minimum temperatures, and calculations of area with temperatures

below PSC thresholds (henceforth, Tmin and APSC, respectively). We also use diagnostics derived

from Tmin and APSC, such as the number of days during a polar winter with temperatures below PSC
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thresholds, and the volume of stratospheric air below PSC thresholds (VPSC). For APSC, vertical tem-

perature profiles of the NAT and ice thresholds are derived using climatological profiles of HNO3200

and H2O mixing ratios on six per decade pressure levels (Manney et al., 2003), and interpolating

to approximately co-located potential temperature surfaces (e.g., the 56.2 and 31.6 hPa levels are

referenced to 490 and 580 K, respectively). VPSC is calculated by vertically integrating eight po-

tential temperature levels between 390 and 580 K using the altitude approximation introduced by

Knox (1998), which gives altitudes for these levels that are ∼1.1 km apart. Altitude approximations205

are typically used for calculations of VPSC, and these calculations have been shown to be relatively

insensitive to the particular approximation used (e.g., Rex et al., 2004; Manney et al., 2011; Rieder

and Polvani, 2013).

Since the polar vortex provides the “containment vessel” within which polar chemical process-

ing takes place (e.g., Schoeberl et al., 1992), we also compare diagnostics that characterize vor-210

tex strength and size. These include daily 12 UT maximum PV gradients (one measure of vortex

strength, e.g., Manney et al., 2011, and references therein), and the area of a hemisphere covered

by the vortex (henceforth, MPVG and Avort, respectively). In addition to the total area of the vortex,

we also calculate the area of the vortex that receives sunlight each day, since the photochemical

processes involved in chlorine catalyzed ozone depletion require sunlight (e.g., Solomon, 1999). Fi-215

nally, we vertically integrate Avort in the same manner as APSC to derive the vortex fraction of low

temperature air (i.e., VPSC/ Vvort). In all cases we use isentropic surfaces, and scale PV into “vorticity

units” (s−1) (Dunkerton and Delisi, 1986; Manney et al., 1994b). MPVG is calculated as described

by Manney et al. (1994a): scaled PV (sPV) is numerically differentiated with respect to equivalent

latitude (i.e., the value of the latitude circle enclosing the same area as a given PV contour); if the220

maximum gradient occurs at an equivalent latitude poleward of ±80º, we consider the vortex to be

undefined and set the maximum gradient equal to zero. To calculate the area of the polar vortex,

we use the 1.4 × 10−4 s−1 sPV contour as a simple proxy for the vortex edge (e.g., Manney et al.,

2007). The total area of the vortex is then the area of the contour. The sunlit area is the area inside

the vortex-edge contour that is equatorward of the daily polar night latitude at 12UT.225

2.4.2 Advanced Dynamical Diagnostics

One of our diagnostics is best described as a hybrid temperature-vortex diagnostic. It is the concen-

tricity of the polar vortex with regions of temperatures below the NAT PSC threshold (henceforth

referred to as vortex-temperature concentricity, or VTC). VTC is adapted from the concept of con-

centricity as discussed by Mann et al. (2002). We calculate it using the simple formula230

VTC = 1− GCDist(Vortex Centroid, Cold Region Centroid)
GCDist(Pole, Equiv. Lat. of Vortex Edge)

(1)

where GCDist(x,y) is the great circle distance between x and y. This definition provides an intuitive

picture of the vortex/temperature relationships under extreme conditions: a maximum value of 1 for
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collocated centroids (completely concentric), and values less than or equal to 0 for a cold region

centroid approximately at or outside the vortex edge. Centroid locations are calculated as described235

by Mitchell et al. (2011) and Seviour et al. (2013), with the 1.4 × 10−4 s−1 sPV and pressure-

dependent NAT PSC temperatures as the edge values for the vortex and cold regions, respectively.

For simplicity, we only calculated one centroid for each field. This means that, for example, during

vortex-split events, offspring vortices were not characterized individually. Under conditions where

multiple closed contours exist, VTC values may be calculated using centroids that lie completely240

outside of the regions of interest. While it would be important to more accurately characterize split

vortices for detailed dynamical studies, this simplification does not significantly affect the broad cli-

matological comparisons we are focusing on here. Figure 2 shows an example of our VTC diagnostic

using maps of MERRA PV at 490 K with the centroids of the polar vortex (the black squares) and

cold regions (magenta X marks) overlaid. The dates shown were chosen for their extremes of VTC245

- one nearly concentric case (7 Feb 1996) when both MERRA and ERA-I have VTC close to 1, and

one non-concentric case (28 Feb 1996) when MERRA and ERA-I have VTC close to 0.

We also use trajectory diagnostics to examine temperature histories of air parcels; these provide

important information about the potential for polar processing. Here we use a trajectory code adapted

from the Lagrangian Trajectory Diagnostic (LTD) code described by Livesey et al. (2015), which250

advects parcels using fourth-order Runge-Kutta integration. The code uses linear interpolation to

approximate winds and other fields at intermediate timesteps, and for determining the values of

these fields at parcel locations. The trajectories are calculated using the 6-hourly (00, 06, 12, and 18

UT) wind and temperature fields from MERRA and ERA-I. Our standard runs consist of isentropic

15-day forward and backward (30 days total) trajectories of parcels initialized at 00UT on an equal-255

area grid. For this paper, we used 15-minute timesteps for the Runge-Kutta integration and parcels

initialized on the 490 K potential temperature surface configured on an equal-area grid poleward of

±40° latitude with 0.5° × 0.5° equatorial spacing (corresponding to ∼30,000 parcels). We examine

parcels initialized in cold regions defined by T ≤ 195 K (the approximate NAT threshold at 490 K)

and the amount of time these parcels spend below 195 K before and after the initialization date.260

From this subset of parcels, we calculate and compare distributions for total time spent below 195

K (TT195) and continuous time spent below 195 K (CT195) as described by Manney et al. (2003,

2005a).

3 Results

3.1 Monthly Comparison Period Average Differences265

Figure 3 shows an example of the type of differences we calculate for most of the diagnostic inter-

comparisons (in this case Tmin), for 1979 through 2013. The orange line showing the differences for

2012/2013 provides an example of the magnitude of differences in an individual recent year. Note
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that there are large day-to-day variations in differences, and that the differences are largest in De-

cember 2012 and early January 2013, when the polar vortex was unusually disturbed prior to/during270

a major sudden stratospheric warming (SSW) with a vortex split (Coy and Pawson, 2015). The de-

parture of the daily average differences (thick black line) from zero suggests a persistent difference

between the two reanalyses that dominates for much of the 34 years. Since these differences vary

over the season, we define "monthly comparison period average differences" (monthly CPADs) be-

tween the datasets as the monthly means of the average daily differences over the comparison period275

years defined in Figure 1. These quantities provide a compact means of summarizing the agreement

between the datasets for a given month within a subset of years, and of comparing the magnitude

of differences between comparison periods for a particular diagnostic. We emphasize that monthly

CPADs are meant to diagnose significant differences between the two datasets; they are not an as-

sessment of the absolute accuracy of either. For the rest of this paper, we use the convention of280

subtracting ERA-I from MERRA (that is, MERRA minus ERA-I) to calculate the monthly compar-

ison period average differences. Thus, differences in a diagnostic greater (less) than zero indicate

that, on average, MERRA is greater (less) than ERA-I.

3.2 Temperature Diagnostic Intercomparisons

The seasonal progression of polar minimum temperatures provides an indication of when condi-285

tions favor the development of PSCs. The dependence of PSC formation on a temperature threshold

implies that conclusions drawn from the Tmin diagnostic are most sensitive to differences at the be-

ginning and ends of the season when minimum temperatures first drop below or rise above PSC

thresholds. For the Arctic, these periods are typically around the beginning of December and mid-

March, respectively, but large interannual variability and the common occurrence of mid-winter290

SSWs can result in much earlier or later threshold dates in individual years (Manney et al., 2005a,

and references therein). In the Antarctic, the threshold periods tend to be in the first half of May and

in mid-October. Figure 4 shows the monthly CPADs between MERRA and ERA-I at the 580 K level

(∼30 hPa, corresponding to an approximate TNAT of 193 K). For years preceding 2002, MERRA

consistently has lower minimum temperatures than ERA-I. The Antarctic monthly CPADs in this295

period are particularly large, with differences between -5 and -6 K in some months, in contrast to

the largest differences in the Arctic, which are about -1.4 K. Differences in 1998 – 2001, after the

introduction of the ATOVS instruments, but before the introduction of the Aqua instruments, are sig-

nificantly reduced over those prior to 1998. In both hemispheres, there is a distinct shift in agreement

after the introduction of the Aqua instruments from 2002 onward (likely due to the vast increase in300

the number of observations included by assimilating AIRS data - see, e.g., McNally et al. (2006)

and Rienecker et al. (2011)). This is especially easy to see for the Antarctic, where the differences

are reduced to values akin to those in the Arctic. In the Northern Hemisphere (NH), the shift marks

the first period in which ERA-I minimum temperatures become consistently lower than those from
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MERRA. At lower levels down to about 460 K (not shown), the Tmin monthly CPADs are smaller305

in magnitude (e.g., at 490 K they are between -0.4 and 0.7 K in the Arctic, and -2 to 2 K in the

Antarctic), and have different seasonal variations, with ERA-I having comparatively more months

in the first three time periods with lower minimum temperatures.

To examine the global variation of temperature differences between MERRA and ERA-I, Figure 5

shows maps of mean temperature differences (averaged over the time periods of interest from Figure310

1) for the months with the largest Tmin monthly CPADs in Figure 4. The maps for the Arctic, with

the more symmetric color bar, clearly show that the regions where MERRA is colder tend to be

mostly confined between ±90° longitude and poleward of 60° latitude. This is a preferred direction

for the polar vortex and cold region to be shifted off the pole in Arctic winters (e.g., Waugh and

Randel, 1999). Outside of this area, ERA-I temperatures are, for the most part, lower than those315

from MERRA. In the Southern Hemisphere (SH), the first three time periods show that the regions

that are colder in MERRA are fairly symmetric poleward of the 60° S latitude circle. Examination

of the mean temperature fields (not shown) for these periods suggests that larger differences are

associated with lower temperatures. The maps for the following two time periods, from 2002 to

2013, demonstrate that the change seen in Figure 4 reflects a large shift throughout the polar regions:320

the largest temperature differences during these periods are confined to relatively small regions, and

overall the temperature differences lie between ±0.4 K in both hemispheres. Simmons et al. (2014)

show extratropical zonal-mean temperature differences between ERA-I and MERRA at 30 hPa that

indicate that the extratropics (± 20 – 90° latitude) are colder in ERA-I than in MERRA for most of

the reanalysis period. The results shown here are generally consistent with that finding, but suggest325

that this result does not always hold true poleward of ±60° latitude in winter/spring.

The number of days below PSC thresholds, a diagnostic derived from Tmin, for winters in the

1979 through 2013 period is shown at 490 K (∼56 hPa) for both hemispheres in Figure 6. We show

days below Tice, rather than TNAT, in the Antarctic because the periods with temperatures below

TNAT and Tice are much longer than the periods below these temperature thresholds in the Arctic,330

making the differences in the SH more apparent for the lower (i.e., more sensitive) ice threshold.

This diagnostic indicates the approximate duration of the period with conditions conducive to polar

processing. Overall, the number of cold days from ERA-I is greater than the number from MERRA

in both hemispheres at this level. The Antarctic differences before 2002 are quite large, with some

years showing ERA-I having over 10 more days with temperatures below the ice PSC threshold335

than MERRA. At levels up to 580 K (not shown), the situation in the Antarctic is opposite; that

is, MERRA has significantly more days (sometimes between 20 and 30 days in years before 2002)

with temperatures below the ice PSC threshold than does ERA-I. These results, along with those

discussed above for Tmin, suggest that not only may the choice of dataset have a large influence on

analysis and modeling of polar processes in the Antarctic for years preceding 2002, but also that340

effects may vary qualitatively and quantitatively in the vertical. In contrast to those for the Antarctic,
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the magnitudes of differences in the Arctic at higher levels up to 580 K are largely similar to those

at 490 K, but with MERRA having more cold days than ERA-I.

Average values for the total area with temperatures below the NAT threshold at 580 K are dis-

played in Figure 7. The Arctic maximum mean area is just above 3% of the hemisphere for ERA-I,345

while MERRA reaches nearly 4%. In a similar fashion, the Antarctic maximum mean area is about

11% of the hemisphere for ERA-I, while that for MERRA reaches nearly 12%. Differences in these

mean values between the reanalyses vary considerably with the season in both hemispheres. Figure

8 shows the corresponding monthly CPADs for ANAT. Here it is worth noting that the small differ-

ences in the last month of the season in each hemisphere are expected as these include many days350

that have zero differences since minimum temperatures have risen above the NAT threshold in both

reanalyses. Consistent with the Tmin monthly CPADs, there is much closer agreement after the first

three periods. The relatively frequent occurrence of warm Arctic winters after 1998 (e.g., Manney

et al., 2005a) suggests that the third comparison period for the NH might be less easily compared

with the second comparison period (which contained unusually cold Arctic winters, e.g., Pawson355

and Naujokat, 1999), but the marked decreases of the monthly CPADs in the SH still indicate a

substantial effect due to changes in assimilated observations. In most cases the monthly CPADs are

positive, indicating that MERRA tends to have larger cold regions than ERA-I at this level in both

hemispheres. For levels below 580 K, down into the upper troposphere/lower stratosphere (UTLS)

region at 390 K, MERRA still tends to have larger cold regions than ERA-I, but the conditions are360

different: the differences are much smaller in all periods, generally lying between -1 and 1% of a

hemisphere in the Antarctic, and -0.4 and 0.4% of a hemisphere in the Arctic. Figure 9 demonstrates

this behavior; it shows time series contour plots of the MERRA minus ERA-I ANAT differences av-

eraged over the comparison periods from Figure 1. Although the differences are smaller at lower

levels, the same convergence towards better agreement we see at 580 K is not always seen at levels365

below 520 K, especially in the Arctic around 410 and 430 K.

3.3 Vortex Diagnostic Intercomparisons

Maximum PV gradients (MPVG) indicate the strength of the polar vortex as a barrier to transport

and mixing of air from lower latitudes with the cold vortex air where chlorine activation takes place

(e.g., Manney et al., 2011). The seasonal evolution and mean values of maximum PV gradients370

at 490 K are shown in Figure 10. The primary difference between the hemispheres is seen in the

average values; the Arctic maximum gradients tend to level off at around 10−5 s−1deg−1 early in

the season, while the Antarctic maximum gradients steadily increase up to approximately 1.7 ×10−5

s−1deg−1 near the end of the season. The MPVG monthly CPADs are shown in Figure 11. Note that

the scaling of the values is 10−6 s−1deg−1. This means that a difference of 1 would be 1/5th the375

height of a grid-box from Figure 10. As such, the monthly CPADs are overall quite small, but the

monthly and comparison period variations still provide useful information. For instance, the greater
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MERRA MPVGs in the months when the vortex usually weakens (March or April in the Arctic,

November in the Antarctic) suggest that the polar vortices as represented by ERA-I tend to weaken

earlier than those in MERRA. Furthermore, a shift in agreement contemporaneous with those seen in380

Figures 4 and 8 is also present. In this case, however, the monthly CPADs increase considerably for

the NH rather than decrease. This behavior, with agreement in the SH (NH) improving (degrading)

slightly, is also seen at other vertical levels between 460 and 580 K (not shown).

Similar to APSC, the sunlit area of the vortex provides an approximate quantitative measure of the

area on a given vertical level where chlorine-catalyzed ozone destruction can take place. Different385

sunlit area diagnostics have been used in detailed polar processing studies to establish correlations

between the coverage (e.g., Feng et al., 2007) and duration (e.g., Rex et al., 1999; Livesey et al.,

2015) of sunlight and ozone loss; these diagnostics are usually somewhat computationally intensive,

whereas the diagnostic used here (described in Section 2.4 above) is simple enough to compute for

multiple long-term datasets. Figure 12 shows time series averages and ranges of the sunlit vortex390

area diagnostic as a percentage of a hemisphere at 490 K. The seasonal variations of the sunlit

vortex are very similar in both datasets. Small differences can, however, be seen: the ERA-I Arctic

polar vortex tends to be filled with slightly more sunlight than the MERRA vortex, while in the

Antarctic, the differences change over the season. Consistent with this, the sunlit vortex area monthly

CPADs in Figure 13 show predominantly negative values in the Arctic (in agreement with Figure395

12, which showed ERA-I values greater than those from MERRA), and differences that change sign

in the Antarctic. Like the NH MPVG monthly CPADs, the NH sunlit vortex area monthly CPADs

increase to a maximum by the last time period (2007-2013) of Figure 1. The overall maximum

monthly CPADs occur in November and February of this final time period, both months when a

substantial portion of the vortex is typically in darkness, and when varying sunlight may affect400

chlorine activation whenever temperatures are low enough for PSC formation. In contrast to those for

the NH, the SH monthly CPADs improve slightly over the reanalysis period. Differences of the small

magnitude shown here are unlikely to have large effects on polar processing in either hemisphere,

especially in the Antarctic, where the vortex is larger, colder, and less variable from year to year than

in the Arctic. The vertical structure of the sunlit vortex area differences (not shown) is complicated,405

but for recent years the ERA-I NH polar vortex tends to have a larger area in sunlight than that in

MERRA at levels between 460 and 550 K, while the opposite is true for the SH. The differences in

sunlit vortex area shown here primarily arise from corresponding differences between MERRA and

ERA-I in total vortex area (Avort, not shown). However, small discrepancies between the monthly

CPADs of sunlit and total vortex area indicate that differing vortex positions in the two reanalyses410

also affect the monthly CPADs slightly.

The winter mean vortex fraction of cold air diagnostic helps to identify years with conditions

favorable for PSC formation and ozone loss. In the Arctic, years with low values of VPSC/Vvort cor-

respond to the winters with very short cold periods usually associated with a disturbed vortex and
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midwinter SSWs. Because of its relationship to column ozone loss, VPSC has been used extensively415

in climatological ozone loss studies (e.g., Rex et al., 2004, 2006; Tilmes et al., 2006; Pommereau

et al., 2013; Rieder and Polvani, 2013). Vvort as a stand-alone diagnostic is much less common; how-

ever, the volume of air within the vortex is an indicator of the absolute size of the region over which

chemical ozone loss can occur. Figures 14 and 15 show winter mean VPSC/Vvort for the Arctic and

Antarctic, respectively, along with the corresponding winter mean VPSC and Vvort values separately.420

In general, MERRA tends to have a larger volume of cold air in both hemispheres, consistent with

the larger ANAT monthly CPADs shown in Figure 8 and the average differences shown in Figure 9.

The only major exceptions are the years from 1979 to 1987 in the Antarctic, where ERA-I Vice is

a bit larger than that in MERRA. The lack of improvement in agreement for VPSC follows directly

from the prior discussion of ANAT; since the agreement of ANAT between MERRA and ERA-I be-425

low 520 K generally does not improve much over time, neither does that of VPSC. Consistent with

the differences discussed in the sunlit vortex area (Figures 12 and 13), MERRA’s Vvort values are

very similar to those of ERA-I. Thus, on average, the differences in VPSC/Vvort between MERRA

and ERA-I reflect the differences seen in VPSC. Exceptions to this are in 2007-2013 in the NH, when

slightly smaller MERRA Vvort values emphasize the ∼0.01 larger VPSC/Vvort values seen in MERRA,430

and in 1979-1987 in the SH, when the ∼0.02 larger ERA-I VPSC/Vvort values represent larger cold

fractions of smaller vortices. This analysis demonstrates several caveats for comparisons of diagnos-

tics that rely on vertical integration, time averages, or combinations of both. Their dependence on

time and/or altitude can lead to cancellations and smoothing when integrated and/or time-averaged,

making comparisons of the final results difficult to interpret since agreement (or lack thereof) can435

come about for the wrong reasons. In this case, the agreement of winter mean VPSC, Vvort, and

VPSC/Vvort between the reanalyses was affected by the representation of several conditions. Because

the differences between MERRA and ERA-I in APSC and Avort are not uniform in time and altitude

(see Figure 9), better agreement at some levels does not necessarily correlate with better confidence

in our knowledge of VPSC, and consequently VPSC/Vvort. This suggests that these diagnostics func-440

tion better as qualitative measures, and argues for considerable caution in interpretation of their time

variations or trends.

The concentricity of the vortex with regions of air with T ≤ TNAT (VTC) has not been widely used

in polar processing studies. However, Mann et al. (2002), using a concentricity diagnostic different

from that defined here, found that different values led to dramatically different patterns of denitri-445

fication in model simulations of NAT particle growth and evaporation because differences in the

position of the cold region relative to the strong winds bounding the vortex can result in large dif-

ferences in the amount of time air spends in cold regions of comparable size (Manney et al., 2003).

Using idealized model simulations with a constant vortex field and cold regions ranging from highly

concentric to nonconcentric, Mann et al. (2002) showed that concentricity affected denitrification450

independent of any variations in the vortex itself. Since our concentricity calculations require both
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the polar vortex and a cold region to be defined, intercomparisons of the resulting discontinuous time

series can be difficult to interpret. Therefore, we present this diagnostic as occurrence frequencies

of the range of VTC values, normalized by the total number of days on which VTC was calculated

for each reanalysis. Figure 16 shows the results at the 490 K level. The total number of days shown455

corresponds to the number of days with a valid VTC value summed over the years from the com-

parison time periods defined in Figure 1 and used in the monthly CPAD plots. As evidenced by the

small regions of non-overlapping colors, in most cases the ERA-I vortices spend more time at higher

concentricity values (within the 0.8 to 1.0 range) in both hemispheres. Consistent with the number

of days below PSC thresholds shown in Figure 6, ERA-I also tends to have more valid VTC days460

than MERRA in both hemispheres. The detailed implications of differences in concentricity are dif-

ficult to assess, but the results of Mann et al. (2002) and Manney et al. (2003) suggest that greater

concentricity in ERA-I could lead model runs driven by that reanalysis to simulate longer-lasting

PSCs, greater denitrification, and enhanced chlorine activation.

3.4 Trajectory Diagnostic Intercomparisons465

Temperature histories along air parcel trajectories provide further information about polar process-

ing potential beyond what can be obtained from the simple diagnostics described above. For these

intercomparisons, we use isentropic trajectory calculations on the 490 K surface. As discussed by

Manney et al. (2003), although neglecting cross-isentropic motion would not be suitable for detailed

polar processing studies, this simplification allows us to efficiently run and analyze a large number470

of parcels for extensive intercomparisons. Following Manney et al. (2003, 2005a), we consider only

the parcels that are initialized in regions with temperatures less than 195 K. With this initial filter,

we examine the total and continuous amounts of time that these parcels spend at temperatures below

195 K (TT195 and CT195, respectively) before and after the initialization date, and the mean tem-

perature of the parcels over the full run. The TT195 diagnostic captures the total exposure of an air475

mass to temperatures low enough for PSC formation and thus acts as a proxy for cumulative chlorine

activation; CT195 better represents the potential lifetime of a PSC and is thus more directly relevant

for denitrification, since sufficiently long continuous time at low temperatures allows PSC particles

to grow to sizes large enough for sedimentation to occur (Manney et al., 2003, 2005a). Here we

show trajectory calculations initialized on 10 January 1996 and 24 January 2011 for the NH, and 17480

September 1988, 13 September 2002, and 25 May 2011 for the SH. These dates have been chosen

to span a range of conditions representative of the interannual variability in both hemispheres, and

in some cases to compare with previous studies using the same diagnostics. Several other cases have

been investigated for each hemisphere; the results shown here are representative.

Figure 17 summarizes the trajectory diagnostics for the NH. Overall, the parcel histograms for485

TT195 and CT195 are very similar between MERRA and ERA-I, with consistent distributions,

peaks, and average values. The number of parcels included in the calculations indicate that MERRA
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has slightly larger regions of cold air, but the average values of the distributions only differ by ap-

proximately 0.05 days (∼1.2 hours) for TT195 and 0.5 days (∼12 hours) for CT195. Where there

are small differences, they are consistent with minor spatial differences in maps of the parcels (not490

shown), which are also otherwise very similar. In investigating other NH winter initialization dates,

we found that all agreed well (similar to the examples shown here) in each diagnostic for years as

early as 1981, and as recent as 2013. The SH cases shown in Figure 18 present a different picture.

In particular, the mean parcel temperature plots reveal a significant improvement in agreement be-

tween MERRA and ERA-I over time. The 16 September 1988 case shows that MERRA parcels are495

consistently warmer, with temperatures roughly 1 K greater than those in ERA-I. The 13 Septem-

ber 2002 case also shows that MERRA parcels are noticeably warmer, but to a lesser extent than

in 1988. Although we highlight a different part of the SH winter season for 2011, there is a lack

of a discernible temperature differences in comparison to the two previous dates, in agreement with

the results from Figures 4 and 5, which showed that temperature differences between MERRA and500

ERA-I are smallest from 2002-2013. Therefore, we consider the 25 May 2011 initialization date to

be representative. The TT195 and CT195 histograms also reflect this evolution in the differences

over the years, with the parcels on average spending fewer days below 195 K for MERRA than for

ERA-I when the mean temperature of the MERRA parcels is higher.

The above results suggest two things. For the NH, isentropic trajectory runs initialized with505

MERRA or ERA-I should provide very similar results in the lower stratosphere, even for early

years, thus lending confidence that transport calculations using winds from these two reanalyses

should give comparable outcomes. The same cannot be said for early years in the SH, where many

fewer observations were available in the 1980s and 1990s, allowing differences in the models and

DAS to dominate the data constraints. This resulted in systematic differences in temperature histo-510

ries that are consistent with the large monthly CPADs seen in direct temperature diagnostics (e.g.,

Figures 4 through 9). Overall, the agreement of the trajectory diagnostics from MERRA and ERA-I

is much better than that from older analyses: In previous intercomparison studies, Manney et al.

(2003, 2005a) found very large differences in trajectory runs driven by fields from earlier analy-

ses/reanalyses. Discrepancies in 465 K trajectories for average TT195 were as large in magnitude as515

5 days for the NH and 7 days for the SH, with discrepancies in average CT195 in both hemispheres

up to 2.5 days. For 10 January 1996 (shown here in Figure 17), the time series of average parcel

histories calculated by Manney et al. (2003) showed differences as large as 10 K on some days; in

addition, the five analyses compared in that study showed qualitatively very different distributions of

TT195 and CT195. Large qualitative differences were also seen between the analyses in September520

2002 (Manney et al., 2005a), in contrast to the small differences and good qualitative agreement seen

here in Figure 18 (middle panels). The improvements in the agreement between MERRA and ERA-I

over that between earlier analyses, which largely ingested the same data, demonstrate the degree of

improvement in the models and DAS techniques over the past decade.

15



4 Discussion and Conclusions525

We have presented comparisons of stratospheric polar processing diagnostics derived from the MERRA

and ERA-Interim reanalyses for Arctic and Antarctic winters from 1979 through 2013. By using tem-

perature, vortex, and trajectory diagnostics, we have comprehensively explored the major aspects of

the dynamical fields that chemical destruction of polar ozone in the lower stratosphere is sensitive

to. In addition, we have characterized how agreement between the two reanalyses evolved over the530

1979-2013 period as assimilated observations changed. To do this, we compared the temperature

and vortex diagnostics during five time periods bounded by large changes in the datasets that were

assimilated. Most of the comparisons are shown using calculations of monthly comparison period

average differences (monthly CPADs), which are monthly means of the daily differences between

MERRA and ERA-I averaged over the aforementioned time periods. Our primary conclusions are535

as follows:

– Comparisons of temperature diagnostics derived from MERRA and ERA-I show a major shift

towards better agreement around 2002, especially at levels above about 490 K. At 580 K

(around 30 hPa), ERA-I tends to have more days with lower temperatures, whereas MERRA

tends to have larger regions of cold air. These results are consistent between the hemispheres.540

– The comparisons of winter mean VPSC have a complex dependence on time and altitude as ev-

idenced by the ANAT monthly CPADs. The shift towards better agreement in both hemispheres

for ANAT above 490 K was not enough to make the comparisons of winter mean VPSC agree

better.

– Comparisons based on differences of winter mean VPSC/Vvort can be complicated because of545

the dependence on vertical integrations and time averaging, and thus VPSC and Vvort individ-

ually. Since MERRA tends to have larger regions of cold air (larger VPSC) than ERA-I, and

similarly or smaller-sized vortices in recent periods, MERRA also has larger vortex fractions

of cold air in years beyond ∼1992.

– The vortex diagnostic comparisons are more complicated than those of the temperature diag-550

nostics. In many cases the monthly CPADs do not decrease in magnitude; some even increase

over the 1979-2013 time period, especially in the Arctic. These differences, however, tend to

be small.

– Isentropic trajectory runs driven by MERRA and ERA-I give very similar results overall. We

found that in the Northern Hemisphere, the trajectory diagnostics agree very well across most555

of the years, while in the Southern Hemisphere, the agreement improves significantly over

time.

Overall, we found that agreement between MERRA and ERA-I is better in the Arctic than in

the Antarctic for nearly all of the diagnostics, especially before approximately 2002. The monthly
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CPADs in the Southern Hemisphere show large differences in the first three periods, before the in-560

troduction of ATOVS data in 1998 (and subsequent introduction of Aqua data in 2002), but evolve

over time to approach the level of agreement found in the Northern Hemisphere. Consistent behav-

ior was also seen in our calculations of temperature histories from air parcel trajectories, in which

agreement of mean parcel temperatures and distributions of the time spent below PSC formation

thresholds improved substantially as more observations were introduced into the DAS. Neverthe-565

less, even the relatively poor agreement between MERRA and ERA-I in the Southern Hemisphere

during the earlier periods with sparse data is still considerably better than that between analyses and

reanalyses available a decade ago. Furthermore, small differences are less critical to polar process-

ing studies of the Southern Hemisphere than those for the Northern Hemisphere because the colder,

more quiescent Antarctic winter conditions result in extensive (near total at some altitudes) Southern570

Hemisphere ozone destruction each year.

The patterns and evolution of the differences between MERRA and ERA-I in the Arctic are much

more complicated than those in the Antarctic. The temperature diagnostics in the NH show monthly

CPADs decreasing in magnitude by a significant amount over the five observational periods studied,

with, for example, maximum monthly mean differences in minimum temperature (the most sensitive575

diagnostic, as it relies on a single-point comparison for each day) since 1998 under 1 K, and no

larger than ∼0.5 K after 2007. Since the development of PSCs depends critically on temperature

thresholds, this close agreement means that choice of MERRA or ERA-I data is unlikely to make

a substantial difference in most polar processing studies for time periods in the past 15 or so years.

In contrast, the diagnostics of the strength and size of the NH polar vortex show differences that580

either stay relatively constant or increase slightly over the years. This suggests that differences in the

models and/or in the handling of the assimilated datasets can still be important factors even when

the temperature fields are quite well constrained by data.

The results in this paper provide strong evidence that the agreement between MERRA and ERA-I

evolves with their changing data inputs. While this is an unsurprising result, it confirms that changes585

in the assimilated observations often directly influence the analyzed temperature fields more than the

model and assimilation characteristics do. Only when observations were sparse and nearly identical

in MERRA and ERA-I (such as in the SH before 2002) did we see large differences that indicated

the effect of model and assimilation system differences. Our results further indicate that ERA-I’s

assimilation of measurements from GPSRO and other additional instruments that are not used in590

MERRA in the final observation period (2007 through 2013) results in only a small improvement

in stratospheric temperature diagnostics that already show good agreement after 2002. The most

recent period has the best agreement for most of the diagnostics shown. This has been noted else-

where: Martineau and Son (2010) found that MERRA and ERA-I had the lowest biases among other

reanalyses relative to COSMIC temperatures during the 2009 Arctic sudden stratospheric warming.595
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Further work is planned to more fully characterize the agreement of diagnostics of polar process-

ing between recent reanalyses, and the importance of these diagnostics to polar processing studies. In

the context of the SPARC (Stratosphere-troposphere Processes And their Role in Climate) Reanaly-

sis Intercomparison Project (S-RIP; see http://s-rip.ees.hokudai.ac.jp/index.html), we plan to extend

these intercomparisons to include the NCEP Climate Forecast System Reanalysis (NCEP/CFSR,600

Saha et al., 2010) and the Japanese 55-year Reanalysis (JRA55, Kobayashi et al., 2015); these re-

analyses, like MERRA and ERA-I, are recent high-resolution datasets that are valuable for numerous

studies, including those of polar processing. In addition, two of the diagnostics introduced (sun-

lit vortex area and VTC) have not been widely used in previous polar processing studies. Work in

progress applying sunlit vortex area and VTC to disturbed versus more quiescent Arctic winters will605

help establish the sensitivity of polar processing and ozone loss to the conditions characterized by

these diagnostics.
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Table 1. Names of abbreviated instruments and satellites assimilated in ERA-Interim and MERRA.

Acronym Full Name

AIRS Atmospheric Infrared Sounder

AMSR Advanced Microwave Scanning Radiometer

AMSU Advanced Microwave Sounding Unit

ATOVS Advanced Tiros Operational Vertical Sounder

CHAMP Challenging Minisatellite Payload

COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate

GOES Geostationary Operational Environmental Satellite

HIRS High resolution Infrared Radiation Sounder

MHS Microwave Humidity Sounder

MSU Microwave Sounding Unit

SSM/I Special Sensor Microwave Imager/Sounder

SSU Stratospheric Sounding Unit

TOVS Tiros Operational Vertical Sounder

Figure 1. Timeline of satellite and GPSRO measurements assimilated in MERRA and ERA-Interim, organized

by missions (when applicable) and instruments. Colored periods indicate regions of interest for intercompar-

isons, defined by significant changes in both data streams.
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Figure 2. Maps showing cases when MERRA data indicate high (left) and low (right) values of vortex-

temperature concentricity (VTC) at 490 K. The background field is potential vorticity from MERRA, and

the thick black lines represent the vortex edge as defined by the 1.4 × 10−4 s−1 sPV contour. The magenta

lines represent cold regions where temperatures (also from MERRA) are below TNAT. The black squares and

the magenta X marks are plotted at the centroid locations of the polar vortex and cold regions, respectively. For

convenience, the corresponding values of VTC from MERRA (red) and ERA-Interim (blue) are shown below

the maps.

Figure 3. An example time series of the differences that are calculated for the daily diagnostics (Tmin, APSC,

etc.) that are in turn used to calculate the monthly comparison period average differences (monthly CPADs).

This case shows the differences in Tmin between MERRA and ERA-I at 580 K for the 2012/2013 Arctic winter

in orange, with the range of differences over all NH winters from 1979-2013 shown by the grey envelope. The

thick black line represents the average daily differences over all years, while the thin black lines show one

standard deviation. Since the average daily differences vary over the season shown, we compute the monthly

CPADs as the monthly means of these average daily differences.
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Figure 4. Monthly CPADs of Tmin between MERRA and ERA-Interim at 580 K potential temperature for

Arctic (top) and Antarctic (bottom) winters. The colors used for the columns correspond to the colored regions

of Figure 1. The NH (SH) panels cover months from November through June (April through November). Note

that the Tmin (y-axis) scales are different for each hemisphere.
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Figure 5. Maps of mean MERRA minus ERA-I 12UT temperatures (averaged over the years listed) at 580 K

potential temperature for the Arctic (left) and Antarctic (right) poleward of 40°. Contours of scaled potential

vorticity (1.4, 1.6, and 1.8 × 10−4 s−1) from ERA-Interim in the vortex edge region are overlaid in black. The

months shown correspond to those with the largest magnitude Tmin monthly CPADs. The temperature scales are

the same as shown in Figure 4 (which differ for the Arctic and Antarctic).
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Figure 6. Number of days with Arctic (top) and Antarctic (bottom) winter minimum temperatures below NAT

and ice PSC thresholds at 490 K. Note that the y-axes do not start from zero, and have different ranges for each

hemisphere. The black numbers at the top of each colored region indicate the average differences (MERRA

minus ERA-I) for the time-period, rounded to the nearest day.

Figure 7. Mean values for ANAT (thick red/blue lines), expressed as a percentage of a hemisphere, for Arctic and

Antarctic winters at 580 K potential temperature. The blue (red) envelope shows the range of ERA-I (MERRA)

values, with purple indicating where the ranges of the two reanalyses overlap.
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Figure 8. Monthly CPADs of ANAT (in % of a hemisphere) between MERRA and ERA-Interim at 580 K

potential temperature for Arctic (top) and Antarctic (bottom) winters. Time periods are as in Figure 4. The NH

(SH) panels cover months from November through March (May through October). The ANAT (y-axis) scales are

different for each hemisphere.

Figure 9. Differences in ANAT (in % of a hemisphere) between MERRA and ERA-I from 390 to 580 K, averaged

over the comparison periods of Figure 1 for Arctic (top row) and Antarctic (bottom row) winters.

29



Figure 10. Mean values for maximum PV gradients (thick red/blue lines) for Arctic and Antarctic winters at

490 K potential temperature. The blue (red) envelope shows the range of ERA-I (MERRA) values, with purple

indicating where the ranges of the two reanalyses overlap.

Figure 11. Monthly CPADs of maximum potential vorticity gradients between MERRA and ERA-Interim at

490 K potential temperature for Arctic (top) and Antarctic (bottom) winters. Time periods are as in Figure

4. The NH (SH) panels cover months from November through June (April through November). The MPVG

(y-axis) scales are different for each hemisphere.
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Figure 12. Mean values for the sunlit area of the polar vortex (thick red/blue lines), expressed as percentages of

a hemisphere, for Arctic and Antarctic winters at 490 K potential temperature. The blue (red) envelope shows

the range of ERA-I (MERRA) values, with purple indicating where the ranges of the two reanalyses overlap.

Figure 13. Monthly CPADs in sunlit vortex area between MERRA and ERA-Interim at 490 K potential temper-

ature for Arctic (top) and Antarctic (bottom) winters. Time periods are as in Figure 4. The NH (SH) panels cover

months from November through March (May through October). The sunlit area (y-axis) scales are different for

each hemisphere.
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Figure 14. Arctic winter mean VPSC (top), Vvort (center), and VPSC expressed as a fraction of vortex volume

(bottom). Note that the y-axis for winter mean Vvort does not start from zero. The black numbers at the top of

each colored region indicate the average differences (MERRA minus ERA-I) for the time-period.
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Figure 15. As in Figure 14, but for the Antarctic. Also note that, here, none of the y-axes start from zero.

Figure 16. Concentricity of the polar vortex and regions with T ≤ TNAT expressed as relative frequencies of the

total number of days with a valid concentricity value (red and blue numbers) from the time periods of Figure 1

for Arctic (top) and Antarctic (bottom) winters.

33



Figure 17. Temperature histories along air parcel trajectories at 490 K (∼56 hPa). Both of the columns are

from Arctic winters. The first and second rows are histograms of parcels that spent total and continuous time in

temperatures below 195 K (see text). The dashed vertical lines show the averages of TT195 and CT195 for each

of the reanalyses. The last row is the mean temperature of the parcels initialized in the cold regions for the full

30 day (15 day forward/backward) trajectory runs; the black vertical line indicates the initialization date, while

the black horizontal line marks 195 K. The dashed red and blue curves show one standard deviation range.
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Figure 18. As in Figure 17, but for Antarctic winters.
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