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1. Overall Response 1 

 2 
 The comments of both referees are very much valued. 3 
 4 
 In our response we first provide the referees’ reports in their entirety (pages 1 to 5). 5 

 6 

We then (from page 5 onward) provide our responses to the individual comments of 7 

the first referee (pages 5 - 6) and the second referee (pages 5 - 15). Finally we provide 8 

the marked-up difference between the original and revised manuscripts (pages 16 - 9 

end). 10 

 11 

 12 

 13 

2. Report dated 16 July 2015 of Referee 1  14 

 15 

This is, yet again, virtually a new paper, but much the best of the three. It is generally 16 

clearly written and presents what seems to me to be some very interesting evidence. I 17 

think that their findings are likely to be robust to any reasonable changes of technique 18 

and, as such, deserve consideration.  19 

 20 

In particular, in the matter of series smoothing which I raised previously, they claim 21 

(in the supplement) to show that their results are not affected by this. I am still not 22 

entirely convinced that the difference between seasonal adjustment (which removes 23 

specifically seasonal frequencies) and moving average smoothing (which attenuates 24 

all higher frequencies) is fully appreciated. But never mind, I think that they have 25 

made their point on this, that their transformations do not materially affect their 26 

findings. They correctly point out that transformations of stationary series cannot 27 

induce spurious correlations between unrelated series, even if they could mask 28 

existing correlations.  29 

 30 

Evidence of a significant relation between temperature and growth in CO2 31 

concentration would appear to be of considerable importance to the AGW debate. If 32 

long-term global warming really does require continuously accelerating growth in 33 

CO2 , that fact immediately throws light on the current "pause", and also dramatically 34 

changes the prospects for the next 50-100 years. Of course, at the moment this is just 35 

a data regularity, and the lack of any established geophysical theory to explain it is a 36 

problem. One could suggest that there are regulatory mechanisms in play that respond 37 

as a negative feedback, but it would help to know what these are. These authors are 38 

aware of the issue and they suggest a role for the biosphere, the known fact of faster 39 

photosynthesis in the presence of higher  CO2 concentrations. They claim some 40 

statistical support for a role for NDVI. Section 4.4 still seems to me a bit weak and 41 

speculative (and could be deleted from the paper without loss) but this evidence, such 42 

as it is, maybe is worth mentioning. 43 

 44 

While by no means perfect, the paper could help to stimulate further research on these 45 

important questions. If I have one comment they might be asked act on, it relates to 46 

their third paragraph on page 21. Comment 9 of my last report pointed out that this 47 

test result is a logical implication of their findings on integration order, not a new 48 



 3 

finding. They have ignored this comment; they should point out clearly that 1 

correlations between stationary and nonstationary series are not well defined. 2 

 3 

 4 

 5 

 6 

 7 

3. Report dated 28 August 2015 of Referee 2  8 

 9 

 10 
The paper is interesting and quite well written. However, after a deep analysis, I have 11 

a few major concerns and some minor comments. I consider this paper acceptable if 12 

some revisions (which you may consider major or minor, as you like) will be 13 

performed. In any case, I would like to reconsider the paper after these revisions. 14 

 15 

Major concerns 16 

While the technical part of the paper is satisfying inside the statistical framework 17 

chosen (see, however, the a following major concern), the framework of the paper 18 

(abstract, introduction and objectives of the study) is poorly written and mixes several 19 

different statements which may create confusion to the reader. It is quite clear that the 20 

authors are not regulars of the scientific literature concerning climate change. 21 

In fact, the first result that should be cited is that the increase of CO2 concentration in 22 

the atmosphere is mainly due to the anthropogenic emissions, as shown by the 23 

isotopic signature of the CO2 itself. Only after this recognition we can speak about the 24 

causes of the variations of  CO2 concentrations due to natural variability. It is clear, in 25 

fact, that the recognition of this forcing leads to think that the CO2 concentration must 26 

obviously have a causal role on temperature. In this framework also ENSO can have a 27 

role just in the interannual variations of the temperature. Please, insert these pieces of 28 

information at the beginning of the section on the objectives of this study. 29 

In this framework, the authors speak about a “standard model” of linear increase. 30 

They should refer to the GCM outputs (very complex dynamical models) which show 31 

how the global temperature is linked to CO2 and other greenhouse gases 32 

concentrations and radiative forcings. 33 

Even the continuous reference to the hiatus seems too much emphasized, because it 34 

has been completely addressed just in the last section, by means of the consideration 35 

of NDVI. On the other hand, this part is not cited in the title… Please, address this 36 

problem. 37 

Finally, a major concern is about the way in which the Granger causality has been 38 

applied. In particular, the authors used in-sample investigations and tests. In order to 39 

do so, they had to establish the stochastic properties of the time series involved, by 40 

analyzing whether these series are stationary, non-stationary or co-integrated, 41 

because, for instance, the use of non-stationary time series can lead to spurious 42 

causality results. Of course, the weakness of this approach is that incorrect 43 

conclusions drawn by this preliminary analysis may affect the results of causality tests 44 

and their reliability: for instance, is the temperature time series I(0) or I(1)? This is 45 

why the studies of the global warming problem addressed through Granger in-sample 46 

analyses draw sometimes to contrasting results. Instead, an out-of-sample approach is 47 

less dependent on the preliminary assumptions, and more properly predictive, and 48 

more in the spirit of the original concept of Granger causality, so that it is suggested 49 

for obtaining reliable results. See a review in Attanasio et al. (2013), Atmospheric and 50 
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Climate Sciences, 3, 515-522, and two specific papers in Attanasio et al (2012), 1 

Atmospheric Science Letters, 13, 67-72, and Pasini et al. (2012), Environmental 2 

Research Letters, 7, 034020. 3 

Now, it is not sure that this invalidates the results of the authors, but it is necessary to 4 

present these drawbacks to the reader, explicitly citing the out-of-sample approach 5 

and its advantages. Incidentally, the fact that the authors address also the problem of 6 

the hiatus in the last 15 years could give them the possibility to test an out-of-sample 7 

approach considering just this period as test set. 8 

Another word of  caution must be spoken about the possibility of spurious causality 9 

due to omission of variables. It is very useful to perform multivariate analyses which 10 

can corroborate or falsify bivariate ones. See, for instance, Triacca et al. (2013), 11 

Environmetrics, 24, 260-268. Please, refer also to this drawback of your treatment in 12 

your revised paper. 13 

 14 

Minor comments 15 

P. 1, row 18. “… and this gap is presently continuing to increase”. This is not true. 16 

2014 and 2015 have been very hot years, at the top of the record, and a new large 17 

increasing trend seems to start now. Please, delete this sentence. 18 

P. 1, rows 23-31. The abstract is too long and full of not clear and not discussed 19 

sentences: the standard model, causality of the temperature to rate of change of CO2 , 20 

without any mention of the causality role of anthropogenic CO2 on temperature. This 21 

certainly causes confusion in the reader. Please, delete these rows. 22 

P. 2, row 5. You use the verb “to demonstrate” here. This verb can be applied to a 23 

mathematical theorem but not to what you are doing in this paper: it is a too strong 24 

statement! Please, substitute demonstrated � shown. 25 

P. 2, row 9. As before. Substitute demonstrates � shows. 26 

P. 3, row 7. You introduce the hiatus here. However you have to cite also that recent 27 

studies have reconsidered the correct quantification of this hiatus: they show that the 28 

pause in the increase of temperature was in effect less evident. Please, cite Cowtan & 29 

Way (2014), Q. J. Roy. Met. Soc., 140, 1935-1944, and Karl et al. (2015), Science, 30 

348, 1469-1472. Then you may assert that you consider, however, a standard times 31 

series of temperature (HADCrut4). 32 

P. 3, rows 19-…. When you introduce ENSO, you have to briefly discuss its accepted 33 

role in the scientific literature, that is its influence on interannual variability of 34 

temperature. Refer to Hoerling et al. (2008),  Geophys. Res. Lett., 35, L23712; 35 

DelSole et al. (2011), J. Climate, 24, 909-926; Triacca et al. (2014), J. Climate, 27, 36 

7903-7910. 37 

P. 5, rows 12-13. The difference is not between climate models and temperature but 38 

between climate model outputs and temperature. Please, change the sentence 39 

accordingly. 40 

P. 6, row 15. Insert here the presentation of the role of anthropogenic CO2 on 41 

temperature, as required in the major concerns. 42 

P. 8, rows 23-…. First of all, the review indicated as Attanasio 2012 is not a review. 43 

The review is Attanasio et al. (2013), Atmospheric and Climate Sciences, 3, 515-522. 44 

Please, substitute the reference. Then, here you have to insert the discussion about in-45 

sample and out-of-sample Granger causality tests, as indicated in the major concerns. 46 

Finally, insert consideration about the limits of bivariate analyses vs. multivariate 47 

ones. 48 

P. 9, row 26. A citation of the peculiar role of ENSO discovered in Triacca et al. 49 

(2014), J. Climate, 27, 7903-7910, could be useful for the reader. 50 
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P. 31, rows 20-21. Once again, you refer to a linear AGW hypothesis. In the more 1 

complex reality of the research on dynamical climate models, even in these models 2 

when increased sinks are considered we could arrive to results similar to your own. I 3 

suggest to delete this sentence. 4 

 5 

 6 

 7 

4. Response to specific comments of Referee 1 8 

 9 

Referee 1 Comment, paragraph 4 of 4. … If I have one comment they might be 10 

asked act on, it relates to their third paragraph on page 21. Comment 9 of my last 11 

report pointed out that this test result is a logical implication of their findings on 12 

integration order, not a new finding. They have ignored this comment; they should 13 

point out clearly that correlations between stationary and nonstationary series are 14 

not well defined. 15 

 16 

(Comment 9 of previous report of Referee 1. The application of the Toda-17 

Yamamoto result is most interesting, but it needs to be seen in context. These 18 

authors propose tests for a VAR in levels with an unknown number of unit 19 

roots. However, please note that in such a model, Granger causality of  an 20 

I(1) series by an I(2) series is ruled out by construction. A model generating 21 

variables with different orders of integration can only embody long-run 22 

relations between variables transformed to have the same orders of 23 

integration: in particular, between the level of an I(1) and the differences of 24 

an I(2), or between the level of an I(0) and the differences of an I(1)). (To 25 

verify this statement, consider the VAR ( ) A L x u t t and verify the properties 26 

that= A L ( ) must satisfy to ensure that A L ( )1− −contains different powers of 27 

the factor 1 L appearing in different rows.) The outcome of the reported test is 28 

inevitable, given the other reported results. I guess it does not harm to report 29 

it, but with suitable caveats.) 30 

Response: This comment is closely related to one made by Referee 2. That comment 31 

will be listed here and a joint response then given to both. 32 

Referee 2 Comment   Finally, a major concern is about the way in which the 33 

Granger causality has been applied. In particular, the authors used in-sample 34 

investigations and tests. In order to do so, they had to establish the stochastic 35 

properties of the time series involved, by analyzing whether these series are 36 

stationary, non-stationary or co-integrated, because, for instance, the use of non-37 

stationary time series can lead to spurious causality results. Of course, the weakness 38 

of this approach is that incorrect conclusions drawn by this preliminary analysis may 39 

affect the results of causality tests and their reliability: for instance, is the 40 

temperature time series I(0) or I(1)? This is why the studies of the global warming 41 

problem addressed through Granger in-sample analyses draw sometimes to 42 

contrasting results. Instead, an out-of-sample approach is less dependent on the 43 

preliminary assumptions, and more properly predictive, and more in the spirit of the 44 

original concept of Granger causality, so that it is suggested for obtaining reliable 45 

results. See a review in Attanasio et al. (2013), Atmospheric and Climate Sciences, 3, 46 

515-522, and two specific papers in Attanasio et al (2012), Atmospheric Science 47 
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Letters, 13, 67-72, and Pasini et al. (2012), Environmental Research Letters, 7, 1 

034020. 2 

Now, it is not sure that this invalidates the results of the authors, but it is necessary to 3 

present these drawbacks to the reader, explicitly citing the out-of-sample approach 4 

and its advantages. Incidentally, the fact that the authors address also the problem of 5 

the hiatus in the last 15 years could give them the possibility to test an out-of-sample 6 

approach considering just this period as test set.) 7 

Response:  The purpose of the testing for order of integration of the time-series is 8 

simply so that the Toda-Yamamoto method of testing for G-causality can be applied 9 

properly. This methodology is NOT affected adversely by the prior tests. The reason 10 

why studies differ in their results when doing within-sample G-causality testing in this 11 

field is because they don't use the T-Y procedure (or the equivalent Lutkepohl 12 

procedure).  13 

With this background we stress that the point of the T-Y procedure is to enable us to 14 

test properly for non-causality when in fact we have a mixture of I(0) and I(1) 15 

variables.  16 

We recognise that correlations between I(0) and I(1) variables will be spurious. We 17 

suggest keeping the existing causality result re levels, with a statement that this 18 

supports the finding about causality when differenced CO2 is considered. We also 19 

suggest use of "confirmation", rather than "evidence". 20 

 21 

We propose to replace lines 11 to 16 on Page 21 with the following: 22 

 23 

We recognise that as temperature is stationary, while CO2 is not, these two 24 

variables cannot correlate in the usual sense. However, given that Granger 25 

non-causality tests can have low power due to the presence of lagged 26 

dependent variables, it is sensible to seek support, or confirmation, for the 27 

result just discussed. This can be done by testing for Granger non-causality 28 

between the levels of CO2  and TEMP. In this case, the testing procedure must 29 

be modified to allow for the differences in the orders of integration of the data 30 

series. 31 

 32 

 33 

Despite the lack of stationarity in the level of CO2  time series (meaning it  34 

cannot be used to model temperature), one can still assess the answer to the 35 

question: “Is there evidence of Granger causality between level of CO2 and  36 

TEMP?” In answering this question, because the TEMP series is stationary, 37 

but the CO2 series is non-stationary (it is integrated of order one, I(1)), the 38 

testing procedure is modified. 39 

 40 

 41 

Once again, the levels of both series are used. For each VAR model, the 42 

maximum lag length (k) is determined, but then one additional lagged value of 43 

both TEMP and CO2 is included in each equation of the VAR. However, the  44 

Wald test for Granger non-causality is applied only to the coefficients of the  45 



 7 

original k lags of CO2. Toda and Yamamoto (1995) show that this modified  1 

Wald test statistic will still have an asymptotic distribution that is chi-square,  2 

even though the level of CO2 is non-stationary. Here the relevant Wald  3 

Statistic (p-value): Null is there is No Granger Causality from level of CO2  to 4 

TEMP; Number of lags K= 4; Chi-Square 2.531 (p-value = 0.470). The lack of 5 

statistical significance indicated by the p-value is strong confirmation  6 

that level of CO2 does not Granger-cause TEMP. 7 

 8 

 9 

5. Response to further specific comments of Referee 2 10 

 11 
For reply, the remaining comments of Referee 2 are excerpted and grouped, and listed 12 

as 16 items. Our response to each of the 16 items is given after the item in question.  13 

 14 

Referee 2, Item 1 of 16. … the first result that should be cited is that the increase of  15 

CO2 concentration in the atmosphere is mainly due to the anthropogenic emissions, 16 

as shown by the isotopic signature of the  CO2 itself. Only after this recognition we 17 

can speak about the causes of the variations of CO2  concentrations due to natural 18 

variability. It is clear, in fact, that the recognition of this forcing leads to think that 19 

the  CO2 concentration must obviously have a causal role on temperature. In this 20 

framework also ENSO can have a role just in the interannual variations of the 21 

temperature. Please, insert these pieces of information at the beginning of the section 22 

on the objectives of this study. 23 

 24 

 25 

With, for example, Fyfe (2014) we have followed a method of providing the materials 26 

needed for our account by starting with from the particular issue in question and 27 

adding in the context step by step. 28 

 29 

The referee recommends in essence that we restructure and outline the context much 30 

earlier in the narrative. 31 

 32 

We have attempted this but found that trying to change the narrative order was 33 

arduous and ran the risk of introducing new sequencing and numbering errors at this 34 

stage. 35 

 36 

We note that the way we have done it has not been an issue until now. 37 

 38 

Concerning the specifics of the above Comment, we underline that in the existing ms. 39 

we have referred to anthropogenic CO2 and stated that ENSO has been the variable 40 

considered to embody interannual change. This is on Page 9, lines 16-24, where we 41 

list the range of major forcings in the context of each other:  42 

 43 

From such studies, a common set of main influencing factors (also called 44 

explanatory or predictor variables) has emerged. These are (Lockwood (2008); 45 

Folland (2013); Zhou and Tung (2013)):  El Nino–Southern Oscillation 46 

(ENSO), or Southern Oscillation Index (SOI) alone; volcano aerosol optical 47 

depth; total solar irradiance; and the trend in anthropogenic greenhouse gas 48 

(the predominant anthropogenic greenhouse gas being CO2). In these models, 49 

ENSO/SOI is the factor embodying interannual variation. 50 



 8 

 1 

We propose to incorporate the further point the referee makes concerning “the 2 

isotopic signature of the CO2  itself” in the Discussion where AGW is already 3 

discussed, in new text , as follows (at Page 31 after line 12): 4 

 5 

The anthropogenic global warming (AGW) hypothesis has two main 6 

dimensions (IPCC 2007; Pierrehumbert 2011): (i) that increasing CO2 causes 7 

increasing atmospheric temperature (via a radiative forcing mechanism) and 8 

(ii) that most of the increase in atmospheric CO2 in the last hundred years has 9 

been due to human causes - a result of accelerated release of CO2  from the 10 

burning of fossil fuels. The evidence for this (Levin and Heisshamer, 2000) 11 

comes from the analysis of changes in the proportion of carbon isotopes in 12 

tree rings from the past two centuries.  13 

 14 

 15 

2 of 16. P. 3, rows 19-…. When you introduce ENSO, you have to briefly discuss its 16 

accepted role in the scientific literature, that is its influence on interannual variability 17 

of temperature. Refer to Hoerling et al. (2008),  Geophys. Res. Lett., 35, L23712; 18 

DelSole et al. (2011), J. Climate, 24, 909-926; Triacca et al. (2014), J. Climate, 27, 19 

7903-7910. 20 

 21 

As mentioned above for Item 1 of 20, we note that on Page 9, lines 16-24, we list the 22 

full range of accepted major forcings in the context of each other. This section stresses 23 

that ENSO has been seen as the factor embodying interannual variation, and provides 24 

peer-reviewed references for this: 25 

 26 

From such studies, a common set of main influencing factors (also called 27 

explanatory or predictor variables) has emerged. These are (Lockwood (2008); 28 

Folland (2013); Zhou and Tung (2013)):  El Nino–Southern Oscillation 29 

(ENSO), or Southern Oscillation Index (SOI) alone; volcano aerosol optical 30 

depth; total solar irradiance; and the trend in anthropogenic greenhouse gas 31 

(the predominant anthropogenic greenhouse gas being). In these models, 32 

ENSO/SOI is the factor embodying interannual variation.  33 

 34 

 35 

 36 

3 of 16. In this framework, the authors speak about a “standard model” of linear 37 

increase. They should refer to the GCM outputs (very complex dynamical models) 38 

which show how the global temperature is linked to CO2  and other greenhouse gases 39 

concentrations and radiative forcings. 40 

 41 

Response: firstly, references to a “standard model” have been removed, where 42 

appropriate being replaced with “the majority of GCM simulations”.  43 

 44 

Secondly, concerning the GCM-related point, we note that two main sorts of peer-45 

reviewed quantitative analysis of the relationships between climate variables have 46 

been carried out. One type of analysis has utilised General Circulation Models, also 47 

known as General Climate Models (GCMs). These (IPCC, 2014) “are numerical 48 

representations of the climate system based on the physical, chemical and biological 49 
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properties of its components, their interactions and feedback processes, and 1 

accounting for some of its known properties.”  2 

 3 

The other type of quantitative analysis involves using empirical regression analysis to 4 

seek correlations between empirical climate-data time series (for a survey see Imbers 5 

et al., 2013).  Our study is within this regression tradition of climate research which 6 

includes studies such as those of Lean and Rind (2008, 2009); Foster and Rahmstorf 7 

(2011); Kopp and Lean (2011); and Zhou and Tung (2013). Unfortunately being from 8 

this tradition we are not qualified to interpret GCM modelling and so have attempted 9 

to deal with the suggestion of Referee 2 to show how the global temperature is linked 10 

to CO2  and other greenhouse gases concentrations and radiative forcings using peer-11 

reviewed climate literature from the empirical regression field. We trust this will 12 

adequately achieve the result sought. 13 

 14 

The relevant text is again that on Page 9, lines 16-24, where we list the full range of 15 

accepted major forcings in the context of each other: 16 

  17 

From such studies, a common set of main influencing factors (also called 18 

explanatory or predictor variables) has emerged. These are (Lockwood (2008); 19 

Folland (2013); Zhou and Tung (2013)):  El Nino–Southern Oscillation 20 

(ENSO), or Southern Oscillation Index (SOI) alone; volcano aerosol optical 21 

depth; total solar irradiance; and the trend in anthropogenic greenhouse gas 22 

(the predominant anthropogenic greenhouse gas being CO2). In these models, 23 

ENSO/SOI is the factor embodying interannual variation.  24 

 25 

 26 

 27 

 28 

4 of 16. Even the continuous reference to the hiatus seems too much emphasized, 29 

because it has been completely addressed just in the last section by means of the 30 

consideration of NDVI. 31 

 32 

Response: Various terminology has been used by authors to describe this situation 33 

(again, for example Fyfe et al., 2013) – including pause, hiatus and slow-down. In this 34 

paper we use the term “model-observation difference” with synonyms for difference: 35 

gap; disparity; and mismatch.   36 

 37 

 38 

The concept of the model-observation difference is core to the premise of the paper. 39 

The premise is then productive of other results, which are duly described. We then 40 

return, in discussion of potential mechanisms, to evoke the concept of the model-41 

observation difference again. We use it in our opinion only as much as is needed to 42 

establish the premise. 43 

 44 

 45 

 46 

5 of 16. … NDVI. On the other hand, this part is not cited in the title… Please, 47 

address this problem. 48 

 49 
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Response. In seeking to incorporate the photosynthesis-related content of the paper in 1 

the title, we also sought to manage length and increase clarity. As a result we propose 2 

to remove the technical terms “first and second difference” from the title and replace 3 

them with their precise plain English equivalent – “change in level”. 4 

 5 

Hence we propose to replace the existing title:  6 

 7 

 8 

Granger causality from the first and second differences of atmospheric CO2  to 9 

global surface temperature and the El Niño–Southern Oscillation respectively 10 

 11 

 12 

…with the proposed new title:  13 

 14 

Granger causality from change in level of atmospheric CO2 to global surface 15 

temperature and the El Niño–Southern Oscillation, and a candidate mechanism 16 

in global photosynthesis 17 

 18 

 19 

 20 

6 of 16.     P. 1, row 18. “… and this gap is presently continuing to increase”. This is 21 

not true. 2014 and 2015 have been very hot years, at the top of the record, and a new 22 

large increasing trend seems to start now. Please, delete this sentence. 23 

 24 

Response: “… and this gap is presently continuing to increase” will be deleted. 25 

 26 

 7 of 16.  P. 3, row 7. You introduce the hiatus here. However you have to cite also 27 

that recent studies have reconsidered the correct quantification of this hiatus: they 28 

show that the pause in the increase of temperature was in effect less evident. Please, 29 

cite Cowtan & Way (2014), Q. J. Roy. Met. Soc., 140, 1935-1944, and Karl et al. 30 

(2015), Science, 348, 1469-1472. Then you may assert that you consider, however, a 31 

standard times series of temperature (HADCrut4). 32 

 33 

 34 

Response: We propose to incorporate the Cowtan & Way (2014) and Karl et al. 35 

(2015) material alongside the existing content of Figure 1 in a new figure. As well, to 36 

provide a longer time perspective of the situation, in the proposed new figure we have 37 

taken the opportunity to replace the existing figure start year of 1959 with a start year 38 

of 1880.  39 

 40 
 41 

 42 

We also propose to delete  the following paragraph on Page 3, starting at line 9: 43 

 44 

The situation is illustrated visually in Figure 1 which shows the increasing 45 

departure over recent years of the global surface temperature trend from that 46 

projected by a representative mid-range  global climate model (GCM) for 47 

global surface temperature - the CMIP3, SRESA1B scenario model (Meehl et 48 

al. 2007). 49 

 50 
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We propose to replace the above paragraph with the following: 1 

 2 

It is noted that recent studies have reconsidered the correct quantification of 3 

this model-observation difference: they report analysis suggesting that it is in 4 

effect less evident (Cowtan & Way (2014), Q. J. Roy. Met. Soc., 140, 1935-5 

1944, and Karl et al. (2015), Science, 348, 1469-1472).  6 

 7 

We illustrate the effect of both the initial observations  and  these alternative 8 

quantifications on the model-observation difference in  Figure 1. 9 

   10 

Figure 1  shows the  departure over recent years of a standard time series of 11 

temperature (HadCRUT4) from that projected by a representative mid-range 12 

global climate model (GCM) for global surface temperature – the CMIP3, 13 

SRESA1B scenario model (Meehl et al. 2007). The figure also shows the 14 

alternative temperature series (Cowtan & Way (2014), and Karl et al. (2015)). 15 

 16 

The figure shows the general similarity between all curves from 1880 to the 17 

late 1990s, followed by the three empirical temperature curves departing from 18 

the RCP4.5 curve together. It is noted that while there is some increase in the 19 

three empirical curves in 2014 and 2015 they remain below that expected from 20 

the RCP4.5 model output.   21 

 22 

 23 

 Figure 1. Monthly data, Z scored to aid visual comparison (see Sect. 1). To show 24 

their core trends for illustrative purposes the four series are fitted with 6th order 25 

polynomials. Shown are: the output of an IPCC mid-range scenario model (CMIP5, 26 

RCP4.5 scenario) run for the IPPC fifth assessment report (IPCC 2014) (black 27 

curve)(polynomial fit (pn): red curve). Global surface temperature datasets: 28 

HadCRUT4 (purple curve) (pn: blue curve); Cowtan and Way (2014) (green curve) 29 

(pn: light green curve); Karl et al. (2015) (aquamarine curve) (pn: brown curve). 30 

       31 

 32 
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 1 
8 of 16.  From Referee 2 Minor comments. P. 8, rows 23-…. First of all, the review 2 

indicated as Attanasio 2012 is not a review. The review is Attanasio et al. (2013), 3 

Atmospheric and Climate Sciences, 3, 515-522. Please, substitute the reference. Then, 4 

here you have to insert the discussion about in-sample and out-of-sample Granger 5 

causality tests, as indicated in the major concerns.)  6 

 7 

Response:  1. The reference has been substituted.  2. Concerning in-sample and out-8 

of-sample Granger causality tests, we would note that the purpose of the testing for 9 

order of integration of the time-series is simply so that the Toda-Yamamoto method of 10 

testing for G-causality can be applied properly. This methodology is NOT affected 11 

adversely by the prior tests. The reason why studies differ in their results when doing 12 

within-sample G-causality testing in this field is because they don't use the T-Y 13 

procedure (or the equivalent Lutkepohl procedure).  14 

 15 

We propose to replace lines 15 to 20 on page 21:  16 

Despite the lack of stationarity in the level of CO2 time series (meaning it 17 

cannot be used to model temperature), one can still assess the answer to the 18 

question: “Is there evidence of Granger causality between level of CO2 and 19 

TEMP?” 20 

In answering this question, because the TEMP series is stationary, but the CO2 21 

series is non-stationary (it is integrated of order one, I(1)), the testing 22 

procedure is modified slightly 23 

…with the following: 24 

We recognise that as temperature is stationary, while CO2  is not, these two 25 

variables cannot correlate in the usual sense. However, given that Granger 26 

non-causality tests can have low power due to the presence of lagged 27 

dependent variables, it is sensible to seek support, or confirmation, for the 28 

result just discussed. This can be done by testing for Granger non-causality 29 

between the levels of  CO2 and TEMP. In this case, the testing procedure must 30 

be modified to allow for the differences in the orders of integration of the data 31 

series. 32 

 33 

9 of 16. P. 1, rows 23-31. The abstract is too long and full of not clear and not 34 

discussed sentences: the standard model, causality of the temperature to rate of 35 

change of CO2, without any mention of the causality role of anthropogenic CO2 on 36 

temperature. This certainly causes confusion in the reader. Please, delete these rows. 37 

 38 

Response: remove rows 23-31, P. 1.  39 

 40 
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10 of 16. P. 2, row 5. You use the verb “to demonstrate” here. This verb can be 1 

applied to a mathematical theorem but not to what you are doing in this paper: it is a 2 

too strong statement! Please, substitute demonstrated � shown 3 

 4 

Response: Substitution made. 5 

 6 

 7 

11 of 16. P. 2, row 9. As before. Substitute demonstrates � shows. 8 

 9 

Response: Substitution made. 10 

 11 

 12 

12 of 16. P. 5, rows 12-13. The difference is not between climate models and 13 

temperature but between climate model outputs and temperature. Please, change the 14 

sentence accordingly. 15 

 16 

Response: “outputs” added. 17 

 18 

13 of 16. Another word of caution must be spoken about the possibility of spurious 19 

causality due to omission of variables. It is very useful to perform multivariate 20 

analyses which can corroborate or falsify bivariate ones. See, for instance, Triacca et 21 

al. (2013), Environmetrics, 24, 260-268. Please, refer also to this drawback of your 22 

treatment in your revised paper. 23 

Our testing for Granger non-causality is performed in a bivariate setting, as is 24 

commonly the case. This has both advantages and disadvantages. On the one 25 

hand, testing in a multivariate setting can avoid the spurious results that may arise if 26 

relevant variables are unwittingly omitted from the analysis (e.g., Triacca et al., 27 

2013). However, testing for Granger non-causality with three or more variables is 28 

problematic. While a pairwise analysis can be undertaken, this can lead to ambiguous 29 

results (e.g., Geweke, 1984; Ding et al., 2006). Indeed the very concept of Granger 30 

causality is ambiguous in such cases (Lutkepohl, 1993; Dufour and Renault, 1998), 31 

and researchers sometimes resort to so-called "conditional causality". For these 32 

reasons we have retained a bivariate analysis, subject to the caveat above. 33 

 34 

References: 35 

 36 

Ding, M, Chen, Y. and Bressler, S. L.:  Granger causality: Basic theory and 37 

applications to neuroscience. In: Handbook of Time Series Analysis (eds. B. Schelter, 38 

M. Winterhalder, and J. Timmer), Wiley-VCH Verlag, Weinhem, 437–460, 2006. 39 

 40 

Dufour, J.-M. and Renault, E.: Short run and long run causality in time series: theory, 41 

Econometrica, 66, 1099-1125. 1998. 42 

 43 

Geweke, J.: Measures of conditional linear dependence and feedback between time 44 

series, Journal of the American Statistical Association, 79, 907–915, 1984. 45 

 46 

Lutkepohl, H.: Testing for causation between two variables in higher dimensional 47 
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VAR models. In: Studies in Applied Econometrics (eds. H. Schneeweiss and K. 1 

F. Zimmerman), Physica-Verlag, Heidelberg, 75-91, 1993. 2 

 3 

Triacca, U., Attanasio A. and Pasini, A.: Anthropogenic global warming hypothesis: 4 

testing its robustness by Granger causality analysis. Environmetrics, 24, 260-268, 5 

2013. 6 

 7 

 8 

14 of  17. P. 8, rows 23-…. First of all, the review indicated as Attanasio 2012 is not 9 

a review. The review is Attanasio et al. (2013), Atmospheric and Climate Sciences, 3, 10 

515-522. Please, substitute the reference.  11 

 12 

Response: Reference substituted 13 

 14 

 15 

15 of 16. P. 9, row 26. A citation of the peculiar role of ENSO discovered in Triacca 16 

et al. (2014), J. Climate, 27, 7903-7910, could be useful for the reader. 17 

 18 

Response: Despite reviewing Triacca et al. (2014),  we are unable to identify the 19 

precise point or points from the paper which add to the thrust of this section of our 20 

study.  21 

 22 

 23 

16 of 16. P. 31, rows 20-21. Once again, you refer to a linear AGW hypothesis. In the 24 

more complex reality of the research on dynamical climate models, even in these 25 

models when increased sinks are considered we could arrive to results similar to your 26 

own. I suggest to delete this sentence. 27 

 28 

Response:  Concerning “linear AGW” we note we have ever only cited the IPCC: We 29 

here provide the reference verbatim (IPCC, 2014: Climate Change 2013: The Physical 30 

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 31 

Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. 32 

Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley  33 

(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 34 

NY, USA, 1535 pp.), page 62: 35 

 36 

 …on decadal to interdecadal time scales and under continually increasing 37 

effective radiative forcing, the forced component of the global surface 38 

temperature trend responds to the forcing trend relatively rapidly and almost 39 

linearly. 40 

 41 

This said, instead of the paragraph commencing at Page 31, line 19:  42 

 43 

The difference between this evidence for the effect of CO2 on climate and that 44 

of the standard AGW hypothesis is that the standard model proposes that 45 

temperature will rise roughly linearly with atmospheric CO2, whereas the 46 

present results show that the climate effects result from persistence of previous 47 

effects and from rates of change of CO2.  48 

 49 

We propose the following new text: 50 
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 1 

The difference between this evidence for the effect of CO2 on climate and that 2 

from the majority of GCM simulations is that in the simulations the 3 

temperature rises roughly linearly with the level of atmospheric CO2, whereas 4 

the present results show that the climate effects result from persistence of 5 

previous effects and from change in the level of CO2.  6 

 7 

 8 

 9 
 10 
 11 

 12 

 13 

Granger causality from changes in level of 14 

atmospheric CO2 to global surface temperature 15 

and the El Niño–Southern Oscillation, and a 16 

candidate mechanism in global photosynthesis 17 

 18 

L.M.W. Leggett 1 and D.A. Ball 1 19 

(1) (Global Risk Policy Group Pty Ltd, Townsville, Queensland, Australia) 20 

www.globalriskprogress.com   21 

Correspondence to:  L.M.W. Leggett (mleggett.globalriskprogress@gmail.com) 22 

 23 

 24 

Abstract 25 

 26 

A significant difference  now of some 16 years in length has been shown to exist 27 

between the observed global surface temperature trend and that expected from the 28 

majority of climate simulations. For its own sake, and to enable better climate 29 

prediction for policy use, the reasons behind this mismatch need to be better 30 

understood. While an increasing number of possible causes have been proposed, the 31 

candidate causes have not yet converged. 32 

 33 
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With this background, this paper reinvestigates the relationship between change in 1 

level of CO2 and two of the major climate variables, atmospheric temperature and the 2 

El Niño–Southern Oscillation (ENSO).  3 

 4 

Using time series analysis in the form of dynamic regression modelling with 5 

autocorrelation correction, it is shown that first-difference CO2 leads temperature and 6 

that there is a highly statistically significant correlation between first-difference CO2 7 

and temperature.  Further, a correlation is found for second-difference CO2 with the 8 

Southern Oscillation Index, the atmospheric-pressure component of ENSO. This 9 

paper also shows that both these correlations display Granger causality. 10 

 11 

It is shown that the first-difference CO2 and temperature model shows no trend 12 

mismatch in recent years.  13 

 14 

These results may contribute to the prediction of future trends for global temperature 15 

and ENSO. 16 

 17 

Interannual variability in the growth rate of atmospheric CO2 is standardly attributed 18 

to variability in the carbon sink capacity of the terrestrial biosphere. The terrestrial 19 

biosphere carbon sink is created by the difference between photosynthesis and 20 

respiration (net primary productivity): a major way of measuring global terrestrial 21 

photosynthesis is by means of satellite measurements of vegetation reflectance, such 22 

as the Normalized Difference Vegetation Index (NDVI). In a preliminary analysis, 23 

this study finds a close correlation between an increasing NDVI and the increasing 24 

climate model/temperature mismatch (as quantified by the difference between the 25 

trend in the level of CO2 and the trend in temperature). 26 

  27 

 28 

 29 

 30 

1  Introduction 31 

 32 

Understanding current global climate requires an understanding of trends both in 33 

Earth’s atmospheric temperature and the El Niño–Southern Oscillation (ENSO), a 34 
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characteristic large-scale distribution of warm water in the tropical Pacific Ocean and 1 

the dominant global mode of year-to-year climate variability (Holbrook et al. 2009).  2 

However, despite much effort, the average projection of current climate models has 3 

become statistically significantly different from the 21st century global surface 4 

temperature trend (Fyfe et al. 2013; Fyfe and Gillett 2014) and has failed to reflect the 5 

statistically significant evidence that annual-mean global temperature has not risen in 6 

the 21st century (Fyfe et al. 2013; Kosaka and Shang-Ping 2013).  7 

 8 

The situation is illustrated visually in Figure 1 which shows the increasing departure 9 

over recent years of the global surface temperature trend from that projected by a 10 

representative mid-range  global climate model (GCM) for global surface temperature 11 

- the CMIP3, SRESA1B scenario model (Meehl et al. 2007). 12 

It is noted that recent studies have reconsidered the correct quantification of this 13 

model-observation difference: they report analysis suggesting that it is in effect less 14 

evident (Cowtan & Way (2014), Q. J. Roy. Met. Soc., 140, 1935-1944, and Karl et al. 15 

(2015), Science, 348, 1469-1472).  16 

 17 

We illustrate the effect of both the initial observations  and  these alternative 18 

quantifications on the model-observation difference in  Figure 1. 19 

   20 

Figure 1  shows the  departure over recent years of a standard time series of 21 

temperature (HadCRUT4) from that projected by a representative mid-range global 22 

climate model (GCM) for global surface temperature – the CMIP3, SRESA1B 23 

scenario model (Meehl et al. 2007). The figure also shows the alternative temperature 24 

series (Cowtan & Way (2014), and Karl et al. (2015)). 25 

 26 

Figure 1 shows that the alternative quantifications reduce the scale of the difference 27 

seen using HadCRUT4 but do not eradicate it.  28 

 29 

 It is noted that the level of atmospheric CO2 is a good proxy for the International 30 

Panel on Climate Change (IPCC) models predicting the global surface temperature 31 

trend: according to IPCC (2014), on decadal to interdecadal time scales and under 32 

continually increasing effective radiative forcing, the forced component of the global 33 
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surface temperature trend responds to the forcing trend relatively rapidly and almost 1 

linearly. 2 

 3 

The extremes of this ENSO variability cause extreme weather events (such as floods 4 

and droughts) in many regions of the world. Modelling provides a wide range of 5 

predictions for future ENSO variability, some showing an increase, others a decrease, 6 

and some no change (Guilyardi et al. 2012; Bellenger 2013). 7 

 8 

A wide range of physical explanations has now been proposed for the global warming 9 

slowdown. These involve proposals either for changes in the way the radiative 10 

mechanism itself is working or for the increased influence of other physical 11 

mechanisms. Chen and Tung (2014) place these proposed explanations into two 12 

categories. The first involves a reduction in radiative forcing: by a decrease in 13 

stratospheric water vapour, an increase in background stratospheric volcanic aerosols, 14 

by 17 small volcano eruptions since 1999, increasing coal-burning in China, the 15 

indirect effect of time-varying anthropogenic aerosols, a low solar minimum, or a 16 

combination of these. The second category of candidate explanation involves 17 

planetary sinks for the excess heat. The major focus for the source of this sink has 18 

been physical and has involved ocean heat sequestration. However, evidence for the 19 

precise nature of the ocean sinks is not yet converging: according to Chen and Tung 20 

(2014) their study followed the original proposal of Meehl et al. (2011) that global 21 

deep-ocean heat sequestration is centred on the Pacific. However, their observational 22 

results were that such deep-ocean heat sequestration is mainly occurring in the 23 

Atlantic and the Southern oceans. 24 

 25 

Alongside the foregoing possible physical causes, Hansen et al. (2013) have suggested 26 

that the mechanism for the pause in the global temperature increase since 1998 might 27 

be the planetary biota, in particular the terrestrial biosphere: that is (IPCC 2007), the 28 

fabric of soils, vegetation and other biological components, the processes that connect 29 

them and the carbon, water and energy that they store. 30 

 31 

It is widely considered that the interannual variability in the growth rate of 32 

atmospheric CO2 is a sign of the operation of the influence of the planetary biota. 33 
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Again, IPCC (2007) states: “The atmospheric CO2 growth rate exhibits large 1 

interannual variations. The change in fossil fuel emissions and the estimated 2 

variability in net CO2 uptake of the oceans are too small to account for this signal, 3 

which must be caused by year-to-year fluctuations in land-atmosphere fluxes.” 4 

In the IPCC Fourth Assessment Report, Denman et  al. (2007) state (italics denote 5 

present author emphasis): “Interannual and inter-decadal variability in the growth rate 6 

of atmospheric CO2 is dominated by the response of the land biosphere to climate 7 

variations. …. The terrestrial biosphere interacts strongly with the climate, providing 8 

both positive and negative feedbacks due to biogeophysical and biogeochemical 9 

processes. … Surface climate is determined by the balance of fluxes, which can be 10 

changed by radiative (e.g., albedo) or non-radiative (e.g., water cycle related 11 

processes) terms. Both radiative and non-radiative terms are controlled by details of 12 

vegetation.” 13 

 14 

Denman et  al. (2007) also note that many studies have confirmed that the variability 15 

of CO2 fluxes is mostly due to land fluxes, and that tropical lands contribute strongly 16 

to this signal. A predominantly terrestrial origin of the growth rate variability can be 17 

inferred from (1) atmospheric inversions assimilating time series of CO2 18 

concentrations from different stations, (2) consistent relationships between δ13C and 19 

CO2, (3) ocean model simulations, and (4) terrestrial carbon cycle and coupled model 20 

simulations. For one prominent estimate carried out by the Global Carbon Project, the 21 

land sink is calculated as the residual of the sum of all sources minus the sum of the 22 

atmosphere and ocean sinks (Le Quere et al. 2014). 23 

 24 

The activity of the land sink can also be estimated directly. The terrestrial biosphere 25 

carbon sink is created by photosynthesis: a major way of measuring global land 26 

photosynthesis is by means of satellite measurements of potential photosynthesis from 27 

greenness estimates. The measure predominantly used is the Normalized Difference 28 

Vegetation Index (NDVI) (Running et al. 2004; Zhang et al. 2014). NDVI data are 29 

available from the start of satellite observations in 1980 to the present. For this period 30 

the trend signature in NDVI has been shown to correlate closely with that for 31 

atmospheric CO2 (Barichivich et al. 2013). This noted, we have not been able to find 32 

studies which have compared NDVI data with the difference between climate model 33 

outputs  and temperature. 34 
Deleted: s
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 1 

 2 

2   Methodological issues and objectives of the study 3 

2.1 Methodological issues 4 

 5 

Before considering further material it is helpful now to consider a range of 6 

methodological issues and concepts. The first concept is to do with the notion of 7 

causality.  8 

 9 

According to Hidalgo and Sekhon (2011) there are four prerequisites to enable an 10 

assertion of causality. The first is that the cause must be prior to the effect. The 11 

second prerequisite is “constant conjunction” between variables (Hume (1751), cited 12 

in Hidalgo and Sekhon (2011)). This relates to the degree of fit between variables. 13 

The final requirements are those concerning manipulation and random placement into 14 

experimental and control categories. It is noted that each of the four prerequisites is 15 

necessary but not sufficient on its own for causality. 16 

 17 

With regard to the last two criteria, the problem for global studies such as global 18 

climate studies is that manipulation and random placement into experimental and 19 

control categories cannot be carried out. 20 

 21 

One method using correlational data, however, approaches more closely the quality of 22 

information derived from random placement into experimental and control categories.  23 

The concept is that of Granger causality (Granger 1969). According to Stern and 24 

Kaufmann (2014), a time series variable “x” (e.g. atmospheric CO2) is said to 25 

“Granger-cause” variable “y” (e.g. surface temperature) if past values of x help predict 26 

the current level of y, better than do just the past values of y, given all other relevant 27 

information. 28 

 29 

Reference to the above four aspects of causality will be made to help structure the 30 

review of materials in the following sections. 31 

 32 

 33 

2.2 Objectives of the study 34 
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 1 

What has been considered to influence the biota’s creation of the pattern observed in 2 

the trend in the growth rate of atmospheric CO2?  The candidates for the influences on 3 

the biota have mainly been considered in prior research to be atmospheric variations, 4 

primarily temperature and/or ENSO (e.g., Kuo et al. 1990; Wang W. et al. 2013). 5 

Despite its  proposed role in global warming overall, CO2 (in terms of the initial state 6 

of atmospheric CO2 exploited by plants at time A)  has not generally been isolated and 7 

studied in detail through time series analysis as an influence in the way the biosphere 8 

influences the CO2 left in the atmosphere at succeeding time B. 9 

 10 

This lack of attention to the influence of the biosphere on climate variables seems to 11 

have come about for two reasons, one concerning ENSO, the other, temperature. For 12 

ENSO, the reason is that the statistical studies are unambiguous that ENSO leads rate 13 

of change of CO2 (e.g., Lean and Rind 2008). On the face of it, therefore, this ruled 14 

out CO2 as the first mover of the ecosystem processes. For temperature, the reason 15 

was that the question of whether atmospheric temperature leads rate of change of CO2 16 

or vice versa is less settled.  17 

In the first published study on this question, Kuo et al. (1990) provided evidence that 18 

the signature of interannual atmospheric CO2 (measured as its first difference) fitted 19 

temperature (passing therefore one of the four tests for causality, of close 20 

conjunction). 21 

The relative fits of both level of and change in level of atmospheric CO2 (measured as 22 

its first difference) with global surface temperature up to the present are depicted in 23 

Figure 2. Attention is drawn to both signature (fine grained data structure) and, by 24 

means of polynomial smoothing, core trend for each data series. 25 

Concerning signature, while clearly first-difference CO2 and temperature are not 26 

identical, each is more alike than either is to the temperature model based on level of 27 

CO2. As well, the polynomial fits show that the same likeness groupings exist for core 28 

trend. 29 
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Kuo et al. (1990) also provided evidence concerning another of the causality 1 

prerequisites – priority. This was that the signature of first-difference CO2 lagged 2 

temperature (by 5 months). This idea has been influential. More recently, Adams and 3 

Piovesan (2005) noted that climate variations acting on ecosystems are believed to be 4 

responsible for variation in CO2 increment, but there are major uncertainties in 5 

identifying processes, including uncertainty concerning instantaneous (present 6 

authors’ emphasis) versus lagged responses. Wang  et al. (2013) observed that the 7 

strongest coupling is found between the CO2 growth rate and the concurrent (present 8 

authors’ emphasis) tropical land temperature. Wang et al. (2013) nonetheless state in 9 

their conclusion that the  strong temperature–CO2 coupling they observed is best 10 

explained by the additive responses of tropical terrestrial respiration and primary 11 

production to temperature variations, which reinforce each other in enhancing 12 

temperature’s control (present author emphasis) on tropical net ecosystem exchange. 13 

Another perspective on the relative effects of rising atmospheric CO2 concentrations 14 

on the one hand and temperature on the other has been provided by extensive direct 15 

experimentation on plants. In a large scale meta-analysis of such experiments, 16 

Dieleman et al. (2012) drew together results on how ecosystem productivity and soil 17 

processes responded to combined warming and CO2 manipulation, and compared it 18 

with those obtained from single factor CO2 and temperature manipulation. While the 19 

meta-analysis found that responses  to combined CO2 and temperature treatment 20 

showed the greatest effect, this was only slightly larger than for the CO2-only 21 

treatment. By contrast, the effect of the CO2-only treatment was markedly larger than 22 

for the warming-only treatment. 23 

 24 

In looking at leading and lagging climate series more generally, the first finding of 25 

correlations between the rate of change (in the form of the first-difference) of 26 

atmospheric CO2 and a climate variable was with the foregoing and the Southern 27 

Oscillation Index  (SOI) component  of ENSO (Bacastow 1976). Here evidence was 28 

presented that the SOI led first-difference atmospheric CO2. There have been further 29 

such studies (see Imbers et al. (2013) for overview) which, taken together, 30 

consistently show that the highest correlations are achieved with SOI leading 31 

temperature by some months (3-4 months).  32 

 33 
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In light of the foregoing, this paper reanalyses by means of time series regression 1 

analysis which of first-difference CO2 and temperature lead.  The joint temporal 2 

relationship between interannual atmospheric CO2, global surface temperature and 3 

ENSO (indicated by the SOI) is also investigated.  4 

  5 

The foregoing also shows that a strong case can be made for further investigating the 6 

planetary biota influenced by atmospheric CO2 as a candidate influence on (cause of) 7 

climate outcomes. This question is also explored in this paper. 8 

 9 

A number of Granger causality studies have been carried out on climate time series 10 

(see review in Attanasio 2012). We found six papers which assessed atmospheric CO2 11 

and global surface temperature (Sun and Wang 1996; Triacca 2005; Kodra et al. 2011; 12 

Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann 2014). Of these, 13 

while all but one (Triacca 2005) found Granger causality, it was not with CO2 14 

concentration as studied in this paper but with CO2 radiative forcing (lnCO2 15 

(Attanasio and Triacca 2011)).  16 

 17 

 As well, all studies used annual not monthly data. Such annual data for each of 18 

atmospheric CO2 and temperature is not stationary of itself but must be transformed 19 

into a new, stationary, series by differencing (Sun and Wang 1996). Further, data at 20 

this level of aggregation can "mask" correlational effects that only become apparent 21 

when higher frequency (e.g., monthly) data are used. 22 

 23 

Rather than using a formal Granger causality analysis, a number of authors have 24 

instead used conventional multiple regression models in attempts to quantify the 25 

relative importance of natural and anthropogenic influencing factors on climate 26 

outcomes such as global surface temperature. These regression models use 27 

contemporaneous explanatory variables. For example, see Lean and Rind (2008, 28 

2009); Foster and Rahmstorf (2011); Kopp and Lean (2011); Zhou and Tung (2013). 29 

This type of analysis effectively assumes a causal direction between the variables 30 

being modelled. It is incapable of providing a proper basis for testing for the presence 31 

or absence of causality. In some cases account has been taken of autocorrelation in the 32 

model's errors, but this does not overcome the fundamental weakness of standard 33 

multiple regression in this context. In contrast, Granger causality analysis that we 34 



 24 

adopt in this paper provides a formal testing of both the presence and direction 1 

of this causality (Granger 1969). 2 

 3 

From such studies, a common set of main influencing factors (also called explanatory 4 

or predictor variables) has emerged. These are (Lockwood (2008); Folland (2013); 5 

Zhou and Tung (2013)):  El Nino–Southern Oscillation (ENSO), or Southern 6 

Oscillation Index (SOI) alone; volcano aerosol optical depth; total solar irradiance; 7 

and the trend in anthropogenic greenhouse gas (the predominant anthropogenic 8 

greenhouse gas being CO2). In these models, ENSO/SOI is the factor embodying 9 

interannual variation. Imbers et al. (2013) show that a range of different studies using 10 

these variables have all produced similar and close fits with the global surface 11 

temperature. 12 

 13 

With this background, this paper first presents an analysis concerning whether the 14 

first-difference of atmospheric CO2 leads or lags global surface temperature. After 15 

assessing this, questions of autocorrelation, strength of correlation, and of causality 16 

are then explored. Given this exploration of correlations involving first-difference 17 

atmospheric CO2, the possibility of the correlation of second-difference CO2 with 18 

climate variables is also explored. 19 

 20 

 21 

Correlations are assessed at a range of time scales to seek the time extent over which 22 

relationships are held, and thus whether they are a special case or possibly longer term 23 

in nature. The time scales involved are, using instrumental data, over two periods 24 

starting respectively from 1959 and 1877; and, using paleoclimate data, over a period 25 

commencing from 1515. The correlations are assessed by means of regression models 26 

explicitly incorporating autocorrelation using dynamic modelling methods. Granger 27 

causality between CO2 and, respectively, temperature and SOI is also explored.  28 

Atmospheric CO2 rather than emissions data is used, and where possible at monthly 29 

rather than annual aggregation. Finally, as noted, we have not been able to find studies 30 

which have compared the gap between climate models and temperature with NDVI 31 

data, so an assessment of this question is carried out. All assessments were carried out 32 

using the time series statistical software packages Gnu Regression, Econometrics and 33 



 25 

Time-series Library (GRETL) (Available from: http://gretl.sourceforge.net/ (Accessed 1 

January 23, 2014)) and IHS Eviews (IHS EViews 2011). 2 

 3 

 4 

 5 

3. Data and methods 6 

 7 

 8 

We present results of time series analyses of climate data. The data assessed are 9 

global surface temperature, atmospheric carbon dioxide (CO2) and the Southern 10 

Oscillation Index (SOI). The regressions are presented in several batches based on the 11 

length of data series for which the highest temporal resolution is available. The first 12 

batch of studies involves the data series for which the available high resolution series 13 

is shortest: this is for atmospheric carbon dioxide (CO2) and commences in 1958. 14 

These studies are set at monthly resolution. 15 

 16 

The second batch of studies is for data able to be set at monthly resolution not 17 

involving CO2. These studies begin with the time point at which the earliest available 18 

monthly SOI data commences, 1877. 19 

 20 

The final batch of analyses utilises annual data. These studies use data starting 21 

variously in the 16
th

 or 18
th

 centuries. 22 

 23 

Data from 1877 and more recently are from instrumental sources; earlier data are from 24 

paleoclimate sources. 25 

 26 

For instrumental data sources for global surface temperature, we used the Hadley 27 

Centre–Climate Research Unit combined land SAT and SST  (HadCRUT) version 28 

4.2.0.0 (Morice et al. 2012), for atmospheric CO2, the U.S. Department of Commerce 29 

National Oceanic and Atmospheric Administration Earth System Research Laboratory 30 

Global Monitoring Division Mauna Loa, Hawaii, monthly CO2 series (Keeling et al. 31 

2009), and for volcanic aerosols the National Aeronautic and Space Administration 32 

Goddard Institute for Space Studies  Stratospheric Aerosol Optical Thickness series 33 

(Sato et al. 1993). Southern Oscillation Index data (Troup 1965) is from the Science 34 

Delivery Division of the Department of Science, Information Technology, Innovation 35 

Deleted: &
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and the Arts (DSITIA) Queensland, Australia.  Solar irradiance data is from Lean, J. 1 

(personal communication 2012).  2 

 3 

With regard to the El Nino-Southern Oscillation, according to IPCC (2014) the term 4 

El Niño was initially used to describe a warm-water current that periodically flows 5 

along the coast of Ecuador and Peru, disrupting the local fishery. It has since become 6 

identified with a basin-wide warming of the tropical Pacific Ocean east of the 7 

dateline. This oceanic event is associated with a fluctuation of a global-scale tropical 8 

and subtropical surface atmospheric pressure pattern called the Southern Oscillation. 9 

This atmosphere–ocean phenomenon is coupled, with typical time scales of two to 10 

about seven years, and known as the El Niño-Southern Oscillation (ENSO). 11 

 12 

The El Niño (temperature) component of ENSO is measured by changes in the sea 13 

surface temperature of the central and eastern equatorial Pacific relative to the average 14 

temperature. The Southern Oscillation (atmospheric pressure) ENSO component is 15 

often measured by the surface pressure anomaly difference between Tahiti and 16 

Darwin.  17 

 18 

For the present study we choose the SOI atmospheric pressure component rather than 19 

the temperature component of ENSO to stand for ENSO as a whole. This is because it 20 

is considered to be more valid to conduct an analysis in which temperature is an 21 

outcome (dependent variable) without also having temperature as an input 22 

(independent variable). The correlation between SOI and the other ENSO indices is 23 

high, so we believe this assumption is robust.  24 

 25 

 26 

 27 

Paleoclimate data sources are: Atmospheric CO2, from 1500 – ice cores (Robertson et 28 

al. (2001)); (NH) temperature, from 1527 – tree ring data (Moberg, A. et al. 2005; 29 

SOI, from 1706 – tree ring data (Stahle et al. (1998)). 30 

 31 

Normalized Difference Vegetation Index (NDVI) monthly data from 1980 to 2006 is 32 

from the GIMMS (Global Inventory Modeling and Mapping Studies) data set (Tucker 33 

et al. 2005) .  NDVI data from 2006 to 2013 was provided by the Institute of 34 
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Surveying, Remote Sensing and Land Information, University of Natural Resources 1 

and Life Sciences, Vienna. 2 

  3 

Statistical methods used are standard (Greene 2012). Categories of methods used are: 4 

normalisation; differentiation (approximated by differencing); and time series 5 

analysis. Within time series analysis, methods used are: smoothing; leading or lagging 6 

of data series relative to one another to achieve best fit; assessing a prerequisite for 7 

using data series in time series analysis, that of stationarity; including autocorrelation 8 

in models by use of dynamic regression models; and investigating causality by means 9 

of a multivariate time series model, known as a vector autoregression (VAR) and its 10 

associated Granger causality test. These methods will now be described in turn. 11 

 12 

To make it easier to assess visually the relationship between the key climate variables, 13 

the data were normalised using statistical Z scores or standardised deviation scores 14 

(expressed as “Relative level” in the figures). In a Z-scored data series, each data 15 

point is part of an overall data series that sums to a zero mean and variance of 1, 16 

enabling comparison of data having different native units. Hence, when several Z-17 

scored time series are depicted in a graph, all the time series will closely superimpose, 18 

enabling visual inspection to clearly discern the degree of similarity or dissimilarity 19 

between them. 20 

See the individual figure legends for details on the series lengths.  21 

 22 

In the time series analyses, SOI and global atmospheric surface temperature are the 23 

dependent variables. We tested the relationship between each of these variables and 24 

(1) the change in atmospheric CO2 and (2) the variability in its rate of change. We 25 

express these CO2-related variables as finite differences. The finite differences used 26 

here are of both the first- and second-order types (we label these “first” and “second” 27 

differences in the text). Variability is explored using both intra-annual (monthly) data 28 

and interannual (yearly) data. The period covered in the figures is shorter than that 29 

used in the data preparation because of the loss of some data points due to calculations 30 

of differences and of moving averages (in monthly terms of up to 13 x 13), which 31 

commenced in January 1960.   32 



 28 

 1 

Smoothing methods are used to the degree needed to produce similar amounts of 2 

smoothing for each data series in any given comparison. Notably, to achieve this 3 

outcome, series resulting from higher levels of differences require more smoothing. 4 

Smoothing is carried out initially by means of a 13-month moving average – this also 5 

minimises any remaining seasonal effects. If further smoothing is required, then this is 6 

achieved  by taking a second moving average of the initial moving average (to 7 

produce a double moving average) (Hyndman 2010). Often, this is performed by 8 

means of a further 13 month moving average to produce a 13 x 13 moving average. 9 

For descriptive statistics to describe the long-term variation of a time series trend, 10 

polynomial smoothing is sometimes used.   11 

It is important to consider what effects this filtering of our data may have on the 12 

ensuing statistical analysis. In these analyses, only the CO2 series was smoothed and 13 

therefore requires assessment. To do this, we tested if the smoothed (2 x 13 month 14 

moving average) first-difference CO2 series used here has different key dynamics to 15 

that of the original raw (unsmoothed) data from which the smoothed series was 16 

derived. Lagged correlogram analysis showed that the maximum, and statistically 17 

significant, correlation of the smoothed series with the unsmoothed series occurs 18 

when there is no phase shift. This suggests that the particular smoothing used should 19 

provide no problems in the assessment of which of first-difference CO2 and 20 

temperature has priority. 21 

Second, there is extensive evidence that while the effect that seasonal adjustment (via 22 

smoothing) on the usual tests for unit roots in time-series data is to reduce their power 23 

in small samples, this distortion is not an issue with samples of the size used in this 24 

study (see, e.g., Ghysels (1990), Frances (1991), Ghysels and Perron (1993), and 25 

Diebold (1993)). Moreover, Olekalns (1994) shows that seasonal adjustment by using 26 

dummy variables also impacts adversely on the finite-sample power of these tests, so 27 

there is little to be gained by considering this alternative approach. Finally, one of the 28 

results emerging from the Granger causality literature is that while such causality can 29 

be “masked” by the smoothing of the data, apparent causality cannot be “created” 30 

from non-causal data. For example, see Sims (1971), Wei (1982), Christiano and 31 
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Eichenbaum (1987), Marcellino (1999), Breitung and Swanson (2002), and 1 

Gulasekaran and Abeysinghe (2002).  2 

Finally, seasonally adjusting the data by a range of alternative approaches did not 3 

qualitatively change the results discussed in the paper. The results of these 4 

assessments are given in the Supplement. 5 

This means that our results relating to the existence of Granger causality should not be 6 

affected adversely by the smoothing of the data that has been undertaken. 7 

 8 

Variables are led or lagged relative to one another to achieve best fit. These leads or 9 

lags were determined by means of time-lagged correlations (correlograms). The 10 

correlograms were calculated by shifting the series back and forth relative to each 11 

other, 1 month at a time.  12 

 13 

With this background, the convention used in this paper for unambiguously labelling 14 

data series and their treatment after smoothing or leading or lagging is depicted in the 15 

following example. The atmospheric CO2 series is transformed into its second 16 

difference and smoothed twice with a 13 month moving average. The resultant series 17 

is then Z-scored. This is expressed as Z2x13mma2ndDerivCO2. 18 

 19 

Note that, to assist readability in text involving repeated references, atmospheric CO2 20 

is sometimes referred to simply as CO2 and global surface temperature as temperature. 21 

 22 

The time series methodology used in this paper involves the following procedures. 23 

First, any two or more time series being assessed by time series regression analysis 24 

must be what is termed stationary in the first instance, or be capable of being made 25 

stationary (by differencing). A series is stationary if its properties (mean, variance, 26 

covariances) do not change with time (Greene 2012).  The (augmented) Dickey-Fuller 27 

test is applied to each variable. For this test, the null hypothesis is that the series has a 28 

unit root, and hence is non-stationary. The alternative hypothesis is that the series is 29 

integrated of order zero. 30 

 31 



 30 

Second, the residuals from any time series regression analysis then conducted must 1 

not be significantly different from white noise. This is done seeking correct model 2 

specification for the analysis.  3 

 4 

After Greene (2012): the results of standard ordinary least squares (OLS) regression 5 

analysis assume that the errors in the model are uncorrelated. Autocorrelation of the 6 

errors violates this assumption. This means that the OLS estimators are no longer the 7 

Best Linear Unbiased Estimators (BLUE). Notably and importantly this does not bias 8 

the OLS coefficient estimates. However statistical significance can be overestimated, 9 

and possibly greatly so, when the autocorrelations of the errors at low lags are 10 

positive. 11 

 12 

Addressing autocorrelation can take either of two alternative forms: correcting for it 13 

(for example, for first order autocorrelation by the Cochrane-Orcutt procedure), or 14 

taking it into account.  15 

 16 

In the latter approach, the autocorrelation is taken to be a consequence of an 17 

inadequate specification of the temporal dynamics of the relationship being 18 

estimated. The method of dynamic modelling (Pankratz 1991) addresses this by 19 

seeking to explain the current behavior of the dependent variable in terms of both 20 

contemporaneous and past values of variables. In this paper the dynamic modelling 21 

approach is taken. 22 

 23 

To assess the extent of autocorrelation in the residuals of the initial non-dynamic OLS 24 

models run, the Breusch-Godfrey procedure is used. Dynamic models are then used to 25 

take account of such autocorrelation. To assess the extent to which the dynamic 26 

models achieve this, Kiviet’s Lagrange multiplier F-test (LMF) statistic for 27 

autocorrelation (Kiviet 1986) is used. 28 

 29 

Hypotheses related to Granger causality (see Introduction) are tested by estimating a 30 

multivariate time series model, known as a vector autoregression (VAR), for level of 31 

and first-difference CO2 and other relevant variables. The VAR models the current 32 

values of each variable as a linear function of their own past values and those of the 33 



 31 

other variables. Then we test the hypothesis that x does not cause y by evaluating 1 

restrictions that exclude the past values of x from the equation for y and vice versa. 2 

Stern and Kander (2011) observe that Granger causality is not identical to causation in 3 

the classical philosophical sense, but it does demonstrate the likelihood of such 4 

causation or the lack of such causation more forcefully than does simple 5 

contemporaneous correlation. However, where a third variable, z, drives both x and y, 6 

x might still appear to drive y though there is no actual causal mechanism directly 7 

linking the variables (any such third variable must have some plausibility - see 8 

Discussion and Conclusions below). 9 

 10 

4   Results 11 

 12 

4.1. Relationship between first-difference CO2 and temperature  13 

 14 

4.1.1. Priority 15 
 16 

Figure 2 showed that, while clearly first-difference CO2 and temperature are not 17 

identical in signature, each is more alike than either is to the temperature model based 18 

on level of CO2. As well the figure shows that the same likeness relationships exist for 19 

the core trend. The purpose of the forthcoming sections is to see the extent to which 20 

these impressions are statistically significant. 21 

 22 

The first question assessed is that of priority: which of first-difference atmospheric 23 

CO2 and global surface temperature leads the other.  The two series are shown for the 24 

period 1959 to 2012 in Figure 3. 25 

 26 

To quantify the degree of difference in phasing between the variables, time-lagged 27 

correlations (correlograms) were calculated by shifting the series back and forth 28 

relative to each other, one month at a time. These correlograms are given in Figure 4 29 

for global and regional data. For all four relationships shown, first-difference CO2 30 

always leads temperature. The leads differ as quantified in Table 1. 31 

 32 

It is possible for a lead to exist overall on average but for a lag to occur for one or 33 

other specific subsets of the data. This question is explored in Figure 5 and Table 2. 34 

Here the full 1959-2012 period of monthly data – some 640 months – for each of the 35 



 32 

temperature categories is divided into three approximately equal sub-periods, to 1 

provide 12 correlograms. It can be seen that in all 12 cases, first-difference CO2 leads 2 

temperature. It is also noted that earlier sub-periods tend to display longer first-3 

difference CO2 leads.  For the most recent sub-period the highest correlation is when 4 

the series are neither led nor lagged. 5 

 6 

 7 

 8 

4.1.2  Correspondence between first-difference CO2 and global surface 9 

temperature curves 10 
 11 

 12 

Next, the second prerequisite for causality, close correspondence, is also seen between 13 

first-difference CO2 and global surface temperature in Figure 3. 14 

 15 

4.1.3 Time series analysis 16 

 17 

Both first-difference CO2 being shown to lead temperature, and the two series 18 

displaying close correspondence, are considered a firm basis for the time series 19 

analysis of the statistical relationship between first-difference CO2 and temperature 20 

which follows. For this further analysis, we choose global surface temperature as the 21 

temperature series because, while its maximum correlation is not the highest (Figure 22 

5), its global coverage by definition is greatest.  (In this section, TEMP stands for 23 

global surface temperature ((HadCRUT4), and other block capital terms are variable 24 

names used in the modelling).  25 

 26 

The order of integration, denoted I(d), is an important characteristic of a time series. It 27 

reports the minimum number of differences required to obtain a covariance stationary 28 

series. As stated above, all series used in a time series regression must be series which 29 

are stationary without further differencing (Greene 2012); that is, display an order of 30 

integration of I(0). If a series has an order of integration greater than zero, it can be 31 

transformed by appropriate differencing into a new series which is stationary. 32 

 33 

By means of the Augmented Dickey–Fuller (ADF) test for unit roots, Table 3 34 

provides the information concerning stationarity for the level of, and first-difference 35 

of, CO2, as well as for global surface temperature. Test results are provided for both 36 



 33 

monthly and annual data. The test was applied with an allowance for both a drift and 1 

deterministic trend in the data, and the degree of augmentation in the Dickey-Fuller 2 

regressions was determined by minimizing the Schwarz Information Criterion.  3 

 4 

The results show that for both the monthly and annual series used, the variables 5 

TEMP and FIRST-DIFFERENCE CO2 are stationary (I(0)); but  level of CO2 is not. 6 

Level of CO2 is shown to be I(1) because (Table 3) its first-difference is stationary .  7 

In contrast, Beenstock et al. (2012), using annual data, report that their series for the 8 

level of atmospheric CO2 forcing is an I(2) variable and therefore is stationary in 9 

second differences.To reconcile these two results, we refer to Pretis and Hendry 10 

(2013), who reviewed Beenstock et al. (2012). Pretis and Hendry (2013) take issue 11 

with the finding of I(2) for the anthropogenic forcings studied – including CO2 –  and 12 

find evidence that this finding results from the combination of two different data sets 13 

measured in different ways which  make up the 1850-2011 data set which Beenstock 14 

et al. test.  Regarding this composite series Pretis and Hendry (2013) write: 15 

 16 

In the presence of these different measurements exhibiting structural changes, 17 

a unit-root test on the entire sample could easily not reject the null hypothesis 18 

of I(2) even when the data are in fact I(1). Indeed, once we control for these 19 

changes, our results contradict the findings in Beenstock et al. (2012). 20 

 21 

Pretis and Hendry (2013) give their results for CO2 in their Table 1. Note that, in the 22 

table, level of CO2 data is transformed into first-difference data (Beenstock et al claim 23 

the level of CO2 is I(2); if that is the case, the first-difference of the level of CO2 Pretis 24 

and Hendry (2013) should find would be I(1) ). 25 

 26 

Pretis and Hendry (2013) state: 27 

 28 

Unit-root tests are used to determine the level of integration of time series. 29 

Rejection of the null hypothesis provides evidence against the presence of a 30 

unit-root and suggests that the series is I(0) (stationary) rather than I(1) 31 

(integrated).  32 

…based on augmented Dickey–Fuller (ADF) tests (see Dickey and Fuller, 33 

1981), the first-difference of annual radiative forcing of CO2 is stationary 34 



 34 

initially around a constant (over 1850–1957), then around a linear trend (over 1 

1958–2011). Although these tests are based on sub-samples corresponding to 2 

the shift in the measurement system, there is sufficient power to reject the null 3 

hypothesis of a unit root. 4 

 5 

Hence for annual data Pretis and Hendry (2013) find first-difference CO2 to be 6 

stationary – I(0), not I(1) – as is found in this study (Table 3). 7 

 8 

With this question of the order of integration of the time series considered, we now 9 

turn to the next step of the time series analysis. As Table 3, above, and Pretis and 10 

Hendry (2013) show, the variable of the level of CO2 is non-stationary (specifically, 11 

integrated of order one, i.e., I(1)). Attempting to assess TEMP in terms of the level of 12 

CO2 would result in an “unbalanced regression”, as the dependent variable (TEMP) 13 

and the explanatory variable (CO2) have different orders of integration. It is well 14 

known (e.g., Banerjee et al. 1993, pp. 190-191, and the references therein) that in 15 

unbalanced regressions the t-statistics are biased away from zero. That is, one can 16 

appear to find statistically significant results when in fact they are not present. In fact, 17 

this occurrence  of spurious significance is found when we regress TEMP on CO2. 18 

This is strong evidence that any analysis should involve the variables TEMP and 19 

FIRST-DIFFERENCE CO2, and not TEMP and CO2.  20 

 21 

For TEMP and FIRST-DIFFERENCE CO2, one must next assess the extent to which 22 

autocorrelation affects the time series model. This is done by obtaining diagnostic 23 

statistics from an OLS regression. This regression shows, by means of the Breusch-24 

Godfrey test for autocorrelation (up to order 12 – that is, including all monthly lags up 25 

to 12 months), that there is statistically significant autocorrelation at lags of one and 26 

two months, leading to an overall Breusch-Godfrey Test statistic (LMF) = 126.901, 27 

with p-value = P(F(12,626) > 126.901) = 1.06 x 10
-158

. 28 

 29 

Autocorrelation is a consequence of an inadequate specification of the temporal 30 

dynamics of the relationship being estimated. With this in mind, a dynamic model 31 

(Greene 2012) with two lagged values of the dependent variable as additional 32 

independent variables has been estimated.  Results are shown in Table 4. The LMF 33 

test shows that there is now no statistically significant unaccounted-for 34 



 35 

autocorrelation, thus supporting the use of this dynamic model specification. Table 4 1 

shows that a highly statistically significant model has been established.  First it shows 2 

that the temperature in a given period is strongly influenced by the temperature of 3 

closely preceding periods (see Discussion for a possible mechanism for this). Further, 4 

it provides evidence that there is also a clear, highly statistically significant role in the 5 

model for first-difference CO2. 6 

 7 

 8 

4.1.4  Granger causality analysis 9 

 10 

 We now can turn to assessing if first-difference atmospheric CO2 may not only 11 

correlate with, but also contribute causatively to, global surface temperature. This is 12 

done by means of Granger causality analysis. 13 

 14 

Recalling that both TEMP and FIRST-DIFFERENCE CO2 are stationary, it is 15 

appropriate to test the null hypothesis of no Granger causality from FIRST-16 

DIFFERENCE CO2 to TEMP by using a standard Vector Autoregressive (VAR) 17 

model without any transformations to the data. The Akaike Information Criterion 18 

(AIC) and the Schwartz Information Criterion (SIC) were used to select an optimal 19 

maximum lag length (k) for the variables in the VAR. This lag length was then 20 

lengthened, if necessary, to ensure that:  21 

 22 

(i)  The estimated model was dynamically stable (i.e., all of the inverted roots 23 

of the characteristic equation lie inside the unit circle);  24 

(ii)  The errors of the equations were serially independent.  25 

 26 

 27 

The relevant EViews output from the VAR model is entitled VAR Granger 28 

Causality/Block Exogeneity Wald Tests and documents the following summary 29 

results – Wald Statistic (p-value): Null is there is No Granger Causality from FIRST-30 

DIFFERENCE CO2 to TEMP; Number of lags K=4; Chi-Square 26.684 (p-value = 31 

0.000). A p-value of this level is highly statistically significant and means the null 32 

hypothesis of No Granger Causality is very strongly rejected. That is, over the period 33 

studied there is strong evidence that FIRST-DIFFERENCE CO2 Granger-causes 34 

TEMP. 35 



 36 

 1 

. We recognise that as temperature is stationary, while CO2 is not, these two variables 2 

cannot correlate in the usual sense. However, given that Granger non-causality tests 3 

can have low power due to the presence of lagged dependent variables, it is sensible 4 

to seek support, or confirmation, for the result just discussed. This can be done by 5 

testing for Granger non-causality between the levels of CO2 and TEMP. In this case, 6 

the testing procedure must be modified to allow for the differences in the orders of 7 

integration of the data series. 8 

 9 

Once again, the levels of both series are used. For each VAR model, the maximum lag 10 

length (k) is determined, but then one additional lagged value of both TEMP and CO2 11 

is included in each equation of the VAR. However, the Wald test for Granger non-12 

causality is applied only to the coefficients of the original k lags of CO2. Toda and 13 

Yamamoto (1995) show that this modified Wald test statistic will still have an 14 

asymptotic distribution that is chi-square, even though the level of CO2 is non-15 

stationary. Here the relevant Wald Statistic (p-value): Null is there is No Granger 16 

Causality from level of CO2 to TEMP; Number of lags K= 4; Chi-Square 2.531 (p-17 

value = 0.470) . The lack of statistical significance indicated by  the p-value is strong 18 

confirmation that level of CO2 does not Granger-cause TEMP. 19 

 20 

With the above two assessments done, it is significant that with regard to global 21 

surface temperature we are able to discount causality involving the level of CO2, but 22 

establish causality involving first-difference CO2. 23 

 24 

 25 

4.2 Relationship between second-difference CO2 and temperature and 26 

Southern Oscillation Index  27 

 28 

4.2.1 Priority and correspondence 29 
 30 

Given the results of this exploration of correlations involving first-difference 31 

atmospheric CO2, the possibility of the correlation of second-difference CO2 with 32 

climate variables is also explored. The climate variables assessed are global surface 33 

temperature and the Southern Oscillation Index (SOI). In this section, data is from the 34 

full period for which monthly instrumental CO2 data is available, 1958 to the present. 35 

For this period, the series neither led nor lagged appear as follows (Figure 6). For the 36 
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 37 

purpose of this figure, to facilitate depiction of trajectory, second-difference CO2 (left 1 

axis) and SOI (right axis) are offset so that all four curves display a similar origin in 2 

1960.  3 

 4 

Figure 6 shows that, alongside the close similarity between first-difference CO2 and 5 

temperature already demonstrated, there is a second apparent distinctive pairing 6 

between second-difference CO2 and SOI. The figure shows that the overall trend, 7 

amplitude and phase – the signature – of each pair of curves is both matched within 8 

each pair and different from the other pair. The remarkable sorting of the four curves 9 

into two groups is readily apparent. Each pair of results provides context for the other 10 

– and highlights the different nature of the other pair of results. 11 

 12 

 13 

Recalling that (even uncorrected for any autocorrelation) correlational data still holds 14 

information concerning regression coefficients, we initially use OLS correlations 15 

without assessing autocorrelation to provide descriptive statistics. Table 5 includes, 16 

without any phase-shifting to maximise fit, the six pairwise correlations arising from 17 

all possible combinations of the four variables other than with themselves.  Here it can 18 

be seen that the two highest correlation coefficients (in bold in the table) are firstly 19 

between first-difference CO2 and temperature, and secondly between second-20 

difference CO2 and SOI.   21 

 22 

In Table 6, phase shifting has been carried out to maximise fit (shifts shown in 23 

variable titles in the table). This results in an even higher correlation coefficient for 24 

second-difference CO2 and SOI. 25 

 26 

 27 

The link between all three variable realms – CO2, SOI and temperature – can be 28 

further observed in Figure 7 and Table 7. Figure 7 shows SOI, second-difference 29 

atmospheric CO2 and first-difference temperature, each of the latter two series phase-30 

shifted for maximum correlation with SOI (as in Table 5). Looking at priority, Table 6 31 

shows that maximum correlation occurs when second-difference CO2 leads SOI.  It is 32 

also noted that the correlation coefficients for the correlations between the curves 33 

shown in Table 6 have all converged in value compared to those shown in Table 5.  34 

 35 



 38 

Looking at the differences between the curves shown in Figure 7, two of the major 1 

departures between the curves coincide with volcanic aerosols – from the El Chichon 2 

volcanic eruption in 1982 and the Pinatubo eruption in 1992 (Lean and Rind 2009). 3 

With these volcanism-related factors taken into account, it is notable (when expressed 4 

in the form of the transformations in Figure 7) that the signatures of all three curves 5 

are so essentially similar that it is almost as if all three curves are different versions of 6 

– or responses to – the same initial signal.  7 

So, a case can be made that first- and second-difference CO2 and temperature and SOI 8 

respectively are all different aspects of the same process. 9 

 10 

 11 

 12 

4.2.2  Time series analysis 13 
 14 

We now assess more formally the relationship between second-difference CO2 and 15 

SOI. As for first-difference CO2 and temperature above, stationarity has been 16 

established. Again, there is statistically significant autocorrelation at lags of one and 17 

two months, leading to an overall Breusch-Godfrey Test statistic (LMF) of 126.9, 18 

with p-value = P(F(12,626) > 126.901) = 1.06 x 10
-158

.  19 

Table 8 shows the results of a dynamic model with the dependent variable used at 20 

each of the two lags as further independent variables; there is now no statistically 21 

significant autocorrelation which has not been accounted for. 22 

 23 

As Table 8 shows, a highly statistically significant model has been established.  As for 24 

temperature, it shows that the SOI in a given period is strongly influenced by the SOI 25 

of closely preceding periods.  Again as for temperature, it provides evidence that there 26 

is a clear role in the model for second-difference CO2. 27 

With this established, it is noted that while the length of series in the foregoing 28 

analysis was limited by the start date of the atmospheric CO2 series (January 1958), 29 

high temporal resolution (monthly) SOI goes back considerably further, to 1877. This 30 

long period SOI series (for background see Troup (1965)) is that provided by the 31 

Australian Bureau of Meteorology, sourced here from the Science Delivery Division 32 

of the Department of Science, Information Technology, Innovation and the Arts, 33 

Queensland, Australia. As equivalent temperature data is also available (the global 34 

surface temperature series already used above (HadCRUT4) goes back as far as 35 



 39 

1850), these two longer series are now plotted in Figure 8. Notable is the continuation 1 

of the striking similarity between the two signatures already shown in Figure 7 over 2 

this longer period.  3 

 4 
Turning to regression analysis, as previously the Breusch-Godfrey procedure shows 5 

that, for lags up to lag 12, the majority of autocorrelation is again restricted to the first 6 

two lags. Table 9 shows the results of a dynamic model with the dependent variable 7 

used at each of the two lags as further independent variables. 8 

 9 

In comparison with Table 8, the extended time series modelled in Table 9 shows a 10 

remarkably similar R-squared statistic: 0.466 compared with 0.477.  By contrast, the 11 

partial regression coefficient for second-difference CO2 has increased, to 0.14 12 

compared with 0.077. It is beyond the scope of this study, but the relationship of SOI 13 

and second-difference CO2 means it is now possible to produce a proxy for monthly 14 

atmospheric CO2 from 1877 – a date approximately 75 years prior to the start of the 15 

CO2 monthly instrumental record in January 1958.  16 

 17 

 18 

4.2.3   Granger causality analysis 19 

 20 

This section assesses whether second-difference CO2 can be considered to Granger- 21 

cause SOI. This assessment is carried out using data for the period 1959 to 2012.  22 

 23 

Results of stationarity tests for each series are given in Table 10. Each series is shown 24 

to be stationary. These results imply that we can approach the issue of possible 25 

Granger causality by using a conventional VAR model, in the levels of the data, with 26 

no need to use a "modified" Wald test (as used in the Toda and Yamamoto (1995) 27 

methodology). 28 

 29 

Simple OLS regressions of SOI against separate lagged values of second-difference 30 

CO2 (including an intercept) confirm the finding that the highest correlation is when a 31 

two-period lag is used. 32 
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 1 

 A 2-equation VAR model is needed for reverse-sign SOI and second-difference CO2. 2 

Using SIC, the optimal maximum lag length is found to be 2 lags. When the VAR 3 

model is estimated with this lag structure (Table 11), testing the null hypothesis that 4 

there is no serial correlation at lag order h, shows that there is evidence of 5 

autocorrelation in the residuals. 6 

 7 

This suggests that the maximum lag length for the variables needs to be increased. 8 

The best results (in terms of lack of autocorrelation) were found when the maximum 9 

lag length is 3. (Beyond this value, the autocorrelation results deteriorated 10 

substantially, but the conclusions below, regarding Granger causality, were not 11 

altered.) 12 

 13 

Table 12 shows that the preferred, 3-lag model, still suffers a little from 14 

autocorrelation. However, as we have a relatively large sample size, this will not 15 

impact adversely on the Wald test for Granger causality. 16 

 17 

The relevant EViews output from the VAR model is entitled VAR Granger 18 

Causality/Block Exogeneity Wald Tests and documents the following summary 19 

results – Wald Statistic (p-value): Null is there is No Granger Causality from second-20 

difference CO2 to sign-reversed SOI; Chi-Square 22.554 (p-value = 0.0001).  21 

The forgoing Wald statistic shows that the null hypothesis is strongly rejected – in 22 

other words, there is very strong evidence of Granger Causality from second-23 

difference CO2 to sign-reversed SOI. 24 

 25 

 26 

 27 

4.3 Paleoclimate data 28 

 29 

So far, the time period considered in this study has been pushed back in the 30 

instrumental data realm to 1877.  If non-instrumental paleoclimate proxy sources are 31 

used, CO2 data now at annual frequency can be taken further back. The following 32 

example uses CO2 and temperature data. The temperature reconstruction used here 33 

commences in 1500 and is that of Frisia et al. (2003), derived from annually 34 
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laminated speliothem (stalagmite) records.  A second temperature record (Moberg et 1 

al. 2005) is from tree ring data. The atmospheric CO2 record (Robertson et al. 2001) is 2 

from fossil air trapped in ice cores and from instrumental measurements. The trends 3 

for these series are shown in Figure 9. 4 

 5 

Visual inspection of the figure shows that there is a strong overall likeness in 6 

signature between the two temperature series, and between them and first-difference 7 

CO2. The similarity of signature is notably less with level of CO2.  It can be shown 8 

that level of CO2 is not stationary and, even with the two other series which are 9 

stationary, the strongly smoothed nature of the temperature data makes removal of the 10 

autocorrelation impossible. Nonetheless, noting that data uncorrected for 11 

autocorrelation still provides valid correlations (Greene 2012) – only the statistical 12 

significance is uncertain – it is simply noted that first-difference CO2 displays a better 13 

correlation with temperature than level of CO2 for each temperature series (Table 13). 14 

 15 

 16 

 17 

4.4  Normalized Difference Vegetation Index (NDVI) 18 

 19 

Using the Normalized Difference Vegetation Index (NDVI) time series as a measure 20 

of the activity of the land biosphere, this section now investigates the land biosphere 21 

as a candidate mechanism for the issue, identified in the Introduction, of the 22 

increasing difference between the observed global surface temperature trend and that 23 

suggested by general circulation climate models. 24 

 25 

The trend in the terrestrial CO2 sink is estimated annually as part of the assessment of 26 

the well-known global carbon budget (Le Quere at al. 2014).  It is noted that there is a 27 

risk of circular argument concerning correlations between the terrestrial CO2 sink and 28 

interannual (first-difference) CO2 because the terrestrial CO2 sink is defined as the 29 

residual of the global carbon budget (Le Quere at al. 2014). By contrast, the 30 

Normalized Difference Vegetation Index (NDVI) involves direct (satellite-derived) 31 

measurement of terrestrial plant activity. For this reason and because, of the two 32 

series, only NDVI is provided in monthly form, we will use only NDVI in what 33 

follows.  34 
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 1 

 2 

4.4.1. Preparation of the global NDVI series used in this paper 3 

 4 

Globally aggregated GIMMS NDVI data from the Global Land Cover Facility site is 5 

available from 1980 to 2006. This dataset is referred to here as NDVIG. Spatially 6 

disaggregated GIMMS NDVI data from the GLCF site is available from 1980 to the 7 

end of 2013. An analogous global aggregation of this spatially disaggregated GIMMS 8 

NDVI data – from 1985 to end 2013 – was obtained from the Institute of Surveying, 9 

Remote Sensing and Land Information, University of Natural Resources and Life 10 

Sciences, Vienna. This dataset is abbreviated to NDVIV. 11 

 12 

Pooling the two series enabled the longest time span of data aggregated at global 13 

level. The two series were pooled as follows. Figure 10 shows the appearance of the 14 

two series. Each series is Z-scored by the same common period of overlap (1985-15 

2006). The extensive period of overlap can be seen, as can the close similarity in trend 16 

between the two series. The figure also shows that the seasonal adjustment 17 

smoothings vary between the two series. Seasonality was removed for the NDVIV 18 

series using the 13 month moving average smoothing used throughout this paper. This 19 

required two passes using the 13 month moving average, which leads to a smoother 20 

result than seen for the NDVIG series. 21 

 22 

Pretis and Hendry (2013) observe that pooling data (i) from very different 23 

measurement systems and (ii) displaying different behaviour in the sub-samples can 24 

lead to errors in the estimation of the level of integration of the pooled series. 25 

 26 

The first risk of error (from differences in measurement systems) is overcome here as 27 

both the NDVI series are from the same original disaggregated data set. The risk 28 

associated with the sub-samples displaying different behaviour and leading to errors 29 

in levels of integration is considered in the following section by assessing the order of 30 

each input series separately, and then the order of the pooled series. 31 

 32 

Table 14 provides order of integration test results for the three NDVI series. The 33 

analysis shows all series are stationary (I(0)). It is, therefore, valid to pool the two 34 
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series. Pooling was done by appending the Z-scored NDVIV data to the Z-scored 1 

NDVIG data at the point where the Z-scored NDVIG data ended (in the last month of 2 

2006). 3 

 4 

As discussed in the Introduction, Figure 1 shows that since around the year 2000 there 5 

is an increasing difference between the temperature projected by a mid-level IPCC 6 

model and that observed. Any cause for this increasing difference must itself show an 7 

increase in activity over this period. 8 

 9 

The purpose of this section is, therefore: (i) to derive an initial simple indicative 10 

quantification of the increasing difference between the temperature model and 11 

observation; and (ii) to assess whether global NDVI is increasing. If NDVI is 12 

increasing, this is support for NDVI being a candidate for the cause of the temperature 13 

model-observation difference.  If there is a statistically significant relationship 14 

between the two increases, this is further support for NDVI being a candidate for the 15 

cause of the model-observation difference, and hence worthy of further detailed 16 

research. A full analysis of this question is beyond the scope of the present paper.  17 

 18 

 19 

4.4.2 Preparation of the indicative series for the difference between the 20 

temperature projected from a mid-level IPCC model and that observed 21 

 22 

A simple quantification of the difference between the temperature projected from a 23 

mid-level IPCC model and that observed can be derived by subtracting the (Z-scored) 24 

temperature projected from the IPCC mid-range scenario model (CMIP3, SRESA1B 25 

scenario run for the IPCC fourth assessment report (IPCC 2007)) shown in Figure 1, 26 

from the observed global surface temperature also shown in Figure 1. This 27 

quantification is depicted in Figure 13 for monthly data and, to reduce the influence of 28 

noise and seasonality, in Figure 14 for the same data pooled into three-year bins. 29 

 30 

4.4.3. Comparison of the pooled NDVI series with the difference between 31 

projected and observed global surface temperature 32 

 33 

 34 
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Figure 13, displaying monthly data, compares NDVI with the difference between the 1 

temperature projected from an IPCC mid-range scenario model (CMIP3, SRESA1B 2 

scenario run for the IPPC fourth assessment report (IPCC 2007)) and global surface 3 

temperature (red dotted curve). Both curves rise in more recent years. 4 

 5 

The trends for the 36-month pooled data in Figure 14 show considerable 6 

commonality. OLS regression analysis of the relationship between the curves in 7 

Figure 14 shows that the best fit between the curves involves no lead or lag. The 8 

correlation between the curves displays an adjusted R-squared value of 0.86. This is 9 

statistically significant (p = 0.00185). As expected with such aggregated multi-year 10 

data, the relationship shows little or no autocorrelation (Test statistic: LMF = 1.59 11 

with p-value = P(F(5,3) > 1.59) = 0.37). The similarity between the trend in the NDVI 12 

and the difference between IPCC temperature modelling and observed temperature is 13 

evidence supporting the possibility that the NDVI may contribute to the observed 14 

global surface temperature departing from the IPCC modelling. 15 

 16 

 17 

 18 

5  Discussion  19 

 20 

 21 

The results in this paper show that there are clear links – at the highest standard of 22 

non-experimental causality — that of Granger causality — between first- and second-23 

difference CO2 and the major climate variables of global surface temperature and the 24 

Southern Oscillation Index, respectively.  25 

 26 

Relationships between first- and second-difference CO2 and climate variables are 27 

present for all the time scales studied, including temporal start points situated as long 28 

ago as 1500. In the instances where time series analysis accounting for autocorrelation 29 

could be successfully conducted, the results were always statistically significant. For 30 

the further instances (for those studies using data series commencing before 1877) the 31 

data was not amenable to time series analysis –  and therefore also not amenable to 32 

testing for Granger causality –  due to the strongly smoothed nature of the temperature 33 

data available which made removal of the autocorrelation impossible (see Section 34 

4.3). Nonetheless, the scale of the non-corrected correlations observed was of the 35 
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same order of magnitude as those of the instances that were able to be corrected for 1 

autocorrelation.  2 

 3 

Given the time scales over which these effects are observed, the results taken as a 4 

whole clearly suggest that the mechanism observed is long term, and not, for example, 5 

a creation of the period of the steepest increase in anthropogenic CO2 emissions, a 6 

period which commenced in the 1950s (IPCC 2014). 7 

Taking autocorrelation fully into account in the time series analyses demonstrates the 8 

major role of immediate past instances of the dependent variable (temperature, and 9 

SOI) in influencing its own present state. This was found in all cases where time 10 

series models could be prepared.  This was not to detract from the role of first- and 11 

second-difference CO2 – in all relevant cases, they were significant in the models as 12 

well.  13 

 14 

According to Wilks (1995) and Mudelsee (2010), such autocorrelation  in the 15 

atmospheric sciences also called persistence or “memory”  is characteristic for many 16 

types of climatic fluctuations.  17 

 18 

In the specific case of the temperature and first-difference  CO2 relationship, the 19 

significant autocorrelation for temperature occurred with present temperature being 20 

affected by the immediately prior month and the month before that. As mentioned 21 

above, for atmospheric CO2 and global surface temperature, others (Sun and Wang 22 

1996; Triacca 2005; Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio 2012; 23 

Stern and Kaufmann 2014) have conducted Granger causality analyses involving the 24 

use of lags of both dependent and independent variables. These studies, however, are 25 

not directly comparable with the present study. Firstly, while reporting the presence or 26 

absence of Granger causality, the studies did not report lead or lag information. 27 

Secondly, the studies used annual data, so could not investigate the dynamics of the 28 

relationships at the interannual (monthly) level where our findings were greatest. 29 

 30 

 The anthropogenic global warming (AGW) hypothesis has two main dimensions 31 

(IPCC 2007; Pierrehumbert 2011): (i) that increasing CO2 causes increasing 32 

atmospheric temperature (via a radiative forcing mechanism) and (ii) that most of the 33 

increase in atmospheric CO2 in the last hundred years has been due to human causes - 34 
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causes - a result of accelerated release of CO2 from the burning of fossil fuels. The 1 

evidence for this (Levin and Heisshamer, 2000) comes from the analysis of changes in 2 

the proportion of carbon isotopes in tree rings from the past two centuries.  3 

 4 

 5 

The results presented in this paper are supportive of the AGW hypothesis for two 6 

reasons: firstly, increasing atmospheric CO2 is shown to drive increasing temperature; 7 

and secondly, the results deepen the evidence for a CO2 influence on climate in that 8 

second-difference CO2 is shown to drive the SOI. 9 

 10 

The difference between this evidence for the effect of CO2 on climate and that of the 11 

standard AGW hypothesis is that from the majority of GCM simulations  is that in the 12 

simulations the temperature rises roughly linearly with atmospheric CO2, whereas the 13 

present results show that the climate effects result from persistence of previous effects 14 

and from change in the level of  CO2.  15 

 16 

On the face of it, then, this model seems to leave little room for the linear radiative 17 

forcing aspect of the AGW hypothesis. 18 

 19 

However more research is needed in this area. 20 

 21 

Reflection on Figure 1 shows that the radiative mechanism would be supported if a 22 

second mechanism existed to cause the difference between the temperature projected 23 

for the radiative mechanism and the temperature observed. The observed temperature 24 

would then be seen to result from the addition of the effects of these two mechanisms. 25 

 26 

As discussed in the Introduction, Hansen et al. (2013) have suggested that the 27 

mechanism for the pause in the global temperature increase since 1998 may be the 28 

planetary biota, in particular the terrestrial biosphere. As an initial indicative 29 

quantified characterisation of this possibility, Section 4.4 derived a simple measure of 30 

the increasing difference between the global surface temperature trend projected from 31 

a mid-range scenario climate model and the observed trend. This depiction of the 32 

difference displayed a rising trend.  The time series trend for the globally aggregated 33 

Normalized Difference Vegetation Index – which represents the changing levels of 34 
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activity of the terrestrial biosphere  was also presented.  This was shown also to 1 

display a rising trend.  2 

 3 

If by further research, for example by Granger causality analysis, the global 4 

vegetation can be shown to embody the second mechanism, this would be evidence 5 

that the observed global temperature does result from the effects of two mechanisms 6 

in operation together – the radiative, level-of-CO2 mechanism, with the biological 7 

first-difference of CO2 mechanism. 8 

 9 

Hence the biosphere mechanism would supplement, rather than replace, the radiative 10 

mechanism. 11 

 12 

Further comprehensive time series analysis of the NDVI data and relevant climate 13 

data, beyond the scope of the present paper, could throw light on these questions. 14 

 15 

 16 
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 1 

Table 1. Lag of first-difference CO2 relative to surface temperature series for global, 2 

tropical, northern hemisphere and southern hemisphere categories 3 

 4 

 5 

  

Lag in 
months of 
first-
difference 
CO2 relative 
to global 
surface 
temperature 
category 

Hadcrut4SH -1 

Hadcrut4Trop -1 

Hadcrut4_nh -3 

Hadcrut4Glob -2 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table 2.  Lag of FIRST-DIFFERENCE CO2 relative to surface temperature series for 1 

global, tropical, northern hemisphere and southern hemisphere categories, each for 2 

three time-series sub-periods 3 

Temperature 
category 

Time 
period 

Lag of first-
difference 
CO2 relative 
to global 
surface 
temperature 
series 

NH 
1959.87 to 
1976.46 -6 

NH 

1976.54 to 
1993.21 -6 

Global 
1959.87 to 
1976.46 -4 

SH 
1959.87 to 
1976.46 -3 

Global 

1976.54 to 
1993.21 -2 

Tropical 
1959.87 to 
1976.46 0 

Tropical 

1976.54 to 
1993.21 0 

Tropical 
1993.29 - 
2012.37 0 

Global 
1993.29 - 
2012.37 0 

NH 
1993.29 - 
2012.37 0 

SH 

1976.54 to 
1993.21 0 

SH 
1993.29 - 
2012.37 0 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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 1 

 2 

Table 3. Augmented Dickey–Fuller (ADF) test for tests for unit roots stationarity in 3 

both monthly and annual data 1969 to 2012 for, level of atmospheric CO2, first-4 

difference CO2 and global surface temperature 5 

 6 

 Monthly data Annual data 

  
ADF 
statistic* p-value 

Order of 
integration 

Test 
interpret-
ation 

ADF 
statistic* 

p-
value 

Order of 
integration 

Test 
interpret-
ation 

Level of 
CO2 -0.956 0.9481 I(1) 

Non-
stationary  -0.309 0.991 I(1) 

Non-
stationary  

First-
Difference 
CO2 -17.103 

5.72 E-
54 I(0) Stationary  -4.319 0.003 I(0) Stationary  

Temp -5.115 0.00011 I(0) Stationary  -3.748 0.019 I(0) Stationary  

  * The Dickey-Fuller regressions allowed for both drift and trend; the augmentation level  7 
       was chosen by minimizing the Schwarz Information Criterion. 8 

 9 

 10 

Table 4.  OLS dynamic regression between first-difference atmospheric CO2 and 11 

global surface temperature for monthly data for the period 1959 - 2012, with 12 

autocorrelation taken into account  13 
 14 

Independent  
variable/s [1] 

Dep-
endent 
variable 
[1] 

Independent 
variable 
regression 
coefficients 

Indep-
endent 
variable 
P-value 

Whole 
model 
adjusted 
R-
squared 

Whole 
model 
P-value 

LM test 
for 
autocorr-
elation [2] 

Led2mx13mma 
1stderiv CO2 TEMP 0.097 <0.00001 0.861 

6.70E-
273 0.144 

Led1mTEMP   0.565 <0.00001       

Led2mTEMP   0.306 <0.00001       

[1] Z-scored       15 
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation  16 
 17 

 18 

 19 

 20 

 21 
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Table 5. Pairwise correlations (correlation coefficients (R)) between selected climate 1 

variables  2 

 3 

  

2x13mmafirstderiv 

CO2 Hadcrut4Global 3x13mma2ndderivCO2 

Hadcrut4Global 0.7 1   

3x13mma2ndderivCO2 0.06 -0.05 1 

13mmaReverseSOI 0.25 0.14 0.37 

 4 

 5 

 6 

Table 6. Pairwise correlations (correlation coefficients (R)) between selected climate 7 

variables, phase-shifted as shown in the table   8 

 9 

  Led2m2x13mmafirstderivCO2 Hadcrut4Global Led4m3x13mma2ndderivCO2 

Hadcrut4Global 0.71 1   

Led4m3x13mma2nddiffCO2 0.23 0.09 1 

13mmaReverseSOI 0.16 0.14 0.49 

 10 

 11 

Table 7. Pairwise correlations (correlation coefficients (R)) between selected climate 12 

variables, phase-shifted as shown in the table   13 

 14 

  ZLed2m2x13mma2ndderivCO2 ZReverseSOI 

ZReverseSOI 
 0.28 1.00 

ZLed3m13mmafirstdiffhadcrut4global 0.35 0.41 

 15 

 16 

Table 8.  OLS dynamic regression between second-difference atmospheric CO2 and 17 

reversed Southern Oscillation Index for monthly data for the period 1959 - 2012, with 18 

autocorrelation taken into account  19 
 20 

Independent  
variable/s [1] 

Dep-
endent 
variable [1] 

Independent 
variable 
regression 
coefficients 

Indep-
endent 
variable 
P-value 

Whole 
model 
adjusted 
R-
squared 

Whole 
model 
P-value 

LM test 
for 
autocorr-
elation [2] 

Led3m2x13mma 
1stderivCO2 ReverseSOI 0.07699 <0.011 0.478 

1.80E-
89 0.214 

Led1mReverseSOI   0.456 <0.00001       

Led2mreverseSOI   0.272 <0.00001       

[1] Z-scored       21 
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation  22 
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Table 9.  OLS dynamic regression between first-difference global surface temperature 1 

and reversed Southern Oscillation Index for monthly data for the period 1877-2012, 2 

with autocorrelation taken into account  3 
 4 

Indep-endent  variable/s 
[1] 

Dep-
endent 
variable [1] 

Independent 
variable 
regression 
coefficients 

Indep-
endent 
variable 
P-value 

Whole 
model 
adjusted 
R-
squared 

Whole 
model 
P-value 

LM test 
for 
autocorr-
elation [2] 

Led3m12mma1stdiffTEMP 
 ReverseSOI 0.140 <0.00001 0.466 

3.80E-
221 0.202 

Led1mReverseSOI   0.465 <0.00001       

Led2mReverseSOI   0.210 <0.00001       

[1] Z-scored       5 
[2] Whole model: LM test for autocorrelation up to order 3 - Null hypothesis: no autocorrelation  6 
 7 

 8 

 9 

 10 

Table 10: Augmented Dickey–Fuller (ADF) test for stationarity for monthly data 11 

1959 to 2012 for second-difference CO2 and sign-reversed SOI 12 

 13 

 14 

  ADF statistic p-value Test interpretation 

Second-
difference 
CO2 -10.077 0.000 Stationary 

Sign-
reversed SOI -6.681 0.000 Stationary 

 15 

 16 

Table 11. VAR Residual Serial Correlation LM Tests component of Granger 17 

causality testing of relationship between second-difference CO2 and SOI. Initial 2-lag 18 

model 19 

 20 

Lag order LM-Stat P-value* 

1 10.62829 0.0311 

2 9.71675 0.0455 

3 2.948737 0.5664 

4 9.711391 0.0456 

5 10.67019 0.0305 

6 37.13915 0 

7 1.268093 0.8668 

*P-values from chi-square with 4 df.  

 21 
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Table 12. VAR Residual Serial Correlation LM Tests component of Granger 1 

causality testing of relationship between second-difference CO2 and SOI. Preferred 3-2 

lag model 3 

 4 

Lag order LM-Stat P-value* 

1 1.474929 0.8311 

2 4.244414 0.3739 

3 2.803332 0.5913 

4 13.0369 0.0111 

5 8.365221 0.0791 

6 40.15417 0 

7 1.698265 0.791 

*P-values from chi-square with 4 df.  
 5 
 6 
Table 13.  Correlations (R) between paleoclimate CO2 and temperature estimates 7 

1500-1940 8 

  
Temperature 
(speliothem) 

Temperature 
(tree ring) 

Level of CO2 (ice 
core) 0.369 0.623 

1st diff. CO2 (ice core) 0.558 0.721 

 9 

 10 

 11 
Table 14. Order of integration test results for NDVI series for monthly data from 12 

1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal 13 

maximum lag length in the tests.   14 

 15 

NDVI 
Series Null Hypothesis: the series has a unit root 

Probability 
of unit 
root 

NDVIV 
Lag Length: 16 (Automatic - based on SIC, 
maxlag=16)  0.0122 

NDVIG Lag Length: 1 (Automatic - based on SIC, maxlag=15) 7.23e-14  

NDVIGV Lag Length: 1 (Automatic - based on SIC, maxlag=16) 4.18E-16 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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 1 

 2 
Figure 1. Monthly data, Z scored to aid visual comparison (see Sect. 1). To show their 3 

core trends for illustrative purposes the four series are fitted with 6th order 4 

polynomials. Shown are: the output of an IPCC mid-range scenario model (CMIP5, 5 

RCP4.5 scenario) run for the IPPC fifth assessment report (IPCC 2014) (black 6 

curve)(polynomial fit (pn): red curve). Global surface temperature datasets: 7 

HadCRUT4 (purple curve) (pn: blue curve); Cowtan and Way (2014) (green curve) 8 

(pn: light green curve); Karl et al. (2015) (aquamarine curve) (pn: brown curve). 9 
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 1 

 2 
Figure 2. Z scored monthly data: global surface temperature (green dashed curve) 3 

compared to an IPCC mid-range scenario global climate model (GCM) – the CMIP3, 4 

SRESA1B scenario  run for the IPCC fourth assessment report (IPCC 2007) (blue 5 

curve) and also showing the trend in first-difference atmospheric CO2 (smoothed by 6 

two 13 month moving averages) (red dotted curve). To show their core trends for 7 

illustrative purposes the three series are fitted with 5th order polynomials. 8 
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 1 
Figure 3.  Z scored monthly data: global surface temperature (red curve) compared to 2 

first-difference atmospheric CO2 smoothed by two 13 month moving averages (black 3 

dotted curve). 4 
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 1 

 2 

Figure 4. Correlograms of first-difference CO2 with surface temperature for global 3 

(turquoise curve with crosses), tropical (blue curve with triangles), Northern 4 

Hemisphere (purple curve with boxes) and Southern Hemisphere (black curve with 5 

diamonds) categories 6 
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Figure 5. Correlograms of first-difference CO2 with surface temperature for global, 11 

tropical, Northern Hemisphere and Southern Hemisphere categories, each for three 12 

time-series sub-periods. 13 
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 1 

 2 

 3 

Figure 6. Z scored monthly data: global surface temperature (red curve) and first-4 

difference atmospheric CO2 smoothed by two 13 month moving averages (black 5 

dotted curve ) (left-hand scale); sign-reversed SOI smoothed by a 13 month moving 6 

average (blue dashed curve) and second-difference atmospheric CO2 smoothed by 7 

three 13 month moving averages (green barred curve) (right-hand scale) 8 
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Figure 7.  Z scored monthly data from 1960 to 2012: sign-reversed SOI (unsmoothed 12 

and neither led nor lagged) (dotted black curve); second-difference CO2 smoothed by 13 

a 13 month × 13 month moving average and led relative to SOI by 2 months (green 14 

dashed curve ); and first-difference global surface temperature smoothed by a 13 15 

month moving average and led by 3 months (red curve). 16 
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Figure 8. Z scored monthly data from 1877 to 2012: sign-reversed SOI (unsmoothed 4 

and neither led nor lagged) (red curve); and first-difference global surface temperature 5 

smoothed by a 13 month moving average and led relative to SOI by 3 months (black 6 

dotted curve) 7 
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Figure 9. Z scored annual data: paleoclimate time series from 1500: ice core level of 3 

CO2 (blue curve), level of CO2  transformed into first-difference form (green barred 4 

curve); and temperature from speliothem (red dashed curve) and tree ring data (black 5 

boxed curve). 6 
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Figure 10:  Z scored monthly data: NDVIG (black dotted curve) compared to NDVIV 12 

(red curve). 13 
 14 
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Figure 13.  Z scored monthly data: NDVI (black curve) compared to the difference 3 

between the temperature projected from an IPCC mid-range scenario model (CMIP3, 4 

SRESA1B scenario) run for the IPPC fourth assessment report (IPCC 2007) and 5 

global surface temperature (red dotted curve). 6 
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Figure 14.  Z scored data for periods each of 36 months, averaged: NDVI (black 13 

curve) compared to the difference between the temperature projected from an IPCC 14 

mid-range scenario model (CMIP3, SRESA1B scenario) run for the IPPC fourth 15 

assessment report (IPCC 2007) and global surface temperature (red dotted curve). 16 
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