
1 

 

Dear Editor, 

 

We carefully addressed all of the reviewers' comments. The changes made in the revised 

manuscript are explained in the author comments published in the interactive discussion. Please 

find below the copies of our responses to the reviewers' comments along with the revised 

manuscript in which the changes are highlighted with red and blue colors. We believe that our 

manuscript has been substantially improved, and we ask you to kindly consider it for publication 

in ACP. 

 

Respectfully, 

Igor Konovalov 

on behalf of all the authors 
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Response to the comments of the anonymous referee # 1 

 

We thank the Referee for the thorough critical evaluation of our manuscript. All of the Referee’s 
concerns have been very carefully addressed in the revised manuscript. Below we describe our 
point-to-point responses to the Referee's comments. Please note that some of the Referee's 
critical remarks have already been addressed in an earlier author comment (Konovalov, 2014). 

Referee's comment: Firstly, the problem addressed is of very high uncertainty since it involves 
two inverse problem solutions to estimate the amount of consumed dry biomass from the satellite 
observations of AOD and CO column, followed by a scaling to CO2 emission using hugely 
uncertain factors reported in literature. Each of these steps brings errors. A particular problem 
is that CO and PM constitute minor fractions of fire smoke, whereas CO2 is its major 
component. Hence, the approach suggested in the paper tries to constrain the major component 
of the plumes by observing two minor ones. One can never obtain good accuracy with this. 

We agree that the method proposed in our paper is presently associated with considerable 
uncertainties, but, as argued in Konovalov (2014), the magnitude of uncertainties can be 
substantially reduced in the future (specifically, as a result of better and more abundant 
measurements of emission factors and further progress in satellite measurements and modeling 
of trace species in the lower atmosphere). The method itself can also be developed further and 
employ, for example, satellite measurements of CO2 in major plumes for estimation of the 
emission factor ratios (such an opportunity is mentioned in the Conclusions of the revised 
manuscript). Note that because CO2 is a very long lived tracer, CO2 plumes from fires would be 
inevitably mixed with plant uptake and fossil CO2 plumes transported from long distance, 
resulting in a typically small signal from biomass burning emissions and variable and complex 
"background" concentrations. On the contrary, CO and aerosols are relatively short lived and not 
emitted by the vegetation, so their plumes from fires are clearly measurable, and even if they are 
minor mass fractions of the carbon emitted from fires, they have a much better signal to noise 
ratio for an inversion. Since the future is, in general, hard to predict, we hope that our revised 
manuscript will be judged by taking into account the present state of the science, including the 
fact that (to the best of our knowledge) available "bottom-up" CO2 emission estimates from fires 
in such a large region as Siberia have never yet been validated with atmospheric measurements. 

Referee's comments: Both CO and PM fractions in smoke refer to poor-combustion conditions 
and therefore are correlated. Odds are high to have their error correlated too (see detailed 
comments below). These are bound to dramatically limit the accuracy of the estimates and 
essentially eliminate the added value of the two inversions, even if the inversions themselves are 
“perfect”. 

P.3119, The eqs.11,12 hold only in case of independent estimates, as the authors stated in 
p.3120. However, both CO and PM emissions refer to burning quality and type of fire (flaming – 
smoldering). Since the uncertainties in both CO and PM emission factors partly (largely?) 
originate from uncertainties in the combustion conditions, they become correlated too. The 
authors ignore it without even trying to check for error covariances. The statement in p.3120 line 
19 goes unsupported and doubtful: there is no self-evident reason to believe that. 

To address this referee's concern, we performed several modifications of our method. First, we 
modified our Monte Carlo experiment to take into account co-variations of the differences 
between simulated and measured data for CO and AOD (specifically, random shuffling of grid 
cells and days was done in exactly the same way in both CO and AOD datasets). This allowed us 
to take into account the combined error covariances associated with local variations in burning 
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conditions, spatial patterns of plant population, as well as with possible common errors in 
transport of CO and aerosol in the model. 

Second, we analyzed the relationship between the emission factors for CO and aerosol 
(specifically, for TPM) reported in literature and representing averages over the measurements 
made during several dedicated experimental campaigns. The description of this analysis 
performed separately for fires in extratropical forest and savanna and grassland is provided in the 
Supplementary material for the revised manuscript. The analysis revealed no evident indications 
that the regional average values of emission factors for CO and aerosol strongly covariate, and 
thus it supported our assumption that uncertainties in the CO and aerosol emission factor 
estimates involved in our CO2 emission estimation procedure are statistically independent and 
their covariance can be neglected. Note that the emission factor errors, which are explicitly 
specified in the Monte Carlo experiment, are assumed to represent the diversity of the emission 
factors across the regions in which they were measured; by definition, such uncertainties are 
decoupled from the uncertainties associated with spatial and temporal variability of the emission 
factors inside of the study region.  

Third, Eqs. 11, 12 were modified for a more general case where the estimates of the FRP-to-
BBR conversion factors derived from CO (co) and AOD (aod) measurements are not 
statistically independent. Both the Monte Carlo experiment and estimation procedure were re-
done with the modifications. The results support the initial assumption made in the reviewed 
manuscript that the impact of the error covariances on our estimates of CO2 emissions is quite 
negligible, and that they do not eliminate the added value of combination of the AOD and CO 
inversions. 

Note that the results of the updated Monte Carlo experiments performed by taking into account 
the error covariances were first tested and then analyzed in much more detail than it is  described 
in the revised manuscript (since we had to take care of its length). In particular, we made sure 
that when the assumed uncertainties in the temporal-spatial fields of AOD and CO data are 
identical and the uncertainties in the emission factors and in the mass extinction efficiency are 
not explicitly taken into account, the random samples of the co and aod strongly covariate 
(R2~0.7), as could be expected. (The co-variation was not perfect due to different sensitivities of 
the modelled CO and AOD fields to the emissions from fires). The samples of co and aod 
obtained with the actual fields of the residual errors (see Section 2.3.3) in the simulations and 
measurements manifest much smaller covariances (R2~0.1). Interference of those errors with 
independent uncertainties in the regional estimates of the emissions factors in the framework of 
the "full" Monte Carlo experiment virtually eliminates the covariance of the errors in co and 
aod. 

Although we believe that our uncertainty estimates are sufficiently realistic, we provided the 
following caveat (see Section 2.4): "…since the exact nature and characteristics of uncertainties 
in the input data for our analysis are not known (as it is common for virtually any "real world" 
application of the inverse modelling approach), the uncertainties reported below for our 
estimates of the conversion factors and CO2 emissions should be considered with caution." 
Indeed, estimation of uncertainties in inverse modeling results presents a big common issue, 
which does not have any easy solution. While most of inverse modeling studies involve 
subjective (so called, "expert") quantitative characterization of model errors and uncertainties in 
a priori estimates (which are not used in our study), the important advantage of our method is 
that we base our uncertainty estimates exclusively on the statistical analysis of the differences 
between our simulations and available observations. 

Note that the preliminary analysis of this issue outlined in Konovalov (2014) involved 
measurements of emission factors for organic carbon (OC) which are more sparse than the 
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available data for emission factors for TPM. Although the conclusion was essentially the same, 
nonetheless, the results outlined above supersede the tentative results mentioned in Konovalov 
(2014). 

Referee's comments: Secondly, the paper faced the problem reported by practically all related 
studies, including earlier works of some of the authors: whereas the CO emission factors 
deduced in bottom-up and lab studies meet the top-down assessments, the results for PM show 
about a factor of 3 under-estimation in the bottom-up inventories (with root cause probably 
being the low emission factors). This mystery is not yet resolved, i.e. simultaneous use of CO and 
PM literature-based emission factors must include some workaround. It is absent in the paper 
and, sadly but expectedly, the authors got about 3-fold difference between the mean estimates 
derived from CO and from AOD inversions (table 2). The authors noticed the problem but waved 
it out. In particular, they stressed (p.3130) that the uncertainty ranges of these estimates are 
overlapped. This, however, is not convincing because, firstly, the uncertainty ranges themselves 
are very poorly known and their tiny overlap can be simply a coincidence. The authors 
themselves note that their error estimates are rather over- than under-stated, which suggests 
even higher odds for the difference being formally “statistically significant”. Secondly, the 
overlap, even if exists, refers more to huge uncertainty ranges (up to a factor of 5 and even 
more) than to indeed closeness of the estimates. Since the authors are interested in absolute CO2 
emissions, which are given in table 3 with 3-digit(!) accuracy, a factor of 3 difference between 
the outcome of the CO- and AOD-based retrievals is hardly acceptable. Once again, the root 
cause for this, to my mind, is that the literature-based PM emission factors must be used with the 
highest care until the problem is resolved. I have not seen much criticism on CO emission factors 
and assume that they (so far) represent consensus among the researchers. The authors discuss 
the issue (pp.3132-3133) but somehow ended up with a conclusion that this difference is 
insignificant. In view of the above, I disagree. 

P.3129-3130, table 2. Now the problem comes. It is explained above in “General comments”, 
here I just have to second the statement of p.3130 l.1-5: the combination of CO and PM 
retrievals using the literature dry-matter-to-CO and –to-PM conversion factors has inherent 
problems, which questions the value of the whole exercise. A possible way out is to use CO-
based emission estimates of CO2 keeping PM-based values as a sensitivity study. 

We recognize the potential problem associated with the inversion of AOD measurements, and 
we are sorry if the referee got the impression that we simply "waved it out". The discussion of 
this point is considerably extended in the revised manuscript, and a corresponding caveat is 
provided. Along with the CO2 emission estimates constrained by both CO and AOD 
measurements, we provided the emission estimates based only on CO and only on AOD 
measurements. 

Nonetheless, we remain confident that the uncertainty range given for AOD-based estimates of 
the conversion factors is sufficiently realistic and that thus there are no sufficient objective 
reasons for totally disregarding information provided by the AOD measurements, which 
automatically gets a smaller weight in our estimation procedure than information derived from 
CO measurements. We also believe that using PM emissions factors from literature in the 
framework of our study does not necessarily require any special "workaround" involving any 
subjective judgments, since the potential problems associated with the PM emission factor 
measurements are likely manifested (unless those problems are of trivial nature, which is 
unlikely) as a diversity of the measurements performed using different instruments in different 
conditions, regions and seasons. Such diversity is taken into account in our analysis. 

Furthermore, we did not have a sufficient ground for expectation that the AOD-based estimates 
of the FRP-to-BBR conversion factor would be 2-3 times larger than the CO-based estimates. 
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Indeed, although this result is coherent, in particular, with the large correction imposed to aerosol 
emissions in the GFASv1.0 inventory, it is rather contradictory to the earlier results by 
Konovalov et al. (2011) who found that their CO and PM10 simulations were not consistent with 
the measurements of near-surface concentrations in the Moscow region in 2010, unless the ratio 
of CO to PM10 emissions was enhanced by about a factor of two with respect to the "standard" 
settings. A uniform underestimation of AOD in simulations based on the bottom-up inventories 
is also not supported by Petrenko et al. (2012) who found, in particular, that a global model 
driven by several bottom-up fire emission inventories tend to overestimates AOD (by up to a 
factor of 3) over equatorial African region. Finally, the available estimates of CO emission from 
biomass burning demonstrate a similar degree of uncertainties in Russian regions (see, e.g., 
Huijnen et al., 2012; Krol et al., 2013). Taking such contradictory results into account, we 
believe that many more studies involving satellite and ground based measurements of aerosol 
and co-emitted species along with chemistry transport models using different parameterizations 
of the key processes are needed to elucidate the potential issues concerning aerosol emissions 
from biomass burning and their origin. Our study contributed to advancing this active research 
area by providing (as far as we know, for the first time) the results of parallel inversions of both 
CO and AOD measurements of biomass burning plumes, as well as the results of tests with 
different model options. Therefore, we believe that in spite of existence of the probable 
unresolved problems mentioned above, our results (presented in our manuscript along with 
appropriate discussion and caveats) will be sufficiently interesting and useful for a broad 
community specializing in estimation and modeling of biomass burning emissions and their 
atmospheric effects. 

Referee's comments: Finally, the validation section 4.2 re-uses the same observations as were 
used for emission optimization. Such re-use of the fitted measurements to evaluate the fitting 
results is absolutely not acceptable. This is especially true because the authors analyze the very 
parameters heavily affected by the fitting (mean values, biases, RMSE) and ignore those less 
influenced (correlation coefficient, for instance). Why the authors didn’t withhold half of the 
data from the fitting? The amount of observations is bound to be more than sufficient for that. In 
the current form the section 4.2 has no value, except for in-situ comparison, which leaves the 
study practically without any validation. A rigorous workaround to save the paper would be 
repeating the fitting with half of data withhold but I understand that it may be too painful. One 
can consider additional periods with strong fires, may be, in other years, although this is not 
completely painless either. 

P.3134, l.1-10. This is the major problem. The wrong statement and an evident crude error in the 
approach are covered by hand-waving (“would hardly help : : : if emission is wrong”). See the 
general comments above. 

We agree that, fundamentally speaking, optimization and validation data sets should be totally 
independent. However, we expected that because the number of the parameters optimized in our 
study was extremely smaller compared to the total number of data points, the use of the same 
dataset for both optimization and validation purposes could not lead to any wrong conclusions. 
The results presented in the revised manuscript, where each third day in the period considered 
was withheld for validation, confirm that expectation. The changes in the optimal estimates of 
the conversion factors and CO2 emissions, as well as the changes in the performance statistics of 
our simulations due to splitting of the initial dataset into two parts, are not considerable. 

Referee's comment: P.3102, l.21-23 I did not understand the division between wildfires and 
“other types” and the following lengthy but pointless and confusing wording. Why not simply 
“emissions of CO2 and other species from wildfires are available from: : :”? 
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Our top down emission estimates, as well as alternative bottom-up estimates mentioned in the 
concerned paragraph, address emissions not only from wildfires but also from other types of 
open biomass burning (such as agricultural fires). That is why we could not talk about only 
emissions from wildfires. Nonetheless, the criticized sentence is shortened in the revised 
manuscript. Note that wildfires are indeed a dominant source of biomass burning emissions in 
Siberia (e.g., Lin et al., 2012). 

Referee's comment: P.3107, l.23. GFAS emission estimation involves direct scaling to GFED 
totals as part of the procedure, as mentioned in p.3138. This deserves a clearer explanation here 
too. 

The explanation is added in the revised manuscript. 

Referee's comment: P.3113, l.10 I did not understand the reason for such brute-force approach 
to minimization. Why not to take some standard minimization routine? Just three dimensions of 
optimization should not be difficult. Problems may arise only if the data scatter is very large 
resulting in poor convergence. But then the uncertainties of the brute-force minimization will be 
large too. Explanation is needed here. 

As it explained in the revised manuscript, direct scanning of the parameter space of the 
approximation allowed us, on the one hand, to avoid the risk of finding a local minimum of the 
nonlinear cost function instead of a global one (while most of standard iteration minimization 
routines might be "trapped" in a local minimum). On the other hand, considerations of 
computational efficiency were not important in the given case due to relative simplicity of the 
numerical problem considered. 

Referee's comment: P.3115, eq 7. The threshold level notation o is easily mixed with the number 
0. The notation should be changed. 

The notation is changed in the revised manuscript. 

Referee's comment: P.3121 last line. Factual support is needed. How comes that the CO 
chemistry and secondary aerosol formation from non-fire sources has no impact on the study 
outcome?I would accept it for grid cells / days, where / when the fire-induced smoke is 
dominant. But the authors included all cells with fire contribution > 10%, i.e. up to 90% of the 
pollutants can be from other sources (eq 7, parameter o). For such cells the uncertainties in 
anthropogenic emission are bound to have strong impact. 

The statement questioned by the referee was not formulated quite correctly. We only meant that 
the emissions of NOx and NMHC from biomass burning do not affect significantly the simulated 
evolution of pyrogenic CO and PM. The results of a corresponding test for a similar situation are 
given in Konovalov et al. (2011), Fig. 4. The respective changes are made in the revised 
manuscript. 

Referee's comment: P.3125, l.14. I did not understand: was MEGAN run online or CHIMERE 
received precomputed inventory? 

Biogenic emissions were calculated "online" by using biogenic emission potentials from the 
MEGAN global inventory.  

Referee's comment: P.3138 l 3-10. A very long and self-contradicting sentence collecting several 
arguments for and against independence of the GFAS and GFED datasets. Please restate. 

The sentence is rewritten in the revised manuscript. 
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Referee's comment: P.3141, l. 5. This is a confusing sentence. It should clearly separate the 
CO/PM model-based inversion to emission fields, which are then simply re-scaled to CO2 using 
literature data. Note that no evaluation is provided for the last step. 

The corresponding part of the Conclusions is clarified as suggested by the referee. 
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Response to the comments of the anonymous referee # 2 

We are very grateful to the Referee for the positive evaluation of our paper and useful 
suggestions. All of the changes proposed by the Referee are made in the revised manuscript. We 
also clarified that all our simulations had the same boundary conditions. 
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Abstract 

A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using 

satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed 

and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an 

emission model assuming a direct relationship between the biomass burning rate (BBR) and the 

Fire Radiative Power (FRP) derived from the MODIS measurements. The key features of the 

method are (1) estimating the FRP-to-BBR conversion factors () for different vegetative land 

cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) 

optimal combination of the estimates of  derived independently from satellite observations of 

different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire 

emissions directly from the FRP measurements. Values of  for forest and grassland fires in 

Siberia and their uncertainties are estimated by using the IASI carbon monoxide (CO) retrievals 

and the MODIS aerosol optical depth (AOD) measurements combined with outputs from the 

CHIMERE mesoscale chemistry -transport model. The constrained CO emissions are validated 

through comparison of the respective simulations with the independent data of ground based CO 

measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion 

factors (which are found to be in agreement with the earlier published estimates obtained from 
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local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 

2012 are estimated to be in the range from 262 280 to 477 550 Tg C, with the optimal (maximum 

likelihood) value of 35492 Tg C. Sensitivity test cases featuring different assumptions regarding 

the injection height and diurnal variations of emissions indicate that the derived estimates of the 

total CO2 emissions in Siberia are robust with respect to the modelling options (the different 

estimates vary within less than 10% of their magnitude). The obtained CO2 emission estimates 

obtained for several years are compared with the independent estimates provided by the 

GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates 

for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia 

are by factors of 2.3 5 and 1.7 8 larger than the respective bottom-up estimates; these 

discrepancies cannot be fully explained by uncertainties in our estimates. There are also 

considerable differences in the spatial distribution of the different emission estimates; some of 

those differences have a systematic character and require further analysis. 

 

1 Introduction 

Wildfires and other types of open biomass burning occurring either naturally or ignited by 

humans strongly affect the atmospheric composition and thermal balance on both the global and 

regional scales by providing major sources of greenhouse and reactive gases and aerosols (e.g., 

Andreae and Merlet, 2001; IPCC, 2007, Langmann et al., 2009; Jaffe et al., 20112012; Bond et 

al., 2013). Wildfires are a key component of the global carbon cycle: they are not only causing 

the immediate release of carbon stored in vegetation into the atmosphere, but they also induce a 

long-term shift in the balance between the carbon sequestration by plants and carbon liberation 

through decomposition of dead biomass (Lorenz and Lal, 2010). The impact of wildfires on the 

carbon cycle can become especially important in the situation of continuing climate change, as 

global warming is expected to change fire regimes and may accelerate the accumulation of 

carbon dioxide (CO2), methane, and ozone precursors in the atmosphere, thus leading to further 

warming (Bond-Lamberty et al., 2007). Accurate estimation of such climatic feedbacks through 

fires can hardly be possible without adequate quantitative knowledge of the CO2 emissions from 

wildfires. 

Presently, estimates of emissions of CO2 and other species from wildfires and other (usually less 

important) kinds types of open biomass burning (such as controlled burning in agriculture and 

landscape management) are available on the global scale from several "bottom-up" emission 

inventories, such as, e.g., the Global Fire Emission Database (GFED) (van der Werf et al., 2010; 
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Giglio et al., 2013), the Wildland Fire Emission Inventory (WFEI) (Urbanski et al., 2011), the 

Emissions for Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 

inventory (Lamarque et al., 2010), the Fire INventory from NCAR (FINN) (Wiedinmyer et al., 

2011) and the Global Fire Assimilation System (GFAS) emission data set (Kaiser et al., 2012). 

Such inventories are based on different kinds of available satellite data (e.g., burnt area, hot 

spots, or fire radiative power), which are used to characterize time, location, and the size or 

intensity of fires. The emission estimates provided by the bottom-up inventories may involve 

considerable uncertainties caused by uncertainty in the satellite measurement data, as well as by 

uncertainties in additional data (such as available "fuel" amounts and combustion efficiencies) 

and parameters establishing a relationship between the satellite data and the emissions of a given 

species (e.g., Wiedinmyer et al., 2006; van der Werf et al., 2010). Although not all of the 

inventories may be considered as being fully independent from of each other, a part of these 

uncertainties are evidenced by discrepancies between the data of different inventories (Kaiser et 

al., 2012; Petrenko et al., 2012). 

A common way to validate emission inventories involves using the inventory data in 

atmospheric chemistry and transport models and comparing the model outputs with atmospheric 

measurements of some emitted species. Studies using this approach in the case of biomass 

burning emissions are numerous (e.g., Park et al., 2003; Turquety et al., 2007; Hodzic et al., 

2007; Jeong et al., 2008; Pfister et al., 2008; Sofiev et al., 2009; Larkin et al., 2009; Ito, 2011; 

Huijnen et al., 2012; Kaiser et al., 2012). Some of the modelling studies revealed systematic 

discrepancies between the measured and simulated data and attributed a part of them to 

uncertainties in biomass burning emission data (Wang et al., 2006; Singh et al., 2012; 

Hodnebrog et al., 2012; Petrenko et al., 2012). Several studies employed more sophisticated 

inverse modelling methods to constrain uncertainties of the bottom-up biomass burning emission 

data and to provide top-down emission estimates derived from observations of atmospheric 

composition. Most studies have mainly been focused on constraining carbon monoxide (CO) 

(Pfister et al., 2005; Arellano et al., 2006; Hooghiemstra et al., 2012; Krol et al., 2013) or aerosol 

emissions (Zhang et al., 2005; Dubovic et al., 2008; Huneeus et al., 2012; Schutgens et al., 2012; 

Xu et al., 2013), but whereas there is less work focusing on constraining CO2 emissions. 

While inverse modelling methods have also been widely used for estimation of CO2 fluxes in 

different regions by using both ground based (see, e.g., Enting, 2002 and references therein; 

Gurney et al., 2002; Rayner et al., 2008; Ciais et al., 2010) and, more recently, satellite 

measurements of CO2 mixing ratios (e.g., Chevallier et al., 2009; Nassar et al., 2011; Saeki et al., 
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2013), they usually do not allow identifying CO2 sources associated with biomass burning 

separately, due to, in particular, strong interference by other major natural sources and sinks of 

carbon dioxide such as soil and plant respiration and photosynthesis (IPCC, 2007) and the lack 

of explicit inclusion of fire CO2 emissions in inversion prior fluxes. Solution of the typically ill-

conditioned inverse problems (Enting et al., 2002) with respect of CO2 fluxes is further hindered 

by the long life time of CO2 and its relatively small variability in the atmosphere, leading to a 

rather strong sensitivity of emission estimates to model and measurement errors (e.g. Houweling 

et al., 2010).  

A promising approach to constrain CO2 emissions from specific sources involves using 

measurements of other co-emitted species (tracers) in situations where the main sources of the 

tracers and CO2 are essentially the same (Suntharalingam et al., 2004; Rivier et al., 2006). The 

methods developed within this approach range from analysis of the relationships between 

observed concentrations of CO2 and co-emitted species (Suntharalingam et al. 2004; Rivier et al., 

2006; Palmer et al. 2006, Brioude et al., 2012) to a combination of top-down estimates of tracer 

emissions with information provided by bottom-up emission inventories (Berezin et al., 2013). 

So far, such methods have only been applied to estimation of CO2 emissions from fossil fuel 

burning. 

The method presented in this paper follows the abovementioned approach and aims at inferring 

pyrogenic CO2 emission estimates from satellite measurements of CO and aerosol optical depth 

(AOD). The main idea is that satellite measurements of CO or aerosols co-emitted with CO2 

provide useful constraints on their emissions, while quantitative relationships between CO2 

emissions and those of the co-emitted tracers can be established by means of the emission factors 

employed in bottom-up emission inventories. Although thise ideas concepts underlyingof the 

method described in this paper and of the method  is rather similar to one that was applied earlier 

by Berezin et al. (2013) to study multi-annual relative changes of anthropogenic CO2 emissions 

in China are similar, the methods  themselves described in this paper isare different from that by 

Berezin et al. (2013) due to fundamental differences in the problems addressed. The core of the 

method employed in this study is the use of the fire radiative power (FRP) (Ichoku and Kaufman, 

2005) to derive the spatial and temporal structure of the biomass burning rate (here, this is the 

amount of dry biomass (g) burned per second; for brevity, this characteristic, which essentially 

represents the total carbon emission rate, is referred to as BBR below). Similar to several other 

modelling studies (Pereira et al., 2009; Sofiev et al., 2009; Konovalov et al., 2011; 2012; Kaiser 



12 

 

et al., 2012; Huijnen et al., 2012) employing FRP measurements, the emissions of a given 

species are obtained as the product of BBR and a corresponding emission factor.  

A serious problem associated with the application of FRP measurements for the estimation of 

emissions from biomass burning concerns the evaluation of the empirical coefficients providing 

conversion of FRP to BBR (these coefficients are referred below for brevity to as the FRP-to-

BBR conversion factors). Although such conversion factors can, in principle, be evaluated 

directly in local experiments (Wooster et al., 2005), it is not obvious that the local relationship 

between the BBR in real wildfires and FRP measured from space during a period of months to 

years and over a large region with diverse ecosystems should be the same as that measured 

during fire experiments. Indeed, oOn the one hand, some biases in FRP measured from space 

may be associated, in particular, with the effects of clouds and heavy smog; on the other hand, 

surface fires in forests can be obscured by tree crowns, and will not or only partially be seen in 

FRP measurements from space. One of the main features of our method is the use of satellite CO 

and AOD observations to estimate the FRP-to-BBR conversion factors for different vegetative 

land cover types by optimizing the agreement between the CO and AOD observations and 

corresponding simulations. In this way, we can also verify that the optimized emissions of CO 

and aerosols are consistent (within the range of indicated uncertainties) with the corresponding 

observations. Another important element of our method is the optimal (probabilistic) 

combination of the FRP-to-BBR conversion factors estimated independently from the satellite 

observations of each different species. The estimates of the FRP-to-BBR conversion factors 

derived separately from CO and AOD measurements can be used for their mutual cross 

validation, while the probabilistic combination of the estimates using both CO and AOD yields 

the dual-constrained optimal estimates featuring the reduced uncertainty brought by combining 

CO and AOD constraints. Indirect top-down CO2 emission estimates are then obtained after 

applying CO2 emission factors to the optimized spatial-temporal fields of the biomass burning 

rate. 

It may be useful to mention some ways to infer emissions of a given species from FRP 

measurements, which have been used in other studies. In particular, Ichoku and Kaufman (2005) 

and Pereira et al. (2009) approximated a statistical relationship between FRP and aerosol 

emission rates derived from simultaneous AOD measurements under some simplified 

assumptions. A similar, but more sophisticated method involving aerosol sources distributed in 

space and time by inverse modelling was used by Vermote et al. (2009). Kaiser et al. (2012) 

calibrated their FRP measurement- based emission estimates in the framework of the GFAS 
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emission inventory with the data of another (GFED3.1) global bottom-up emission inventory 

(GFED3.1) based on the burned area data and other parameters from a diagnostic biosphere 

model. Finally, similar to the approach used in this study, Sofiev et al. (2009) and Konovalov et 

al. (2011) calibrated empirical relationships between FRP and emissions of a given species by 

optimizing the agreement between its atmospheric observations and corresponding simulations; 

however, unlike in the present study, only near-surface concentration data were used in those 

studies for the calibration. 

We apply our novel method to estimate CO2 emissions from wildfires in Siberia. The processes 

(such as wildfires) affecting the carbon balance in the Siberian region are important components 

of the regional and global carbon cycle, as the Siberian boreal forest contains around 25 % of 

global terrestrial biomass (Conard et al., 2002). Accurate estimates of pyrogenic CO2 fluxes 

(directly related to the amounts of biomass burned) are requisite for reliable examination of both 

direct and indirect effects of Siberian fires on atmospheric composition and climate change. 

Meanwhile, significant discrepancies between published estimates of pyrogenic emissions in 

Russia indicate that the knowledge of CO2 emissions from Siberian wildfires is currently rather 

deficient. In particular, the annual estimates (based on the burnt area data) provided for the total 

carbon emissions from Russian wildfires (occurring mainly in Siberia) by Shvidenko et al. 

(2011) and Dolman et al. (2012) differ in some years by more than a factor of two from the 

corresponding estimates provided by the global GFED3 inventory (van der Werf et al., 2010). 

Large potential uncertainties in pyrogenic emission inventory data for Siberia were also 

indicated by Soja et al. (2004) and Kukavskaya et al. (2013). As discussed in Shvidenko et al. 

(2011), the discrepancies between the results of the different inventories are not only due to 

differences in the assessment methods but, most importantly, due to the varying degree of the 

completeness and reliability of the initial data (concerning, in particular, the burnt area and the 

basic biophysical characteristics of the vegetation). 

Accordingly, one of the main goals of this study is to obtain top-down estimates for the total CO2 

emissions from wildfires in Siberia. Our estimates are to a significant extent independent of 

estimates provided by bottom-up inventories, since the only "a priori" information (apart from 

the data provided by satellite measurements and a chemistry transport model) used in our 

estimation method are the ratios of the emission factors for the tracers considered and to the 

onesthose for CO2. The obtained estimates obtained for several years (2007-2012) are compared 

to the data of from two widely used (although not completely independent of each other) global 

emission inventories, namely GFED3.1 (van der Werf et al., 2010) and GFASv1.0 (Kaiser et al., 
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2012);. these inventories are not completely independent of one another, as the latter  involves 

linear regressions to GFED3.1 as a part of  the estimation procedure. 

The paper is organized as follows. Our method is explained in detail in Section 2. Measured 

and simulated data employed in our analysis are described in Section 3. The results, including 

inferred optimal estimates of the FRP-to-BBR conversion factors, total CO2 emissions from 

wildfires in Siberia, and their comparison with the corresponding data of from the GFED3.1 and 

GFASv1.0 inventories are presented in Section 4. Finally, the main findings of our study are 

summarized in Section 5. 

2 Optimization of emissions fire emission estimates from wildfires: method 

description 

2.1 Estimation of emissions from wildfires on a model grid: FRP data and basic 

formulations 

To characterize fire intensity, we use the Fire Radiative Power (FRP) data retrieved from the 

MODIS infrared measurements on-board the Aqua and Terra satellites. The FRP data are were 

available from the standard MODIS L2 "Thermal anomalies & Fire" data product (MOD14 and 

MYD14) provided by the NASA Land Processes Distributed Active Archive Center (LP DAAC) 

through the Earth Observing System (EOS) Clearinghouse (ECHO) 

(http://reverb.echo.nasa.gov). The swath data are were provided for each satellite overpass at the 

nominal 1-km resolution. The data are were acquired twice daily a day by both the Aqua (at 1:30 

PM and AM) and Terra (10:30 AM and PM) satellites. The details on the retrieval algorithm can 

be found elsewhere (Kaufman et al., 1998; Justice et al., 2002). The uncertainties in the FRP data 

are difficult to quantify in a general way because they are strongly dependent on meteorological 

conditions (since satellites cannot detect fires obscured by clouds) and the temporal evolution of 

the fires (since a satellite normally overpasses the same territory only twice a day). 

Similar to Kaiser at al. (2009a,b, 2012) and Konovalov et al. (2011) we assume the following 

relationship between the FRP and emissions of a given species in a given cell of a chemistry 

transport model grid: 


l

ll
s
l

s
ld

s )t(h)t(E  ,                                                     (1) 

where Es(t) (g s-1 m-2) is the emission rate of a model species s at a moment time t, d (W m-2) is 

the daily mean FRP density derived from satellite measurements (see Eqs. (2) and (3) below) , αl 
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(g[dry biomass] s-1 W-1) are the FRP-to-BBR conversion factors, βsl (g [model species] g-1[dry 

biomass]) are the emission factors for a given type of land cover type l, l is the fraction of the 

land cover type l, and hl is the diurnal variation of FRP density. This theoretical relationship 

defined for a given grid cell is extended to the whole model grid by using the data and 

assumptions discussed below. In this study, the FRP densities were first calculated on a 

0.2°0.1° rectangular grid; the daily mean FRP densities estimated with Eq. (2) were then 

projected onto the 1°1° grid of our model (see Section 3.2). 

Note that, unlike Konovalov et al. (2011), we do not consider peat fires explicitly. However, the 

emissions from peat fires (at least, from those coinciding on a model grid with fires visible from 

space) are taken into account in our study implicitly through optimisation of the FRP-to-BBR 

conversion factors (see Section 2.3). Similarly, we take implicitly into account emissions from 

ground fires occurring underneath a forest canopy and from smouldering fires accompanying 

visible fires. In this study, we also omitted a correction factor which was introduced in 

Konovalov et al. (2011) in an ad hoc way to account for possible attenuation of FRP by smoke 

aerosol during the episode of the extreme air pollution caused by the 2010 Russian fires. We 

believe that this effect plays a much less important role in the case addressed in this study, and 

the omission of the correction factor greatly simplifies the analysis. We expect that any variable 

(in space and time) uncertainties in the FRP data are manifested in our study in the disagreement 

between the simulated and measured data of atmospheric composition and, eventually, in the 

reported uncertainties of our emission estimates, while possible systematic uncertainties are 

compensated as a result of the optimization of the FRP-to-BBR conversion factors. 

Similar to Konovalov et al. (2011), we evaluate the daily mean FRP density (d) by selecting 

daily maxima of the FRP density in each model grid cell and by scaling them with the assumed 

diurnal cycle of FRP: 

  )t(h/K,...k,max maxllkd 1 .        (2) 

Here, tmax is the moment when the maximum FRP density was measured and Фk is the FRP 

density evaluated for each overpass k of any of the considered satellites during a given day: 
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where j is the index of a fire pixel, Sf
jk and Sc

k  are the area (km2) of the fire pixels and the other 

remaining observed area (except water) in a given grid cell, respectively. Note that by selecting 
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the daily maxima of FRP we attempt to select the FRP measurements which are least affected 

(during a given day) by clouds and heavy smoke. 

Taking into account the large uncertainties in the available estimates of emission factors (see 

Section 2.5), we considered only three aggregated vegetative land cover categories, i.e., forest 

(including both coniferous and broadleaf forests), grass (including shrubs), and agricultural land. 

The fraction of each category per grid cell was calculated by using the Global Land Cover 

Facility (GLCF) database (Hansen and Reed, 2000), which originally distinguishes 14 land cover 

classes. Furthermore, the FRP-to-BBR conversion factors as well as the diurnal variations of 

FRP and emissions for fires in agricultural land and grass fires were assumed to be the same. 

This assumption seems to be reasonable in view of the large uncertainties in the obtained 

estimates of the conversion factor for the "grass" category (see Section 4.1), indicating that the 

available observational information is insufficient for inferring more detailed estimates of the 

FRP-to-BBR conversion factors. Thus, here we estimate the FRP-to-BBR conversion factors for 

the two broad categories of vegetative land cover, which for brevity are referred to below as 

"forest" and "grassland". The spatial distribution of these two categories of vegetative land cover 

is shown in Fig. 1, which also shows our model domain (see Section 3.2). 

The optimization of the FRP-to-BBR conversion factors is performed over the period from 1 

May to 30 September 2012. This period includes episodes of the unusually intensive Siberian 

wildfires that, as shown below, led to strong (and clearly detectable from space) perturbations of 

atmospheric composition over Siberia in July, and also to haze at the North American West coast 

after transport of smoke across the Northern Pacific (Flemming et al. 2013). The average (over 

the defined period) FPR densities (over the defined period) are shown in Fig. 2a, and the daily 

variability of the spatially-averaged FRP is demonstrated in Fig. 2b. Evidently, the most intense 

fires occurred in the central and south-western parts of Siberia, as well as in the Russian Far 

East. The strongest grass and forest fires in the study region took place in May, July and August; 

the contribution to the measured FRP from forest fires was commonly predominating. 

Geographically, we limit our analysis (that is, assimilation of atmospheric composition 

measurements and estimation of total CO2 emissions from fires) to the region within the red 

rectangle in Fig. 2a: this region includes most of the spots of intensive fires observed in Northern 

Eurasia during the period considered. The idea behind this limitation is that the selected 

atmospheric observations should not be affected to a significant extent by emissions from fires or 

other sources outside of Siberia. Otherwise, our estimates could become more uncertain or 

biased. For the same reason, the period considered does not include April. Indeed, although there 
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were some (mainly grass) fires in the selected region during that month, very strong fires 

contributing to air pollution over Siberia in April took place in Kazakhstan; estimation of 

emissions from those fires is beyond the scope of this study. Note that the optimisation of the fire 

emissions was not limited to the selected region: they were calculated in the same way 

throughout the whole model domain (see Section 3.2.1). 

2.2 Approximation of the diurnal variations of FRP 

The knowledge of the diurnal variation of FRP, hl(t), is needed in order to extrapolate the 

selected FRP measurements over any moment of each day considered, and to estimate the daily 

mean FRP density, d (see Eqs. 1 and 2). Inaccuracies in hl(t) can result in systematic biases in 

the total emissions from a considered region, even when the other parameters involved in Eq. (1) 

are perfectly accurate. As it has been argued in earlier publications (Ichoku et al., 2008; Vermote 

et al., 2009), four overpasses of the AQUA and TERRA satellites during a day do not usually 

allow retrieving of the FRP diurnal variation directly from the MODIS measurements. 

Nonetheless, since the MODIS measurements span several different periods of a day (see Fig. 

3а), they still may contain some useful information on parameters of the diurnal cycle of FRP, as 

was demonstrated by Vermote et al. (2009) who analysed the MODIS FRP data together with the 

FRP data from geostationary satellites. 

Rather than attempting an accurate estimation of the FRP diurnal cycle, here we aim at finding a 

way to avoid the potential biases in our optimal estimates of s by properly "balancing" the 

contributions from the selected FRP measurements collected by the MODIS sensors at different 

hours of the day. Note that a daily maximum of FRP from a given fire can be detected during 

any overpass of a satellite, particularly because observational conditions during other overpasses 

at on the same day can be unfavourable, and also because the actual FRP diurnal cycle is 

probably irregular and different for different fires. We require that when the balance is correct, 

any time interval of the selected observations should yield, integrally, the same daily mean FRP 

densities (d) (as it would be expected if the measurements were continuous and perfect and the 

diurnal cycle of FRP in each grid cell was known exactly). Mathematically, the required regional 

balance is established through minimizing the following cost function, : 
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where the indexes j and k designate the time intervals of the Aqua and Terra satellite overpasses 

(see Fig. 3а), ij and ik are the daily maximum FRP densities in a given grid cell (see 

explanations for Eq. (2)), Njl or Nkl are the total numbers (for the considered region and period) 

of daily maximum FRP observations falling in the given intervals j or k, jk is the Kronecker’s 

symbol, and hlal (t) is the smooth Gaussian function, 
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which is chosen to approximateing the regionally-averaged FRP diurnal cycle (hl(t) hal(t)) for a 

given category l of the land cover (independently of a grid cell). The three independent 

parameters (hl, l, 0l) of such an approximation were chosen following Kaiser et al. (2009a) 

and Vermote et al. (2009), and enable optimizing the width, amplitude and the time of the 

maximum of the assumed diurnal cycle. Minimization of  yields optimal estimates of these 

three parameters of this approximation function (hl, 0l, and l), while a value of  is determined 

from normalization. Note that although the intervals "2" and "3" (see Fig. 3a) of the respective 

Aqua and Terra measurements formally coincide, they actually contain somewhat different 

information on the diurnal cycle, because the overpasses by Terra take place three hours earlier 

than those by Aqua. 

The minimization is performed with the data on the fine resolution grid of 0.2°0.1° by means of 

direct scanning of the parameter space of the approximation; specifically, a simplest "global 

search" method in which the parameter values were varied in embedded cycles by a small step 

within sufficiently wide intervals (for example, hl was varied from 0.1 to 10 with a step of 

0.01). On the one hand, such a simple method allowed us to avoid the risk of finding a local 

minimum of the nonlinear cost function instead of a global one (whereas most standard iterative 

minimization routines might become "trapped" in a local minimum). On the other hand, 

considerations of computational efficiency were not important in the given case due to relative 

simplicity of the numerical problem in question. We made sure that the mean relative uncertainty 

of the optimized diurnal cycle due to finite steps of parameter values in the optimization 

procedure does not exceed 10 %. The optimization was made independently for fires in forests 

and in grassland: daily FRP densities for a given cell were taken into account in Eq. (4) only if 

the fraction of the vegetative land cover of a given type in a given grid cell exceeded 67 %. The 

approximations of the FRP diurnal cycle obtained for the cases of forest and grassland fires are 
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shown in Fig. 3b. The diurnal variation is rather strong in both cases, even more in the case of 

forest fires, while its maximum is reached one hour earlier in the case of the grassland fires. 

Since the region considered is not covered by FRP measurements of geostationary satellites, any 

direct comparison of our estimates with similar estimates derived from geostationary 

measurements is not feasible. Nonetheless, it may be useful to note that by means of Fourier 

analysis of the FRP data (without selecting their daily maxima) from the SEVIRI geostationary 

instrument, Sofiev et al. (2013) found that the forest fires show a more pronounced diurnal 

variation than grass fires, similar to our results (although there was no lag in time). The 

amplitude of the variations was by factors of about 1.25 and 1.5 larger in the estimates by Sofiev 

et al. (2013) than in our estimates for forest and grass fires, respectively. These differences can, 

in particular, be due to the fact that the SEVIRI FRP data are dominated by measurements of 

African tropical fires (which are likely to feature a somewhat different diurnal variation than 

fires in boreal regions). On the other hand, due to insufficient temporal coverage of the MODIS 

measurements, our approximation may indeed underestimate the diurnal cycle amplitude. 

However, as noted above, the main purpose of the diurnal cycle estimation in this study is to 

establish a proper balance between the contributions of the FRP measurements made to the 

emission estimates during different periods of the day, and the optimization procedure described 

above allowed us to achieve this goal. 

2.3 Optimization of the FRP-to-BBR conversion factors 

2.3.1 Cost function definition  

The optimum values of the FRP-to-BBR conversion factors are obtained by minimizing the cost 

function, J, depending on the observed (Vo) and simulated (Vm) AOD or CO data provided daily 

on a model grid: 

 ),(Jminargs
mo VV .         (6) 

Here, different components of the vector s represent various land cover types and should be 

optimized simultaneously. As it is common for inverse modelling studies, we assume that 

random discrepancies between the observations and simulations satisfy the normal distribution. 

To take into account systematic discrepancies (which are not associated with fire emission 

uncertainties) between the observations and simulations, we introduce (and then estimate) the 

bias, , which is supposed to include systematic errors both in the measurements and in the 

model. 
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To evaluate this bias (as it is explained in detail in the next section), we select the days and grid 

cells in which the contribution of fires to Vm (and, presumably to Vo, too) is negligible. These 

grid cells should accordingly be excluded from the cost function in order to avoid interference 

between the bias and other (random) uncertainties. This is done by means of the operator , 

which is defined as follows:  
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where Vm(r) are the outputs of the "reference" model run performed without fire emissions, i and j 

are the indices of a grid cell and a day, Nc and Nd are the total numbers of the grid cells and days 

considered for optimisation of s, respectively, o is a small number. Accordingly, we define the 

cost function as the mean square deviation of the simulated daily values from the observed ones: 
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The results presented below (see Section 4) are obtained with o=0.1;, that is, when fire 

emissions contribute less than 10% to the simulated data, the corresponding days are excluded. 

2.3.2 Bias estimation  

The bias, , can be evaluated in different ways depending on the assumptions regarding its 

nature and origin. In particular, when the bias is assumed to be predominantly associated with 

the boundary conditions (as assumed here in the analysis of CO data), we evaluate it as the mean 

difference between the simulations (without fire emissions) and measurements: 
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where Ip and Jp are sufficiently large sets of grid cells and days in a region and a period covering 

a given grid cell i and a day number j. Our choice for the optimal sizes of Ip and Jp is explained 

below in this section. 

On the other hand, when the bias is likely associated predominantly with errors in the assumed 

relation between a model output and a measured characteristic and/or biases in local sources of 
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the considered species, we introduce it (as in our analysis of AOD data) by means of a correction 

factor representing the ratio of the mean measured and simulated (without fire emissions) data: 
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The sets Ip and Jp are determined as a trade-off between different kinds of possible uncertainties 

in the bias estimates. On the one hand, there may be random uncertainties (and moreover, the 

bias estimation may even become impossible) due to an insufficient amount of data involved in 

Eqs. (9) or (10). On the other hand, there may be a representativeness error (that is, the biases 

evaluated for too large regions and/or time periods may be not representative of the systematic 

errors of the simulations on smaller scales). In the application considered in this study, the biases 

were estimated on a 1°×1° model grid; the sets Ip included (when available) 40 grid cells 

symmetrically surrounding a given grid cell in the west-to-east direction and 20 grid cells in the 

south-to-north direction; the set Jp included (when available) 7 days before and after a given 

date. 

2.3.3 Uncertainty estimation 

The uncertainty ranges for our estimates of s were evaluated by means of a Monte-Carlo 

experiment (Press et al., 1992). The Monte Carlo experiment performed in this study was set up 

to take into account the uncertainties associated with (1) the residual errors in Vm and Vo (that is, 

the differences between Vm and Vo remaining after optimization of s , see Eq. (8)), and (2) the 

uncertainties in the regional-scale estimates of the emission factors, βs. Note that apart from 

model errors in transport and chemical transformation processes, the residual errors in Vm 

include uncertainties associated with local deviations of the emission factors from their regional-

scale estimates due to, e.g., different fire regimes (Akagi et al., 2011) and diverse spatial patterns 

of plant populations in Siberia (Schulze et al., 2012). In the case of s derived from AOD 

measurements, we additionally took into account the uncertainties associated with the magnitude 

of the mass extinction efficiency employed to convert the modelled aerosol concentration into 

AOD (see the corresponding definitions and discussion in Sect. 3.2.3). The experiment included 

a sufficiently large number (31000) of iterations. The simulated data obtained with the optimized 

values of s were used as a substitute for the true values of the variable considered. Random 

uncertainties added in each iteration to the "true" values of a variable were specified by means of 
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the bootstrapping method (Efron et al., 1993) as the randomly mixed shuffled residuals Vm
ij-Vo

ij -

ij for different grid cells i and days j. The considerable advantage of the bootstrapping method 

(in comparison to a Monte Carlo experiment based on explicit specification of a probability 

distribution function) is that it allows avoiding any a priori assumption about the nature of 

uncertainties in the observed and simulated data. To preserve possible spatial and temporal co-

variations between the residual errors in the CO and AOD data, random shuffling of grid cells i 

and days j in CO and AOD datasets was done in exactly the same order. In each iteration, 

positive values of the emission factors, βs, and (in the case of aerosol emissions) of the mass 

extinction efficiency were sampled from the lognormal distributions representing their 

uncertainties and used instead of their assumed best values specified (along with the parameters 

of the corresponding probability distributions) in Sections 2.4 and 3.2.3. Based on the analysis of 

the relationship between several currently available experimental estimates of the emission 

factors for CO and aerosol (see the Supplementary material), we assumed that uncertainties in 

the emission factors βs for these different species are independent. The experiment outputs (that 

is, varying random estimates of s) were processed to evaluate the geometric standard deviation 

of the obtained samples of s values. The Shapiro-Wilk test performed for these output values 

indicated (with a confidence level exceeding 95 %) that the logarithms of the sampled values of 

s satisfy the normal distribution. 

Note that while the residual errors (for a given species) in different grid cells and days are 

assumed here to be statistically independent, the systematic errors in the emission factors, βs, for 

a given land cover type are assumed to perfectly covariate in space and time; that is, these errors 

are assumed to be the same for any moment and grid cell. The same assumption is made for 

errors in the mass extinction efficiency. Accordingly, the same random values of these 

parameters are specified, in each of the iterations, for all grid cells and days. The latter 

assumption can lead to some overestimation of the estimated uncertainty in s. Indeed, the 

emission factors are likely to vary within our large study region, and a part of their variability is 

already reflected in the residual errors Vm
ij-Vo

ij -ij. between fires even in ecosystems of the same 

kind, e.g. due to varying fire regimes (Akagi et al., 2011). The mass extinction efficiency of 

biomass burning aerosol is also expected to vary both in space and time, depending on fire 

regime and aerosol age (Reid et al., 2005). However, since the character of these variations is not 

known, we prefer (to be on the safe side) to overestimate uncertainties in our estimates of the 

FRP-to BBR conversion factors (and thus in our emission estimates) rather than to underestimate 

them. 
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2.3.4 Optimization algorithm 

Minimization of the cost function J (see Eq. 6-8) involving outputs of a chemistry transport 

model can, in a general case, be a very computationally expensive task. Following Konovalov et 

al. (2011), we assumed that the effects of chemical nonlinearities on relationships between the 

concentrations of CO and aerosol over regions with intensive wildfires and the resulting 

emissions are negligible. This allows allowed us to obtain the optimal parameter values by 

means of a simple "twin experiment" method. Specifically, the runs with l
s=0 are were followed 

by runs (made independently for each of the considered categories of the vegetative land cover) 

with non-zero initial guess values for l
s=1. As the initial guess for l

s, we used the estimate 

(0.368 kg MJ-1) obtained by Wooster et al. (2005) in an analysis of experimental fires. The 

difference between the outputs of these runs is was used to estimate the partial derivatives of Vm 

with respect of to l
s (for a given l) and to approximate Vm as a linear function of l

s. 

Since the Vm involved in the selection criterion given by Eq. (7) depends on l
s, minimizing J 

cannot be done analytically even after linearizing Vm. Thus we employed an iterative procedure: 

given some an initial guess for l
s, we find found Vm,  ,  and the optimized values of l

s 

(corresponding to the above defined  and ); then the initial guess is was replaced with such 

"conditionally" optimal values l
s and the cycle is was repeated. Convergence of this procedure 

was found to be achieved in 3-5 iterations. As the initial guess for l
s, we used the estimate 

(0.368 kg MJ-1) obtained by Wooster et al. (2005) in an analysis of experimental fires. 

2.4 Estimation of CO2 emissions 

In accordance with the general principles of inverse modelling and Bayesian inference 

(Tarantola, 1987), we consider s, i.e., the estimate of the FRP-to-biomass rate conversion factor 

() inferred from measurements of the species s, as a sample taken from the probability 

distributions characterizing uncertainties of the estimation procedure. Taking into account that 

physically acceptable estimates of l should be positive, we assume that they satisfy the 

lognormal probability distribution fl(l, l, l), where  is assumed to be a logarithm of the true 

(unknown) value of . Given two several (Ns) independent estimates of l inferred from 

measurements of different species CO (1) and AOD (2) s (s[1;Ns]) measurements with the 

corresponding (a priori known) error covariances uncertainties Vs11 (=1
2), V12 (=c), and V22 

(=2
2), the maximum likelihood estimates of the parameters l and l (denoted below as l̂  and 

l̂ ) can be evaluated as follows: 
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Values of ̂  and ̂ can then be used to express the combined optimal estimates of  (̂ ) and its 

geometric standard deviation ( ĝ ):  

)ˆexp(α̂  ,            (13) 

)ˆexp(ˆ g   .                                                             (14) 

It is noteworthy that according to Eq. (12), the uncertainty of the combined estimates of l is 

expected to be always smaller than the uncertainty of the estimates derived from the 

measurements of only one species. For convenience, the values of 1, 2 and ̂ are denoted 

below as co, aod and cbm, respectively. 

The maximum likelihood estimates of l for different types of vegetative land cover can then be 

used to estimate the CO2 emission rate, Eco2, by using Eq. (1): 


l

ll
co
l

cmb
ld

co )t(h)t(E  22  .        (15) 

The uncertainties in Eco2 can be estimated by means of a Monte Carlo experiment in which 

values of cmb̂  are sampled (in each iteration) from the lognormal distribution with the 

parameters defined by Eqs. (13), (14), and the CO2 emission factors, co2, also varied within their 

uncertainty range in accordance with the corresponding log-normal probability (log-normal) 

distribution. The Monte-Carlo experiment performed in this study included 31000 iterations. 

The key condition of validity of the estimates defined by Eq. (11) and (12) is statistical 

independence of uncertainties in the estimates of s derived from measurements of different 

species. We believe that this condition is sufficiently satisfied in the application addressed here 
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(with Ns=2), particularly because uncertainties in our estimates of s were found to be mostly 

due to uncertainties in the emission factors for the species considered, s, and it seems 

reasonable to believe that the uncertainties in the emission factors of different species are indeed 

independent. Besides, the uncertainties in satellite measurements of CO and AOD, which are 

used to derive the corresponding estimates of s (co and aod), are probably independent, too. 

The uncertainties in the modelled CO and aerosol concentrations are also likely to be 

independent to a significant extent because of differences in the physical and chemical processes 

responsible for the atmospheric "fate" of CO and aerosol. In particular, the evolution of CO 

columns is usually more strongly driven by the long-range transport processes than that of 

aerosol, since the atmospheric lifetime of aerosol is limited by wet and dry deposition. 

Note that due to co-variation of errors in co  and aod  (c0) would lead to larger the 

uncertainties uncertainty in ̂  cmb than those determined by Eq. (12) can be larger compared to 

the case when the errors are independent. As a potential source of the error covariation, we 

attempted to take into account possible common model errors in transport and emissions of CO 

and aerosol (see Section 2.3.3). However, sSince the exact nature and characteristics of 

uncertainties in the input data for our analysis are not known (as it is common for virtually any 

"real world" application of the inverse modelling approach), the uncertainties reported below for 

our estimates of the conversion factors and CO2 emissions should be considered with caution. 

Nonetheless, tTaking into account the arguments given above in this section and in Section 2.3.3, 

we believe that our estimates of uncertainties in ̂  cmb (and thus in the estimates of CO2 

emissions) are more likely to be overestimated than underestimated. 

Note also that as an alternative to the method outlined above, the CO2 emission estimates can be 

derived from measurements of only one species (CO or aerosol). For such a case, the combined 

optimal estimate of  in Eq. (15) should be replaced by the estimate (co or aod) based on the 

measurements of the respective species, and the corresponding standard deviations (1 or 2) 

should be used for estimation of uncertainties in the framework of the Monte Carlo experiment. 

The focus is given below (see Section 4) to the CO2 emission estimates based on the combined 

measurements of two species, since we consider such estimates to be more accurate and reliable 

than the estimates based on the single-species measurements; however the estimates derived 

separately from CO and AOD measurements are also presented. 

While the CO2 emission estimates derived from independent measurements of two species as 

described above can be expected  
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2.5 Emission factors 

In the application described here, we employ the CO2 and CO emissions factor estimates and 

their uncertainties based on Andreae and Merlet (2001) and subsequent updates (M. O. Andreae, 

unpublished data, 2013). These estimates have been obtained as a result of the compilation of a 

large number of dedicated laboratory and field measurements. They are very similar (taking into 

account the uncertainty range) to the estimates provided by Akagi et al. (2011), as well as to the 

estimates employed in the GFED3.1 (van der Werf, 2010) and GFASv1.0 (Kaiser et al., 2012) 

emission inventories. Here, we characterize the range of uncertainties in the emission factors by 

means of the geometric standard deviation inferred from the variability of the emission factors 

originally reported in terms of the standard deviation. The assigned emission factors for CO2, 

CO, OC, and BC along with their uncertainties are presented in Table 1. 

The emission factors for nitrogen oxides (NOx) and non-methane hydrocarbons (NMHC) are 

specified in the same way as in Konovalov et al. (2011) (see Table 2 and references to the 

sources of the estimates therein). Note that although NOx and NMHC participate in the chemical 

processes affecting the evolution of CO and driving the formation of secondary inorganic and 

organic aerosol, the impact of the atmospheric chemical processes on the evolution of pyrogenic 

CO and aerosol concentrations aton the scales considered results of this study was found to be 

very small (in accordance with an assumption mentioned in Section 2.3 and test results presented 

for a similar situation in Konovalov et al. (2011)). For this reason, the uncertainties in the 

emission factors for NOx and NMHC are not taken into account. 

3 Measurements and simulations of atmospheric composition 

3.1 Atmospheric measurement data 

3.1.1 CO measurements 

To constrain the CO emissions we used measurements from the Infrared Atmospheric Sounding 

Interferometer (IASI) on board the METOP-A satellite (Clerbaux et al., 2009) in May-

September, 2012. The CO concentration is retrieved from the measured spectrum at the 1-0 

rotation vibration band centred at 4.7 μm (2128 cm−1) by using the Fast Optimal Retrievals on 

Layers for IASI (FORLI) algorithm (Hurtmans et al., 2012). The sun synchronous orbit (with 

equator crossing at 09:30 local time for the ascending node) of the METOP-A satellite, and 120 

spectra measured along each swath enable provide achieving global coverage twice a day. 
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The performance of the IASI CO retrieval in highly polluted conditions associated with intensive 

wildfires was evaluated by Turquety et al. (2009) for the case of the fires in Greece in 2007. 

They found that under the prevailing conditions, the typical vertical resolution of the CO 

retrievals was about 8 km. They also found that, although the presence of heavy smoke may 

cause some underestimation of in the retrieval, the contribution of the probable bias to the total 

retrieval error, which tends to slightly increase in the fresh fire plumes, is relatively small 

(typically 10 % or less). The usefulness of the IASI CO retrievals as the source of quantitative 

information on CO fire emissions was later confirmed, in particular, by Kroll et al. (2013) and 

R'Honi et al. (2013) for the case of the 2010 Russian wildfires. 

Similar to Turquety et al. (2009)  and Kroll et al. (2013), we used the CO total columns. 

Although under background conditions, the signal contributing to the retrieval of the total CO 

columns mostly comes from the upper layers of the troposphere, the contribution of the lower 

troposphere under certain conditions may be relatively large (George et al., 2009). The 

possibility to retrieve information about CO in the lower troposphere under given conditions can 

be characterized by the DOFS (degrees of freedom for signal) parameter which is defined as the 

trace of the averaging kernel matrix. Detection of CO in the lower troposphere requires DOFS to 

be about 2 or higher (George et al., 2009). For example, the typical daytime DOFS values in the 

above-mentioned retrievals over Greek fires were about 1.8 (Turquety et al., 2009). Accordingly, 

to enhance the fire signature in the CO columns considered here, we have selected retrievals with 

DOFS > 1.7. This threshold value (which is exceeded in 58% of the retrievals in the period 

considered) is a compromise to avoid getting larger uncertainties in our emission estimates due 

to a smaller contribution of the boundary layer to the CO columns or due to insufficient amount 

of the selected data (with large DOFS). The sensitivity of the results of this study to the threshold 

value was examined and found to be small compared to other uncertainties. 

In addition to satellite CO measurements, we used the ground based measurements of near-

surface CO concentrations at the Zotino Tall Tower Observatory (ZOTTO) site (Schulze et al., 

2002; Lloyd et al., 2002; Chi et al., 2013; http://www.zottoproject.org/) situated in the central 

part of Siberia (89.35°E, 60.80°N). We used the daily mean CO concentrations obtained by 

averaging the original hourly data. The data collected during the warm period of the year were 

available for this study only for the years 2007 and 2008 (and with substantial gaps). While the 

CO measurements were performed simultaneously at the two levels of the tower (50 m and 300 

m), we found that the differences between them are negligible in comparison to the differences 
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to the simulations performed in this study. Taking this into account, only the measurements at 50 

m were used in our analysis. 

3.1.2 Aerosol optical depth (AOD) measurements 

As a source of information on the aerosol content in the atmosphere we used satellite retrievals 

of AOD at 550 nm in May-September 2012. The daily AOD data retrieved from MODIS 

measurements on board the AQUA and TERRA satellites were obtained as the L3 

MYD08_D3/MOD08_D3 data product from the NASA Giovanni-Interactive Visualization and 

Analysis system (http://daac.gsfc.nasa.gov/giovanni/). The spatial resolution of the AOD data is 

1° 1°. The retrieval algorithm is described in Kaufman et al. (1997) and Remer et al. (2005). 

The relative uncertainty of the MODIS AOD data over land is estimated to be about 20% 

(Ichoku et al., 2005). 

3.2 Simulated data 

3.2.1 Model configuration 

The relationships between the measured CO columns or AOD and the corresponding biomass 

burning emissions were simulated by means of the CHIMERE chemistry transport model 

(www.lmd.polytechnique.fr/chimere). CHIMERE is a typical mesoscale Eulerian three-

dimensional model that is designed to simulate the evolution of the chemical composition of the 

air in the boundary layer and the lower troposphere. The parameterizations of the different 

physical and chemical processes that are taken into account in the model are described in several 

papers (e.g., Schmidt et al., 2001; Bessagnet et al., 2004; 2009; Menut et al., 2013). The 

modifications introduced in the standard version of the model in order to take into account the 

effects associated with wildfires are described in Konovalov et al. (2011; 2012). 

The simulations were performed with a horizontal resolution of 1°×1° for 12 layers in the 

vertical (up to the 200 hPa pressure level). The main model domain (35.5° -136.5° E; 38.5° - 

75.5° N) covered a major part of Northern Eurasia, including Siberia and parts of Eastern Europe 

and the Far East (see Fig. 1). Note that the inclusion of a part of European Russia allowed us to 

take into account anthropogenic emissions from the major Russian industrial regions. In 

addition, we used the nested domain (86.2°-92.4° E; 57.6°-63.9° N) covering a central part of 

Siberia with a higher resolution of 0.2°×0.1° to simulate the evolution of the near surface CO 

concentration at the ZOTTO site. Meteorological data were obtained from the WRF-ARW model 

(Skamarock et al., 2005), which was run with a horizontal resolution of 90 km × 90 km and 

driven with the NCEP Reanalysis-2 data. Chemical processes were simulated with the simplified 



29 

 

MELCHIOR2 chemical mechanism (Schmidt et al., 2001) with recent updates. The main model 

runs were performed for the period from 18 April to 30 September 2012 by using the initial and 

boundary conditions for gases and aerosols from climatological runs of the MOZART (Horowitz 

et al., 2003) and GOCART (Ginoux et al., 2001) models, respectively. Additionally, the 

simulations were done for the periods covered by CO measurements at the ZOTTO site in 2007 

and 2008. Anthropogenic emissions were specified using the EDGAR version 4.2 data (EC-

JCR/PBL, 2010), and biogenic emissions were calculated "online" by using biogenic emission 

potentials data from the MEGAN global inventory (Guenther et al., 2012). 

Aerosol was simulated by using 8 size bins with diameters ranging from 10 nm to 10 m. Both 

dry deposition of aerosol particles and their scavenging by clouds and precipitation were taken 

into account. Primary aerosol particles emitted from fires were assumed to consist of only 

carbonaceous material, with a distinction made between organic carbon (OC) and black carbon 

(BC). Secondary organic aerosol (SOA) formation was parameterized by using the single-step 

oxidation method (Pun et al., 2006) introduced in CHIMERE as described by Bessagnet et al. 

(2009). Evolution of secondary inorganic aerosol was computed with the tabulated version of the 

thermodynamic model ISORROPIA (Nenes et al., 1998). Dust aerosol emissions were taken into 

account by means of the simple method described by Vautard et al. (2005). The simulated 

aerosol concentration was used to estimate the AOD as described in Section 3.2.3.  

3.2.2 Approximation of the injection height of pyrogenic emissions 

The maximum injection height of air pollutant emissions is commonly regarded as one of the 

important parameters determining the atmospheric fate of biomass burning emissions, and 

several different ways to estimate this parameter have been suggested (see, e.g., Sofiev et al., 

2012; 2013, and references therein). Here, we used the parameterization proposed recently by 

Sofiev et al. (2012). The advantage of this parameterization in the context of this study is that it 

is designed directly for use with FRP data from the MODIS measurements. Specifically, Sofiev 

et al. (2012) proposed to estimate the maximum injection height (or, in other words, the 

maximum plume height, Hp) as follows:  

)N/Nexp(
P

FRP
HH oFT

f
ablp

22

0














 ,         (16) 

where Habl is the unperturbed boundary layer height, NFT is the Brunt-Väisälä frequency in the 

free troposphere, Pf0 and No are normalization constants (Pf0 =106 W, N0
2 =2.5×10−4 s−2)  and , 

, , and  are the fitting parameters (=0.24;  =170 m; =0.35;  =0.6). Sofiev et al. (2012) 
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demonstrated that this parameterization is superior to some alternative parameterizations of Hp, 

although a considerable part of the variability of the measured Hp still remained unexplained by 

Eq. (16) (partly due to large uncertainties in the FRP and Hp measurements).  

In this study, Hp was estimated for each fire pixel at the moment of a measurement, and the 

estimates are extended to the whole day by using the approximated diurnal variation, hla(t), of 

FRP. The hourly injection profiles for the pixels falling into a given grid cell of 0.2°×0.1° or 

1°×1° were averaged with weights proportional to the measured FRP values. The emissions 

calculated using Eq. (1) for each hour were distributed uniformly from the ground up to the 

height determined by the respective hourly value of Hp. 

To test the sensitivity of the results of this study to the possible uncertainties in the estimated 

maximum injection height, we additionally employed a simpler approximation assuming that Hp 

is a constant parameter equal to 1 km. Such a highly simplified estimation of the actual injection 

height is partly based on the analysis presented by Sofiev et al. (2009), and yielded reasonable 

results in Konovalov et al. (2011). Actually, the difference between simulations performed with 

different approximations of the maximum injection height can be expected to be small, except in 

relatively rare cases, when Hp strongly exceeds the daily maximum of the boundary layer height. 

Otherwise, irrespective of the actual Hp value, the emissions are likely to be distributed 

throughout the boundary layer due to fast turbulent mixing. Our results presented in Section 4 

confirm this expectation. 

3.2.3 Processing of model outputs 

As described by Fortems-Cheiney (2009), in order to properly compare a vector of atmospheric 

model outputs, xm  (where the components are partial columns at different levels), with IASI 

retrievals, xo for a given grid cell, the simulated data should be transformed with the 

corresponding averaging kernel matrix, A:  

aammt x)xx(x  A ,         (17) 

where xmt are the transformed model outputs and xa is the a priori CO profile used in the retrieval 

procedure. The missing components of xm for the altitudes exceeding the altitude of the upper 

layer of CHIMERE are taken to be equal to the corresponding values from xa. The 

transformation given by Eq. (17) was performed independently for each pixel containing 

measurements satisfying the general selection criterion (see Section 3.1.1). Values of xmt were 

vertically integrated to obtain the total CO columns. Since the horizontal spatial resolution of the 

IASI data is higher than that of our model outputs, the same model profile in a given grid cell 
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was used with different averaging kernels. CO column values available for the same grid cell and 

day were averaged.  

To obtain AOD values from model outputs, we followed a simple and robust approach described 

by Ichoku and Kaufman (2005). Specifically, the AOD value, m, was derived from the simulated 

aerosol mass column concentration, Ma, as follows: 

eam M   ,            (18) 

where e is the mass extinction efficiency, which is the sum of the mass absorption and mass 

scattering efficiencies. Similar to Ichoku and Kaufman (2005), we select a typical value of e 

from measurement data collected in several experimental studies of optical properties of biomass 

burning aerosol (Reid et al., 2005). After having averaged the data corresponding to the 550 nm 

wavelength from the experiments that provided both the mass absorption and mass scattering 

efficiencies along with their variability (but excluding the data collected in tropical forests), we 

estimated the mean value of e to be of 4.7 m2 g-1. This value is very similar to that (4.6 m2 g-1) 

chosen by Ichoku and Kaufman (2005) in their study to characterize the mass extinction 

efficiency of biomass burning aerosol at a global scale. Similarly, after having averaged the 

variability ranges reported in Reid et al. (2005) for the selected experiments, we estimated the 

typical standard deviation of e to be ±0.8 m2 g-1. In our Monte-Carlo experiments aimed at 

estimating uncertainties in the FRP-to-BBR conversion factors (see Section 2.3), random values 

characterizing the variability in e were sampled from the corresponding lognormal distribution 

with a geometric standard deviation of 1.19. 

3.2.4 Model run settings 

The base model runs (referred below to as the "Fires_base" runs), which were expected to 

provide the best estimates of the FRP-to-BBR conversion factors and CO2 emissions from 

wildfires, were performed by taking into account fire emissions with the estimated diurnal 

variation (see Section 2.2) and by using the advanced parameterization of the emission injection 

height (see Eq. (16)). To examine the sensitivity of our results to possible uncertainties in the 

injection height and the diurnal variation of fire emissions, we have performed two additional 

simulations. Specifically, the "Fires_test1" model runs were made with the same model 

configuration as the "Fires_base" runs, but with a constant maximum injection height of 1 km 

(see Section 3.2.2). The "Fires_test2" model runs are also the same as the "Fires_base" runs, 

except that they were performed with a constant diurnal profile (hl=1) for the fire emissions. 
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Additionally, a reference model run ("No_fires") was made without any emissions from 

wildfires. All the simulations had the same boundary conditions. 

Results 

4.1 FRP-to-BBR conversion factors and CO2 emissions: optimal estimates for Siberian fires 

in 2012 

Our estimates of the FRP-to-BBR conversion factors, α, for forest and grass fires are reported in 

Table 2, and the estimates of the total CO2 emissions from fires in the region considered (see Fig. 

2a) are given in Table 3. The estimates were obtained after withholding the CO and AOD data 

for each third day (the days were counted from the initial day of our simulations, 18 April) for 

validation purposes. The estimates are reported for three cases with different simulation settings 

(see Sect. 3.2.4). Different estimates of α inferred from the measurements of CO (αco) and AOD 

(αaod) were combined as explained in Sect. 2.4 by taking into account their uncertainties 

evaluated in the Monte Carlo experiments. Note that the covariance of errors in αco and αaod was 

found to be very small (R2<0.01) in all of the cases considered and did not affect significantly 

the combined estimates of α (αcmb). The total CO2 emission estimates reported in Table 3 are 

obtained by using either αcmb, or αco and αaod taken independently. If not specified otherwise, the 

CO2 emissions estimates discussed below are based on αcmb, that is, on both the CO and AOD 

measurements.The spatial distributions of the optimized CO2 emissions from fires in forests and 

grasslands in 2012 are shown in Fig. 4. The forest fires were most intense within a rather narrow 

latitudinal band (~58°-63° N) in the western and central part of Siberia and in the Far East, while 

the grass fires (including agricultural fires) were predominant in the Siberian region 

neighbouring with Kazakhstan. The total CO2 emissions from fires in the study region (~354 Tg 

C) are comparable to the estimated total annual anthropogenic CO2 emissions in Russia (~490 Tg 

C in 2011, according to EDGAR (EC-JRC/PBL, 2011)). 

One of the important noteworthy results of our analysis is that the differences between αl
co and 

αl
aod are not statistically significant (for all of the cases), as the indicated ranges of their 

uncertainty overlap (see Table 2). This result supports the adequacy of our estimates of 

uncertainties in the conversion factors and, therefore, the feasibility of the probabilistic 

combination of αco and αaod. However, it should be mentioned that if the difference between αl
co 

and αl
aod exceeded their combined uncertainty range (for any l), this would not necessarily mean 

that αco and αaod were inconsistent; formally, it would indicate only that the probability of a type 
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I error (in our case, this is the error of rejecting the hypothesis about the equality of the 

mathematical expectations of αco and αaod) is relatively small (less than 32 percent in our case). 

Note that the uncertainties in our estimates of the FRP-to BBR conversion factors do not appear 

to be unusually large in view of the numerous cases of comparable uncertainties in the different 

available pyrogenic CO and aerosol emission estimates. For example, Huijnen et al. (2012) 

reported a very large difference (by a factor of 3.8) between the GFED3.1 and GFASv1.0 CO 

emission estimates (3.6 and 13.8 Tg CO, respectively) for the mega fire event in Western Russia 

in summer 2010; an even larger estimate (~20 Tg CO) was obtained for a similar region and 

period by Krol et al. (2013). Petrenko et al. (2012) found that a global model driven by different 

bottom-up fire emission inventories systematically underestimates AOD over Siberia by up to a 

factor of 3, but (at least with some of the inventories considered) strongly overestimates it, also 

by up to a factor of 3, over the equatorial African region. Kaiser et al. (2012) found that in order 

to match the global patterns of the observations and simulations (based on the GFASv1.0 

inventory data) of AOD, the emissions of organic matter and black carbon had to be increased by 

a factor 3.4 (with respect to emissions of other species). However, this increase resulted in more 

pronounced fire peaks of AOD in their simulations over boreal regions (including Siberia and the 

Russian Far East) than in the corresponding observations. Therefore, such a big correction might 

not really be necessary if simulated and observed AOD were compared only for the region 

considered in this study. The exact reasons rendering the enhancement of aerosol emissions 

necessary were not identified in Kaiser et al. (2012). In contrast, Konovalov et al. (2011) found 

that their CO and PM10 simulations were not consistent with the measurements of near-surface 

concentrations in the Moscow region in 2010, unless the ratio of CO to PM10 emissions from 

fires was enhanced by about a factor of two with respect to the "standard" settings, assuming that 

the FRP-to-BBR conversion factors for these species are the same. However, since the 

uncertainty range estimates indicated by Konovalov et al. (2011) for this ratio did not include 

uncertainties in emission factors, this discrepancy may actually be not statistically significant.  

Qualitatively similar to the results by of Kaiser et al. (2012) and Huijnen et al. (2012), we found 

here (see Table 2) that αaod are larger than αco by factors of 2.2 and 2.83.0 in the cases of forest 

and grass fires, respectively. The uncertainties are found to be considerably larger in αaod than in 

αco. The fact that the differences between αaod and αco are not statistically significant in our case 

(as noted above) indicates that they might be explained by uncertainties in emission factors and 

model errors. Since such uncertainties and errors have already been taken into account (under 

certain assumptions) in our CO2 emission estimation procedure, we do not see any sufficient 
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objective reason for totally disregarding the information provided by the AOD measurements 

which "automatically" gets a smaller weight in our estimation procedure than the information 

derived from CO measurements. Even if the actual evolution of biomass burning aerosol were 

much more complex than it is assumed in our model, the complexity of the atmospheric aerosol 

processes would likely be manifested as irregular (both in time and space) deviations of our 

simulations from the measurements, rather than as a uniform difference between them; such 

irregular deviations have already been taken into account in our uncertainty estimates. 

Nonetheless, as a caveat, it should be noted that our inverse modelling analysis does not allow us 

to definitively rule out a contribution of possible additional systematic errors in either the 

simulated or measured AOD data (apart from the systematic errors reflected in the bias 

estimates, see Section 2.3.2). Definitive elimination of such potential systematic errors is hardly 

possible, in particular, without major progress in the current understanding of organic aerosol 

production processes (see, e.g., Robinson et al., 2007). 

feasibility of estimating CO2 emissions from the measurements of co-emitted CO and aerosol. 

Indeed, if the difference between the estimates of αco and αaod exceeded their combined 

uncertainty range, this would indicate that either the emission factors of CO and aerosol were 

probably incorrect or the simulations of their evolution were flawed; in either case, the 

usefulness (at least in the practical sense) of a probabilistic combination of αco and αaod would be 

questionable (even though the systematic disagreement in αco and αaod could also be considered 

as an important result indicating incompleteness of the current knowledge about the processes 

involved). Another noteworthyimportant result of our analysis is that our combined optimal 

estimates of the FRP-to-BBR conversion factors for both forest and grassland fires (see Table 2) 

are consistent (within the range of their uncertainties) with the local estimate (α=0.3680.015 kg 

MJ-1) obtained from the analysis of experimental fires (Wooster et al., 2005). This result 

confirms that the FRP daily maxima derived from MODIS measurements are sufficiently 

representative of the actual FRP (in spite of the fact that some fires can be obscured by tree 

crowns, clouds and heavy smog). The uncertainties in the estimates of αl
co and αl

aod for grass 

fires are much larger than in the estimates for forest fires; this is consistent with the fact that the 

observed signal from forest fires in our study was typically much larger than that from grass fires 

(see Fig. 2b). 

It should be stressed that our analysis does not allow us to make a perfect distinction between 

forest fires and grass fires: we try to distinguish between them only by considering the relative 

fractions of forest and grassland in a given grid cell with a fire (see Section 2.2). In particular, we 



35 

 

cannot distinguish between the emissions coming from the burning of tree crowns (crown fires) 

or of herbs and debris underneath the forest canopy (ground fires). Note also that our estimates 

of the FRP-to-BBR conversion factors are only applicable to the Siberian region considered here. 

Indeed, the relationship between the fire radiative energy detected from space and the amount of 

biomass burnt may depend on the distribution of burning trees types species and the relative 

prevalence of ground and crown fires. For example, ground fires are probably more widespread 

in eastern Siberia, where one of the most abundant tree species is larch (Larix), which features 

fire-resistant properties (Schulze et al., 2012), than in Alaska, where the forest is dominated by 

spruce (Picea) and fir (Abies), which have branches located close to the ground (so that a fire can 

immediately readily climb into the crowns). 

The results of the test case "Fires_test1" (see Table 2) indicate that our estimates of α (as well as 

the estimates of the total CO2 emissions) are rather insensitive to the assumptions regarding the 

maximum injection height. This result is not surprising since we deal with integral characteristics 

of CO and aerosol (such as CO columns and AOD); the evolution of these characteristics is 

likely to be less sensitive to the vertical distribution of the pollutants than, e.g., their 

concentrations at a certain level. Another probable reason for the small difference between the 

estimates obtained in the "Fires_base" and "Fires_test1" cases is that the majority (98.7%) of the 

hourly injection height values calculated in accordance to with Eq. (16) in this study are found to 

be less than the corresponding daily maxima of the boundary layer height. That is, the emissions 

were likely to be quasi-uniformly distributed mainly inside of the boundary layer almost 

irrespectively of the concrete value of the maximum injection height. 

In contrast, the simulations performed without the diurnal variation of emissions (see the results 

for the "Fires_test2" case in Tables 2 and 3) yielded considerably different estimates of α. 

Specifically, αl
co and αl

aod for forest fires increased by factors of 1.6 7 and 1.23, respectively. 

Smaller changes were found in αl
co and αl

aod for grass fires. The interpretation of these changes is 

rather difficult, since the effect of the perturbations in the diurnal variation of FRP on the 

estimates of the FRP-to-BBR conversion factors depends on the temporal distribution (sampling 

frequency) of the selected FRP measurements relative to the perturbations in the diurnal cycle. In 

general, since the relative differences between the diurnal cycles assumed in the two discussed 

cases are much larger during night-time than in daytime, the daily mean FRP values estimated 

with the "flat" diurnal cycle can be expected to be negatively biased, leading to the positive bias 

in the optimized values of  (as it happened in the case of forest fires). The considerable 

differences in optimal estimates of α for forest fires between the "Fires_base" and "Fires_test2" 
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cases are in line with the discussion in Konovalov et al. (2011), where it was noted that 

application of the diurnal cycle of emissions with a very strong daytime maximum for estimating 

daily mean FRP densities resulted in a much smaller optimum values of the FRP-to-BBR 

conversion factors, compared to the case with a "flat" diurnal cycle of FRP. These differences 

emphasize the importance of the proper specification of the diurnal variation of emissions in the 

framework of our method, especially when the estimation of the FRP-to-BBR conversion factors 

is of interest. However, the biases in the optimized values of  can, in principle, be compensated 

by an increase in the fraction of daytime measurements among the selected daily maximum 

values, as it, apparently, happened in the case of grass fires. 

It is noteworthy that in spite of the rather significant differences between the estimates of  

corresponding to the "Fires_base" and "Fires_test2" cases, the consistency between the αco and 

αaod estimates was retained. And it is especially important, that the estimates of the total CO2 

emissions (which are the main goal of this study) obtained in "Fires_test2" are changed rather 

insignificantly (within the estimated uncertainty ranges) relative to those obtained in the base 

case (see Table 3). This result reflects, in particular, the small sensitivity of our simulations of 

daily values of the CO columns and AOD to diurnal variations of the CO or aerosol emissions 

(when the daily mean FRP values are kept unchanged) and is consistent with similar results by 

Krol et al. (2013). On the whole, the results of the test cases prove that our estimates of CO2 

emissions from fires are robust with respect to the simulation settings. 

Note that previous studies have obtained rather contradictory findings regarding consistency (or 

inconsistency) of emissions of CO and aerosol from fires. In particular, Kaiser et al. (2012) 

found that in order to match the global patterns of the observations and simulations (based on the 

GFASv1.0 inventory data) of AOD, the emissions of organic matter and black carbon had to be 

increased by a factor 3.4 (with respect to emissions of other species). However, this increase 

resulted in more pronounced fire peaks of AOD in their simulations over boreal regions 

(including Siberia and the Russian Far East) than in the corresponding observations. Therefore, 

such a big correction might not really be necessary if simulated and observed AOD were 

compared only for the region considered in this study. The exact reasons rendering the 

enhancement of aerosol emissions necessary were not identified in Kaiser et al. (2012). In 

contrast, Konovalov et al. (2011) found that their CO and PM10 simulations were not consistent 

with the measurements of near-surface concentrations in the Moscow region in 2010, unless the 

ratio of CO to PM10 emissions from fires was enhanced by about a factor of two with respect to 

the "standard" settings assuming that the FRP-to-BBR conversion factors for these species are 
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the same. However, since the uncertainty range estimates indicated by Konovalov et al. (2011) 

for this ratio did not include uncertainties in emission factors, this discrepancy may actually be 

not statistically significant.Qualitatively similar to the results by Kaiser et al. (2012), we found 

here (see Table 2) that αaod are larger than αco by factors of 2.2 and 3.0 in the cases of forest and 

grass fires, respectively (although these differences, in our case, are not statistically significant, 

as noted above). 

The differences between the CO2 emission estimates (see Table 3) derived from the combination 

of CO and AOD measurements and from only CO or AOD measurements follow the differences 

between αcmb , αco, and αaod. Specifically, the total CO2 emission estimates based on the combined 

CO and AOD measurements are much closer (although about 30 percent higher) to the CO-based 

estimate than to the AOD-based estimate. The CO-based CO2 emission estimate is much less 

uncertain than the AOD-based estimate, but more uncertain than the estimate based on the 

combined CO and AOD measurements. In view of the above discussion concerning the large 

differences between αco and αaod, our CO2 emission estimates based on CO measurements only 

can be considered as a more robust ("conservative") alternative to the estimates involving 

inversion of the AOD measurements only. 

The spatial distributions of the CO2 emissions (optimized by using both the CO and AOD 

measurements) from fires in forests and grasslands in 2012 are shown in Fig. 4. The forest fires 

were most intense within a rather narrow latitudinal band (~58°-63° N) in the western and central 

part of Siberia and in the Far East, while the grass fires (including agricultural fires) were 

predominant in the Siberian region neighbouring with Kazakhstan. The total CO2 emissions from 

fires in the study region (~39254 Tg C) are comparable to the estimated total annual 

anthropogenic CO2 emissions in Russia (~490 Tg C in 2011, according to EDGAR (EC-

JRC/PBL, 2011)).  

Along with identifying the uncertainties in our results as discussed above, we have carefully 

examined possible uncertainties associated with the options chosen in our estimation algorithm. 

Specifically, we varied the value of the parameter o (see Eq. 7) within a reasonable range (from 

0.05 to 0.2). We also "swapped" the ways to estimate the model bias in the cases of estimations 

based on CO and AOD measurements (see Eqs. 9 and 10) in order to test if our results are 

sensitive to the assumptions regarding the character (additive or multiplicative) of the bias. 

Finally, we examined whether our estimates are sufficiently robust with respect to specific 

definitions of the sets, Ip and Jp, of grid cells and days selected to estimate the bias: specifically, 

the sets Ip and Jp were increased two-fold in each direction relative to the basic options specified 
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in Sect. 2.3. In all of these cases, the changes in our estimates of the FRP-to-BBR conversion 

factors and total CO2 emissions were found to be much smaller than the uncertainty ranges 

reported in Tables 2 and 3 for the base case. Therefore, the sensitivity analysis confirmed that the 

results of this study are sufficiently robust with respect to the options of the estimation algorithm 

and the settings of the numerical experiments. 

4.2 Validation of the optimal estimates of the FRP-to-BBR conversion factors 

If the optimized estimates of the fire emissions are adequate, they can be expected to produce a 

reasonable agreement of measurements of atmospheric composition over regions affected by 

fires with the corresponding measurements. Adjusting only two parameters (as in this study) 

would hardly help bringing the spatial-temporal fields of observations and simulations close to 

each other, if the fire emission fields were fundamentally wrong. Taking this point into account, 

we believe that a comparison of spatial-temporal variability of the simulated and measured CO 

columns or AOD can be sufficiently indicative of the adequacy of the optimized fire emissions in 

spite of the fact that the same measurements had been used for the estimation of the FRP-to-BBR 

conversion factors. 

Here we present our simulations of CO and aerosol that were performed with the optimized 

values of αco and αaod, respectively, in comparison with corresponding observations withheld 

from the dataset used for the optimisation. Spatial distributions of the measured and simulated 

CO columns averaged over the period from 1 May to 30 September 2012 are shown in Fig. 5. In 

addition, this figure shows the spatial distributions of CO columns for a selected day (22 July 

2012) featuring very strong perturbations of atmospheric composition over Central Siberia. The 

corresponding distributions of AOD are presented in Fig. 6. The simulations of CO and aerosol 

were performed with the optimized values of αco and αaod, respectively. The simulated quantities 

in Figs. 5 and 6 are shown after correcting the bias, as explained in Section 2.3. It can be seen 

that the distribution of the observed mean CO columns is reproduced by the model quite 

adequately; both the locations of maxima (caused by either fire emissions or anthropogenic 

sources, as those in northeast China) and their magnitudes in the observations and simulations 

are very similar. As could be expected, the differences in the daily CO columns from 

measurements and simulations are somewhat larger, but these differences may, at least partly, be 

due to uncertainties in the simulated transport processes and are not indicative of any major 

flaws in the CO emission data. The agreement between the simulated and observed AOD 

distribution is, in general, also rather good (Fig. 6), although AOD is slightly underestimated in 
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the simulations. The underestimation (~11% on average) is much smaller than the estimated 

uncertainties in αaod. 

The time series of daily values of CO columns and AOD averaged over the study region are 

presented in Fig. 7. Overall, the model (in the base configuration) reproduces both the CO and 

AOD measurements rather adequately, although not ideally: specifically, the correlation 

coefficient, r, exceeds (as in the case of CO columns) a value of 0.9 or (as in the case of AOD) a 

value of 0.8. The root mean square error (RMSE) of CO columns and AOD does not exceed 5% 

and 3130% relative to the corresponding mean values, respectively. The simulations 

underestimate AOD during the major fire event in July and early August (in western Siberia), but 

overestimate it in May (the corresponding fires took place mainly in southeastern Siberia). These 

discrepancies may reflect the fact that emission factors for (especially) aerosol are likely to vary 

in space and time even across ecosystems of a similar type (e.g., they may presumably depend on 

fuel moisture). The larger discrepancies between the simulated and measured values of AOD 

(compared to the case of CO columns) lead to the larger estimated uncertainties of in αaod in 

comparison to the uncertainties in αco (see Table 2). The overall adequacy of the calculated fire 

emissions is further confirmed by the fact that inclusion of fire emissions into the model enables 

the reduction of RMSE by a factor of about 2 (relative to the simulation without fire emissions) 

in both cases.  

As it is shown in Fig. 7, the simulations of both CO columns and AOD feature rather 

considerable biases (which were subtracted in our estimation procedure). The origin of these 

biases cannot be clearly elucidated in the framework of this study. In the case of the CO 

columns, one of the major possible factors contributing to the bias in simulations is, probably, a 

systematic underestimation of monthly average climatological lateral and top boundary 

conditions, taken in this study from outputs of the global MOZART model. Earlier, a negative 

systematic difference between the MOZART outputs and satellite observations for Europe was 

identified by Pfister et al. (2004). If such a bias was due to underestimation of CO emissions in 

Europe or on the global scale, it might also be present in the MOZART data for Siberia. The bias 

in AOD is probably caused by several major factors. First, the bias may reflect a contribution of 

aerosol from outside of the model domain. Second, it may be due to a probable underestimation 

of biogenic (secondary) organic aerosol concentration by the CHIMERE model (Bessagnet, 

2009). Third, the mass extinction efficiency of the "background" (with respect to perturbed by 

firesbiomass smoke) aerosol concentration is likely very different from that of pyrogenic aerosol 

(Kinne et al., 2003). 
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It is more difficult to explain, why the bias in the CO columns is larger in July and August than 

in the other months (see Fig. 7). On the one hand, such seasonal enhancement of the bias may 

reflect a mismatch between the locations of CO columns perturbed by fires in observations and 

simulations. In other words, the "background" CO columns selected from the model outputs 

may, in some cases, correspond to observed CO columns that are strongly affected by fires. 

However, this explanation, which can indeed explain some minor short term fluctuations in the 

bias, does not fit to the fact that the bias enhancement persists for about 15 days even after 14 

August (day 105 after 1 May), when the fires and associated perturbations in the simulated CO 

columns and AOD have almost disappeared (cf. Figs. 2b and 7b with Fig. 7a). On the other hand, 

the bias enhancement may reflect CO emissions from fires that have not been detected from 

space (such as fires obscured by clouds or peat fires). However, it is then not clear why those 

fires are not manifested in a similar way in the bias of the AOD simulations. Similarly, if the 

model underestimated the influx of CO into the free troposphere, the effect of such 

underestimation would likely (although not always necessarily) be visible also in the simulated 

AOD evolution. 

Thus, our most probable explanation for the CO bias enhancement is that evolution of CO 

accumulated during the fire season in the real free troposphere (and, possibly, also in the lower 

stratosphere) is not properly reproduced in the simulations: the model apparently underestimates 

the CO residence time in the free troposphere, presumably due to effects of constant monthly 

average boundary conditions. A part of the discrepancies between simulations and observations 

may also be caused by transport of CO into the free troposphere over Siberia from outside of the 

model domain. Anyway, even if the CO bias enhancement really reflects some CO amount 

residing in the free troposphere but somehow "missed" in our estimation of the CO emissions, 

this amount can hardly constitute more than 10% of the total CO amount emitted during the 

study period in Siberia, as can be inferred from a rough consideration of the CO balance under 

the assumption that the CO residence time in the free troposphere (in the study period and 

region) was about 15 days. 

A critical test (especially in view of the above discussion) for the optimized fire emissions can be 

provided by comparison of our simulations with totally independent measurements, such as the 

measurements of near surface concentrations of CO at the ZOTTO site (see Fig. 8). The 

simulations for the years 2007 and 2008 were performed with the optimized FRP-to-BBR 

conversion factors (αco and αaod) from 2012. It can be seen that the measured daily variability is, 

in general, reproduced by the model rather realistically. It is especially important that the relative 
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difference between the mean (over the two years) CO concentrations in the simulations (after 

subtraction of the bias) and measurements is rather small (does not exceed< 115%) and thus 

provides no indication of a significant bias in CO emissions optimized by means of the satellite 

CO measurements. 

4.3. Comparison of top-down CO2 emission estimates with inventory data 

Figure 9 shows our annual estimates of the total CO2 emissions from biomass burning in Siberia 

(namely, in the selected region indicated in Fig. 2a) in comparison with to corresponding 

estimates obtained with the data of from the GFASv1.0 (Kaiser et al., 2012) and GFED3.1 (van 

der Werf et al., 2010) global biomass burning emission inventories. Our estimates were obtained 

for several years (2007-2012) by using the FRP-to-BBR conversion factors optimized with the 

data for the period from 1 May to 30 September 2012 and applied to the period from April to 

September of each year. The gridded CO2 emission data from the GFASv1.0 and GFED3.1 

inventories were integrated over the same region and period as our emission estimates. 

Unfortunately, the GFED3.1 data for 2012 were not available for this study in view of the 

expected release of the GFED4.0 inventory. Note that although the GFASv1.0 and GFED3.1 

inventories are based on different kinds of input data (specifically, GFASv1.0 is derived from 

FRP measurements, while GFED3.1 is based on the burnt area data). However, they are not 

completely independent. since Specifically, the FRP-to-BBR conversion factors for different 

land cover classes in the GFASv1.0 inventory were calibrated with linear regressions against 

GFED3.1 monthly totals; the calibration was done independently for several categories of land 

cover including calibrated with the data of the GFED3.1 inventory; moreover, one of the 

conversion factors was calibrated independently for the "extratropical forest with organic soil" 

land cover class comprising representing mostly the boreal forest regions.  

Note also that there are major differences in the algorithms used in this study and in the 

GFASv1.0 inventory to process FRP measurements. In particular, while whereas we deal with 

the daily maxima and estimated diurnal variation of the FRP density as explained in Section 2.1, 

GFASv1.0 processes all measurements available during a given day and estimates the FRP 

densities at any moment by assimilating earlier FRP measurements (see Kaiser et al., 2012 for 

details). 

As can be seen in Fig. 9, our estimates are systematically larger by at least 30% than the 

estimates given by the GFASv1.0 and GFED3.1 inventories by at least 30%, although the 

difference between the estimates for some years is at the edge of the range of uncertainty in our 
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estimates. Note that the uncertainty range is given in terms of the geometric standard deviation 

(see Table 3) and represents the 68.3% confidence level. As it is mentioned in Section 2.3, this 

uncertainty range may be overestimated in our algorithm; in other words, the indicated 

uncertainties are likely to correspond to a higher confidence level. Our estimate of the total CO2 

emissions in 2012 (354 392 Tg C with an uncertainty range from 26280 to 477550 Tg C) is 

significantly larger (by 5673%) than the corresponding estimate from the GFASv1.0 inventory 

(226 Tg C). The total emissions in the period from 2007 to 2011 in our estimates (66712 Tg C) 

are larger than the corresponding estimates from GFASv1.0 (383 Tg C) and GFED3.1 (288 Tg 

C) by factors of 1.7 8 and 2.35, respectively. 

The inter-annual variability is very similar in all of the estimates (except for the difference 

between the data for 2009 and 2010, which is positive in our estimates but is slightly negative in 

the GFASv1.0 and GFED3.1 data); this fact can be considered as evidence that the FRP-to-BBR 

conversion factors estimated for fires in the year 2012 are representative of fires in other years as 

well. Exceptionally large relative differences exist between our estimates and the inventory data 

for 2010. Specifically, our estimates are about the by factors of about 2 and 6 larger than the 

GFASv1.0 and GFED3.1 estimates, respectively. The reason for such large differences is not 

known, but it may be worth mentioning that several studies (e.g. Fokeeva et al., 2011; 

Konovalov et al., 2011; Huijnen et al., 2012; Krol et al., 2013) argued that GFED3.1 strongly 

underestimated CO emissions from the intense wildfires in Russia in 2010. Understanding of the 

large discrepancies between the different emission estimates for the 2010 Russian fires calls for 

further analysis, which is beyond the scope of this study. 

The rather striking similarity between the total CO2 emission estimates provided by the 

GFASv1.0 and GFED3.1 inventories can be explained by the above-mentioned calibration of the 

FRP-to-BBR conversion in the GFASv1.0 inventory by using the data of the GFED3.1 

inventory. In spite of this calibration, the spatial distributions of the CO2 emission fields 

calculated in the two inventories can be regarded as being sufficiently independent from each 

other. 

The intercomparison of the spatial distributions of the CO2 emission estimates obtained in this 

study and calculated with the GFASv1.0 and GFED3.1 inventory data for the year 2008 is 

illustrated in Figs. 10 and 11. While all the distributions (see Fig. 10) look, in general, rather 

similar, there are considerable irregular differences not only in magnitudes but also in the 

locations of fires. In particular, many grid cells exhibit noticeable emissions according to the 

GFASv1.0 data and our estimates, but are assigned zero or near-zero values in the GFED3.1 
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inventory. This observation may be considered as an indication of a higher sensitivity of the FRP 

measurements to actual fire activity, compared to burnt area measurements. However, the 

differences between our estimates and the GFASv1.0 data are also rather large, probably due to 

differences in the data processing algorithms. 

The scatter plots of the different gridded emission estimates (see Fig. 11) show that the 

differences between the emissions attributed to a given grid cell in the different inventories 

frequently reach several orders of magnitude (note that only grid cells with emissions larger than 

10-4 g CO2 m-2 are depicted in the plots and reflected in the statistics). Along with irregular 

discrepancies between the estimates, there are also some differences that have a systematic 

character (apart from the differences in the mean values). In particular, grid cells with relatively 

small emissions (less than 1 g CO2 m-2) in our data are typically assigned (relatively) much 

larger values in the GFASv1.0 inventory. This is, likely, a result of the application of the data 

assimilation procedure, which in the GFASv1.0 inventory efficiently smoothes out strong 

temporal variations in the FRP densities. This kind of a systematic difference between our 

estimates and the GFASv1.0 data is scarcely visible when these estimates are compared with the 

data of the GFED3.1 inventory: both the GFASv1.0 inventory and our method yield 

systematically larger values for the grid cells in which CO2 emissions evaluated by the GFED3.1 

are less than about 1 g CO2 m-2. This fact is in line with the above remark about a possibly 

stronger sensitivity of FRP measurements to fire activity, compared to the burnt area 

measurements. 

In spite of substantial "random" differences between these estimates, there are also considerable 

correlations between the emission fields. Rather surprisingly, correlation of our estimates with 

the GFED3.1 data (r~0.71) is larger than with the GFASv1.0 data (r~0.66). This shows that the 

differences in the data processing algorithms in the situation considered here are at least as 

important as the differences associated with the different nature of input data. The correlation 

between the GFASv1.0 and GFED3.1 data is weakest (r~0.64). A The stronger correlation of our 

data with both these independent datasets could hardly be expected ifsuggests that our estimates 

were highly uncertain. Therefore, these results clearlyquite robust and indicates that the overall 

uncertainties in the spatial distribution of our CO2 emission estimates are, at least, not larger than 

the overall uncertainties in the spatial distributions of the GFED3.1 and GFASv1.0 data for 

Siberia. 

5. Summary and conclusions 
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This paper presents a novel general method for the estimation of CO2 emissions from open 

biomass burning by using satellite measurements. Effectively, Tthe method main idea of the 

method is assumesis based on (1) deriving emissions of some trace species (gases or aerosols) 

co-emitted with CO2 by inverting their observations that independent estimates of the emitted 

CO2 amount can be inferred from measurements of co-emitted gases or aerosol by using with a 

chemistry transport model and (2) rescaling the emissions of those species to the CO2 emissions 

by using literature data for available estimates of emission factors. Using satellite measurements 

of two (or more) different species in the framework of the proposed method enables cross-

validation of the emission parameters inferred from observations of the different species and 

constraining of uncertainties in the optimal CO2 emission estimates. 

As a source of initial information on the spatial structure and temporal variations of the biomass 

burning rate (BBR) and pyrogenic emissions, the method employs satellite measurements of the 

Fire Radiative Power (FRP). Satellite measurements of atmospheric composition are used for 

optimization of the FRP-to-BBR conversion factors. Applying typical CO2 emission factors to 

BBR calculated with the optimized conversion factors yields CO2 emission estimates indirectly 

constrained by satellite measurements of co-emitted species. 

In this study, the method was applied to the estimation of CO2 emissions from wildfires in 

Siberia, which is one of the most important world regions contributing to the global carbon 

balance. Optimal values of the FRP-to-BBR conversion factors for boreal forest and grassland 

fires were independently inferred from the IASI measurements of total CO columns and the 

MODIS measurements of the aerosol optical depth (AOD) in the warm season of 2012 by using 

the CHIMERE chemistry transport model. The spatiotemporal fields of FRP were obtained from 

the respective MODIS measurements. The diurnal variations of FRP were evaluated by using the 

same FRP data consistently with estimates of the daily mean FRP values involved in our 

parameterization of the CO2 emission rates. Note that the emission factors for aerosol, CO and 

CO2 employed in our analysis were not evaluated in this study, but taken from the literature. 

It was found that the optimal values of the FRP-to-BBR conversion factors derived from the CO 

and AOD measurements are larger (by factors of about 2-3) and more uncertain than those 

derived from the CO measurements. This difference (which may be due to, e.g., underestimation 

of aerosol emission factors) is consistent with underestimation of aerosol emissions reported in 

the literature (Kaiser et al., 2012; Petrenko et al., 2012) but is found to be not statistically 

significant in this study. agree within the estimated uncertainties.. The larger uncertainty of the 

aerosol-derived FRP-to-BBR conversion factors is associated with much smaller contribution of 
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the AOD measurements and simulations (compared to the contribution of the respective CO 

data) to the The optimal combination of the FRP-to-BBR conversion factor estimates derived 

from the combined optimization using both CO and AOD measurements.  resulted in a reduction 

of the uncertainties compared to the uncertainties of the "partial" estimates based on one species 

aloneThe possible underestimation of aerosol emission factors is reflected in the uncertainty 

range of our combined retrieval of the CO2 emissions and is not likely to introduce a 

considerable positive bias in it. The ranges of uncertainty of the combined optimal estimates of 

the conversion factors (0.287 to 0.503 kg MJ-1 for forest fires and 0.246 to 0.6474 kg MJ-1 for 

grass fires) are evaluated to be smaller compared to the uncertainties of the estimates based on 

one species alone and are found to include the independent estimates of the conversion factors 

(0.3680.015 kg MJ-1) obtained by Wooster et al. (2005) in an analysis of experimental grass 

fires. 

Special tests cases of our estimation procedure were conducted in order to examine the 

sensitivity of the estimates of the FRP-to-BBR conversion factors and CO2 emissions to the 

assumed diurnal variations of FRP and to the parameterization of the maximum injection height. 

The results of these tests emphasized the importance of using the correct diurnal cycle of FRP 

for the estimation of the FRP-to-BBR conversion factors, but revealed almost no changes in the 

optimal estimates of the conversion factors obtained with a quite different parameterization of 

the maximum injection height. At the same time, the estimates of the total CO2 emissions were 

found to be robust and rather insensitive to the examined changes in the estimation procedure. 

The FRP-to-BBR conversion factors constrained by atmospheric measurements in 2012 were 

used to calculate the total CO2 emissions from fires in the study region (50-76° N; 60-135° E) in 

the periods from 1 April to 30 September of several years (2007-2012). The estimates obtained 

were compared with the corresponding estimates provided by the GFASv1.0 and GFED3.1 

biomass burning emission inventories. The pyrogenic CO2 emissions in 2012 were estimated to 

be in the range ofrom  262 280 to 477 550 Tg C. This amount is equivalent to about 53 60 to 

97110% of current estimates of the total fossil-fuel CO2 emissions in Russia, indicating that open 

fires play a large role in the carbon balance of Eurasia. The obtained optimal estimate of the total 

CO2 emissions in 2012 (35492 Tg C) is about 56% larger than the corresponding estimate 

provided by the GFASv1.0 emission data base (the GFED3.1 data for 2012 were not available). 

Considerable differences were also revealed between our estimates and the inventory data for 

other years (specifically, our indirect "top-down" estimates for the total biomass burning CO2 

emissions in the period from 2007 to 2011 in Siberia are by the factors of 1.7 8 and 2.3 5 larger 
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than the corresponding alternative estimates), although all of the estimates demonstrate rather 

similar inter-annual variability. 

Comparison of the spatial structures of the CO2 emission estimates obtained in this study and 

provided by the GFASv1.0 and GFED3.1 emission inventories revealed that the correlation of 

our estimates with the results of both inventories is better than the correlation between the 

GFASv1.0 and GFED3.1 estimates. We consider this outcome as evidence that the overall 

uncertainties in our CO2 emission estimates for Siberia do not exceed the uncertainties in the 

respective GFED3.1 and GFASv1.0 data. 

We conclude that (1) the proposed general method for the estimation of CO2 emissions from 

biomass burning allows getting reasonable and useful results by using available satellite 

measurements of CO and aerosol together with a typical chemistry transport model; (2) the CO 

and aerosol emissions in Siberia are consistent with each other (taking into account their 

uncertainties) when assumed to be related through typical emission factors reported in the 

literature; and (3) the large discrepancies between the different estimates of CO2 emissions 

indicate that the current knowledge of biomass burning processes and of associated perturbations 

in the carbon cycle in Siberia is very incomplete, and further dedicated studies are needed to 

identify the reasons for these discrepancies. We believe that a considerable reduction of 

uncertainties in the results of the method proposed here can be achieved by using satellite CO2 

measurements of major fire plumes to diagnose the ratios of emission of CO2 and co-emitted 

species, as suggested by Silva et al. (2013) for the case of anthropogenic combustion emissions. 
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Table 1. Biomass burning emission factors (, g kg-1) specified used in Eq. (1), and their 

geometric standard deviation (g, given in the round brackets), and the respective uncertainty 

range (given in the square brackets in terms of 1-g interval) for different types of vegetative 

land cover. The data are based on Andreae and Merlet (2001) and subsequent updates. 

 agricultural 

burning 

grassland extratropical 

forest 

CO2 1473 (1.21) 

[1217;1782] 

1653 (1.05) 

[1574;1736] 

1559 (1.08) 

[1444;1684] 

CO 95 (1.90)  

[50;181] 

64 (1.35)  

[47;86] 

115 (1.43) 

[80;164] 

OC 4.2 (2.00)  

[2.1;8.4] 

3.2 (1.47) 

[2.2;4.7] 

9.6 (1.60) 

[6.0;15.4] 

BC 0.42 (1.90)  

[0.22;0.79] 

0.47 (1.42) 

[0.33;0.66] 

0.50 (1.46) 

[0.34;0.73] 
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Table 2. Estimates of the FRP-to-BBR conversion factors (kg MJ-1) for forest and grass 

(including agricultural) fires. The estimates derived independently from CO and AOD 

measurements by using the different model run settings are shown along with the combined 

optimal estimates. The geometric standard deviations characterizing uncertainties and the 

corresponding uncertainty ranges are given in the round and square brackets, respectively. 

 

Model 

run 

settings  

CO AOD Combined 

forest grass forest grass forest grass 

Fires_ba

se 

0.310 

(1.409) 

[0.220;0.43

5] 

0.2830 

(1.806) 

[0.167;0.506

0] 

0.686 

(1.846) 

[0.376;1.25

24] 

0.856 

(2.5230) 

[0.347;21.14

98] 

0.378 

(1.340) 

[0.287;0.503

] 

0.3944 

(1.649) 

[0.246;0.64

74] 

Fires_te

st1 

0.31 

(1.4648) 

[0.21;0.45] 

0.2931 

(1.7591) 

[0.176;0.519

] 

0.697 

(1.981) 

[0.35;1.327

8] 

0.853 

(2.5424) 

[0.337;2.161.

87] 

0.3840 

(1.3942) 

[0.27;0.523] 

0.3945 

(1.629) 

[0.247;0.63

76] 

Fires_te

st2 

0.4852 

(1.4452) 

[0.334;0.69

79] 

0.330 

(1.642.06) 

[0.2015;0.54

61] 

0.835 

(1.982) 

[0.4244;1.6

46] 

0.7469 

(32.0694) 

[0.2423;2.03

26] 

0.5460 

(1.3842) 

[0.3942;0.74

85] 

0.38 

(1.5786) 

[0.241;0.59

71] 



60 

 

Table 3. Optimal estimates of the CO2 emissions (Tg C) from forest and grass (including 

agricultural) fires in Siberia in 2012. Different estimates are obtained by usingfrom outputs of 

model runs and inversions with different settings. The geometric standard deviations 

characterizing uncertainties and the corresponding uncertainty ranges are given in the round and 

square brackets, respectively.  

 

Model run /inversion settings forest grass total 

 

Fires_base 

CO- and AOD- 
 based 

257 (1.43) 
[180;366] 

 

136 (1.71) 
[79;232] 

392 (1.40) 
[280;550] 

CO- based 203 (1.52) 
[133;309] 

 

93 (1.93) 
[48;179] 

295 (1.50) 
[196;444] 

AOD- based 447 (1.88) 
[237;842] 

 

264 (2.34) 
[113;617] 

711 (1.80) 
[395;1280] 

 

Fires_test1 

CO- and AOD- 
 based 

255 (1.42) 
[179;362] 

138 (1.70) 
[81;236] 

393 (1.40) 
[281;551] 

CO- based 205 (1.51) 
[137;310] 

 

94 (1.94) 
[48;183] 

300 (1.50) 
[200;450] 

AOD- based 451 (1.94) 
[233;874] 

 

256 (2.28) 
[112;583] 

707 (1.81) 
[390;1281] 

 

Fires_test2 

CO- and AOD- 
 based 

261 (1.45) 
[181;378] 

 

95 (1.88) 
[50;178] 

356 (1.44) 
[248;512] 

CO- based 225 (1.55) 
[145;349] 

 

74 (2.09) 
[35;155] 

299 (1.54) 
[195;460] 

AOD- based 371 (1.95) 
[191;720] 

170 (3.00) 

[57;512] 

542 (1.98)  

[276;1063] 

 

 

Model run settings forest grass total 

Fires_base 248 (1.42) 

[174;352] 

 

106 (1.65) 

[64;175] 

354 (1.35) 

[262;478] 

Fires_test1 251 (1.47) 106 (1.63) 357 (1.38) 
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[171;369] [65;173] [259;493] 

Fires_test2 237 (1.46) 

[162;346] 

85 (1.58) 

[54;134] 

324 (1.37) 

[236;444] 
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Figure 1. Spatial distributions of the two vegetation land-cover aggregated categories considered 

in this study:  forest (blue), and grassland including agricultural land (red). The pixels where a 

dominant category is neither forest nor grassland are left blank. The plots are based on GLCF 

(2005) data re-gridded with the a resolution of 0.2°0.1°. 
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Figure 2. Average values (kW km-2) of the daily maxima of the FRP density derived from the 

MODIS measurements: (a) spatial structure over the period chosen for data assimilation (from 

May to September 2012), (b) daily variations averaged over the region considered in this study 

(indicated by a red rectangle). 
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Figure 3. (a) Daily maximum FRP densities derived from the MODIS measurements on board 

the AQUA and TERRA satellites over the study region (see red rectangle in Fig. 2a) as a 

function of the local solar time in May-September 2012; each point represents one selected 

measurement in a grid cell of 0.2°0.1°. Note that due to variable observation conditions and a 

low temporal resolution of the MODIS measurements, the daily maximum of FRP from a given 

fire is not necessarily always detected at the time of day when the actual FRP is largest. (b) 

Estimated diurnal variations of FRP.  

 

 

 



65 

 

a 

 

 

b 

 

 

 

Figure 4. CO2 biomass burning emissions (g CO2 m
-2) from (a) forests and (b) from other types 

of vegetative land cover (mainly grasslands): mean values estimated in this study for the period 

from April to September 2012. 
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Figure 5. Spatial distributions of the total CO columns according to (a, b) IASI measurements 

and (c, d) simulations after removing the bias not associated with fire emissions: (a, c) mean 

values over the modelled period (May-September 2012), (b, d) daily values for a selected day 

(22 July 2012). The measurements and simulations shown were withheld from the emission 

estimation procedure (see Sect. 4 for details). 
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Figure 6. Same as in Fig. 5 but for AOD values. 
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Figure 7. Time series of (a) daily total CO columns and (b) AOD simulated by CHIMERE with 

("Fires_base") and without ("No_fires") fire emissions in comparison with to the data from the 

corresponding IASI and MODIS measurements. The measurements and simulations for the days 

shown were withheld from the emission estimation procedure. The simulations are presented 

after debiasing. Note that the demonstrated indicated bias represents the values of  (see Section 

2.3) taken with the opposite sign. All values are the averages over the Siberian study region. 
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Figure 8. Comparison of the daily mean CO concentrations measured at the ZOTTO monitoring 

site with corresponding simulations (after debiasing) performed by CHIMERE without 

("No_fires") and with ("Fires_base") fire emissions: the data are for the years (a) 2007 and (b) 

2008. The "bias" shown by the solid blue line was estimated as the running average (over 30 

days) of the difference between the measurements and simulations in the "No_fires" case for the 

days when the impact of fires was negligible (when the difference between the simulated 

concentrations in the "Fires_base" and "No_fires" did not exceed 10%); all other days (with 
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noticeable contribution of fires) were used for evaluation of the statistics reported below the 

figures. 
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Figure 9. Annual biomass burning CO2 emissions (Tg C) in Siberia according to this study, 

GFAS, and GFED3.1. 
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Figure 10. Spatial distribution of the mean CO2 emissions (g CO2 m

-2) over the period April-

September 2008: (1) this study, (2) GFASv1.0, (3) GFED3.1. 
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Figure 11. Scatter plots of the gridded CO2 emissions (see Fig. 10) estimated in this study and 

obtained from the GFASv1.0 and GFED3.1 inventories for the year 2008. The correlation 

coefficients (shown on the plots) are calculated for the logarithms of the emission values. 


