

1 **Comparison of mercury concentrations measured at several sites in the**
2 **Southern Hemisphere**

3
4 Franz Slemr¹, Hélène Angot², Aurélien Dommergue^{2,3}, Olivier Magand³, Manuel
5 Barret^{2,3}, Andreas Weigelt⁴, Ralf Ebinghaus⁴, Ernst-Günther Brunke⁵, Katrine Aspmo
6 Pfaffhuber⁶, Grant Edwards⁷, Dean Howard⁷, Jennifer Powell⁸, Melita Keywood⁸, Feiyue
7 Wang⁹

8
9 ¹Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany

10 ²Université Grenoble Alpes, LGGE, F-38041 Grenoble, France,

11 ³CNRS, LGGE, F-38041 Grenoble, France,

12 ⁴Helmholtz-Zentrum Geesthacht (HZG), Institute of Coastal Research, Max-Planck-
13 Strasse 1, D-21502 Geesthacht, Germany,

14 ⁵South African Weather Service c/o CSIR, P.O.Box 320, Stellenbosch 7599, South Africa

15 ⁶Norwegian Institute for Air Research (NILU), P.O.Box 100, 2027 Kjeller, Norway

16 ⁷Macquarie University, Environmental Science, Sydney, NSW Australia

17 ⁸CSIRO Ocean and Atmosphere Flagship Research, Aspendale, VIC, Australia

18 ⁹Centre for Earth Observation Science, Department of Environment and Geography,
19 University of Manitoba, Winnipeg, MB R3T 2N2, Canada

20
21 Franz Slemr: franz.slemr@mpic.de

22 Hélène Angot: helene.angot@lgge.obs.ujf-grenoble.fr

23 Aurélien Dommergue: aurelien.dommergue@ujf-grenoble.fr

24 Olivier Magand: magand@lgge.obs.ujf-grenoble.fr

25 Manuel Barret : manuel.barret@lgge.obs.ujf-grenoble.fr

26 Andreas Weigelt : andreas.weigelt@hzg.de

27 Ralf Ebinghaus : ralf.ebinghaus@hzg.de

28 Ernst-Günther Brunke : ernst.brunke@weathersa.co.za

29 Katrin Pfaffhuber: kap@nilu.no

30 Grant Edwards: grant.edwards@mq.edu.au

31 Dean Howard: dean.howard@mq.edu.au

32 Jennifer Powell: Jennifer.powell@csiro.au

33 Melita Keywood: melita.keywood@csiro.au

34 Feiyue Wang: feiyue.wang@umanitoba.ca

35

36

37

1 **Abstract**

2 Our knowledge of the distribution of mercury concentrations in air of the Southern
3 Hemisphere was until recently based mostly on intermittent measurements made during
4 ship cruises. In the last few years continuous mercury monitoring has commenced at
5 several sites in the Southern Hemisphere providing new and more refined information. In
6 this paper we compare mercury measurements at several remote sites in the Southern
7 Hemisphere made over a period of at least one year at each location. Averages of
8 monthly medians show similar although small seasonal variations at both Cape Point and
9 Amsterdam Island. A pronounced seasonal variation at Troll Research Station in
10 Antarctica is due to frequent mercury depletion events in the austral spring. Due to large
11 scatter and large standard deviations of monthly average median mercury concentrations
12 at Cape Grim no systematic seasonal variation could be found there. Nevertheless, the
13 annual average mercury concentrations at all sites during the 2007 – 2013 period varied
14 only between 0.85 and 1.05 ng m⁻³. Part of this variability is likely due to systematic
15 measurement uncertainties which we propose can be further reduced by improved
16 calibration procedures. We conclude that mercury is much more uniformly distributed
17 throughout the Southern Hemisphere than the distributions suggested by measurements
18 made onboard ships. This finding implies that smaller trends can be detected in shorter
19 time periods. We also report a change of the trend sign at Cape Point from decreasing
20 mercury concentrations in 1996 - 2004 to increasing concentrations since 2007.

21 **Introduction**

22 Our knowledge of the distribution of mercury in air over the Southern Hemisphere is
23 mostly based on measurements made during ship cruises. According to the most
24 comprehensive review of shipboard measurements made between 1990 and 2009 by
25 Soerensen et al. (2012) and updated by Witt et al. (2014), mercury concentrations varied
26 between 0.72 ng m⁻³ reported by Kuss et al. (2011) for the southern Atlantic Ocean and
27 2.20 ng m⁻³ observed by Xia et al. (2010) over the southeastern Indian Ocean. These data
28 were collected in different areas during different seasons, typically over a period of one
29 or two months. Only a few of these measurements were accompanied by measurements
30 of tracers specific for anthropogenic pollution and the influence from the ship such as
31 CO, nitrogen oxides, and particles. Consequently, the influence of sources such as from
32 biomass burning, regional pollution, and pollution from the ship itself could not be
33 properly filtered out from the data. As pointed out by Witt et al. (2014), part of the
34 reported variability may also be due to the use of frequently undeclared and non-uniform
35 standard conditions at which these concentrations are reported. Mercury concentrations in
36 ng m⁻³ are usually reported at a standard pressure of 1013 hPa and a standard temperature
37 of 273.14 K. However, some researchers and organizations use 293.14 K or 298.14 K.
38 Since the same concentrations reported at 273.14 and 298.14 K differ by almost 10%, the
39 non-uniform standard conditions alone would prevent the detection of the statistically
40 significant decrease of annual median mercury concentrations at Cape Point from ~1.3 ng
41 m⁻³ in 1996 to below 1.2 ng m⁻³ in 2004 (Slemr et al., 2008). Lastly, averages and
42 standard deviations are quite frequently quoted without the number of measurements on
43 which they are based. This means that the averages or medians cannot be weighed by the
44
45
46

1 number of the measurements. It also makes statistical tests for the differences of averages
 2 impossible. It is not surprising that using such data, Soerensen et al. (2012) concluded
 3 that no significant trend in the Southern Hemisphere could be detected so far. While we
 4 agree with this conclusion a qualification is required: the quality of the data used by
 5 Soerensen et al. (2012) does not allow detection of trends smaller than their variability,
 6 i.e., some 50% or even more. Consequently, with trends of up to $\sim 2\%$ per year (Slemr et
 7 al., 2008; Ebinghaus et al., 2011) it would take several decades to detect trends from
 8 measurements onboard ships.
 9

10 Recently, mercury has been measured continuously at several remote sites in the
 11 Southern Hemisphere over periods of a year or more. In this paper we will compare these
 12 measurements in terms of their monthly and annual statistics. We selected stations which
 13 are either baseline stations (Amsterdam Island, Troll Research Station in Antarctica) or
 14 where additional measurements (e.g., CO, ^{222}Rn , wind direction, aerosol) allow to filter
 15 out baseline conditions (Cape Point and Cape Grim). The results show that atmospheric
 16 mercury is more uniformly distributed over the Southern Hemisphere than the
 17 measurements onboard ships suggest. Stationary sites with continuous and reproducible
 18 measurements of higher quality over longer periods allow for the detection of smaller
 19 trends in shorter time periods.
 20

21 Experimental

22 Figure 1 shows the location of the sites whose data are used in this paper: Amsterdam
 23 Island, Cape Grim, Cape Point, Troll Research Station, and Galápagos Archipelago.
 24

25 The Cape Point site (CPT, $34^\circ 21'\text{S}$, $18^\circ 29'\text{E}$) is operated as one of the Global
 26 Atmospheric Watch (GAW) baseline monitoring observatories of the World
 27 Meteorological Organization (WMO). The station is located on the southern tip of Cape
 28 Peninsula within the Cape Point National Park on top of a peak 230 m above sea level
 29 and about 60 km south from Cape Town. The station has been in operation since the end
 30 of the 1970s and its current continuous measurement portfolio includes Hg, CO, O_3 , CH_4 ,
 31 N_2O , ^{222}Rn , CO_2 , several halocarbons, particles, and meteorological parameters. The
 32 station receives clean marine air masses for most of the time. Occasional events with
 33 continental and polluted air can easily be filtered out using a combination of the CO and
 34 ^{222}Rn measurements (Brunke et al., 2004). Gaseous elemental mercury (GEM) was
 35 measured by a manual amalgamation technique (Slemr et al., 2008) between September
 36 1995 and December 2004 and by the automated Tekran 2537B instrument (Tekran Inc.,
 37 Toronto, Canada) since March 2007. Only the Tekran data are reported here. These data
 38 were obtained in compliance with the standard operating procedures of the GMOS
 39 (Global Mercury Observation System, www.gmos.eu) project. The instrument has been
 40 run with a 15 min sampling frequency. For data analysis 30 min averages were used. On
 41 average 30% of the data were classified as baseline using the $^{222}\text{Rn} \leq 250 \text{ mBq m}^{-3}$
 42 criterion.
 43

44 Amsterdam Island (AMS, $37^\circ 48'\text{S}$, $77^\circ 33'\text{E}$) is a small isolated island (55 km^2) located
 45 in the Indian Ocean 3400 km east of Madagascar. AMS is a GAW global station
 46

1 established in 1967. The climate of Amsterdam Island is mild oceanic, with frequent
2 presence of clouds. Measurements are performed at *Pointe Bénédicte* station, which is
3 located 2 km west of the *Saint Martin de Viviès* base on the edge of a cliff 55 m above
4 sea level (GPS coordinates: 37° 48'S, 77° 33'E). GEM has been measured using a Tekran
5 2537B connected to a speciation unit Tekran 1130/1135 since January 2012 with a 5 min
6 sampling frequency. For data analysis 1 h averages were used. Details on operation and
7 calibration procedures are given in Angot et al. (2014) and follow GMOS standard
8 operating procedures. The station receives clean marine air masses almost all the time.
9

10 The Norwegian Antarctic Troll Research Station (TRS) is located in Queen Maud Land
11 at 72°01'S and 2°32'E at an elevation of 1275 m and about 220 km from the Antarctic
12 coast. The station has been in operation since January/February 2007 and its current
13 continuous measurements include mercury, CO, O₃, particles, greenhouse gases,
14 hydrocarbons, persistent organic compounds (POPs) and meteorological parameters
15 (Hansen et al., 2009; Pfaffhuber et al., 2012). Mercury has been measured using the
16 Tekran 2537B instrument since February 2007 with a 5 min sampling frequency. For data
17 analysis 1 h averages were used. The original mercury concentrations were reported at a
18 standard temperature of 293.14 K and were converted to the standard temperature of
19 273.14 K to be comparable with all other data reported here.
20

21 The Cape Grim Baseline Air Pollution Station is located on the north-west coast of
22 Tasmania, Australia (40°41' S, 144°41' E, Figure 2). The Cape Grim Baseline Air
23 Pollution Station was established in 1976 to monitor and study global atmospheric
24 composition and is part of the WMO GAW program. Measurements at Cape Grim
25 include greenhouse gases such as CO₂, CH₄, N₂O, O₃, reactive nitrogen oxides,
26 stratospheric ozone depleting chemicals such as chlorofluorocarbons (CFCs), radon, and
27 GEM. The Tekran 2537A instrument was run with 5 min sampling time. For data
28 analysis 15 min averages were used. Additionally, meteorological parameters are
29 measured such as wind speed and direction, rainfall, temperature, humidity, air pressure,
30 solar radiation, along with condensation nuclei (CN) concentration (particles greater
31 than 10 nm), ultrafine condensation nuclei concentration (greater than 3 nm), aerosol
32 absorption, aerosol scattering, cloud condensation nuclei concentration and rainfall
33 chemical composition. Baseline conditions are defined as those with wind directions at
34 50 m altitude lying between 190° and 280°. In addition, CN should be less than a
35 threshold concentration determined from five years' CN data for the current month based
36 on the 90 percentile of CN hourly medians for this period, interpolated using cubic
37 splines to give daily values (Figure 2). During 2011 – 2013 the station received baseline
38 marine air for 33% of the time.
39

40 All mercury measurements reported here were made by an automated dual channel,
41 single amalgamation, cold vapor atomic fluorescence analyzer (Tekran-Analyzer Model
42 2537 A or B, Tekran Inc., Toronto, Canada). The instrument features two gold cartridges.
43 While one is adsorbing mercury during a sampling period, the other is being thermally
44 desorbed using argon as a carrier gas. Mercury is detected using cold vapor atomic
45 fluorescence spectroscopy (CVAFS). The functions of the cartridges are then
46 interchanged, allowing continuous sampling of the incoming air stream. The instrument

1 can be combined with a speciation unit (Tekran 1130/1135) consisting of a denuder,
2 aerosol filter and pyrolyzer that enables a determination of GEM, gaseous oxidized
3 mercury (GOM), and particle bound mercury (PM, $< 2.5\mu\text{m}$) typically every 2 – 3 h
4 (Landis et al., 2002). Operation and calibration of the instruments follows established and
5 standardized procedures (e.g., Steffen and Schroeder, 1999). All mercury concentrations
6 reported here are given in ng m^{-3} at 273.14 K and 1013 hPa.

7
8
9 In this paper we compare measurements at different sites in terms of monthly and annual
10 average and median concentrations. Random uncertainties of individual measurements
11 will average out and all we have to discuss are thus the systematic uncertainties, i.e.,
12 biases. The Tekran analyzer is a complex instrument and the systematic uncertainties of
13 its measurements depend on the operation procedure, the performance of the instrument,
14 and the experience of its operators. All instruments used in this study are equipped with
15 an internal mercury permeation source that is used to check and adjust periodically the
16 instrument span and zero, typically every 25 – 72 hours depending on the standard
17 operating procedures that are used. This periodical internal calibration removes drifts
18 both in span and zero that are caused mostly by temperature and ageing of the fluorimeter
19 lamp. The permeation rate of $\sim 1 \text{ pg Hg s}^{-1}$ is, however, too low to allow a gravimetric
20 determination of the permeation rate within a reasonable time period as is usually done
21 when certifying permeation devices for other gases (Barratt, 1981). Consequently, the
22 permeation rate is calibrated every 6 – 12 months by repeated injection (at least 10
23 injections) of known volumes of gas saturated with Hg vapor at a known temperature. A
24 skilled operator can achieve an individual injection precision of $\sim 3\%$ resulting in an
25 uncertainty of $\sim 1\%$ for 10 injections. The flow rate uncertainty of $\sim 1\%$ represents the
26 second major contribution to the overall systematic uncertainty (Widmer et al., 1982).
27 Adding smaller contributions from uncertainties associated with the injected volume and
28 the temperature of the Hg vapor saturating device yields an overall systematic uncertainty
29 of $\sim 3\%$. We consider this to be the lower limit of the overall systematic uncertainty
30 because this estimate assumes ideal performances of the instrument, its internal
31 permeation device, the calibration Hg vapor saturating device, the injection syringes, as
32 well as of the instrument operators.

33
34 A comprehensive analysis of all random and systematic uncertainties involved in a single
35 manual determination of mercury concentration in air is given by Brown et al. (2008)
36 who estimated the combined relative uncertainty to be 16.7% at the concentration of 1.2 ng m^{-3} . This uncertainty includes the uncertainty from different published Hg vapor
37 pressure curves and can be reduced to 12.6% when one vapor pressure curve is accepted
38 to be correct as it is the case here. This uncertainty analysis, however, is not directly
39 applicable to measurements with Tekran instrument because most items in the
40 uncertainty budget are random rather than systematic. The combined systematic
41 uncertainty (square root of sum of uncertainties in quadrature) from uncertainties in flow
42 calibration (2%) and detector calibration (7%) would be $\sim 7\%$. Since one vapor pressure
43 curve was used the 5.5% uncertainty in the saturated mercury concentration can be
44 neglected. The overall systematic uncertainty would then be $\sim 3\%$ and is comparable to
45 our estimate.

1 Contributions of deviations from an ideal performance, such as slow deactivation of the
2 traps, difference between the concentrations from the two traps, contamination of the
3 switching valves and traps, and leaks (Steffen et al., 2012), are difficult to quantify. Thus
4 we take published results of Tekran instrument intercomparisons as a measure of
5 practically achievable systematic uncertainty. In an intercomparison described by
6 Ebinghaus et al. (1999) three Tekran instruments that were operated side by side at Mace
7 Head were biased by 0.02 - 0.11 ng m⁻³ (median 0.01 – 0.13 ng m⁻³) against each other.
8 With an average concentration of 1.75 ng m⁻³ this represents the highest systematic
9 uncertainty of ~6%. Two Tekran instruments were run side by side for four days at a site
10 in Tuscany in June 1998 (Munthe et al., 2001) with an average bias of 9%. Mercury was
11 measured by five Tekran instruments for 28 days within a six weeks period in May and
12 June 2006 at the German EMEP station Waldhof (Aas et al., 2006). The median
13 concentrations were 2.02, 1.88, 1.77, 1.70, and 1.69 ng m⁻³, and their average was 1.81 ±
14 0.14 ng m⁻³. The average bias was thus ~8% and the bias between the instruments with
15 the lowest and the highest readings was ~18% (related to the average concentrations). In
16 summary, based on experimental evidence we can expect an average systematic
17 uncertainty of ~10%, in extreme cases up to 20%.

19
20 Despite using the same instrumentation the measurements may target different mercury
21 species at different sites depending on their configuration and/or local conditions. At
22 Amsterdam Island the instrument was operated with the Tekran 1130/1135 speciation
23 unit. It showed GOM concentrations of <5 pg m⁻³ representing less than 1% of the total
24 gaseous mercury (TGM) concentrations of ~1 ng m⁻³ (Angot et al., 2014). The data for
25 Amsterdam Island presented here are stated explicitly as GEM. The instruments at Cape
26 Point, Cape Grim, and Troll Research Station are operated without speciation units but
27 with PTFE (Teflon) filters to protect the instrument from sea salt and other particles.
28 Although not proven, we assume that the surface active GOM in the humid air of the
29 marine boundary layer at Cape Point and Cape Grim will be filtered out together with
30 PM, partly by the salt particle loaded PTFE filter (denuders coated with KCl are used to
31 adsorb GOM (Landis et al., 2002)) and partly on the walls of the inlet tubing.
32 Consequently, we assume that measurements at Cape Point and Cape Grim represent
33 GEM only and are thus directly comparable to those at Amsterdam Island. Although at
34 Troll Research Station the same configuration with PTFE filter is used, measurements by
35 Temme et al. (2003) showed that at the low temperature and humidity prevailing at this
36 site GOM passed the inlet tubing and the PTFE filter. The measurements at Troll
37 Research Station are thus assumed to represent TGM. As the GOM concentrations at
38 Amsterdam Island in particular and in the marine boundary layer in general are below 10
39 pg m⁻³ (Soerensen et al., 2010, Angot et al., 2014) the difference between TGM and GEM
40 at Amsterdam Island, Cape Grim and Cape Point is usually less than 1% which is
41 insignificant when compared with the uncertainties discussed above. Consequently, GEM
42 measurements at Cape Point, Cape Grim and Amsterdam Island are comparable to TGM
43 measured at Troll Research Station. We caution, however, that recent studies have shown
44 that the KCl-coated denuder in the Tekran speciation technique does not efficiently
45 collect all GOM (Gustin et al., 2013; Huang et al., 2013; Ambrose et al., 2013). The bias

1 between the TGM measurements at Troll Research Station and GEM measurements at all
 2 other stations can thus be larger.

3
 4 The pair data difference tests were made using t test (Kaiser and Gottschalk, 1972).
 5 Mann-Kendal test for trend detection and the estimate of Sen's slope were made using
 6 program by Salmi et al., (2002).

7
 8 **Results and discussion**

9
 10 **1. Comparison of seasonal variations**

11
 12 Figure 3 shows seasonal variation of median mercury concentrations at Amsterdam
 13 Island, Cape Point, Cape Grim, and Troll Research Station in Antarctica during 2011 -
 14 2013. Plotted are the averages of monthly median mercury concentrations and their
 15 standard deviations. We prefer here the use of monthly medians because they are less
 16 influenced by extreme values. The medians for Cape Point and Cape Grim were
 17 calculated both from unfiltered data and data filtered using the $^{222}\text{Rn} \leq 250 \text{ mBq m}^{-3}$
 18 criterion for Cape Point and the baseline criteria mentioned above for Cape Grim. Pair
 19 tests for systematic differences between the monthly medians of filtered and unfiltered
 20 data (Kaiser and Gottschalk, 1972) did not show any significant difference (significance
 21 level < 95%) at both sites. Thus pollution events occasionally observed at Cape Point
 22 (Brunke et al. 2012; Slemr et al., 2013) and at Cape Grim have no substantial influence
 23 on the monthly medians of mercury concentrations. This finding has also implications for
 24 the data from Amsterdam Island: if the influence of continental air masses is unimportant
 25 at Cape Point located on the coast of South Africa and at Cape Grim near the Australian
 26 continent even less influence can be expected at Amsterdam Island, an isolated island in
 27 the middle of the Indian Ocean. Consequently, medians of unfiltered data from all sites
 28 were used when constructing this figure.

29
 30 The smallest seasonal variation, within $\sim 0.1 \text{ ng m}^{-3}$, is observed at Cape Point and
 31 Amsterdam Island and the data which vary around 1 ng m^{-3} are very similar. In fact, a
 32 pair test for the differences in monthly medians (23 months) revealed no significant
 33 difference (significance level <95%) between the measurements at Amsterdam Island and
 34 Cape Point. Standard deviations of monthly medians averaged over 3 years (2011 - 2013)
 35 at Cape Point tend to be somewhat larger than those averaged over 2 years at Amsterdam
 36 Island, possibly due to inter-annual variations. Taking the standard deviations into
 37 account, there is no seasonal variation discernible at both sites.

38
 39 The seasonal variation at Troll Research Station is with $\sim 0.2 \text{ ng m}^{-3}$ substantially larger,
 40 whereas the monthly standard deviations are comparable to those at Cape Point.
 41 Minimum values are observed in October, November, and December which are the
 42 months with frequent mercury depletion events in Antarctica (Temme et al., 2003;
 43 Pfaffhuber et al., 2012) and maximum values tend to occur in February and March and
 44 are with $\sim 1.1 \text{ ng m}^{-3}$ somewhat higher than at Cape Point and Amsterdam Island. In
 45 November and December are the monthly average concentrations with $\sim 0.9 \text{ ng m}^{-3}$
 46 somewhat lower than at Cape Point and Amsterdam Island but comparable when

1 averaged over the whole year (see Table 1). Pair test for differences of monthly medians
 2 at Cape Point, Amsterdam Island, and Troll Research Station revealed no statistically
 3 significant difference between them in the 2011 - 2013 period (33 months for Cape Point
 4 vs. Troll, 24 months for Amsterdam Island vs. Troll). There is a significant difference
 5 (>99%, 79 months) between medians at Cape Point and Troll Research Station over the
 6 period 2007 - 2013 which might be due to different trends at both sites.

7
 8 Cape Grim data show the largest seasonal variation of $\sim 0.25 \text{ ng m}^{-3}$, the largest monthly
 9 standard deviations, and the lowest annual average concentration of $\sim 0.85 \text{ ng m}^{-3}$ of all
 10 four sites, some 15% below the annual mean concentrations at all other sites. Large
 11 standard deviations in September and October coincide with similar variability at Troll
 12 Research Station and Cape Point. Large and random scatter of the monthly values in
 13 other months suggest that the data from Cape Grim are not as homogeneous as those
 14 from other sites. Pair tests for differences of monthly medians detected a highly
 15 significant systematic difference between data from Cape Point and Amsterdam Island on
 16 the one hand and those from Cape Grim on the other (Cape Point vs. Cape Grim:
 17 >99.9%, 23 months; Amsterdam Island vs. Cape Grim: >99.9%, 21 months). Without
 18 additional QA/QC effort we cannot find out how much of these differences between the
 19 data from Cape Grim and from the other three sites are due to regional differences and/or
 20 due to the systematic uncertainties discussed in the experimental section.

21
 22
 23
 24 **2. Comparison of annual averages**

25
 26 The annual averages and medians for Amsterdam Island, Cape Point, Cape Grim, and
 27 Troll Research Stations are given in Table 1. The table also contains an average of
 28 monthly medians for March, April, May, June, and October 2011 for Galápagos
 29 Archipelago (Wang et al., 2014). Located just south of the equator, Galápagos
 30 Archipelago may be influenced by northern hemispheric air especially in January when
 31 the intertropical convergence zone (ITCZ) is at its southernmost position (Wang et al.,
 32 2014). The band of mixed northern and southern hemispheric air at ITCZ in the marine
 33 boundary layer over the Atlantic Ocean tends to be quite narrow, usually less than 500
 34 km broad (Slemr et al., 1985). If the same applies for the region around Galápagos
 35 Archipelago then data from December, January and February could have been influenced
 36 by northern hemispheric air. Thus data for February 2011, although available, were not
 37 included.

38
 39 Figure 4 shows an overview of the average mercury concentrations measured at different
 40 southern hemispheric sites during 2007 – 2013. It does not show the average mercury
 41 concentration of $1.32 \pm 0.23 \text{ ng m}^{-3}$ measured at a coastal site in Suriname for the season
 42 when the ITCZ is located north of the site and air originates from the South Atlantic
 43 (Müller et al., 2012). As the ITCZ moves seasonally over the site in Suriname the
 44 influence of northern hemispheric air is greater than at Galápagos Archipelago.
 45 Moreover, this site is also influenced by emissions from large scale biomass burning in
 46 the Amazonas region (Ebinghaus et al., 2007; Müller et al., 2012). And last but not least,

1 no annual statistics for southern hemispheric air can be made for Suriname because only
2 seasonal concentrations are available. For these reasons the measurements at Suriname
3 are not included in further discussion.

4

5 Most of the annual medians and averages for individual sites in Table 1 differ less than
6 0.02 ng m⁻³ implying that the data are nearly normally distributed. Only at the Troll
7 Research Station do the differences between annual medians and averages tend to be
8 larger while the medians tend to exceed the averages (in 6 of the 7 years). This is
9 probably due to the extremely low values during the depletion events which occur during
10 the Antarctic spring.

11

12 The annual averages and medians at Amsterdam Island and Cape Point differ by 0.01 and
13 0.01 ng m⁻³, respectively, in 2012 and by 0.02 and 0.01 ng m⁻³, respectively, in 2013.
14 When compared over the overlapping period in 2012 (January 28 – December 31) the
15 averages and medians at both sites differed merely by 0.00 and 0.01 ng m⁻³, respectively.
16 The differences between Troll Research Station and the two other stations (Amsterdam
17 Island and Cape Point) are substantially larger with as much as 0.11 and 0.13 ng m⁻³ for
18 2011 averages and medians, respectively. In 2012 and 2013 the differences are below 0.1
19 ng m⁻³. Annual averages over the period of 2007 – 2013 show that the difference between
20 Cape Point and Troll Research Station never exceeded 0.14 ng m⁻³ reached in 2009 and
21 the average difference was 0.06 ng m⁻³. The highest difference in medians was 0.20 ng m⁻³
22 also in 2009 and the average difference was 0.08 ng m⁻³.

23

24 Larger concentration differences are observed between Cape Grim and all other sites in
25 2011 - 2013. The annual averages and medians at Cape Grim were lower than at
26 Amsterdam Island by 0.15 and 0.17 ng m⁻³, respectively, in 2012 and by 0.18 and 0.17 ng
27 m⁻³, respectively, in 2013. The differences of annual averages and medians at Cape Grim
28 and Cape Point were somewhat lower in 2012 and somewhat higher in 2013 than the
29 corresponding differences between Cape Grim and Amsterdam Island. In 2011 data for
30 Cape Grim and Cape Point overlap only for the period from September 6 to October 19.
31 In this period the average and median concentrations at Cape Grim were with 1.03 ± 0.11
32 ($n = 2328$) and 1.04 ng m^{-3} , respectively, substantially higher than 0.86 ± 0.07 ($n = 1474$)
33 and 0.86 ng m^{-3} , respectively, at Cape Point.

34

35

36 Figure 4 shows that the annual average mercury concentrations at all sites vary within
37 $\sim 0.2 \text{ ng m}^{-3}$ from 0.85 ng m^{-3} (Cape Grim in 2013) to $\sim 1.05 \text{ ng m}^{-3}$ (Galápagos
38 Archipelago in 2011 and Troll Research Station in 2012). It is not clear how much of this
39 variability is real or due to systematic uncertainty issues discussed in the experimental
40 chapter. We believe that both components contribute and that the real variability of the
41 annual average or median mercury concentrations at southern hemispheric sites not
42 influenced by local and regional pollution is lower. Assuming a systematic uncertainty of
43 $\sim 10\%$ (see Experimental) the real variability at 1 ng m^{-3} in the Southern Hemisphere
44 would be $\sim 0.1 \text{ ng m}^{-3}$. This number can be viewed as a preliminary threshold for judging
45 how representative the trends observed at any background site in the Southern
46 Hemisphere are. With this threshold much smaller trends at shorter time periods can be

1 detected by long term measurements at several sites when compared to shipboard
 2 measurements as reviewed by Soerensen et al. (2012) and Witt et al. (2014).

3

4 **3. Trend at Cape Point**

5

6 Figure 4 shows an overall tendency of annual average mercury concentrations for Cape
 7 Point to increase with time. The Mann-Kendall test applied to annual averages and
 8 medians for 2007 – 2013 does not reveal a significant trend. However, when applied to
 9 monthly medians and averages, the trend is highly significant (at 99.99% significance
 10 level for averages and at 99.96 % for medians). Senn's slope calculated from monthly
 11 averages is $0.018 \text{ ng m}^{-3} \text{ yr}^{-1}$ ($0.008 - 0.026 \text{ ng m}^{-3} \text{ yr}^{-1}$ at a significance level of 95%)
 12 and from monthly medians $0.016 \text{ ng m}^{-3} \text{ yr}^{-1}$ ($0.007 - 0.025 \text{ ng m}^{-3} \text{ yr}^{-1}$). This is the first
 13 analysis suggesting that mercury concentrations are increasing as would be expected
 14 based on increasing worldwide anthropogenic emissions (Streets et al., 2009; Muntean et
 15 al., 2014). A decreasing trend of $-0.015 \text{ ng m}^{-3} \text{ yr}^{-1}$ was derived from annual medians at
 16 Cape Point in the years 1996 – 2004 (Slemr et al., 2008) implying that the turning point
 17 was located between 2004 and 2007.

18

19 No trend could be detected in annual and monthly data from Troll Research Station over
 20 the same period: seven annual averages and medians are not sufficient for trend detection
 21 as they were for Cape Point, and the trend in monthly averages and medians is probably
 22 masked by the strong seasonal variation. All other southern hemispheric data sets are too
 23 short for any trend detection.

24

25 Over seven years of measurements at Cape Point the concentrations had increased by
 26 0.12 ng m^{-3} when calculated from the trend of the monthly averages and 0.11 ng m^{-3} from
 27 the trend of the monthly medians. The changing trend from a decrease during the 1996 –
 28 2004 period to an increase during 2007 – 2013 at Cape Point is not the only sign that the
 29 hemispheric trends in mercury concentrations are changing. An analysis of 1996 – 2013
 30 data from Mace Head, classified according to the geographical origin of the air masses,
 31 showed a) that the downward trend of mercury concentration in air masses originating
 32 from over the Atlantic Ocean south of 28°N is substantially lower than for all other
 33 classes originating north of 28°N and b) that all downward trends for air masses
 34 originating from north of 28°N are decelerating (Weigelt et al., 2015). The apparent
 35 inconsistency that no decelerating trend for air masses from south of 28°N was found can
 36 be explained by the fact that the changes of a smaller trend are likely to be more difficult
 37 to detect.

38

39 **Conclusions**

40

41 We compared mercury concentrations measured at Cape Point, Amsterdam Island, Cape
 42 Grim, and Troll Research Station in Antarctica. Amsterdam Island and Troll Research
 43 Station are background stations per se, and at Cape Point and Cape Grim the influence of
 44 local and regional pollution can be eliminated by using filters such as CO and ^{222}Rn or
 45 wind direction and aerosol concentrations. No systematic difference was found between
 46 the unfiltered and filtered monthly median mercury concentrations at Cape Point and

1 Cape Grim. We find that in terms of annual averages and medians the gradients of
2 background mercury concentrations within the Southern Hemisphere are small and do not
3 exceed 0.2 ng m^{-3} . Taking into account a systematic measurement uncertainty of $\sim 0.1 \text{ ng}$
4 m^{-3} the real variability could be as low as 0.1 ng m^{-3} . This is much lower than the
5 variability of shipboard mercury measurements on which the discussions of secular
6 trends of mercury concentrations have relied so far. Consequently, smaller trends at
7 shorter time periods can be detected by increasingly available long-term measurements at
8 background sites in the Southern Hemisphere. The preliminary threshold of $\sim 0.1 \text{ ng m}^{-3}$
9 for trend detection will further decrease when the comparability of the data sets improves.

10

11 The discussion of the measurement uncertainties shows a large difference between a
12 small theoretical uncertainty and the much larger uncertainty achieved experimentally
13 during several intercomparisons. Sampling flow rate can be precisely calibrated and thus
14 we believe that most of the “surplus” uncertainty comes from the behavior and
15 calibration of the Tekran internal permeation source. The issues related to the injection of
16 known amounts of mercury are relatively well known (for example not all syringes and
17 replacement needles are suitable) and the uncertainty caused by them can be reduced by
18 meticulous work. To the best of our knowledge we could not find any information about
19 the dynamical behavior of the internal permeation source that would enable one to
20 calculate how much time is needed to stabilize the permeation rate (Barratt, 1981).
21 Working practice, however, suggests that the time needed to stabilize the permeation rate
22 increases with the decreasing permeation rate. We surmise that the very small permeation
23 rate of the device in the Tekran instrument needs days rather than hours to stabilize
24 within a 1% margin required for precision measurements (Barratt, 1981). We thus
25 conclude that the limited time of the cruises and the field conditions onboard ships are at
26 least partly responsible for the large spread of the data from shipborne measurements.

27

28 We also report here an increasing trend for mercury concentrations at Cape Point for the
29 period 2007 – 2013. No significant trend could be detected in mercury concentrations
30 measured at Troll Research Station in Antarctica over the same period but this is at least
31 partly due to pronounced seasonal variations at Troll. As mercury concentrations at Cape
32 Point decreased over the period 1996 – 2004 we conclude that the trend must thus have
33 changed in direction between 2004 and 2007. Such change is qualitatively consistent with
34 the trend changes observed at Mace Head in the Northern Hemisphere (Weigelt et al.,
35 2014).

36

37

38 Acknowledgment

39

40 This work contributes to the European Community FP7 project Global Mercury
41 Observation System (GMOS). For Amsterdam Island, logistical support and financial
42 support were provided by the French Polar Institute IPEV (Program 1028, GMOStral).
43 Financial support was also provided by a grant from Labex OSUG@2020 (ANR10
44 LABX56) and LEFE CNRS/INSU (program SAMOA). We deeply thank overwintering
45 staff: B. Bouillard, J. Chastain, E. Coz, A. Croguennoc, M. Le Dréau, and V. Lucaire.
46 AD acknowledges the Institut Universitaire de France. The Australian Bureau of

1 Meteorology in Australia and CSIRO are also thanked for their continuous support of
2 Cape Grim Station. We also sincerely thank the staff at Cape Grim, S. Cleland, J. Ward,
3 N. Sommerville and S. Baley. We acknowledge the support of the Cape Grim Science
4 program student scholarship program. For Troll, financial support to sustain measurements is
5 given through the Norwegian Antarctic Research Expeditions (NARE) program administered by
6 the Norwegian Polar Institute (NPI). We are very grateful for the technical support offered by the
7 overwintering NPI staff at Troll. The NILU field team, but especially Jan H. Wasseng, is thanked
8 for annual maintenance of the equipment at the Troll station.

9

10

11

12 **References**

13

14

15 Aas, W (ed.): Data quality 2004, quality assurance, and field comparisons, EMEP/CCC-
16 Report 4/2006, NILU, Kjeller, Norway 2006.

17 Ambrose, J.L., Lyman, S.N., Huang, J., Gustin, M.S., Jaffe, D.A.: Fast time resolution
18 oxidized mercury measurements during the Reno Atmospheric Mercury Intercomparison
19 Experiment (RAMIX), Environ. Sci. Technol. 47, 7285-7294, 2013.

20

21 Angot, H., Barret, M., Magand, O., Ramonet, M., Dommergue, A.: A 2-year record of
22 atmospheric mercury species at a background Southern Hemispheric station on
23 Amsterdam Island, Atmos. Chem. Phys. 14, 11461-11473, 2014.

24

25 Barratt, R.S.: The preparation of standard gas mixtures, Analyst 106, 817-849, 1981.

26

27 Brown, R.J.C., Brown, A.S., Yardley, R.E., Corns, W.T., Stockwell, P.B.: A practical
28 uncertainty budget for ambient mercury vapour measurement, Atmos. Environ. 42, 2504-
29 2517, 2008.

30

31 Brunke, E.-G., Labuschagne, C., Parker, B., Scheel, H.E., Whittlestone, S.: Baseline air
32 mass selection at Cape Point, South Africa: Application of ^{222}Rn and other filter criteria
33 to CO_2 , Atmos. Environ. 38, 5693-5702, 2004.

34

35 Brunke, E.-G., Ebinghaus, R., Kock, H.H., Labuschagne, C., Slemr, F.: Emissions of
36 mercury in southern Africa derived from long-term observations at Cape Point, South
37 Africa, Atmos. Chem. Phys. 12, 7465-7474, 2012.

38

39 Ebinghaus, R., Jennings, S.G., Schroeder, W.H., Berg, T., Donaghy, T., Guentzel, J.,
40 Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Mühleck, T., Munthe, J., Prestbo,
41 E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschläger, D., Xiao, Z.:
42 International field intercomparison measurements of atmospheric mercury species,
43 Atmos. Environ. 33, 3063-3073, 1999.

44

45

1 Ebinghaus, R., Jennings, S.G., Kock, H.H., Derwent, R.G., Manning, A.J., and Spain,
2 T.G.: Decreasing trend in total gaseous mercury observations in baseline air at Mace
3 Head, Ireland, from 1996 to 2009, *Atmos. Environ.* 45, 3475-3480, 2011.

4

5 Ebinghaus, R., Slemr, F., Brenninkmeijer, C.A.M., van Velthoven, P., Zahn, A.,
6 Hermann, M., O'Sullivan, D.A., Oram, D.E.: Emission of gaseous mercury from biomass
7 burning in South America in 2005 observed during CARIBIC flights, *Geophys. Res. Lett.*
8 34, L08813, doi:10.1029/2006GL028866, 2007.

9

10 Gustin, M.S., Huang, J., Miller, M.B., Peterson, C., Jaffe, D.A., Ambrose, J., Finley,
11 B.D., Lyman, S.N., Call, K., Talbot, R., Feddersen, D., Mao, H., Lindberg, S.E.: Do we
12 understand what the mercury speciation instruments are actually measuring? Results of
13 RAMIX, *Environ. Sci. Technol.* 47, 7295-7306, 2013.

14

15 Hansen, G., Aspmo, K., Berg, T., Edvardsen, K., Fiebig, M., Kallenborn, R., Krognes, T.,
16 Lunder, C., Stebel, K., Schmidbauer, N., Solberg, S., Espen Yttri, K.: Atmospheric
17 monitoring at the Norwegian Antarctic station Troll: measurement programme and first
18 results, *Polar Res.* 28, 353-363, 2009.

19

20 Huang, J., Miller, M.B., Weiss-Penzias, P., Gustin, M.S.: Comparison of gaseous
21 oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange
22 membranes, *Environ. Sci. Technol.* 47, 7307-7316, 2013.

23

24 Kaiser, R., Gottschalk, G: Elementare Tests zur Beurteilung von Meßdaten,
25 Bibliographisches Institut, Mannheim, 1972.

26

27 Kuss, J., Zülicke, C., Pohl, C., Schneider, B.: Atlantic mercury emission determined from
28 continuous analysis of the elemental mercury sea-air concentration difference within
29 transects between 50°N and 50°S, *Global Biogeochem. Cycles*, 25, GB3021,
30 doi:10.1029/2010GB003998, 2011.

31

32 Landis, M.S., Stevens, R.K., Schaedlich, F., Prestbo, E.M.: Development and
33 characterization of an annular denuder methodology for the measurement of divalent
34 inorganic reactive mercury in ambient air, *Environ. Sci. Technol.* 36, 3000-3009, 2002.

35

36 Müller, D., Wip, D., Warneke, T., Holmes, C.D., Dastoor, A., Notholt, J.: Sources of
37 atmospheric mercury in the tropics: continuous observations at a coastal site in Suriname,
38 *Atmos. Chem. Phys.* 12, 7391-7397, 2012.

39

40 Muntean, M., Janssens-Maenhout, G., Song, S., Selin, N.E., Olivier, J.G.J., Guizzardi, D.,
41 Maas, R., Dentener, F.: Trend analysis from 1970 to 2008 and model evaluation of
42 EDGARv4 global gridded anthropogenic mercury emissions, *Sci. Total Environ.* 494-
43 495, 337-350, 2014.

44

45 Munthe, J., Wängberg, I., Pirrone, N., Iverfeldt, A., Ferrara, R., Ebinghaus, R., Feng, X.,
46 Gardfeldt, K., Keeler, G., Lanzillotta, E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo, E.,

1 Schmolke, S., Schroeder, W.H., Sommar, J., Sprovieri, F., Stevens, R.K., Stratton, W.,
2 Tuncel, G., Urba, A.: Intercomparison of methods for sampling and analysis of
3 atmospheric mercury species, *Atmos. Environ.* 35, 3007-3017, 2001.
4

5 Pfaffhuber, K.A., Berg, T., Hirdman, B., Stohl, A.: Atmospheric mercury observations
6 from Antarctica: seasonal variation and source and sink region calculations, *Atmos.*
7 *Chem. Phys.* 12, 3241-3251, 2012.
8

9 Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., Amnell, T.: Detecting trends of
10 annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope
11 estimates – the Excel template application Makesens, Finnish Meteorological Institute,
12 Helsinki, Finland, 2002.
13

14 Slemr, F., Schuster, G., Seiler, W.: Distribution, speciation, and budget of atmospheric
15 mercury, *J. Atmos. Chem.* 3, 407-434, 1985.
16

17 Slemr, F., Brunke, E.-G., Labuschagne, C., Ebinghaus, R.: Total gaseous mercury
18 concentrations at the Cape Point GAW station and their seasonality, *Geophys. Res. Lett.*
19 35, L11807, doi:10.1029/2008GL033741, 2008.
20

21 Slemr, F., Brunke, E.-G., Ebinghaus, R., Kuss, J.: Worldwide trend of atmospheric
22 mercury since 1995, *Atmos. Chem. Phys.* 11, 4779-4787, 2011.
23

24 Slemr, F., Brunke, E.-G., Whittlestone, S., Zahorowski, W., Ebinghaus, R., Kock, H.H.,
25 Labuschagne, C.: ²²²Rn-calibrated mercury fluxes from terrestrial surface of southern
26 Africa, *Atmos. Chem. Phys.* 13, 6421-6428, 2013.
27

28 Soerensen, A.L., Skov, H., Jacob, D.J., Soerensen, B.T., Johnson, M.S.: Global
29 concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine
30 boundary layer, *Environ. Sci. Technol.* 44, 7425-7430, 2010.
31

32 Soerensen, A.L., Jacob, D.J., Streets, D.G., Witt, M.L.I., Ebinghaus, R., Mason, R.P.,
33 Andersson, M., Sunderland, E.M.: Multi-decadal decline of mercury in the North-
34 Atlantic atmosphere explained by changing subsurface seawater concentrations,
35 *Geophys. Res. Lett.* 39, L21810, doi:10.1029/2012GL053736, 2012.
36

37 Steffen, A., Schroeder, W.: Standard operation procedures manual for total gaseous
38 mercury measurements, Canadian Mercury Measurement Network (CAMNet), Version
39 4.0, March 1999.
40

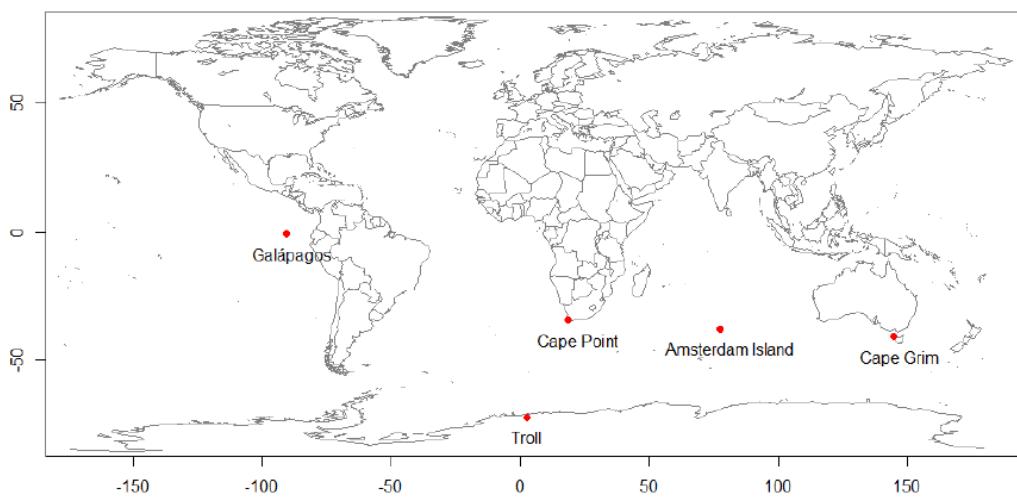
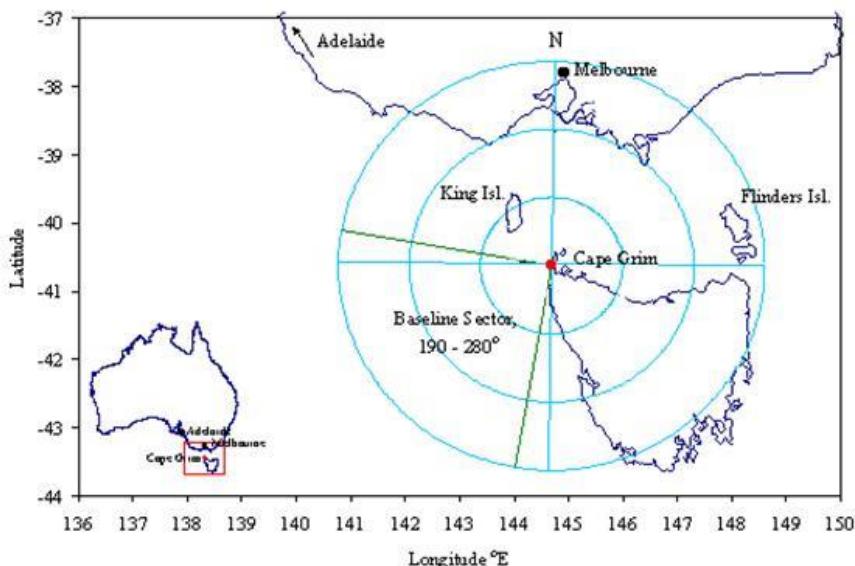
41 Steffen, A., Scherz, T., Olson, M., Gay, D., Blanchard, P.: A comparison of data quality
42 control protocols for atmospheric mercury speciation measurements, *J. Environ.*
43 *Monitoring* 14, 752-765, 2012.
44

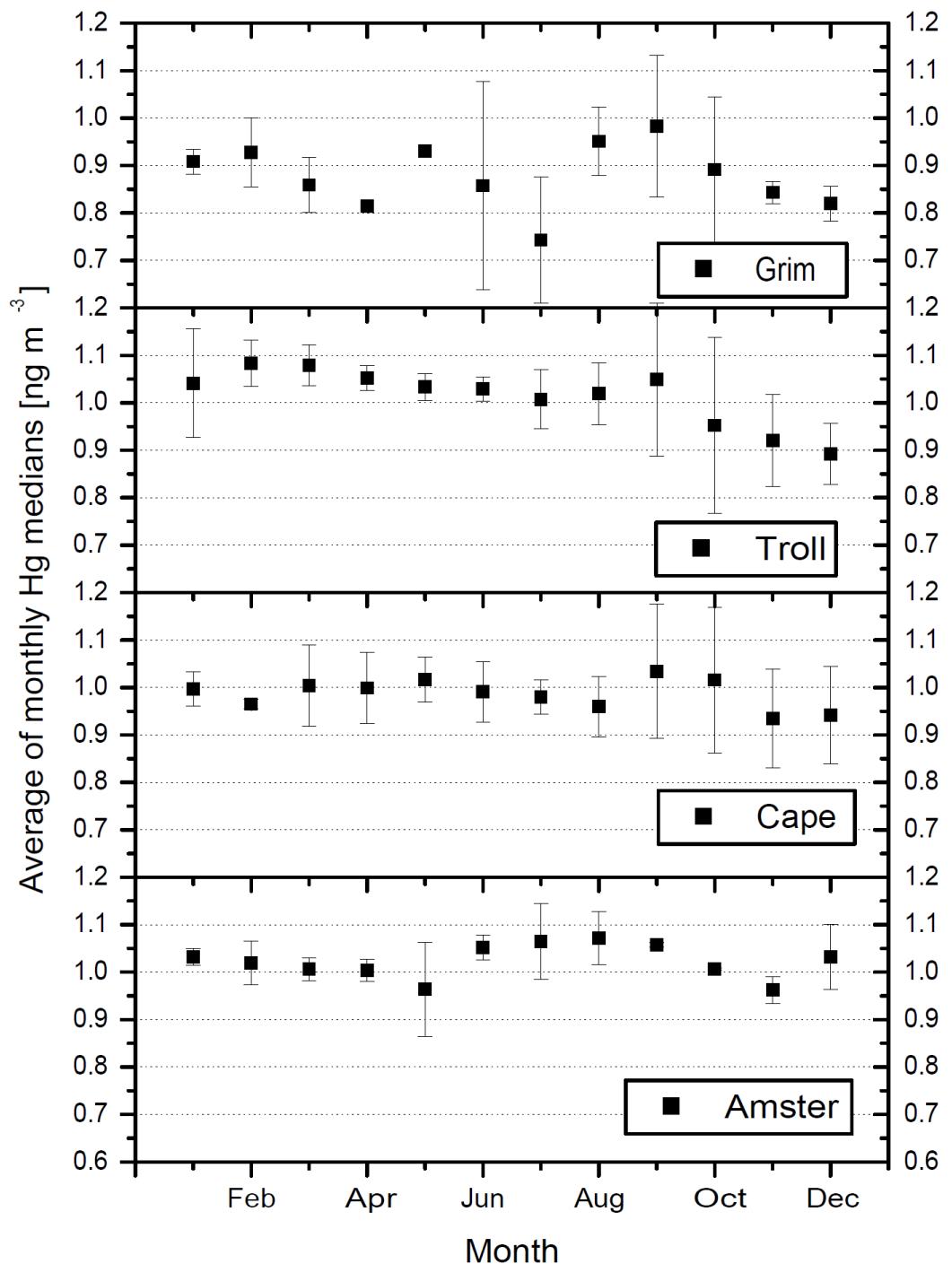
45 Streets, D.G., Zhang, Q., Wu, Y.: Projections of global mercury emissions in 2050,
46 *Environ. Sci. Technol.* 43, 2983-2988, 2009.

1 Temme, C., Einax, J.W., Ebinghaus, R., Schroeder, W.H.: Measurements of atmospheric
2 mercury species at a coastal site in the Antarctic and over the South Atlantic Ocean
3 during polar summer, *Environ. Sci. Technol.* 37, 22-31, 2003.
4

5 Wang, F., Saiz-Lopez, A., Mahajan, A.S., Gómez Martín, J.C., Armstrong, D., Lemes,
6 M., Hay, T., and Prados-Roman, C.: Enhanced production of oxidized mercury over the
7 tropical Pacific Ocean: a key missing oxidation pathway, *Atmos. Chem. Phys.* 14, 1323-
8 1335, 2014.
9

10 Weigelt, A., Ebinghaus, R., Manning, A.J., Derwent, R.G., Simmonds, P.G., Spain, T.G.,
11 Jennings, S.G., Slemr, F.: Analysis and interpretation of 18 years of mercury observations
12 since 1996 at Mace Head at the Atlantic Ocean coast of Ireland, *Atmos. Environ.* 100,
13 85-93, 2015.
14



15 Widmer, A.E., Fehlmann, R., Rehwald: A calibration system for calorimetric mass flow
16 devices, *J. Phys. E: Sci. Instrum.* 15, 213-220, 1982.
17


18 Witt, M.L.I., Soerensen, A.L., Brooks, S.B., Brunke, E.-G., Ebinghaus, R., Henderson,
19 G.M., Mather, T.A., Skov, H., Slemr, F.: Atmospheric mercury over South-East Atlantic
20 Ocean, *Atmos. Environ.*, submitted.
21

22 Xia, C., Xie, Z., Sun, L.: Atmospheric mercury in the marine boundary layer along a
23 cruise path from Shanghai, China, to Prydz Bay, Antarctica, *Atmos. Environ.* 44, 1815-
24 1821, 2010.
25

26

27

1
2
3
Figures4
5
6 Figure 1: The location of the sites whose data are reported in this paper.
7
8
9
10
11
12
1314
15
16 Figure 2: Location of the Cape Grim station and definition of the baseline sector.
17

1
2
3 Figure 3: Seasonal variation of average monthly medians of mercury concentrations in
4 2011 - 2013 (Cape Point (no data in February 2011) and Troll Research Station (no data
5 in September and October 2011). At Amsterdam Island the data cover only the January
6 28, 2012 to December 31, 2013 period and at Cape Grim data from January – August and
7 November 2011 and April, May and October 2013 are missing. Bars denote the standard
8 deviation of the monthly averages.
9

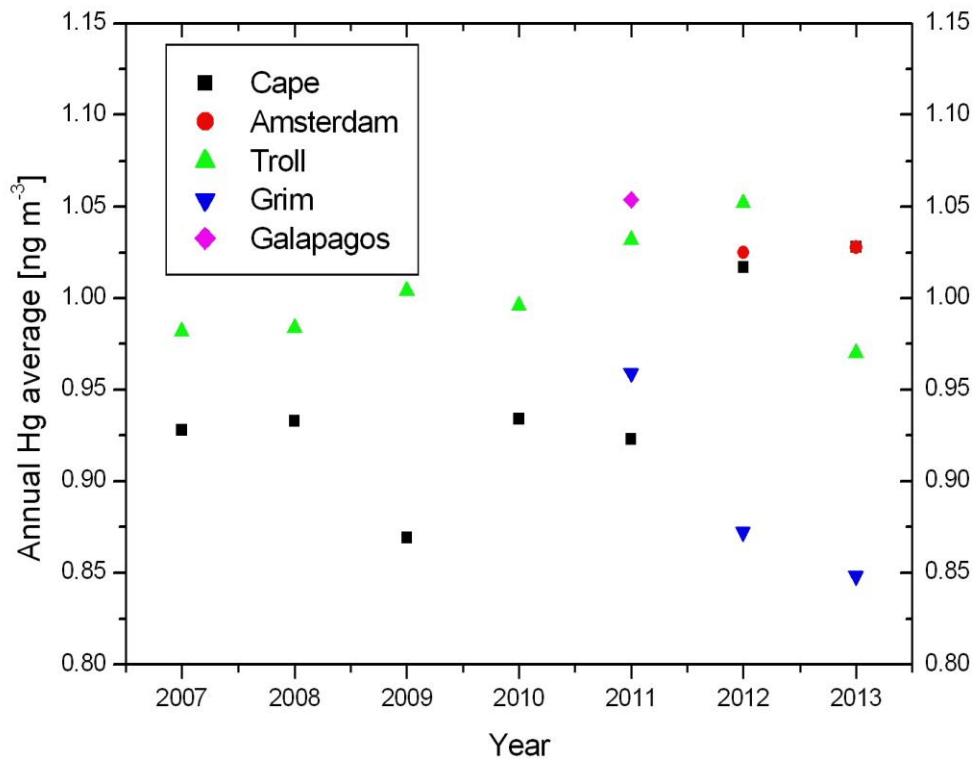

1
2
3
45
6
7
8
9
10
11

Figure 4: Annual average mercury concentrations at Cape Point, Amsterdam Island, Cape Grim, Troll Research Station and Galapagos Archipelago (Wang et al., 2014). Note that the 2013 annual averages at Cape Point and Amsterdam Island fall together.

Tables

Table 1: Comparison of annual average and median mercury concentrations at Amsterdam Island, Cape Point, Cape Grim, Troll Research Station, and Galápagos Archipelago. Hourly data were available for Amsterdam Island and Troll Research Station, half-hourly data for Cape Point, 5 – 15 min data for Cape Grim, and monthly averages for Galápagos Archipelago. All concentrations are given in ng m^{-3} at 273.14 K and 1013 hPa.

Site	2011		2012		2013	
	Average and standard deviation	Median, number of measurements	Average and standard deviation	Median, number of measurements	Average and standard deviation	Median, number of measurements
Cape Point	0.923 ± 0.106	0.934, 13918	1.017 ± 0.095	1.018, 15040	1.052 ± 0.160	1.040, 7809
Amsterdam Island	no data	no data	1.025 ± 0.065^a	1.028, 6164 ^a	1.028 ± 0.096	1.027, 7410
Cape Grim	0.959 ± 0.146^b	0.976, 3692 ^b	0.872 ± 0.130	0.854, 35097	0.848 ± 0.112^c	0.858, 36310 ^c
Troll	1.032 ± 0.192	1.061, 5876	1.052 ± 0.160	1.040, 7809	0.970 ± 0.162	1.000, 8196
Galápagos Archipelago	1.054 ± 0.087^d	1.041, 5 months ^{d,e}	no data	no data	no data	no data

^atemporal coverage January 28, 2012 – December 31, 2012

^bonly September, October and December covered by measurements

^cno data in April, May and October

^donly March, April, May, June, and October data were considered; February eliminated because of ITCZ proximity

^eaverage of monthly medians