
Supplement of Atmos. Chem. Phys. Discuss., 14, 29459–29497, 2014
http://www.atmos-chem-phys-discuss.net/14/29459/2014/
doi:10.5194/acpd-14-29459-2014-supplement
© Author(s) 2014. CC Attribution 3.0 License.

Supplement of

Simulation of the isotopic composition of stratospheric water vapour –
Part 2: Investigation of HDO/H 2O variations

R. Eichinger et al.

Correspondence to:R. Eichinger (roland.eichinger@dlr.de)



2 Eichinger et al.: Simulation of the isotopic composition of stratospheric water vapour

Contents

1 Introduction 3

2 Combination of the satellite time series 3

2.1 Satellite data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Combination of the satellite data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Description of the modified chemical tendency of HDO 4

4 The applied Pearson’s correlation 5

5 Additional images 6

References 7



Eichinger et al.: Simulation of the isotopic composition of stratospheric water vapour 3

1 Introduction

This supplement provides additional information to the article “Simulation of the isotopic composition of stratospheric
water vapour – Part 2: Investigation of HDO/H2O variations”.

2 Combination of the satellite time series

2.1 Satellite data sets

The combined satellite time series is based on observations of the HALOE and MIPAS instruments.

HALOE was an instrument on UARS (Upper Atmosphere Research Satellite) providing data from September 1991 to
November 2005. It employed the solar occultation technique measuring the attenuation of solar radiance during 15
sunrises and 15 sunsets per day. Based on the viewing geometry and the UARS orbit a latitudinal coverage between
roughly 60◦S and 60◦N could be achieved within a month, while over a year the coverage extended from 80◦S to 80◦S.
Water vapour results were retrieved from spectral information in the wavelength range between 6.54 µm and 6.67 µm
(1500 cm−1 – 1528 cm−1 ), typically in the altitude range from 10 km up to about 85 km (Russell et al., 1993). Here
data from the retrieval version 19 are used (e.g. Randel et al., 2006; Scherer et al., 2008).

The MIPAS instrument was deployed on Envisat (Environmental Satellite) performing observations from 2002 to 2012.
Different than HALOE the instrument measured the thermal emission at the atmospheric limb providing more than
1000 observations per day. Envisat used a polar, sun-synchronous orbit that allowed a latitudinal coverage from pole
to pole on a daily basis (Fischer et al., 2008). The MIPAS data set is split into two parts due to an instrument
failure in 2004. From 2002 to March 2004 MIPAS measured with its nominal resolution of 0.035 cm −1 (designated as
full resolution period – FR). Measurement recommenced in 2005 however with a reduced resolution of 0.0625 cm−1

(reduced resolution period – RR). For the combined satellite time series MIPAS data retrieved with the IMK/IAA
(Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany / Instituto de Astrof́ısica de Andalućıa” in
Granada, Spain) processor are used, i.e. versions 20 (FR) and 220/221 (RR). For both periods the water vapour
information is retrieved from a dozen of microwindows distributed over the wavelength range between 7.09 µm and
12.57 µm (795 cm −1 – 1411 cm−1) covering the altitude range from about 10 km to the lower mesosphere.

2.2 Combination of the satellite data sets

The combination of the satellite data sets requires a handling of the biases that exist among them (Milz et al., 2009).
For that in a first step monthly zonal means of the individual data sets are derived. In a second step the MIPAS data
are adjusted towards HALOE by a scalar, time independent shift S that minimises the offset between both data sets
in the overlap period in a root mean square sense:

RMS =

√√√√ 1
n
·

n∑
i=1

[xi,H − (xi,M + S)]2 (1)

Here xi,H and xi,M denote the individual overlapping data points for HALOE and MIPAS and n describes the their
total number. The shift Sopt that minimises Eq. 1 is given by:

Sopt =
1
n
·

n∑
i=1

(xi,H − xi,M ) (2)

In a last step the overlapping HALOE and shifted MIPAS data points are averaged using their associated standard
errors wi from the monthly and zonal mean derivation as weights.

xi =
wi,H · xi,H + wi,M · (xi,M + Sopt)

wi,H + wi,M
(3)

Figure 1 shows an example for the latitude range between 10◦S and 10◦N at an altitude of 25 km. In the upper panel
the monthly zonal mean time series of HALOE is shown by the black line. The original MIPAS time series are given



4 Eichinger et al.: Simulation of the isotopic composition of stratospheric water vapour

| 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
W

at
er

 v
ap

ou
r [

pp
m

v]

 

 
HALOE MIPAS MIPAS shifted combination

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Shift towards HALOE [ppmv]

R
oo

t m
ea

n 
sq

ua
re

 [p
pm

v]

 

 

MIPAS FR
MIPAS RR

Figure 1: Example of the satellite data combination considering the zonal mean between 10◦S – 10◦N at 25 km. The
upper panel shows the monthly mean HALOE and MIPAS time series in black and blue, respectively. The green
line depicts the adjusted MIPAS time series and the combined time series is given by the red dash-dotted line. The
lower panel shows the relationship between the shift of the MIPAS time series and the root mean square of the offset
towards HALOE for the full (black) and reduced resolution period (grey) of MIPAS. The optimal shift of the MIPAS
time series is indicated by the dashed lines.

in blue. Both, for the full and reduced resolution period, the MIPAS data show higher volume mixing ratios than
HALOE, as expected from earlier assessments (e.g. Kley et al., 2000; Milz et al., 2009). This aspect has to be taken
into account when comparing the combined time series to other data sets. The adjusted MIPAS time series are shown
in green and the final combined time series is shown in red. The lower panel shows the root mean square of the offset
between HALOE and MIPAS in the overlap periods as function of the MIPAS shift S according to Eq. 1. The optimal
shift Sopt of the MIPAS time series is indicated by the dashed line. For the full resolution period (black) the optimal
shift is 0.43 ppmv and for the reduced resolution (grey) it is 0.33 ppmv. Overall, the shifts for both MIPAS periods
are very similar as function of altitude and latitude (not shown here).

3 Description of the modified chemical tendency of HDO

Here, we describe the modification of the additional EMAC simulation, applied for the investigation of the influence
of methane isotope effects on the stratospheric δD(H2O) tape recorder in Sect. 4. From the simulation described in
Sect. 3, it differs in only one point: The calculation of the chemical contribution to the tendency of HDO (∂(HDO)

∂t |C)
was implemented in a different manner. With the aim to suppress the influence of the chemistry on δD(H2O), in a
sensitivity simulation, the following approach was introduced:

δD′a(H2O) = δDb(H2O). (4)

Here δD′ac(H2O) represents the modified δD(H2O) value after the addition of the chemical tendencies of HHO and HDO
to their total tendencies and δDbc(H2O) stands for δD(H2O) before this operation. In order to fulfil this condition,
a modified calculation of the chemical HDO tendeny was implemented into the H2OISO submodel. Considering the
δ-notation

δD(H2O) =
Rsample −RV SMOW

RV SMOW
· 1000 =

(
Rsample

RV SMOW
− 1
)
· 1000, (5)
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where R denotes the ratio of HDO to H2O of the respective compound, Eq. 4 gives
(
HDO + ∂(HDO)

∂t |T ·∆t+ ∂(HDO)
∂t |C′ ·∆t

HHO + ∂(HHO)
∂t |T ·∆t+ ∂(HHO)

∂t |C ·∆t

)
RV SMOW

− 1

 · 1000 =


(
HDO + ∂(HDO)

∂t |T ·∆t
HHO + ∂(HHO)

∂t |T ·∆t

)
RV SMOW

− 1

 · 1000, (6)

with ∂(HDO)
∂t |T and ∂(HHO)

∂t |T denoting the total tendencies before the addition of the chemical tendencies for the
HDO and the HHO tracer, respectively. ∂(HDO)

∂t |C stands for the chemical tendency of the HHO tracer and ∂(HDO)
∂t |C′

for the modified chemical tendency of the HDO tracer. HDO and HHO represent the t − 1 values of the respective
tracers and ∆t the time step. Solving Eq. 6 for ∂(HDO)

∂t |C′ ·∆t leads to

∂(HDO)
∂t

|C′ ·∆t =

(
HDO + ∂(HDO)

∂t |T ·∆t
)(

HHO + ∂(HHO)
∂t |T ·∆t+ ∂(HHO)

∂t |C ·∆t
)

HHO + ∂(HHO)
∂t |T ·∆t

−HDO − ∂(HDO)
∂t

|T ·∆t

(7)

for the modified chemical tendency of HDO. This modified chemical HDO tendency is always consistent with the
chemical tendency of HHO, but δD(H2O) does not become influenced by methane oxidation. In other words, in this
sensitivity simulation, CH4 and CH3D have the same life times. This calculation can provide insight into the sensitivity
of stratospheric δD(H2O) patterns (e.g. the tape recorder) on the oxidation of CH4 and CH3D.

4 The applied Pearson’s correlation

The correlations were calculated by using one δD(H2O) value per year for the respective (American and Asian)
Monsoon activity (the average over JJA in the described regions, hereafter called P) and the δD(H2O) value at every
altitude level for each month per year (hereafter called Q). For these values, the Pearson’s correlation coefficient
ρ (P,Q) is determined by

ρ (P,Q) =
cov (P,Q)
σ (P )σ (Q)

=
E [(P − µ (P )) (Q− µ (Q))]√

E
[
(P − µ (P ))2

]√
E
[
(Q− µ (Q))2

] , (8)

where cov represents the covariance, σ the standard deviation, E the expectation and µ the mean.
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5 Additional images

Figure 2: Zonally and seasonally averaged δD(H2O) (coloured), tropopause height (black lines) and isentropes (blue
contour lines) in K, averaged over the 21 years of the EMAC simulation. MAM: March, April, May; JJA: June, July,
August; SON: September, October, November; DJF: December, January, February.
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Figure 3: Seasonally averaged δD(H2O) (colours), horizontal wind vectors (arrows) averaged from the 380 to the
400 K isentrope and the tropopause height (blue contour lines), averaged over the 21 years of the EMAC simulation.
MAM: March, April, May; JJA: June, July, August; SON: September, October, November; DJF: December, January,
February.
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