1	
2	Response to Referee Report of 7 May 2015
3	
4	L. M. W. Leggett and D. A. Ball*
5	*Global Risk Policy Group Pty Ltd, Townsville, Queensland, Australia
6 7	
8	
9	Abstract
10	
11	Response to Referee Report of 7 May 2015 on amended manuscript of 8 April 2015 "First and assend derivative straggeboric CO ₂ , slobal surfaces terms and ENSO"
12 13	"First and second derivative atmospheric CO ₂ , global surface temperature and ENSO".
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	

3

6

8

1 Overall Response

4 The referee's comments are again valued and we have attempted to follow up the 5 points raised we hope to some degree comprehensively.

- 7 In our response we first provide the referee's comments in their entirety (pages 2 to 5).
- 9 We then (from page 5 onward) provide our responses to individual comments

10 2 Referee's Comments

- 11 Referee's comments on
- 12 "Granger causality from the first and second derivatives of atmospheric CO2 to
- 13 global surface temperature, ENSO and NDVI"
- 14 By L. M. W. Leggett and D. A. Ball
- 15

16 This is a rather different paper from the first version on which I have commented for

17 ACP. It is much longer and there is a complete new section dealing with "NDVI",

18 whose relationship with the second difference of CO₂ concentration is investigated.

19

My views are mixed. In principle these results are very interesting. In particular, the findings of various previous studies are re-iterated and confirmed, specifically that there is no relationship, in the relevant historical data, between surface temperature and the level of CO₂ concentration in the atmosphere, while a positive relation does exist between temperature and the difference of CO₂.

25

The significance of these facts (if they are facts) can hardly be underestimated, since they contradict the hypothesis on which (what we may call) "global warming alarmism" is predicated. , Evidently, the worst that *continuously* increasing CO₂ has

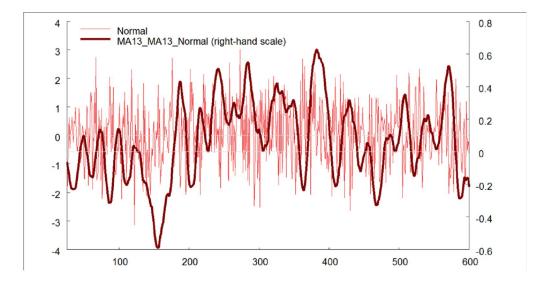
done is to raise temperature by a fixed amount, which observation suggest is pretty

small. If this pattern continues into the future it is, clearly, not an alarming prospect.
Does this finding place the authors among the "97% of scientists who believe in

anthropogenic global warming" (as President Obama and others have it) or the other

33 3%? I'm not clear about this, but these are interesting questions, to be sure.

34


35 The authors have developed their methodology with care, and their literature

36 references show that they have a good knowledge of the relevant econometrics and

time series literature. One can therefore put some faith in their empirical findings.

38 Nonetheless there are some aspects of their analysis that worry me, in particular the

- 39 "smoothing" of series by moving averages.
- 40

- 1 2
- 3
- 4

5 Note that although these are monthly series, smoothing is not the same thing as seasonal adjustment, and its effects on test outcomes are unclear. The attached plot, 6 7 which I've prepared, shows 600 independent Gaussian drawings, and also the series obtained by applying two successive 13-point moving average transformations to 8 these points. The time series properties of these two series can hardly be treated as 9 equivalent, especially for testing sensitive questions such as phase shifts of one or two 10 periods. In particular, the results of unit root tests are not going to be comparable. 11 Smoothing exaggerates stochastic trends by suppressing high frequency components. 12 I really don't think we can take tests based on these smoothed series at face value. 13

14

The authors must first explain coherently why they regard these transformations as necessary to the analysis. At best, they seem to be claiming that the effect is to make a nicer plot, which is hardly adequate. Second, if they convince at the first step they need to show the effects of their transformations by comparing their test results for the smoothed and unsmoothed series.

20

Something else that concerned me in these causality tests is that although the series in 21 question are being treated as stationary (acceptably in my view) there are still 22 "deterministic" upward drifts in the series. These need to be fitted separately from the 23 higher frequency components, to capture the required "constant conjunction" 24 specified in the definition of causality, and ensure that this is not spurious. (Note that 25 every linear trends is correlated with every other, by construction!) The regressions 26 ought to contain trend terms so that the data are, in effect, de-trended, before 27 correlations are computed. This does not appear to have been done, and it should be. 28 29 30 My third major comment concerns the new section on NDVI. Interesting correlations for sure (subject to the caveats above), but the discussion goes far out on a limb and is, 31 for my taste, unacceptably speculative. First, the series constructed as the difference 32 of standardized CO₂ and standardized temperature is a proxy for anything only by a 33 severe stretch of the imagination. Surely, GCMs must (at best) link temperature 34 projections to a particular fraction of projected CO₂. (See comment 10 below.) Even if 35 we accept the suggestion that GCM projections are linear in CO₂ concentration, the 36 37 simple difference between CO₂ and temperature may or may not capture (in the

"constant conjunction" sense) the true forecast discrepancy. Hence, the correlation 1 with NDVI is either interesting by chance, or spurious. I would need firmer evidence 2 to be convinced. The discussion in Section 5 reads like off-the-cuff theorising of the 3 most casual sort. Of course, there is ample evidence, supported by sound theory, for 4 the hypothesis that higher CO₂ concentrations are "greening" the planet. To that extent, 5 the authors have a good point. However, it seems to me that their model (involving 6 7 the second differences of CO₂, etc.) needs to be much more carefully derived and argued than it is at present. It's not good enough to simply report a curious correlation 8 and extrapolate from it a whole theory of the biosphere, This seems like blatant data 9 mining. 10 11 My suggestion to the authors is to subtract the section on NDVI, as ample material for 12 13 a new paper although a good deal of additional work is called for. Then, to redraft the first part of the paper taking note of the various comments offered here. 14 15 I recommend in particular that plots of the raw data series are shown in the paper, so 16 17 that the effects of the authors' manipulations can be judged (and also, ideally, the series be made available for download). 18 19 20 **Detailed** Comments 21 22 23 1. The paragraph in lines 19-25 on page 8 is incoherent. Please redraft. (There are various other places where the quality of exposition could be improved. Please redraft 24 with careful attention to readability.) 25 26 2. Lines 13-21 on page 9 are a reworking of the preceding paragraph. Please delete 27 whichever is the unintended version. 28 29 3. (Page 11, lines 26-27). The point about SOI versus ENSO could be better made. Is 30 "more valid" a better reason for the preference than "simpler"? It would be very 31 helpful to readers to give brief formal definitions of both these series. How is ENSO 32 constructed? I don't know. 33 34 4. (Page 12, lines 9 and 30) The use of the term "derivative" as a synonym for 35 "difference" is, to this reader, an irritating tic. "Derivative" suggests that the models 36 in question are discrete approximations to continuous time relations, but nowhere are 37 these relations specified or the approximations formalized. Indeed, the tests for 38 39 Granger causality, of the form given, could not be formalized at all in a continuous time framework! Let's be clear that the models presented here are explicitly 40 formulated for discrete sequences of observations. Differences, like lags, are an 41 42 inherent feature of these models, not approximations to anything. 43 5. (Page 13, lines 7-16) Please see the main discussion above. 44 45 6. There are lots of missing references in the paper. See in particular pages 13, lines 46 30-31, and 14, lines 4-6, but there are others. 47 48 49 7. (Page 15, lines 9-10) Note that BLUE is a property pertaining to the classical (fixed regressor) regression model, which is not appropriate to time series. 50

- 1 Autocorrelated disturbances may result in bias when the model includes lagged 2 endogenous variables among the regressors.
- 3
- 8. (Page 18) The discussion of the "I(*d*)" categorization of series on this page is totally
 muddled. Beenstock et al. find temperature to be I(1) and CO₂ (level) to be I(2).
 Please redraft with care.
- 7

9. The application of the Toda-Yamamoto result is most interesting, but it needs to be 8 seen in context. These authors propose tests for a VAR in levels with an unknown 9 number of unit roots. However, please note that in such a model, Granger causality of 10 an I(1) series by an I(2) series is ruled out by construction. A model generating 11 variables with different orders of integration can only embody long-run relations 12 13 between variables transformed to have the *same* orders of integration: in particular, between the level of an I(1) and the differences of an I(2), or between the level of an 14 I(0) and the differences of an I(1)). (To verify this statement, consider the VAR () AL15 x u_{tt} and verify the properties that= A L () must satisfy to ensure that A L ()₁₋ 16 -contains different powers of the factor 1 L appearing in different rows.) The outcome 17 of the reported test is inevitable, given the other reported results. I guess it does not 18 harm to report it, but with suitable caveats. 19

20

10. (Page 27, lines 11-13) The regression of (say) x - ay on z is clearly different for different choices of constant a. It could be significant (or cointegrated in the nonstationary case) for some value of a, and not for others. The case that the projection error of a GCM can be captured as the simple difference of the two standardized series needs to be much more carefully argued.

23 26

41

11. My guess is that "the APCD paper" referred to in Page 30, line 20, and elsewhere
refers to the first version of the present paper. If so, this needs to be made explicit.

30 3 Author Responses to Individual Comments

The comments are addressed as follows (specific Comments content quoted verbatim citing Comments page number and indented).

As they all relate to smoothing and seasonal adjustment we group the following points
 from the comments together and, for convenience for response, in the following order.
 Referee's comments page 1. Note that although these are monthly series,
 smoothing is not the same thing as seasonal adjustment...

- Page 2. The authors must first explain coherently why they regard these
 transformations as necessary to the analysis. At best, they seem to be claiming
 that the effect is to make a nicer plot, which is hardly adequate.
- 42 Page 1. ...(the) effects (of smoothing) on test outcomes are unclear.
- 43
 44 Page 2. ...especially for testing sensitive questions such as phase shifts of one
 45 or two periods.

1	
1	Page 2. In particular, the results of unit root tests are not going to be
2 3	comparable
4	comparable
4 5	Page 2. I recommend in particular that plots of the raw data series are shown
6	in the paper, so that the effects of the authors' manipulations can be judged
7	(and also, ideally, the series be made available for download).
8	(and also, recarry, the series be made available for download).
9	Page 2 they need to show the effects of their transformations by
10	comparing their test results for the smoothed and unsmoothed series.
11	comparing their test results for the smoothed and dismoothed series.
11	
12	Comment 5 from the initial review by the referee (C10403, 22 December
13	2014): The only legitimate way to conduct these kind of tests, where timing
14	shifts of one or two months is critical, is on the raw observations, where
15	extraneous data features such as seasonality have been accounted for by
16	effective modelling. This may be tricky, but in the case of a seasonal pattern it
17	might, for example, be effective to employ polynomial dummy variables to
18	explain seasonal changes
19	
20	Page 2. I really don't think we can take tests based on these smoothed series at
21	face value.
22	
23	Page 2especially for testing sensitive questions such as phase shifts of one
24	or two periods.
25	
26	Page 2. Smoothing exaggerates stochastic trends by suppressing high
27	frequency components.
28	
29	
30	These are now dealt with individually in the order listed above.
31	
32	Referee comment page 1 . Note that although these are monthly series, smoothing is
33	not the same thing as seasonal adjustment
55	noi the same thing as seasonal adjustment
34	It is noted that in the econometrics realm, the draft current update to Chapter 7.
35	Seasonal Adjustment of the IMF Quarterly National Accounts Manual 2001 (Bloem et
36	al., 2001) <u>http://www.imf.org/external/pubs/ft/qna/</u> considers moving average
37	smoothing to be an established form of seasonal adjustment, stating as follows (page
38	4):
-	

Several methods have been developed to remove seasonal patterns from a
series. Broadly speaking, they can be divided into two groups: moving average
methods and model-based methods.

Referee comment page 2. The authors must first explain coherently why they regard these transformations as necessary to the analysis. At best, they seem to be claiming

- 3 *that the effect is to make a nicer plot, which is hardly adequate.*
- 4 5
 - Our explanation is as follows, again taken from the update to Bloem et al. (2001). Page 3:
- 6 7 8 9

10 Seasonal adjustment of the QNA allows a timely assessment of the current 11 economic conditions and identification of turning points in key macroeconomic variables, such as quarterly GDP. Economic variables are 12 influenced by systematic and recurrent within-a-year patterns due to weather-13 and social- factors, commonly referred to as the seasonal pattern (or 14 seasonality). When seasonal variations dominate period-to-period changes in 15 the original series (or seasonally unadjusted series), it is difficult to identify 16 non-seasonal effects, such as long-term movements, cyclical variations, or 17 irregular factors, which carry the most important economic signals for QNA 18 19 users. 20

Seasonal adjustment is the process of removing seasonal and calendar effects 21 22 from a time series. This process is performed by means of analytical techniques that break down the series into components with different dynamic 23 features. These components are unobserved and have to be identified from the 24 observed data based on a priori assumptions on their expected behavior. In a 25 broad sense, seasonal adjustment comprises the removal of both within-a-year 26 seasonal movements and the influence of calendar effects (such as the 27 different number of working days, or moving holidays). By removing the 28 repeated impact of these effects, seasonally adjusted data highlight the 29 underlying long-term trend and short-run innovations in the series. 30

31 32

More details on the moving average methods and model-based methods are as follows
(update to Bloem et al. (2001), Page 4):

35 (Moving average methods) derive the seasonally adjusted data by applying a 36 sequence of moving average filters to the original series and its 37 transformations. These methods are all variants of the X-11 method, originally 38 developed by the U.S. Census Bureau (Shiskin and others, 1967). The current 39 version of the X-11 family is X-13ARIMA-SEATS (X-13A-S), which will 40 often be referred to in this chapter. Model-based methods derive the 41 unobserved components in accord with specific time series models, primarily 42 autoregressive integrated moving average (ARIMA) models. The most popular 43 model-based seasonal adjustment method is TRAMO-SEATS,6 developed by 44 the Bank of Spain (Gomez and Maravall, 1996). 45 46

- 47 TRAMO is the acronym for *Time Series Regression with Autoregressive*48 *integrated moving average (ARIMA) Errors and Missing Observations.*49 SEATS stands for *Signal Extraction for ARIMA Time Series.*
- 50 51

Referee comment page 1. ...(the) effects (of smoothing) on test outcomes are unclear. 1 2 **Referee comment page 2.** In particular, the results of unit root tests are not going to 3 be comparable. 4 5 There is an extensive literature dealing with the effect that seasonal adjustment has on 6 7 standard tests for unit roots. A short, but very clear discussion of the early part of this literature is provided by Maddala and Kim (1998, pp. 364-365). One important result 8 is that, in finite samples: "the ADF and Philliups-Perron statistics for testing a unit 9 root will be biased towards nonrejection of the unit root null if filtered data are used." 10 (Here, the term "filtered" refers to "seasonally adjusted".) 11 12 13 In other words, these tests have lower power in finite samples when applied to seasonally adjusted data. 14 15 However the asymptotic (large sample) properties of the ADF and similar tests have 16 17 been shown to be unaffected by seasonally adjusting the data. 18 19 What is a large sample? In assessing performance of unit root tests, Narayan and Popp (2010) used sample sizes of T = 50, 100, 300, and 500. They showed that over with 100 20 data points, key statistics start to become asymptotic. Our sample size is T = over 600. 21 Results below (Table 14) based on both adjusted and unadjusted data bear this out 22 empirically. 23 One way of interpreting these results is that we have demonstrated that our sample 24 size is sufficiently large for this potential loss of power of unit root tests to be a non-25 issue in our study. 26 27 Referee comments page 2. I recommend in particular that plots of the raw data 28 29 series are shown in the paper, so that the effects of the authors' manipulations can be

judged (and also, ideally, the series be made available for download).

31

Referee comments page 2. ... they need to show the effects of their transformations
by comparing their test results for the smoothed and unsmoothed series.

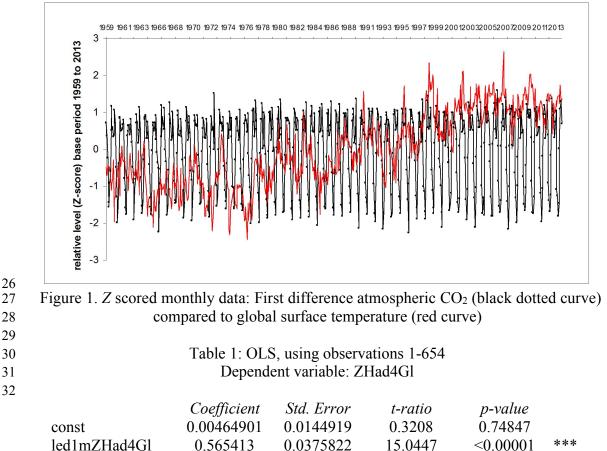
34 Referee comment 5 from the initial review by the referee (C10403, 22 December 35 2014): The only legitimate way to conduct these kind of tests, where timing shifts of 36 one or two months is critical, is on the raw observations, where extraneous data 37 features such as seasonality have been accounted for by effective modelling. This may

be tricky, but in the case of a seasonal pattern it might, for example, be effective to

39 employ polynomial dummy variables to explain seasonal changes...

40

41 In response to the above three comments, in the following section the raw and then


42 variously seasonally adjusted data (including by both moving averages and

- 43 modelling), are both plotted (Figures 1 to 13) and then the core correlational analysis
- 44 conducted in the paper carried out and statistically tested (Tables 1 to 13).

1 2 This analysis shows the results for various forms of adjustment, and in particular carries out (Figures 9 and 10: Tables 9 and 10) seasonal adjustment by modelling as 3 discussed by the referee in the initial review (C10403, 22 December 2014). This 4 seasonal adjustment using modelling is done by means of the TRAMO/SEATS 5 model. It is run using raw monthly data on the levels of atmospheric CO₂. 6 7 For comparison, the result from a second, published, seasonal adjustment of 8 atmospheric CO₂ time series by modelling is also presented (NOAA: seasonally 9 adjusted CO2 data series from 10 ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2 mm mlo.txt; its modelling method 11 is described in Thoning et al. (1989). Results are in Figures 7 and 8 and Tables 7 and 12 13 8. 14 Discussion of the results of the analyses in this section in connection with the 15 referee's comments occur after Table 14: Summary of dynamic regression results. 16 17 18 *Abbreviations used in figures and tables: FD - first difference; SD - second difference;* 19 20 HadGL - HadCrut4 global surface temperature; CO2 NOAAseascorr - seasonally corrected CO₂ data published by NOAA; TRAMO: seasonally corrected CO₂ data 21 22 resulting from TRAMO/SEATS method.

23 24

25 Monthly data, ZFDCO2 no smoothing

	Led2mZHad4Gl led4mZHad4Gl ZFDCO2	0.260223 0.131589 0.0265	0.04241 0.03370 0.0145	38 3.9	043 0.00	010 ***	
1	Mean dependent var	-0.00)6217	S.D. depend	ent var	0.998938	,
	Sum squared resid			S.E. of regre		0.370494	
	R-squared			Adjusted R-		0.862442	
	F(4, 649)			P-value(F)	1	1.0e-278	
	Log-likelihood	-276		Akaike crite	rion	562.2147	,
	Schwarz criterion	584.	.6302	Hannan-Qui	nn	570.9067	,
	rho	-0.00		Durbin-Wat		2.004137	,
2							
3	LM test for autocorrela	tion up to or	der 11 -				
4	Null hypothesis: no au		1				
5	Test statistic: $LMF = 1$						
6	with p-value = $P(F(11))$,638) > 1.190	(0.088) = 0.28	89543			
7							
8							
9							
)	7.6.11.1.	10		~~~	. 1		
10	Monthly data,	, 13mma	aZFD(CO2 sm	looth		
11	·						
							-
	1960 1962 1964 1966 196 4 +	8 1970 1972 1974 1976 19	78 1980 1983 1985 1	9871989 1991 1993 199	95199719992001200320052	00820102012	
	012						
	eriod 1960-2012 - 5 -				I		
	196				AL .		
	2 –				M. Atta int	AL R	
	e	,		R	NIL, LUC DYA MANA	1 1 1 1 1 1 1 1 1	

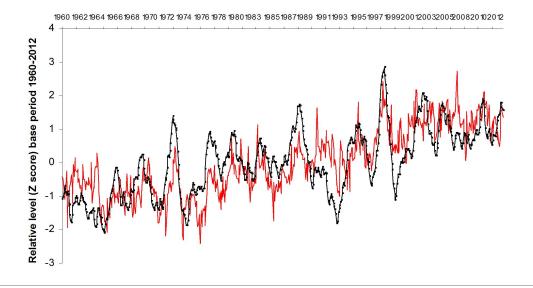


Figure 2. Z scored monthly data: First difference atmospheric CO₂ smoothed with two 13-month moving averages (black dotted curve) compared to global surface

16	temperature (red curve)
----	-------------------------

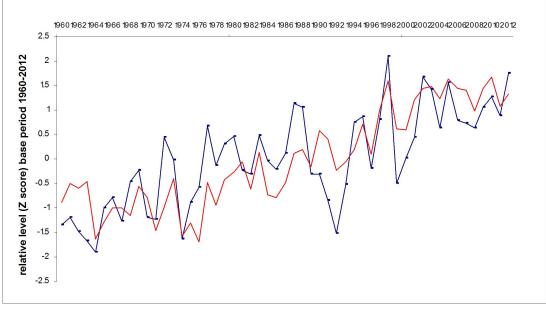
Table 2: OLS, using observations 1-640 Dependent variable: ZHad4Gl

		Coefficient	Std. Er	ror	t-ratio	p-value	
	const	0.00428239	0.0147	572	0.2902	0.77177	
	led2mZ2x13mFD	0.102015	0.0216	835	4.7047	< 0.00001	***
	CO2						
	Led1mZHad4Gl	0.564726	0.0377	431	14.9623	< 0.00001	***
	led2mZHad4Gl	0.306035	0.0374	109	8.1804	< 0.00001	***
1							
	Mean dependent var	0.003	075	S.D. de	pendent var	1.00)2326
	Sum squared resid	88.63	759	S.E. of	regression	0.3	73319
	R-squared	0.861	930	Adjuste	ed R-squared	0.80	51279
	F(3, 636)	1323.	454	P-value	e(F)	6.7	e-273
	Log-likelihood	-275.5	088	Akaike	criterion	559	.0175
	Schwarz criterion	576.8	634	Hannar	n-Quinn	565	.9444
	rho	-0.011	403	Durbin	-Watson	2.02	22743

3 LM test for autocorrelation up to order 20 -

4 Null hypothesis: no autocorrelation

5 Test statistic: LMF = 1.1028


6 with p-value =
$$P(F(20,616) > 1.1028) = 0.34132$$

7

Annual data, FDCO2 and Had4Gl

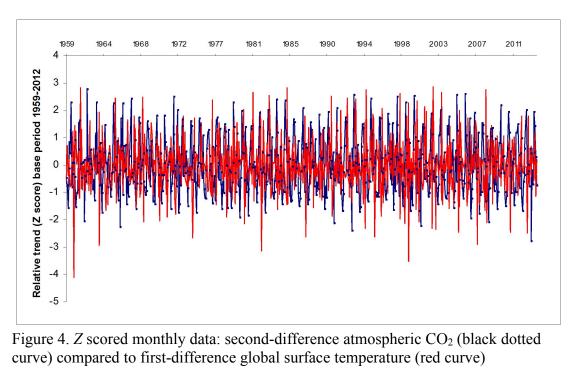
9 10

8

11

12 Figure 3. Z scored annual data: First difference atmospheric CO₂ smoothed with two

- 13 13-month moving averages (black dotted curve) compared to global surface
- 14 temperature (red curve)
- 15
- 16 17
- Table 3: OLS, using observations 1-52
 - Dependent variable: ZAnnHad4Gl


const	<i>Coefficient</i> 0.0215094	<i>Std. E.</i> 0.0504	-	<i>t-ratio</i> 0.4264	<i>p-value</i> 0.67170	
ZAnn2x13mFDCO	0.447195	0.0609	9389	7.3384	< 0.00001	***
2	0.624044	0.0609	176	10.2449	<0.00001	***
led1yZAnnHad4Gl	0.024044	0.0009	120	10.2449	< 0.00001	
Mean dependent var	0.01	7148	S.D.	dependent var	1.0	01857
Sum squared resid	6.46	5283	S.E.	of regression	0.3	63242
R-squared	0.87	3699	Adju	sted R-squared	0.8	68544
F(2, 49)	169.4	4814	P-va	lue(F)	9.6	5e-23
Log-likelihood	-19.5	8008	Akai	ke criterion	45.	16017
Schwarz criterion	51.0	1390	Hanr	nan-Quinn	47.	40435
rho	-0.09	9887	Durb	oin-Watson	2.1	47075

- 3 LM test for autocorrelation up to order 11 -
- 4 Null hypothesis: no autocorrelation
- 5 Test statistic: LMF = 0.894529

6 with p-value = P(F(11,38) > 0.894529) = 0.553897

8 Monthly data: Second difference CO2 and first

⁹ difference temp, No smoothing

Т

Table 4: OLS, using observations 1-650	
Dependent variable: ZFDHad4GL	

	Coefficient	Std. Error	t-ratio	p-value	
const	0.00276484	0.0359273	0.0770	0.93868	
Led3mZSDCO2	0.0986082	0.0359743	2.7411	0.00629	***

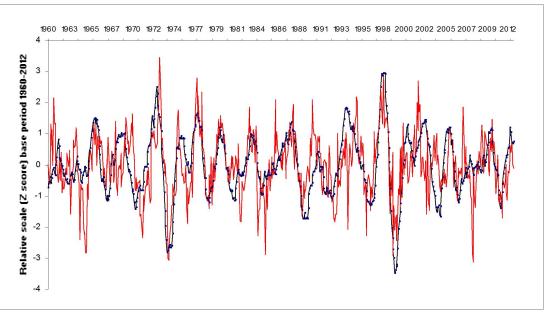
L Led2mZFDHad4G -0.146011 0.0415859 -3.5111 0.00048 L	***
L	***
Led3mZFDHad4G -0.140405 0.0387674 -3.6217 0.00032	
_	000001
1 1	03691
Sum squared resid 541.1463 S.E. of regression 0.9	015962
R-squared 0.172305 Adjusted R-squared 0.1	67172
F(4, 645) 33.56815 P-value(F) 1.	84e-25
Log-likelihood –862.7432 Akaike criterion 17	35.486
Schwarz criterion 1757.871 Hannan-Quinn 17	44.169
	021077

1

3 LM test for autocorrelation up to order 11 -

4 Null hypothesis: no autocorrelation

5 Test statistic: LMF = 1.28767


6 with p-value =
$$P(F(11,634) > 1.28767) = 0.227098$$

7

Monthly data: Second difference CO2 and first difference temp, 3x13mma smoothing

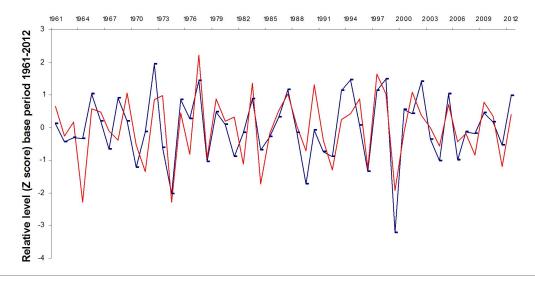
10

12

Figure 5. *Z* scored monthly data smoothed by 13-month moving average: second-

difference atmospheric CO₂ (black dotted curve) compared to first-difference global
 surface temperature (red curve)

- 16
- 17


18Table 5: OLS, using observations 1-650

19Dependent variable: Z13mmaFDZHad4Gl

1							
2			Coefficient	Std. Error	t-ratio	p-value	
3	const		0.0201245	0.0260442	0.772	7 0.43998	
4	Z13mmaSDZ2x13mC	O2	0.166377	0.0299439	5.556	3 < 0.00001	***
5	led1mZ13mmaFDZHa	ad4Gl	0.485095	0.038189	12.702	25<0.00001	***
6	led2mZ13mmaFDZHa	ad4Gl	0.218271	0.0376337	5.799	9 < 0.00001	***
7							
8	Mean dependent var	0.0617	59	S.D. depender	nt var	1.012336	
9	Sum squared resid	288.70	32	S.E. of regress	sion	0.665429	
10	R-squared	0.5699	09	Adjusted R-sc	juared	0.56793	
11	F(3, 652)	287.98	59	P-value(F)		5.40E-119	
12	Log-likelihood	-661.6	5138	Akaike criteri	on	1331.228	
13	Schwarz criterion	1349.1	72	Hannan-Quint	n	1338.185	
14	rho (0.01368	84	Durbin-Watso	n	1.971948	
15							
16	LM test for autocorrela	ation u	p to order 11 -				
17	Null hypothesis: no au	utocorr	elation				
18	Test statistic: LMF =	1.5184					
19	with p-value = $P(F(11))$,641)>	> 1.5184) = 0.1	20154			
20							

Annual data: Second difference CO₂ and first difference temp

24

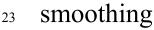
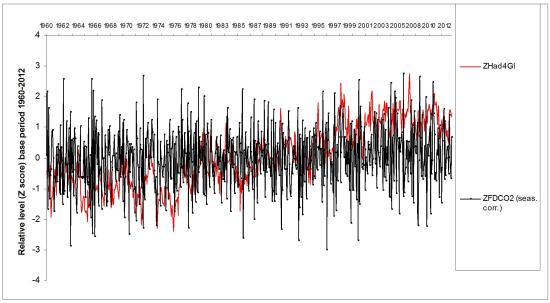

25

Figure 6. *Z* scored annual data: second-difference atmospheric CO₂ (black dotted curve) compared to first-difference global surface temperature (red curve)


29	
30	Table 6: OLS, using observations 1-52

- 31 Dependent variable: ZFDAnnHad4Gl
- 32

Coefficient Std. Error t-ratio p-value 1 0.100406 2 const 0 0 1 0.697174 0.101385 6.8765 < 0.00001 ZSDAnnCO2 *** 3 4 5 Mean dependent var 0 S.D. dependent var 1 Sum squared resid S.E. of regression 26.21139 0.724036 6 7 R-squared 0.486051 Adjusted R-squared 0.475772 9.36E-09 F(1, 50) P-value(F) 8 47.28595 Log-likelihood Akaike criterion -55.97351 115.947 9 10 Schwarz criterion 119.8495 Hannan-Ouinn117.4431 -0.289599Durbin-Watson 11 rho 2.561752 12 13 LM test for autocorrelation up to order 10 -14 Null hypothesis: no autocorrelation 15 Test statistic: LMF = 1.8367716 with p-value = P(F(10,40) > 1.83677) = 0.085060817 18 19 20 21 Monthly data, FDCO2 NOAA seascorr, no further 22

25

Figure 7. Z scored monthly data, : first-difference atmospheric CO₂ (NOAA
seasonally corrected) (black dotted curve) compared to level of global surface
temperature (red curve)

30	Table 7: OLS, us	ing observati	ons 1-649)
31	Dependent varia	able: ZHad40	31	
32				
33	Coefficient	Std. Error	t-ratio	p-value

1	const	0.00164552	0.0164019	0.1003	0.920	12	
2	Led5mZFDCO2 seas	corr0.0337206	0.0164708	2.0473	0.041	03	**
3	led1mZHad4Gl	0.685278	0.0380884	17.9918	< 0.00	001	***
4	Led1mZHad4Gl	0.237719	0.0381737	6.2273	< 0.00	001	***
5							
6	Mean dependent var	0.005216	S.D	. depender	nt var	1.006	416
7	Sum squared resid	112.5346	S.E	. of regress	sion	0.417	699
8	R-squared	0.828542		usted R-sc		0.827	745
9	F(3, 645)	1038.955	P-v	alue(F)	•	1.90E-	246
10	Log-likelihood	-352.3114	Aka	aike criteri	on	712.6	229
11	Schwarz criterion	730.5246	Har	nan-Quin	n	719.:	567
12	rho	0.009035	Dur	bin-Watsc	n	1.959	372
13							
14	LM test for autocorre	lation up to ord	ler 11 -				
15	Null hypothesis: no a	-					
16	Test statistic: LMF =	= 3.38672					
17	with p -value = $P(F(1$	1,634) > 3.386	72) = 0.0001	42093			
18	I ()	, ,	,				
19							
20							

²¹ Monthly data, FDCO2seascorr 4x3mma smooth

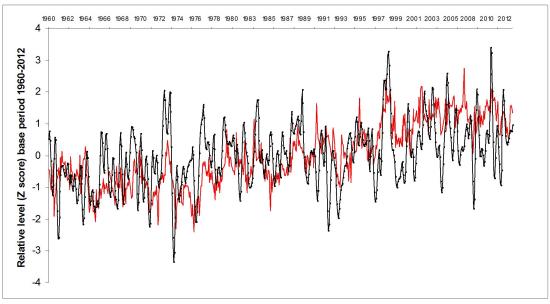
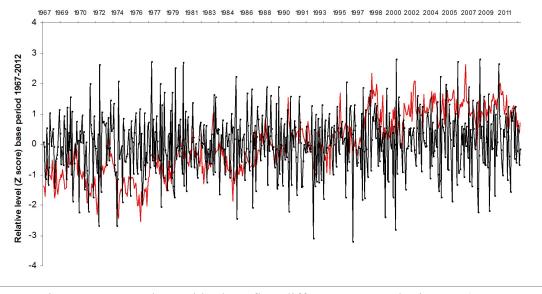


Figure 8. Z scored monthly data: first-difference atmospheric CO₂ (NOAA seasonally
 corrected) smoothed by 4 3month moving averages (black dotted curve) compared to
 level of global surface temperature (red curve)

Table 8: OLS, using observations 1-632 Dependent variable: ZHad4Gl						
aanat	Coefficient	Std. Error				


32		Coefficient	Std. Error	t-ratio	p-value	
33	const	0.00607628	0.0149984	0.4051	0.68552	
34	Z4x3mmaFDCO2seascorr	0.0377393	0.0173021	2.1812	0.02954	**

1	11ZHad4Gl	0.565126	0.0396178 14.2644	< 0.00001 ***	:
2	l2ZHad4Gl	0.255092	0.0456426 5.5889	< 0.00001 ***	:
3	13ZHad4Gl	-0.0148978	0.0456096 -0.3266	0.74405	
4	l4ZHad4Gl	0.130828	0.0394726 3.3144	0.00097 ***	:
5					
6	Mean dependent var	0.004336	S.D. dependent var	1.001443	
7	Sum squared resid	88.96325	S.E. of regression	0.37698	
8	R-squared	0.859418	Adjusted R-squared	0.858295	
9	F(5, 626)	765.3852	P-value(F)	6.70E-264	
10	Log-likelihood	-277.1987	Akaike criterion	566.3974	
11	Schwarz criterion	593.0907	Hannan-Quinn	576.7643	
12	rho	-0.008269	Durbin-Watson	2.016528	

- 13
- 14

15 LM test for autocorrelation up to order 11 -

- 16 Null hypothesis: no autocorrelation
- 17 Test statistic: LMF = 1.38344
- 18 with p-value = P(F(11,615) > 1.38344) = 0.176079
- ¹⁹ Monthly data, FDCO2 TRAMO seasonal
- 20 adjustment no further smooth

21

26 27

28 29

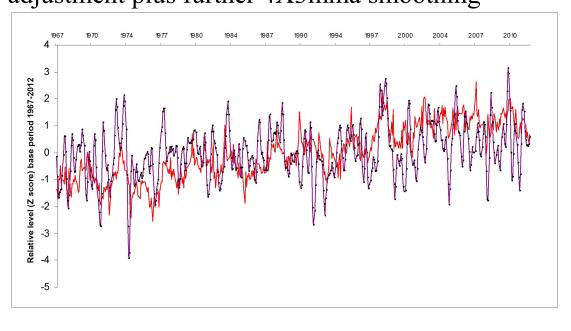

Figure 9. Z scored monthly data: first-difference atmospheric CO₂ (TRAMO
 seasonally corrected) (black dotted curve) compared to level of global surface
 temperature (red curve)

Table 9: OLS, using observations 1-541 Dependent variable: ZHad4Gl

30						
31		Coefficient	Std. Erro	or t-ratio	p-value	
32	const	0.00580134	0.01652	92 0.351	0.72574	
33	Led1Z	FDCO2_TRA	MO (0.0169459	0.016621	1.0195 0.3084

```
1
     L1ZHad4G1
                   0.594865
                                 0.0405482
                                               14.6706
                                                              < 0.00001
     L2ZHad4G1
                   0.342522
                                 0.0404153
                                               8.4751 < 0.00001
                                                                     ***
2
3
     Mean dependent var 0.008321
                                               S.D. dependent var
                                                                     0.996424
4
                                               S.E. of regression
     Sum squared resid
                          79.36784
5
                                                                     0.384446
     R-squared
                                         Adjusted R-squared 0.851139
                   0.851966
6
 7
     F(3, 537)
                   1030.179
                                        P-value(F)
                                                       3.00E-222
     Log-likelihood-248.4681
                                        Akaike criterion
                                                              504.9361
8
                                               Hannan-Quinn 511.6522
     Schwarz criterion
                          522.1098
9
10
     rho
            -0.020425
                                 Durbin-Watson
                                                      2.035772
11
     LM test for autocorrelation up to order 11 -
12
      Null hypothesis: no autocorrelation
13
      Test statistic: LMF = 1.65967
14
      with p-value = P(F(11,526) > 1.65967) = 0.0792997
15
16
17
18
```

Monthly data, FDCO2 TRAMO seasonal
 adjustment plus further 4X3mma smoothing

21 22

27 28

29 30

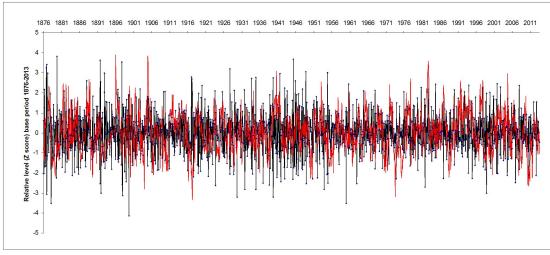

23	Figure 10. Z scored monthly data: first-difference atmospheric CO ₂ (TRAMO
24	seasonally corrected) smoothed by three 3-month moving averages (black dotted
25	curve) compared to level of global surface temperature (red curve)
26	

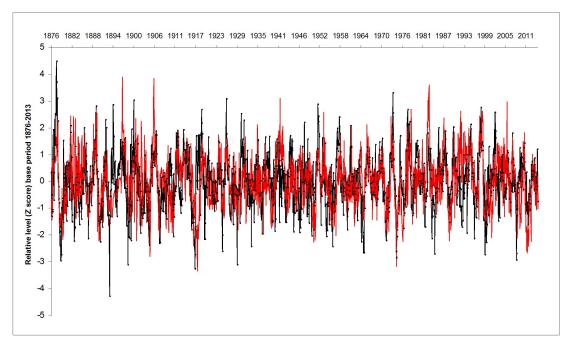
Table 10: OLS, using observations 1-540 Dependent variable: ZHad4Gl

50						
31		Coefficient	Std. Error	t-ratio	p-value	
32	const	-0.0518209	0.0345242	-1.501	0.13394	
33	Led1m3x3mmaFDCO2_TRAMO	0.50309	0.238916	2.1057	0.03569	**
34	Led1mZHad4Gl	0.589466	0.040646	14.5024	< 0.00001	***

1	Led2mZHad4Gl	0.333687	0.0404246 8.2545	< 0.00001	***	
2						
3	Mean dependent var	0.133697	S.D. dependent var	0.988703		
4	Sum squared resid	77.36309	S.E. of regression	0.379913		
5	R-squared	0.853171	Adjusted R-squared	0.852349		
6	F(3, 536)	1038.164	P-value(F)	8.70E-223		
7	Log-likelihood	-241.6008	Akaike criterion	491.2016		
8	Schwarz criterion	508.3678	Hannan-Quinn	497.9152		
9	rho	-0.021301	Durbin-Watson	2.041103		
10						
11	LM test for autocorrelation up to	o order 11 -				
12	Null hypothesis: no autocorrela	tion				
13	Test statistic: $LMF = 1.65475$					
14	with p-value = $P(F(11,525) > 1$.65475) = 0.080	05097			
15						
16						
17						
18						
19						
20	Monthly data, ZFDHad4Gl and reverse SOI, no					

21 smoothing

23 24


Figure 11. *Z* scored monthly data: first-difference atmospheric CO₂ (TRAMO seasonally corrected) smoothed by three 3-month moving averages (black dotted curve) compared to level of global surface temperature (red curve)

27						
28						
29	Table 11	l: OLS, using o	bservations 1-	1647		
30	Deper	ndent variable:	ZReverseSOI			
31						
32		Coefficient	Std. Error	t-ratio	p-value	
33	const	0.000821969	0.0182354	0.0451	0.96405	
34	ZFDZHad4Gl	0.0551914	0.018288	3.0179	0.00258	***
35	L1ZReverseSOI	0.47422	0.0244903	19.3636	< 0.00001	***
36	L2ZReverseSOI	0.187349	0.0266996	7.0169	< 0.00001	***

1 L3ZReverseSOI 0.0874809 0.0244789 3.5737 0.00036 2 0.002695 S.D. dependent var 1.000409 Mean dependent var 3 Sum squared resid 899.2797 S.E. of regression 0.74005 4 **R**-squared Adjusted R-squared 0.452774 5 0.454104 F(4, 1642) P-value(F) 341.4746 5.50E-214 6 Log-likelihood 7 -1838.678Akaike criterion 3687.356 Schwarz criterion 3714.39 Hannan-Quinn 3697.38 8 Durbin-Watson 9 rho -0.0072402.01295 10 LM test for autocorrelation up to order 11 -11 Null hypothesis: no autocorrelation 12 Test statistic: LMF = 1.6965713 with p-value = P(F(11, 1631) > 1.69657) = 0.068514414 15 16 17 18

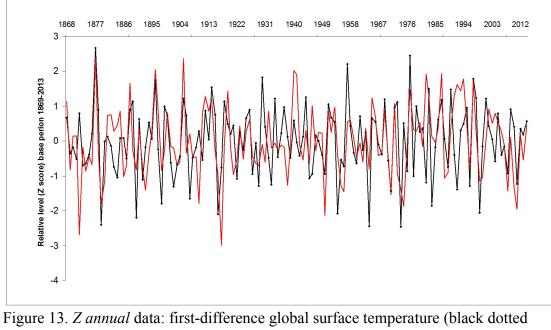
Monthly data, ZFDHad4Gl smoothed by 13mma, 19 and reverse SOI 20

21

23	Figure 12. Z scored monthly data: led 3 month first-difference global surface
24	temperature smoothed by a 13-month moving average (black dotted curve) compared

to level of (reverse) Southern Oscillation Index (red curve) 25

26	
27	
28	Table 12 : OLS, using observations 1-1648
29	Dependent variable: ZReverseSOI
30	
31	Coefficient Std. Error t-ratio p-value


1	const	0.000305	0.0179903	0.017	0.9864	46	
2	Led3mZ13mmaFDHad4Gl	0.14137	0.019169	7.374	< 0.00	001	***
3	L1ZReverseSOI	0.442205	0.0245285	18.028	< 0.00	001	***
4	L2ZReverseSOI	0.172003	0.0264475	6.5036	< 0.00	001	***
5	L3ZReverseSOI	0.0818258	0.0241703	3.3854	0.000	73	***
6							
7	Mean dependent var	0.002074	S.D	. depende	nt var	1.0004	ŀ
8	Sum squared resid	876.331	S.E	. of regres	sion	0.7303	5
9	R-squared	0.468372	Adj	usted R-so	quared	0.4670)
10	F(4, 1643)	361.8771	P-v	alue(F)		1.50E-2	2
11	Log-likelihood	-1817.994	Aka	aike criteri	on	3645.9)
12	Schwarz criterion	3673.024	Har	nan-Quin	n	3656.0	
13	rho	-0.006071	Durbin-Watson		2.0101	02	
14							

- LM test for autocorrelation up to order 11 -15
- Null hypothesis: no autocorrelation 16
- Test statistic: LMF = 1.1548317

18 with p-value =
$$P(F(11, 1632) > 1.15483) = 0.31415$$

Annual data, ZFDHad4Gl and reverse SOI 19

curve) compared to level of (reverse) Southern Oscillation Index (red curve) 23

25						
26	Table 1.	3: OLS, using ol	bservations 1-1	47		
27	Depen	dent variable: re	everseAnnSOI			
28						
29		Coefficient	Std. Error	t-ratio	p-value	
30	const	0	0.0738511	0	1	
31	FDAnnHad4Gl	0.451394	0.0741036	6.0914	< 0.00001	***

1				
2	Mean dependent var	0	S.D. dependent var	1
3	Sum squared resid	116.2516	S.E. of regression	0.895397
4	R-squared	0.203756	Adjusted R-squared	0.198265
5	F(1, 145)	37.10503	P-value(F)	9.57E-09
6	Log-likelihood	-191.3353	Akaike criterion	386.6706
7	Schwarz criterion	392.6514	Hannan-Quinn	389.1007
8	rho	0.121635	Durbin-Watson	1.750504
9				

LM test for autocorrelation up to order 11 -Null hypothesis: no autocorrelation Test statistic: LMF = 0.669798

13 with p-value =
$$P(F(11,134) > 0.669798) = 0.764953$$

Table 14: Summary of dynamic regression results

	Condition	FDCO2 or FDHad4GI partial regression coefficient	Significance of independent variable (FDCO2, etc.) partial regression coefficient (p-value)	Adjusted R- square of entire model	LMF p- value (green indicates no significant auto- correlation at order tested)
	Monthly, no filter	0.027	0.0684 *	0.862	0.290
Monthly: FDCO2 and temperature (Hadcrut4GI)	Monthly, filtered (2x13mma)	0.102	<0.00001 ***	0.861	0.341
	Monthly, no filter	0.034	0.0410 **	0.828	0.00014
Monthly: FDCO2_NOAAseascorr and Hadcrut4GI	Monthly, filtered (4x3mma)	0.038	0.02954 **	0.858	0.00014
	Monthly, no filter	0.017	0.308	0.851	0.079
Monthly: FDCO2_TRAMO and Had4GI	Monthly, filtered (4x3mma)	0.503	0.0357 **	0.852	0.081
Annual (no seasonality to and Hadcrut4GI	filter) FDCO2	0.447	<0.00001 ***	0.862	
	Monthly, no filter	0.099	0.00629 ***	0.167	0.554
	Monthly,	0.166	<0.00001 ***	0.568	0.221
	filtered (2x13mma)				0.120
SDCO2 and FDHad4GI	Annual (no seasonality to filter)	0.697	<0.00001 ***	0.476	0.085

	Monthly, no filter	0.057	0.00189 ***	0.453	0.053
	Monthly, filtered (2x13mma)	0.141	<0.00001 ***	0.466	0.239
FD temperature and (reverse) SOI	Annual (no seasonality to filter)	0.451	<0.00001 ***	0.198	0.562

3 Comment:

4 Thirteen analyses are summarised in the table. In all but one case, models were

achieved with no significant autocorrelation remaining. The green highlighting shows
results which are both statistically significant and show differenced CO2 correlated
with temperature, or differenced temperature correlated with the SOI.

with temperature, or differenced temperature correlated with the SOI.
Of the 12 cases without significant autocorrelation, 10 are green highlighted, and one

9 is light green. In other words, most of the approaches assessed above (i) support the

10 findings of the paper, and (ii) the use of its particular seasonal smoothing method.

11

In more detail, it is seen firstly that, *even using raw data*, in three of the four instances
assessed, the findings made in the paper using its smoothed data are supported.

14

Secondly, the highest partial regression coefficient p-value is seen for the smoothing for first-difference CO_2 used in the paper, 2x13mma.

17

The question of the best method to use is explored further using cross-correlogramanalysis in Table 15 and Figure 15.

20

Table 15 also enables further assessment of the question of whether first difference

22 CO2 leads or lags global surface temperature. (Re Referee comment Page 2.

- 23 "...especially for testing sensitive questions such as phase shifts of one or two24 periods.")
- 25

26

Table 15: Cross-correlogram analyses. Maximum correlation achieved for each analysis is highlighted in green

	Correlation between:										
Lag	ZFDCO2 and Had4GI	ZFDCO2 NOAA seas corr and Had4gl	Z4x3mmaFDCO2 NOAA seas corr and had4gl	Z2x13mFDCO2 and Had4gl	FDCO2_TRAMO and Had4GI	4x3mmaFDCO2_TRAMO and Had4GI					
-60	0.017	0.070	0.235	0.420	0.058	0.156					
-59	0.011	0.058	0.246	0.434	0.046	0.165					
-58	0.013	0.059	0.266	0.449	0.036	0.178					
-57	0.015	0.079	0.291	0.466	0.061	0.196					
-56	0.005	0.077	0.317	0.483	0.062	0.215					
-55	0.002	0.102	0.335	0.501	0.084	0.230					
-54	0.004	0.090	0.342	0.517	0.069	0.240					

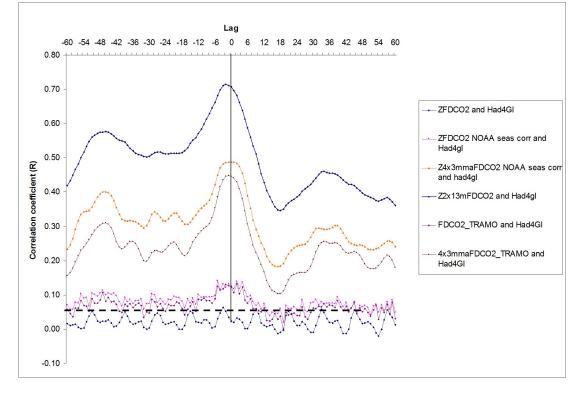
-53	0.021	0.093	0.344	0.534	0.067	0.24
-52	0.037	0.067	0.347	0.548	0.052	0.26
-51	0.053	0.104	0.357	0.560	0.089	0.27
-50	0.042	0.102	0.372	0.567	0.075	0.28
-49	0.024	0.096	0.386	0.571	0.077	0.29
-48	0.020	0.105	0.396	0.574	0.085	0.30
-47	0.023	0.114	0.401	0.576	0.107	0.30
-46	0.024	0.099	0.402	0.576	0.081	0.30
-45	0.026	0.106	0.399	0.575	0.092	0.30
-44	0.018	0.101	0.390	0.570	0.080	0.29
-43	0.007	0.104	0.375	0.564	0.081	0.27
-42	0.009	0.098	0.355	0.556	0.072	0.25
-41	0.020	0.081	0.335	0.552	0.053	0.24
-40	0.034	0.068	0.322	0.549	0.049	0.23
-39	0.051	0.093	0.317	0.545	0.072	0.24
-38	0.038	0.079	0.316	0.537	0.066	0.24
-37	0.022	0.088	0.317	0.528	0.075	0.25
-36	0.014	0.075	0.315	0.520	0.063	0.25
-35	0.014	0.083	0.314	0.514	0.071	0.25
-34	0.010	0.083	0.308	0.510	0.076	0.23
-33	0.021	0.090	0.301	0.507	0.068	0.23
-32	0.024	0.059	0.296	0.504	0.034	0.21
-32	-0.001	0.039	0.302	0.503	0.050	0.20
			0.318	0.505	0.047	
-30	0.003	0.075				0.20
-29	0.023	0.103	0.335	0.510	0.087	0.22
-28	0.042	0.100	0.342	0.516	0.079	0.22
-27	0.048	0.079	0.338	0.518	0.065	0.22
-26	0.040	0.089	0.327	0.517	0.074	0.22
-25	0.021	0.080	0.318	0.513	0.059	0.22
-24	0.014	0.072	0.316	0.511	0.052	0.23
-23	0.016	0.087	0.323	0.512	0.073	0.24
-22	0.020	0.084	0.333	0.513	0.069	0.25
-21	0.022	0.096	0.340	0.514	0.069	0.25
-20	0.012	0.092	0.338	0.514	0.080	0.24
-19	-0.001	0.092	0.328	0.514	0.077	0.23
-18	-0.001	0.081	0.315	0.515	0.060	0.22
-17	0.011	0.061	0.306	0.521	0.041	0.21
-16	0.041	0.088	0.306	0.531	0.057	0.22
-15	0.052	0.076	0.312	0.542	0.067	0.23
-14	0.047	0.091	0.322	0.552	0.080	0.25
-13	0.022	0.072	0.333	0.559	0.053	0.26
-12	0.019	0.102	0.345	0.571	0.086	0.27
-11	0.019	0.092	0.354	0.584	0.085	0.28
-10	0.026	0.093	0.361	0.598	0.091	0.29
-9	0.028	0.094	0.366	0.614	0.084	0.29
-8	0.018	0.094	0.377	0.629	0.084	0.30
-7	0.004	0.094	0.395	0.646	0.076	0.32
-6	0.008	0.098	0.422	0.662	0.088	0.35
-5	0.030	0.142	0.451	0.681	0.125	0.38
-4	0.047	0.117	0.471	0.698	0.114	0.41
-3	0.064	0.132	0.483	0.711	0.118	0.43

-1	0.034	0.133	0.488	0.712	0.126	0.448
0	0.023	0.127	0.488	0.707	0.123	0.447
1	0.020	0.118	0.487	0.696	0.107	0.440
2	0.032	0.139	0.485	0.682	0.133	0.431
3	0.030	0.118	0.475	0.663	0.103	0.411
4	0.019	0.137	0.456	0.639	0.124	0.381
5	0.002	0.112	0.426	0.612	0.085	0.344
6	0.002	0.093	0.390	0.587	0.076	0.307
7	0.021	0.098	0.353	0.561	0.089	0.273
8	0.044	0.080	0.320	0.536	0.059	0.245
9	0.056	0.068	0.293	0.511	0.060	0.224
10	0.045	0.076	0.271	0.482	0.055	0.207
11	0.019	0.057	0.252	0.453	0.050	0.189
12	0.011	0.075	0.233	0.427	0.061	0.167
13	0.007	0.051	0.213	0.404	0.026	0.142
14	0.010	0.040	0.197	0.386	0.024	0.123
15	0.012	0.049	0.188	0.372	0.029	0.112
16	0.000	0.051	0.184	0.358	0.046	0.108
17	-0.014	0.045	0.182	0.348	0.029	0.103
18	-0.009	0.060	0.185	0.346	0.038	0.103
19	0.000	0.020	0.192	0.350	-0.003	0.110
20	0.039	0.069	0.206	0.361	0.049	0.126
21	0.053	0.059	0.219	0.369	0.041	0.143
22	0.043	0.060	0.230	0.375	0.046	0.155
23	0.024	0.066	0.237	0.380	0.048	0.160
24	0.010	0.058	0.242	0.385	0.040	0.163
25	0.011	0.057	0.245	0.393	0.040	0.164
26	0.022	0.085	0.247	0.402	0.066	0.165
27	0.015	0.055	0.249	0.410	0.036	0.165
28	0.000	0.050	0.256	0.416	0.030	0.170
29	-0.010	0.076	0.268	0.422	0.048	0.183
30	-0.009	0.078	0.283	0.431	0.061	0.204
31	0.011	0.087	0.293	0.441	0.059	0.225
32	0.037	0.070	0.296	0.451	0.068	0.242
33	0.058	0.080	0.294	0.458	0.066	0.252
34	0.049	0.075	0.292	0.460	0.075	0.255
35	0.030	0.075	0.292	0.458	0.065	0.253
36	0.019	0.077	0.294	0.456	0.071	0.250
37	0.019	0.076	0.298	0.455	0.070	0.250
38	0.023	0.074	0.302	0.453	0.063	0.251
39	0.025	0.095	0.302	0.450	0.084	0.250
40	0.005	0.078	0.295	0.443	0.065	0.244
41	-0.013	0.066	0.282	0.435	0.054	0.233
42	-0.013	0.079	0.267	0.428	0.068	0.223
43	0.000	0.057	0.256	0.423	0.050	0.221
44	0.033	0.062	0.250	0.422	0.062	0.224
45	0.057	0.076	0.247	0.419	0.079	0.226
46	0.045	0.051	0.245	0.411	0.046	0.223
47	0.029	0.069	0.247	0.405	0.062	0.215
48	0.016	0.065	0.245	0.397	0.051	0.203
49	0.018	0.069	0.241	0.392	0.059	0.190
50	0.022	0.064	0.235	0.389	0.049	0.180

1	1					
51	0.016	0.042	0.232	0.385	0.038	0.176
52	0.005	0.067	0.233	0.381	0.057	0.175
53	-0.011	0.073	0.235	0.375	0.070	0.179
54	-0.020	0.049	0.238	0.374	0.029	0.184
55	0.000	0.071	0.244	0.378	0.062	0.196
56	0.027	0.055	0.250	0.382	0.048	0.207
57	0.055	0.080	0.257	0.384	0.073	0.216
58	0.045	0.057	0.257	0.379	0.043	0.212
59	0.034	0.086	0.253	0.371	0.079	0.201
60	0.013	0.049	0.241	0.362	0.030	0.180

Table 15 shows, first, that, while there are some differences in the precise number of periods by which first-difference CO₂ leads temperature, the key point in this aspect of our study is supported - that in none of the six cases assessed does temperature lead first-difference CO₂. Two of these cases are new to the study – NOAA and TRAMO.

6 7


8 Figure 15 plots the data in Table 15.

9

10 Figure 15: Cross-correlograms between variously seasonally-adjusted first difference

11 CO₂ time series and the Hadcrut4 global surface temperature time series. The dashed

12 line shows the 0.05 level of statistical significance

- 13 14
- 15
- 16

17 The figure shows the following. First, it is of interest that there is very close

18 conjunction between the two (NOAA and TRAMO) model-based methods of seasonal

adjustment. Secondly, the 2x13mma FDCO2 series displays the highest correlation
 with temperature. Thus this observation, along with its displaying the highest

1 2	statistical significance in the dynamic regression analyses (see Table 14 above) is support for its continued use as the method of seasonal adjustment in the paper.
3	
4 5	We propose including these results in their entirety in a Supplement, and making this reference to the Supplement in the text of the manuscript (Page 14, line 23):
6	
7	Finally, seasonally adjusting the data by a range of alternative approaches did
8	not qualitatively change the results discussed in the paper. Results of these
9	analyses are given in the Supplement.
10	
11	
12	
13	
14	
15	Referee comment page 2: Something else that concerned me in these causality tests
16	is that although the series in question are being treated as stationary (acceptably in
17	my view) there are still "deterministic" upward drifts in the series. These need to be
18	fitted separately from the higher frequency components, to capture the required
19	"constant conjunction" specified in the definition of causality, and ensure that this is
20	not spurious. (Note that every linear trend is correlated with every other, by
21	construction!) The regressions ought to contain trend terms so that the data are, in
22	effect, de-trended, before correlations are computed. This does not appear to have
23	been done, and it should be.
24	This substitution is addressed by maning and commoning vestor system systems reason (VAD)
25 26	This question is addressed by running and comparing vector autoregression (VAR)
26	analyses with and without trend terms.
27 28	It is noted that the lag lengths required for the VARs are chosen using the AIC
28 29	criterion. This is a conservative test. As Lutkepohl and Kratzig (2004) note (pages
29 30	152-153):
30 31	152-155).
32	The larger number of lagged differences is always the number suggested by
33	AIC, whereas the lower number is the proposal of the HQ criterion. Recall that
34	choosing the order too small can lead to size distortions for the tests while
35	selecting too large an order may imply reductions in power.
36	
37	
38	In what follows unit root and lag detection pre-tests required for the two VARs are
39	first carried out. These are followed by the two VARS themselves. Results are then
40	discussed. In the tables highlighting is used to indicate key results.
41	
42	
43	
44	
45	
46	Table 16: Augmented Dickey-Fuller tests for unit root for first-difference CO2
47	
48	Augmented Dickey-Fuller test for Z2x13mmaFDCO2
49	including 16 lags of (1-L)Z2x13mmaFDCO2
50	(max was 17, criterion modified AIC)

```
sample size 641
 1
      unit-root null hypothesis: a = 1
 2
 3
       test without constant
 4
       model: (1-L)y = (a-1)*y(-1) + ... + e
 5
       1st-order autocorrelation coeff. for e: -0.002
 6
 7
       lagged differences: F(16, 624) = 93.524 [0.0000]
       estimated value of (a - 1): -0.00942986
 8
       test statistic: tau nc(1) = -2.36994
9
       asymptotic p-value 0.0172
10
11
       test with constant
12
       model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
13
       1st-order autocorrelation coeff. for e: -0.002
14
       lagged differences: F(16, 623) = 93.354 [0.0000]
15
       estimated value of (a - 1): -0.00939305
16
       test statistic: tau c(1) = -2.35964
17
       asymptotic p-value 0.1535
18
19
20
       with constant and trend
       model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
21
       1st-order autocorrelation coeff. for e: 0.000
22
23
       lagged differences: F(16, 622) = 95.210 [0.0000]
       estimated value of (a - 1): -0.0313915
24
       test statistic: tau ct(1) = -4.26113
25
26
       asymptotic p-value 0.003549
27
      The ADF test indicates that for the first-difference CO<sub>2</sub> data, VARS can be run
28
29
      straightforwardly for tests without constant and for tests with constant and trend but
      not for tests with constant alone.
30
31
32
33
      Table 17: Augmented Dickey-Fuller test for ZHad4Gl
34
      including 7 lags of (1-L)ZHad4Gl
35
36
      (max was 17, criterion modified AIC)
37
      sample size 650
      unit-root null hypothesis: a = 1
38
39
       test without constant
40
       model: (1-L)y = (a-1)*y(-1) + ... + e
41
       1st-order autocorrelation coeff. for e: 0.002
42
       lagged differences: F(7, 642) = 15.533 [0.0000]
43
       estimated value of (a - 1): -0.0350251
44
45
       test statistic: tau nc(1) = -2.24541
       asymptotic p-value 0.02387
46
47
48
       test with constant
       model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
49
       1st-order autocorrelation coeff. for e: 0.002
50
```

1		ged differences: F(7, 641) = 15.536 [0.0000]
2		mated value of (a - 1): -0.0348952
3		statistic: $tau_c(1) = -2.23534$
4	asy a	mptotic p-value 0.1938
5		
6		n constant and trend
7		del: $(1-L)y = b0 + b1*t + (a-1)*y(-1) + + e$
8		order autocorrelation coeff. for e: 0.002
9		ged differences: $F(7, 640) = 8.542 [0.0000]$
10		mated value of (a - 1): -0.163601
11		statistic: $tau_ct(1) = -5.11451$
12	asy	mptotic p-value 0.0001075
13		
14		or the first-difference CO_2 data, the ADF test indicates that for the Hadcrut4GL
15	-	erature data VARS can be run straightforwardly for tests without constant and
16	for te	ests with constant and trend but not for tests with constant alone.
17		
18		
19 20	X7 A T	analyzis 1
20	VAR	analysis 1 – no constant or trend
21		
22	Tabl	a 19. Ontinum lag langth for VAD
23	Tabl	e 18: Optimum lag length for VAR
24	VAD	austom maximum lag order 26 no constant or trand
25 26	VAN	system, maximum lag order 36 – no constant or trend
20 27	The	asterisks below indicate the best (that is, minimized) values
27		e respective information criteria, AIC = Akaike criterion,
28 29		= Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.
30	DIC	Senwarz Bayesian enterion and mge - maintair Quinn enterion.
31	lags	loglik p(LR) AIC BIC HQC
32	lugs	iogink p(Litt) The Die Hige
33	1	7.18572 -0.010243 0.018264 0.000836
34	2	235.29686 0.00000 -0.730858 -0.673843 -0.708699
35	3	248.28923 0.00003 -0.759772 -0.674249 -0.726534
36	4	257.57998 0.00095 -0.776784 -0.662754 -0.732466
37	5	261.97150 0.06676 -0.778043 -0.635505 -0.722646
38	6	277.88264 0.00000 -0.816343 -0.645297 -0.749866
39	7	282.70818 0.04673 -0.818997 -0.619444 -0.741441
40	8	299.89548 0.00000 -0.861400 -0.633339 -0.772764
41	9	300.92326 0.72554 -0.851843 -0.595274 -0.752128
42	10	307.05981 0.01543 -0.858713 -0.573637 -0.747918
43	11	313.15046 0.01605 -0.865436 -0.551851 -0.743561
44	12	335.85323 0.00000 -0.925573 -0.583481 -0.792619
45	13	336.91819 0.71188 -0.916136 -0.545536 -0.772102
46	14	427.84019 0.00000 -1.195628 -0.796520 -1.040515
47	15	438.41452 0.00030 -1.216767 -0.789152 -1.050574
48	16	455.90637 0.00000 -1.260149 -0.804027 -1.082877
49	17	461.74444 0.01993 -1.266059 -0.781429 -1.077708
50	18	466.49280 0.04981 -1.268466 -0.755328 -1.069034

$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\22\end{array} $		469.52362 0.1 475.38505 0.0 482.05851 0.0 485.15055 0.1 492.11321 0.0 509.98611 0.0 539.07116 0.0 541.08460 0.4 612.09531 0.0 619.09157 0.0 627.34628 0.0 630.89450 0.1 633.62100 0.2 638.37697 0.0 641.66155 0.1 644.21450 0.2 645.51207 0.6 653.29252 0.0	01954 00970 18582 00754 00000 00000 40238 00000 00732 00241 13088 24389 04950 16048 27660 52769 00367	-1.27133 -1.27993 -1.27701 -1.28653 -1.33114 -1.41180 -1.40541 -1.62088 -1.63052 -1.64274 -1.64274 -1.63865 -1.64108 -1.63878 -1.63413 -1.62544 -1.63759	5 -0.701182 1 -0.681270 1 -0.649843 8 -0.630862 5 -0.646961 4 -0.699113 7 -0.664218 5 -0.851179 0 -0.832305 0* -0.817473 8 -0.787518 3 -0.754915 4 -0.728839 3 -0.698031 0 -0.664870 1 -0.627673 7 -0.611321	 -1.049744 -1.047261 -1.033262 -1.031709 -1.065237 -1.134817 -1.117350 -1.321739 -1.320293 -1.320293 -1.320293 -1.320293 -1.320895 -1.3208539 -1.257427 -1.237658) 5*
22	Tabl	e 19. VAR anal	ysis 1 -	• no const	ant or trend		
23 24							
24 25				VAR sv	ystem, lag ord	er 29	
26		C	DLS est	-	bservations 30		9)
27		_		-	lihood = 636.		
28 29		Dete	ermina		riance matrix $IC = -1.6536$	= 0.0004536	3642
29 30					IC = -0.8340		
31					QC = -1.3352		
32		Portr	nantea	u test: LB	(48) = 217.17	3, df = 76 [0.	0000]
33			т	Tauation	1. 70x12mm	EDCOJ	
34 35			I	zquation .	1: Z2x13mma	FDCO2	
			Coef	ficient	Std. Error	t-ratio	p-value
		13mmaFDCO2	1.72	2593	0.0413617	41.7277	< 0.00001
	$\frac{1}{72}$	12mmaEDCO2	07	81579	0.0021660	0.5121	<0.00001
	2	13mmaFDCO2	-0.7	813/9	0.0821668	-9.5121	< 0.00001
		13mmaFDCO2	0.06	61491	0.0834604	0.7926	0.42835
	_3						
		13mmaFDCO2	-0.02	260817	0.076265	-0.3420	0.73249
	$\frac{4}{72x}$	13mmaFDCO2	0.06	93752	0.0762971	0.9093	0.36359
	_5	2 2 0 2					
		13mmaFDCO2	-0.04	21609	0.0758172	-0.5561	0.57837
	$\frac{6}{Z_{2x}}$	x13mmaFDCO2	-0.07	711063	0.0757778	-0.9384	0.34846

_7

Z2x13mmaFDCO2	0.047906	0.0759431	0.6308	0.52841	
8	0.047900	0.0739431	0.0308	0.32641	
Z2x13mmaFDCO2	-0.00711034	0.0761064	-0.0934	0.92560	
Z2x13mmaFDCO2	-0.0289113	0.0760203	-0.3803	0.70386	
_10 Z2x13mmaFDCO2 11	0.246549	0.076003	3.2439	0.00125	***
$Z_{2x13mmaFDCO2}^{-11}$	0.127804	0.0766581	1.6672	0.09602	*
Z2x13mmaFDCO2	-1.26186	0.0769009	-16.4089	<0.00001	***
$\frac{13}{Z2x13}$ mmaFDCO2	1.46629	0.0934632	15.6884	<0.00001	***
_14 Z2x13mmaFDCO2	-0.680634	0.108196	-6.2908	<0.00001	***
_15 Z2x13mmaFDCO2	0.0806417	0.0933387	0.8640	0.38797	
_16 Z2x13mmaFDCO2	0.0557084	0.0767349	0.7260	0.46815	
_17 Z2x13mmaFDCO2	0.0416344	0.0766399	0.5432	0.58717	
_18 Z2x13mmaFDCO2	-0.0486445	0.0760808	-0.6394	0.52283	
_19 Z2x13mmaFDCO2	-0.0407226	0.0762461	-0.5341	0.59348	
_20 Z2x13mmaFDCO2	0.0343481	0.0762676	0.4504	0.65262	
21 Z2x13mmaFDCO2	-0.0170778	0.0762014	-0.2241	0.82275	
_22 Z2x13mmaFDCO2	0.0426641	0.0762064	0.5598	0.57580	
23 Z2x13mmaFDCO2	0.24763	0.0764245	3.2402	0.00126	***
24 Z2x13mmaFDCO2	0.0518783	0.0771286	0.6726	0.50146	
_25 Z2x13mmaFDCO2	-0.793164	0.0771768	-10.2772	<0.00001	***
_26 Z2x13mmaFDCO2	0.673644	0.0839021	8.0289	<0.00001	***
27 Z2x13mmaFDCO2	-0.324441	0.0819737	-3.9579	0.00009	***
28 Z2x13mmaFDCO2	0.138495	0.0412347	3.3587	0.00084	***
29	0.0101494	0.00794208	1 2770	0 20170	
ZHad4Gl_1 ZHad4Gl_2	0.00101494	0.00794208	1.2779 0.1353	0.20179 0.89245	
ZHad4GI_2 ZHad4GI_3	-0.00784056	0.00888824	-0.8821	0.37808	
ZHad4GI_3	-0.00435003	0.00889417	-0.4891	0.62497	
ZHad4Gl_5	-0.0123628	0.00890794	-1.3878	0.16573	
ZHad4Gl_6	0.00349266	0.00885988	0.3942	0.69357	

ZHad4Gl 7	-0.00876787	0.0088	5169	-0.9905	0.32233	
ZHad4Gl 8	0.00456575	0.0088		0.5153	0.60657	
—	-0.00234467	0.0088		-0.2654	0.79083	
	-0.00883043	0.0088		-1.0026	0.31646	
_	0.000844746	0.0088		0.0958	0.92370	
ZHad4Gl 12	0.00781879	0.0087		0.8895	0.37411	
ZHad4Gl 13	-0.0148777	0.0087		-1.6915	0.09129	*
ZHad4Gl 14	0.0112028	0.0088		1.2619	0.20750	
ZHad4Gl 15	0.00806641	0.0088		0.9072	0.36469	
ZHad4Gl 16	-0.005193	0.0088		-0.5856	0.55840	
ZHad4Gl 17	0.00226975	0.0088		0.2561	0.79799	
_	0.000249724	0.0087		0.0284	0.97736	
—	-0.00607713	0.0087		-0.6949	0.48743	
ZHad4Gl 20	0.0112006	0.0087:		1.2789	0.20146	
_	-0.00086959	0.0087		-0.0992	0.20140	
	-0.00080939	0.00870	0724	-0.0992	0.92102	
ZHad4Gl_22	-0.00087501	0.00874	4311	-0.1001	0.92032	
ZHad4Gl 23	3 -0.00620297	0.0087.	3374	-0.7102	0.47785	
ZHad4GI_23 ZHad4GI_24	-3.40208e-	0.0087.		-0.7102	0.47783	
ZHad401_24	-3.40208e- 05	0.0087.	5705	-0.0039	0.99089	
ZHad4Gl 25	0.00197494	0.0087	8987	0.2247	0.82231	
ZHad4Gl 26	-0.00316451	0.0087	708	-0.3608	0.71838	
ZHad4Gl 27	-0.00881157	0.0087	779	-1.0038	0.31588	
ZHad4Gl 28	0.0146304	0.0086	0441	1.7003	0.08961	*
ZHad4Gl_29	0.0159557	0.0078		2.0261	0.04322	**
Mean dependent var	0.052	2991	S.D. de	pendent var	0.9	989697
Sum squared resid	2.544			regression)66750
R-squared	0.995			ed R-squared		995464
F(58, 571)	2377		P-value			000000
rho	-0.017			-Watson)32816
ino in the second			restrictio		2.0	52010
All lags o	of Z2x13mmaF				00001	
	s of ZHad4Gl					
	vars, lag 29		· /	8.1696 [0.000]		
7 411	vars, 14 <u>5</u> 29	1(2, 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.1090 [0.000.		
	Equ	ation 2:	ZHad4G	31		
	Coefficient	Std. Ei	rror	t-ratio	p-value	
Z2x13mmaFDCO2	0.351762	0.218		1.6130	<i>p-value</i> 0.10729	
Z2x13mmaFDCO2	-0.160469	0.4332	212	-0.3704	0.71121	
2 Z2x13mmaFDCO2	0.0183659	0.440	032	0.0417	0.96672	
$\frac{3}{Z_{2x}13}$ mmaFDCO2	-0.297947	0.402	096	-0.7410	0.45901	
_4 Z2x13mmaFDCO2	0.560611	0.4022	265	1.3936	0.16397	

-					
$\frac{5}{Z2x13}$ mmaFDCO2	-0.144199	0.399735	-0.3607	0.71843	
_6 Z2x13mmaFDCO2	-0.423575	0.399527	-1.0602	0.28951	
$\frac{7}{Z2x13}$ mmaFDCO2	0.295925	0.400398	0.7391	0.46016	
⁸ Z2x13mmaFDCO2	-0.260102	0.401259	-0.6482	0.51711	
9 Z2x13mmaFDCO2 10	0.230741	0.400805	0.5757	0.56505	
Z2x13mmaFDCO2	-0.200734	0.400714	-0.5009	0.61661	
Z2x13mmaFDCO2	0.528353	0.404168	1.3073	0.19165	
Z2x13mmaFDCO2	-1.10078	0.405448	-2.7150	0.00683	***
Z2x13mmaFDCO2	1.10679	0.492771	2.2461	0.02508	**
Z2x13mmaFDCO2	-0.243162	0.570447	-0.4263	0.67007	
Z2x13mmaFDCO2	0.00763635	0.492114	0.0155	0.98762	
Z2x13mmaFDCO2	-0.606518	0.404573	-1.4992	0.13439	
Z2x13mmaFDCO2	0.397971	0.404072	0.9849	0.32509	
Z2x13mmaFDCO2	0.326914	0.401124	0.8150	0.41541	
Z2x13mmaFDCO2	-0.384669	0.401996	-0.9569	0.33902	
Z2x13mmaFDCO2 21	0.420224	0.402109	1.0450	0.29644	
Z2x13mmaFDCO2 22	-0.360486	0.40176	-0.8973	0.36996	
Z2x13mmaFDCO2 23	0.230553	0.401787	0.5738	0.56632	
Z2x13mmaFDCO2	-0.284056	0.402937	-0.7050	0.48112	
Z2x13mmaFDCO2 25	0.195071	0.406649	0.4797	0.63162	
Z2x13mmaFDCO2 26	-0.534194	0.406903	-1.3128	0.18977	
Z2x13mmaFDCO2 27	0.514871	0.442361	1.1639	0.24494	
Z2x13mmaFDCO2 28	0.0404195	0.432194	0.0935	0.92552	
Z2x13mmaFDCO2 29	-0.12579	0.217404	-0.5786	0.56309	
ZHad4Gl_1	0.459533	0.0418734	10.9743	<0.00001	***

ZHad4Gl 2	0.228872	0.046	50537	4.9697	< 0.00001	***
ZHad4Gl_3	-0.0136179		58619	-0.2906	0.77147	
ZHad4Gl_4	0.0681717	0.046	58932	1.4538	0.14656	
ZHad4Gl 5	0.00674787	0.046	59658	0.1437	0.88581	
ZHad4Gl_6	-0.0438299	0.046	57124	-0.9383	0.34849	
ZHad4Gl ⁷	0.0379334	0.046	66692	0.8128	0.41666	
ZHad4Gl 8	0.0743408		57178	1.5913	0.11210	
ZHad4Gl ⁹	-0.0259374		5854	-0.5568	0.57790	
ZHad4Gl 10	0.0402099	0.046	54344	0.8660	0.38688	
ZHad4Gl 11	-0.00953732	0.046	54824	-0.2052	0.83750	
ZHad4Gl ¹²	-0.0105286	0.046	53444	-0.2272	0.82036	
ZHad4Gl 13	0.0221907		53739	0.4785	0.63247	
ZHad4Gl 14	-0.0191303		58066	-0.4087	0.68291	
ZHad4Gl 15	-0.0239415		58803	-0.5107	0.60976	
ZHad4Gl 16	-0.0267643		57576	-0.5724	0.56727	
ZHad4Gl 17	0.0192374	0.04		0.4116	0.68075	
ZHad4Gl 18	0.00459367		53698	0.0991	0.92112	
ZHad4Gl 19	0.0720049		51114	1.5615	0.11895	
ZHad4Gl 20	-0.0257433		51759	-0.5575	0.57740	
ZHad4Gl 21	0.0172551		6224	0.3733	0.70907	
ZHad4Gl 22	-0.0212647		50967	-0.4613	0.64475	
ZHad4Gl 23	0.0197747	0.046		0.4294	0.66776	
ZHad4Gl 24	0.124019		50647	2.6923	0.00730	***
ZHad4Gl 25	0.0307578	0.046		0.6637	0.50715	
ZHad4Gl 26	-0.0435799		52427	-0.9424	0.34638	
ZHad4GI 27	-0.0885494		52802	-1.9133	0.05621	*
ZHad4GI 28	0.0259696		53654	0.5725	0.03021	
ZHad4GI_28	0.0257739		5204	0.6208	0.53501	
211dd+01_2)	0.0237737	0.041	5204	0.0200	0.55501	
Mean dependent	var 0.020	080	S.D. (dependent var	1.0	05738
Sum squared resi		2152		of regression	0.3	51931
R-squared	0.888	3712	Adju	sted R-squared	0.8	77602
F(58, 571)	78.61	78.61760 P-value(F)		1	1.0	6e-234
rho		0.000459 Durbin-Watson				98971
			o restric			
All la	gs of Z2x13mmaF	DCO2	F(29. 57	71) = <mark>2.3595 [</mark>	0.00011	
	l lags of ZHad4Gl					
	All vars, lag 29	·		-	-	
	, 6)	Ľ	1	
		-	m as a v			
	Null hypoth		U	U		
	Alternative hyp			0 0		
Likelihood ratio te	st: Chi-square(4) =	= 18.60	029 [0.0	009]		

1 2	VAR	analysis 2 – trend :	included					
3								
4	Table 20. VAR analysis 2 - detection of optimal lag							
5	1140		1 26					
6	VAR	system, maximum la	ig order 36 –	trend include	ed			
7 8	Tha c	asterisks below indica	te the best (t	hat is minimi	rad) values			
o 9		e respective informati						
10		= Schwarz Bayesian			-			
11	Die							
12	lags	loglik p(LR)	AIC I	BIC HQ	С			
13	_							
14	1				070131			
15	2	253.77638 0.00000		-0.691893	-0.744177			
16	3	267.15165 0.00002			-0.763244			
17	4	275.59926 0.00203		-0.679324	-0.766465			
18	5	281.21406 0.02410		-0.656009	-0.760578			
19	6	299.10682 0.00000		-0.672173	-0.794170			
20	7	303.50594 0.06635		-0.644948	-0.784373			
21	8	317.09842 0.00002		-0.647285	-0.804138			
22	9	318.76870 0.50253		-0.611286	-0.785567			
23	10	327.97361 0.00103			-0.791224			
24	11	336.76348 0.00149						
25	12	364.32016 0.00000						
26	13	367.92961 0.12470			-0.847876			
27	14	444.46876 0.00000			-1.070041			
28	15	456.36771 0.00009			-1.084360			
29	16	470.70653 0.0000			-1.106525			
30	17	474.44426 0.11280			-1.094602			
31	18	477.57257 0.18079			-1.080719			
32	19	480.23258 0.2560		-0.716768	-1.065331			
33	20	484.88749 0.05381 491.75400 0.00820			-1.056358			
34	21 22	495.61201 0.1025			-1.054495 -1.042959			
35 36	22	503.76590 0.00263			-1.045236			
30 37	23 24	523.01402 0.00000			-1.083186			
38	24	557.15012 0.00000			-1.169007			
38 39	26	559.18176 0.3975			-1.151599			
40	20	622.54853 0.0000						
40 41	28	628.88984 0.01294			-1.327858			
42	29	635.36967 0. <mark>0114</mark>						
43	30	638.03464 0.25509			-1.309380			
44	31	640.48257 0.2981			-1.293310			
45	32	645.59597 0.03678			-1.285810			
46	33	648.43487 0.22454		-0.678440	-1.270997			
47	34	651.36807 0.2093			-1.256488			
48	35	652.64971 0.63334			-1.236667			
49	36	661.06225 0.00209			-1.239776			
50			-	_				

1								
2	Table 20. VAR analysis 2 – trend included							
3 4	VAR system, lag order 29							
4 5	0		observations 30		9)			
6	0		elihood = 637.		<i>)</i>			
7	Dete		ariance matrix		0003			
8			AIC = -1.6522					
9	BIC = -0.8185							
10	HQC = -1.3283							
11	Portmanteau test: $LB(48) = 219.26$, df = 76 [0.0000]							
12			1 70 10	FDCO				
13		Equation	1: Z2x13mma	IFDCO2				
14		Coefficient	Std Error	t-ratio	p-value			
	Z2x13mmaFDCO2	1.72161	0.0413889	41.5958	<0.00001	***		
	1							
	Z2x13mmaFDCO2	-0.778323	0.0820744	-9.4831	< 0.00001	***		
	_2							
	Z2x13mmaFDCO2	0.066736	0.0833424	0.8007	0.42361			
	$\frac{3}{72}$ 12 FDC02	0.00(2505	0.07(15()	0.2460	0.70045			
	Z2x13mmaFDCO2 4	-0.0263525	0.0761566	-0.3460	0.72945			
	$\frac{4}{Z2x13}$ mmaFDCO2	0.0688404	0.0761892	0.9035	0.36662			
	5	0.0000404	0.0701072	0.7055	0.50002			
	Z2x13mmaFDCO2	-0.0418151	0.0757095	-0.5523	0.58095			
	_6							
	Z2x13mmaFDCO2	-0.0709658	0.07567	-0.9378	0.34873			

0.0758355

0.0759981

0.0759122

0.0758956

0.0765513

0.0767996

0.0933702

0.10805

0.093207

0.0766271

0.0765312

0.6253

-0.0912

-0.3776

3.2411

1.6823

-16.4068

15.6566

-6.2789

0.8733

0.7170

0.5389

7

8

9

10

11

12

13

14

15

16

17

Z2x13mmaFDCO2 0.0474232

Z2x13mmaFDCO2 -0.00693413

Z2x13mmaFDCO2 -0.0286644

Z2x13mmaFDCO2 -0.678441

Z2x13mmaFDCO2 0.0814008

Z2x13mmaFDCO2 0.0549384

Z2x13mmaFDCO2 0.0412421

0.245987

0.128783

-1.26004

1.46186

Z2x13mmaFDCO2

Z2x13mmaFDCO2

Z2x13mmaFDCO2

Z2x13mmaFDCO2

0.53200

0.92733

0.70587

0.00126

0.09306

< 0.00001

< 0.00001

< 0.00001

0.38285

0.47369

10					
$\frac{18}{Z2x13mmaFDCO2}$	-0.0482152	0.0759729	-0.6346	0.52592	
_19 Z2x13mmaFDCO2	-0.0409021	0.0761376	-0.5372	0.59133	
_20 	0.0220044	0.07(1502	0 4464	0 (5551	
Z2x13mmaFDCO2 _21	0.0339944	0.0761593	0.4464	0.65551	
Z2x13mmaFDCO2 22	-0.0171144	0.0760929	-0.2249	0.82213	
Z2x13mmaFDCO2	0.0428004	0.076098	0.5624	0.57404	
_23 Z2x13mmaFDCO2	0.247376	0.0763159	3.2415	0.00126	***
_24 Z2x13mmaFDCO2	0.0529869	0.0770218	0.6879	0.49177	
_25					
Z2x13mmaFDCO2 26	-0.791654	0.0770726	-10.2715	<0.00001	***
Z2x13mmaFDCO2 27	0.670938	0.0837993	8.0065	< 0.00001	***
Z2x13mmaFDCO2	-0.324589	0.0818571	-3.9653	0.00008	***
_28 Z2x13mmaFDCO2	0.139405	0.0411799	3.3853	0.00076	***
29					
ZHad4Gl 1	0.00991418	0.0079321	1.2499	0.21186	
ZHad4Gl ²	0.00110205	0.00872266	0.1263	0.89950	
ZHad4Gl_3	-0.00784665	0.00887558	-0.8841	0.37703	
ZHad4Gl ⁴	-0.00443465	0.00888167	-0.4993	0.61776	
ZHad4Gl ⁵	-0.0124287	0.00889535	-1.3972	0.16289	
ZHad4Gl_6	0.00344782	0.00884731	0.3897	0.69690	
ZHad4Gl ⁷	-0.00882284	0.00883915	-0.9982	0.31863	
ZHad4Gl 8	0.00445706	0.00884856	0.5037	0.61466	
ZHad4Gl 9	-0.00241577	0.00882333	-0.2738	0.78434	
ZHad4Gl ¹⁰	-0.00893226	0.00879484	-1.0156	0.31024	
ZHad4Gl 11	0.000694529	0.00880419	0.0789	0.93715	
ZHad4Gl 12	0.00770992	0.00877784	0.8783	0.38013	
ZHad4Gl ¹³	-0.0149396	0.00878325	-1.7009	0.08950	*
ZHad4Gl 14	0.0109846	0.00886614	1.2389	0.21588	
ZHad4Gl 15	0.00790526	0.00887963	0.8903	0.37370	
ZHad4Gl 16	-0.00527712	0.00885598	-0.5959	0.55149	
ZHad4Gl 17	0.00215937	0.00885144	0.2440	0.80735	
ZHad4Gl 18	0.00018374	0.00878249	0.0209	0.98332	
ZHad4Gl 19	-0.00617904	0.00873368	-0.7075	0.47955	
ZHad4Gl 20	0.0111163	0.00874582	1.2710	0.20423	
ZHad4Gl 21	-0.00089272	0.00875477	-0.1020	0.91882	
ZHad4Gl_22	-0.00080851	0.00873076	-0.0926	0.92625	
	8				
ZHad4Gl_23	-0.00613741	0.00872141	-0.7037	0.48190	
ZHad4Gl_24	-7.91095e-	0.00872464	-0.0091	0.99277	
ZHad4Gl_25	05 0.00193099	0.0087774	0.2200	0.82595	

1	_	-0.00313812 -0.00884439 0.0146501 0.0162128 1.24186e-05	0.0085	6543 9216 6551	-0.3583 -1.0090 1.7051 2.0613 1.6215	0.72025 0.31340 0.08873 0.03973 0.10546	* **
1	Mean dependent var Sum squared resid R-squared F(59, 570) rho	0.052 2.532 0.995 2343 -0.018	2473 5895 .695	S.E. of Adjust P-valu	ependent var Fregression ed R-squared e(F) n-Watson	0.0 0.9 0.0	89697 66655 95477 00000 33779
3 4 5 6 7 8 9	All lag	F-tests of Z2x13mmaF gs of ZHad4Gl vars, lag 29	F(29	(29, 570) (29, 570) =		<mark>539]</mark>	
9 10 11		Equ	ation 2:	ZHad4(31		
	Z2x13mmaFDCO2	<i>Coefficient</i> 0.344439	<i>Std. E.</i> 0.218		<i>t-ratio</i> 1.5752	<i>p-value</i> 0.11577	
	1 Z2x13mmaFDCO2 2	-0.154957	0.433	619	-0.3574	0.72096	
	$\overline{Z_{2x}^{2}}$ 13mmaFDCO2	0.0193596	0.440	318	0.0440	0.96495	
	Z2x13mmaFDCO2	-0.298405	0.402	354	-0.7416	0.45861	
	Z2x13mmaFDCO2	0.559706	0.402	526	1.3905	0.16493	
	Z2x13mmaFDCO2 6	-0.143613	0.399	992	-0.3590	0.71970	
	Z2x13mmaFDCO2 7	-0.423337	0.399	783	-1.0589	0.29009	
	Z2x13mmaFDCO2 8	0.295107	0.400	657	0.7366	0.46169	
	Z2x13mmaFDCO2 9	-0.259804	0.401	517	-0.6471	0.51786	
	Z2x13mmaFDCO2	0.231159	0.401	063	0.5764	0.56459	
	Z2x13mmaFDCO2	-0.201686	0.400	975	-0.5030	0.61517	
	Z2x13mmaFDCO2	0.530009	0.404	439	1.3105	0.19056	
	Z2x13mmaFDCO2 13	-1.09769	0.405	751	-2.7053	0.00703	***
	Z2x13mmaFDCO2 _14	1.09929	0.493	297	2.2284	0.02624	**

Z2x13mmaFDCO2	-0.23945	0.570856	-0.4195	0.67504	
_15 Z2x13mmaFDCO2	0.00892138	0.492435	0.0181	0.98555	
_16 Z2x13mmaFDCO2	-0.607821	0 40494	1 5014	0 12201	
17	-0.00/821	0.40484	-1.5014	0.13381	
Z2x13mmaFDCO2	0.397307	0.404333	0.9826	0.32621	
_18 Z2x13mmaFDCO2	0.327641	0.401384	0.8163	0.41468	
_19 	0.204072	0 400054	0.0570	0 22005	
Z2x13mmaFDCO2 20	-0.384973	0.402254	-0.9570	0.33895	
Z2x13mmaFDCO2	0.419625	0.402368	1.0429	0.29744	
_21 	0 2 (05 4 9	0 402017	0.0000	0 27010	
Z2x13mmaFDCO2 22	-0.360548	0.402017	-0.8968	0.37018	
Z2x13mmaFDCO2	0.230784	0.402044	0.5740	0.56618	
$\frac{23}{Z2x13mmaFDCO2}$	-0.284486	0.403196	-0.7056	0.48074	
24	0.204400	0.405170	-0.7050	0.400/4	
Z2x13mmaFDCO2	0.196948	0.406925	0.4840	0.62858	
_25 Z2x13mmaFDCO2	-0.531638	0.407193	-1.3056	0.19221	
_26	0.001000	0.107195	1.5050	0.17221	
Z2x13mmaFDCO2 27	0.510289	0.442732	1.1526	0.24956	
Z2x13mmaFDCO2	0.040169	0.432471	0.0929	0.92603	
_28					
Z2x13mmaFDCO2 29	-0.12425	0.217563	-0.5711	0.56816	
ZHad4Gl_1	0.459135	0.0419072	10.9560	< 0.00001	***
ZHad4Gl 2	0.228737	0.0460839	4.9635	< 0.00001	***
ZHad4Gl ⁻ 3	-0.0136282	0.0468919	-0.2906	0.77144	
ZHad4Gl 4	0.0680285	0.046924	1.4498	0.14768	
ZHad4Gl 5	0.00663623	0.0469963	0.1412	0.88776	
ZHad4Gl 6	-0.0439058	0.0467425	-0.9393	0.34797	
ZHad4Gl 7	0.0378404	0.0466994	0.8103	0.41811	
ZHad4Gl 8	0.0741568	0.0467491	1.5863	0.11323	
ZHad4Gl_8	-0.0260578	0.0466158	-0.5590	0.57639	
ZHad4GI_9 ZHad4GI_10	0.0200378	0.0464653	0.8617	0.37039	
_					
ZHad4Gl_11	-0.00979162	0.0465147	-0.2105	0.83335	
ZHad4Gl_12	-0.0107129	0.0463755	-0.2310	0.81740	
ZHad4Gl_13	0.0220859	0.0464041	0.4759	0.63429	
ZHad4Gl_14	-0.0194998	0.046842	-0.4163	0.67736	
ZHad4Gl_15	-0.0242143	0.0469133	-0.5162	0.60595	
ZHad4Gl_16	-0.0269067	0.0467883	-0.5751	0.56547	
ZHad4Gl_17	0.0190505	0.0467643	0.4074	0.68389	
ZHad4Gl_18	0.00448196	0.0464	0.0966	0.92308	
ZHad4Gl_19	0.0718324	0.0461421	1.5568	0.12008	
ZHad4Gl_20	-0.0258862	0.0462063	-0.5602	0.57554	

	ZHad4Gl 21	0.0172159	0.0462	2536	0.3722	0.70988	
	ZHad4Gl ²²	-0.0211521	0.046	1267	-0.4586	0.64672	
	ZHad4Gl 23	0.0198857	0.046	0773	0.4316	0.66622	
	ZHad4Gl ²⁴	0.123943	0.046	0944	2.6889	0.00738	***
	ZHad4Gl 25	0.0306834	0.046	3731	0.6617	0.50845	
	ZHad4Gl 26	-0.0435352	0.0462		-0.9408	0.34718	
	ZHad4Gl 27	-0.0886049	0.046		-1.9133	0.05621	*
	ZHad4Gl 28	0.026003	0.045		0.5728	0.56699	
	ZHad4Gl 29	0.0262092	0.041		0.6307	0.52849	
	time	2.10237e-05	4.0462		0.5196	0.60356	
1							
	Mean dependent v	ar 0.02	0080	S.D. d	lependent var	1.0	05738
	Sum squared resid		8804		of regression		52156
	R-squared		8764		ted R-squared		77446
	F(59, 570)		9086	P-valu	1		le-233
	rho		0443		n-Watson		98998
2	mo		s of zero			1.9	/0//0
2	A11 1900	s of Z2x13mmal				00021	
4	•	lags of ZHad4G			= 39.45 [0.00]		
5		ll vars, lag 29	· · · ·	, ,	0.3401 [0.7118		
6	11	ii vuis, iug 2)	1 (2,	570)	0.5 101 [0.7110	<i>」</i>	
7							
8		For th	e syster	nasaw	hole		
9		Null hypoth					
10		Alternative hypot					
11	Lik	elihood ratio tes			• •	00081	
12				quare() 10.9972 [0.	5000]	
12							
14	These results show t	hat when trend	is includ	led in th	e VAR it is ins	ionificant [,] a	nd that
15	models both with an					-	ina tinat
16	difference CO_2 to ter						h
17		inperature, and i	100 11011	temper	uture to mot u		2.
18							
19							
20	Referee third majo	or comment: M	v third n	naior co	omment conceri	ns the new so	ection
21	on NDVI. Interesting			U			
22	discussion goes far			0		· ·	
23	the series constructe			•		-	
24	temperature is a pro	00	0				Surely
25	GCMs must (at best)				0	0	•
26	CO ₂ . (See comment	1	1 0		1 0	<i>v</i> 1	0
20 27	are linear in CO ₂ co	,	•	-	00	1 0	
28	may or may not capi		-			-	
28 29	discrepancy. Hence,			-		-	
2) 30	spurious. I would ne						
31	reads like off-the-cu	0					
32	evidence, supported				·		
33	concentrations are '		0	• •	•		ood
33 34	point. However, it se	• • •					
35	CO_2 , etc.) needs to b				0		

1 2 2	It's not good enough to simply report a curious correlation and extrapolate from it a whole theory of the biosphere, This seems like blatant data mining.
3 4 5 6 7	My suggestion to the authors is to subtract the section on NDVI, as ample material for a new paper although a good deal of additional work is called for. Then, to redraft the first part of the paper taking note of the various comments offered here.
8 9	Response: The points made are valued and the suggestion is accepted.
10 11 12 13	The NDVI section is redone and simplified in an attempt to be the minimum necessary to illustrate the point that further NDVI research could be conducted; and the Discussion is amended accordingly.
14 15 16	The two proposed new sections are as follows:
17	4.4 Normalized Difference Vegetation Index (NDVI)
18	
19	Using the Normalized Difference Vegetation Index (NDVI) time series as a
20	measure of the activity of the land biosphere, this section now investigates the
21	land biosphere as a candidate mechanism for the issue, identified in the
22	Introduction, of the increasing difference between the observed global surface
23	temperature trend and that suggested by general circulation climate models.
24 25	The trend in the terrestrial CO ₂ sink is estimated annually as part of the
26	assessment of the well-known global carbon budget (Le Quere at al. 2014). It
20	is noted that there is a risk of circular argument concerning correlations
28	between the terrestrial CO_2 sink and interannual (first-difference) CO_2 because
29	the terrestrial CO_2 sink is defined as the residual of the global carbon budget
30	(Le Quere at al. 2014). By contrast, the Normalized Difference Vegetation
31	Index (NDVI) involves direct (satellite-derived) measurement of terrestrial
32	plant activity. For this reason and because, of the two series, only NDVI is
33	provided in monthly form, we will use only NDVI in what follows.
34 35	
36	4.4.1. Preparation of the global NDVI series used in this paper
37	
38	Globally aggregated GIMMS NDVI data from the Global Land Cover Facility
39	site is available from 1980 to 2006. This dataset is referred to here as NDVIG.

Spatially disaggregated GIMMS NDVI data from the GLCF site is available
 from 1980 to the end of 2013. An analogous global aggregation of this
 spatially disaggregated GIMMS NDVI data – from 1985 to end 2013 – was
 obtained from the Institute of Surveying, Remote Sensing and Land
 Information, University of Natural Resources and Life Sciences, Vienna. This
 dataset is abbreviated to NDVIV.

Pooling the two series enabled the longest time span of data aggregated at 8 global level. The two series were pooled as follows. Figure 10 shows the 9 appearance of the two series. Each series is Z-scored by the same common 10 period of overlap (1985-2006). The extensive period of overlap can be seen, as 11 12 can the close similarity in trend between the two series. The figure also shows that the seasonal adjustment smoothings vary between the two series. 13 14 Seasonality was removed for the NDVIV series using the 13 month moving 15 average smoothing used throughout this paper. This required two passes using the 13 month moving average, which leads to a smoother result than seen for 16 the NDVIG series. 17

18

7

Pretis and Hendry (2013) observe that pooling data (i) from very different
measurement systems and (ii) displaying different behaviour in the subsamples can lead to errors in the estimation of the level of integration of the
pooled series.

23

The first risk of error (from differences in measurement systems) is overcome here as both the NDVI series are from the same original disaggregated data set. The risk associated with the sub-samples displaying different behaviour and leading to errors in levels of integration is considered in the following section by assessing the order of each input series separately, and then the order of the pooled series.

30

Table 14 provides order of integration test results for the three NDVI series.
 The analysis shows all series are stationary (I(0)). It is, therefore, valid to pool

33 the two series. Pooling was done by appending the Z-scored NDVIV data to

the Z-scored NDVIG data at the point where the Z-scored NDVIG data ended 1 2 (in the last month of 2006). 3 As discussed in the Introduction, Figure 1 shows that since around the year 4 2000 there is an increasing difference between the temperature projected by a 5 mid-level IPCC model and that observed. Any cause for this increasing 6 difference must itself show an increase in activity over this period. 7 8 9 The purpose of this section is, therefore: (i) to derive an initial simple indicative quantification of the increasing difference between the temperature 10 model and observation; and (ii) to assess whether global NDVI is increasing. 11 If NDVI is increasing, this is support for NDVI being a candidate for the cause 12 of the temperature model-observation difference. If there is a statistically 13 14 significant relationship between the two increases, this is further support for NDVI being a candidate for the cause of the model-observation difference, 15 16 and hence worthy of further detailed research. A full analysis of this question is beyond the scope of the present paper. 17 18 19 20 4.4.2 Preparation of the indicative series for the difference between the temperature projected from a mid-level IPCC model and that observed 21 22 A simple quantification of the difference between the temperature projected 23 from a mid-level IPCC model and that observed can be derived by subtracting 24 the (Z-scored) temperature projected from the IPCC mid-range scenario model 25 (CMIP3, SRESA1B scenario run for the IPCC fourth assessment report (IPCC 26 2007)) shown in Figure 1, from the observed global surface temperature also 27 shown in Figure 1. This quantification is depicted in Figure 13 for monthly 28 data and, to reduce the influence of noise and seasonality, in Figure 14 for the 29 30 same data pooled into three-year bins. 31 32 4.4.3. Comparison of the pooled NDVI series with the difference between projected and observed global surface temperature 33

Figure 13, displaying monthly data, compares NDVI with the difference between the temperature projected from an IPCC mid-range scenario model (CMIP3, SRESA1B scenario run for the IPPC fourth assessment report (IPCC 2007)) and global surface temperature (red dotted curve). Both curves rise in more recent years.

The trends for the 36-month pooled data in Figure 14 show considerable 8 9 commonality. OLS regression analysis of the relationship between the curves 10 in Figure 14 shows that the best fit between the curves involves no lead or lag. The correlation between the curves displays an adjusted R-squared value of 11 12 0.86. This is statistically significant (p = 0.00185). As expected with such aggregated multi-year data, the relationship shows little or no autocorrelation 13 14 (Test statistic: LMF = 1.59 with p-value = P(F(5,3) > 1.59) = 0.37). The similarity between the trend in the NDVI and the difference between IPCC 15 temperature modelling and observed temperature is evidence supporting the 16 possibility that the NDVI may contribute to the observed global surface 17 18 temperature departing from the IPCC modelling.

19 20

21

22 23 24

29

1

2

3

4

5

6

7

5 Discussion

The results in this paper show that there are clear links – at the highest standard of non-experimental causality – that of Granger causality – between first- and second-difference CO₂ and the major climate variables of global surface temperature and the Southern Oscillation Index, respectively.

Relationships between first- and second-difference CO₂ and climate variables are present for all the time scales studied, including temporal start points situated as long ago as 1500. In the instances where time series analysis accounting for autocorrelation could be successfully conducted, the results were always statistically significant. For the further instances (for those studies using data series commencing before 1877) the data was not amenable to time series analysis – and therefore also not amenable to testing for Granger

1	causality – due to the strongly smoothed nature of the temperature data
2	available which made removal of the autocorrelation impossible (see Section
3	4.3). Nonetheless, the scale of the non-corrected correlations observed was of
4	the same order of magnitude as those of the instances that were able to be
5	corrected for autocorrelation.
6	
7	Given the time scales over which these effects are observed, the results taken
8	as a whole clearly suggest that the mechanism observed is long term, and not,
9	for example, a creation of the period of the steepest increase in anthropogenic
10	CO ₂ emissions, a period which commenced in the 1950s (IPCC 2014).
11	
12	
13	Taking autocorrelation fully into account in the time series analyses
14	demonstrates the major role of immediate past instances of the dependent
15	variable (temperature, and SOI) in influencing its own present state. This was
16	found in all cases where time series models could be prepared. This was not
17	to detract from the role of first- and second-difference CO_2 – in all relevant
18	cases, they were significant in the models as well.
19	
20	According to Wilks (1995) and Mudelsee (2010), such autocorrelation in the
21	atmospheric sciences also called persistence or "memory" is characteristic for
22	many types of climatic fluctuations.
23	
24	In the specific case of the temperature and first-difference CO_2 relationship,
25	the significant autocorrelation for temperature occurred with present
26	temperature being affected by the immediately prior month and the month
27	before that. As mentioned above, for atmospheric CO ₂ and global surface
28	temperature, others (Sun and Wang 1996; Triacca 2005; Kodra et al. 2011;
29	Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann 2014) have
30	conducted Granger causality analyses involving the use of lags of both
31	dependent and independent variables. These studies, however, are not directly
32	comparable with the present study. Firstly, while reporting the presence or
33	absence of Granger causality, the studies did not report lead or lag information.
34	Secondly, the studies used annual data, so could not investigate the dynamics

1	of the relationships at the interannual (monthly) level where our findings were
2	greatest.
3	
4	The anthropogenic global warming (AGW) hypothesis has two main
5	dimensions (IPCC 2007; Pierrehumbert 2011): (i) that increasing CO ₂ causes
6	increasing atmospheric temperature (via a radiative forcing mechanism) and (ii)
7	that most of the increase in atmospheric CO ₂ in the last hundred years has
8	been due to human causes.
9	
10	The results presented in this paper are supportive of the AGW hypothesis for
11	two reasons: firstly, increasing atmospheric CO2 is shown to drive increasing
12	temperature; and secondly, the results deepen the evidence for a CO_2 influence
13	on climate in that second-difference CO ₂ is shown to drive the SOI.
14	
15	The difference between this evidence for the effect of CO_2 on climate and that
16	of the standard AGW hypothesis is that the standard model proposes that
17	temperature will rise roughly linearly with atmospheric CO ₂ , whereas the
18	present results show that the climate effects result from persistence of previous
19	effects and from <i>rates of change</i> of CO ₂ .
20	
21	On the face of it, then, this model seems to leave little room for the linear
22	radiative forcing aspect of the AGW hypothesis.
23	
24	However more research is needed in this area.
25	
26	Reflection on Figure 1 shows that the radiative mechanism would be
27	supported if a second mechanism existed to cause the difference between the
28	temperature projected for the radiative mechanism and the temperature
29	observed. The observed temperature would then be seen to result from the
30	addition of the effects of these two mechanisms.
31	As discussed in the Introduction Hanson at al. (2012) have an estimated in the
32	As discussed in the Introduction, Hansen et al. (2013) have suggested that the
33	mechanism for the pause in the global temperature increase since 1998 may be
34	the planetary biota, in particular the terrestrial biosphere. As an initial

1	indicative quantified characterisation of this possibility, Section 4.4 derived a
2	simple measure of the increasing difference between the global surface
3	temperature trend projected from a mid-range scenario climate model and the
4	observed trend. This depiction of the difference displayed a rising trend. The
5	time series trend for the globally aggregated Normalized Difference
6	Vegetation Index – which represents the changing levels of activity of the
7	terrestrial biosphere was also presented. This was shown also to display a
8	rising trend.
9	
10	If by further research, for example by Granger causality analysis, the global
11	vegetation can be shown to embody the second mechanism, this would be
12	evidence that the observed global temperature does result from the effects of
13	two mechanisms in operation together – the radiative, level-of-CO ₂
14	mechanism, with the biological first-difference of CO ₂ mechanism.
15	
16	Hence the biosphere mechanism would supplement, rather than replace, the
17	radiative mechanism.
18	
19	Further comprehensive time series analysis of the NDVI data and relevant
20	climate data, beyond the scope of the present paper, could throw light on these
21	questions.
22 23 24 25 26 27 28	
29 30 31 32 33	Detailed Comments: 1. The paragraph in lines 19-25 on page 8 is incoherent. Please redraft. (There are various other places where the quality of exposition could be improved. Please redraft with careful attention to readability.)
33 34 35	We propose to replace the paragraph in question:
36	A number of Granger causality studies have been carried out on climate time
37	series (see review in Attanasio 2012). Of papers we have found which
38	assessed atmospheric CO ₂ and global surface temperature – some six (Sun and

1	Wang 1996; Triacca 2005; Kodra et al., 2011; Attanasio and Triacca, 2011;
2	Attanasio (2012); Stern and Kaufmann 2014) -while all but one (Triacca 2005)
3	found Granger causality, it was not with CO ₂ concentration but with CO ₂
4	radiative forcing (lnCO ₂ (Attanasio and Triacca, 2011).
5	
6	With the following:
7	
8	A number of Granger causality studies have been carried out on climate time
9	series (see review in Attanasio 2012). We found six papers which assessed
10	atmospheric CO ₂ and global surface temperature (Sun and Wang 1996;
11	Triacca 2005; Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio (2012);
12	Stern and Kaufmann 2014). Of these, while all but one (Triacca 2005) found
13	Granger causality, it was not with CO ₂ concentration as studied in this paper
14	but with CO ₂ radiative forcing (lnCO ₂ (Attanasio and Triacca 2011)).
15	
 16 17 18 19 20 21 22 23 	Detailed Comments: 2 . <i>Lines 13-21 on page 9 are a reworking of the preceding paragraph. Please delete whichever is the unintended version.</i> This has been done.
24 25 26 27 28 29	Detailed Comments: 3. (Page 11, lines 26-27). <i>The point about SOI versus ENSO could be better made. Is "more valid" a better reason for the preference than "simpler"? It would be very helpful to readers to give brief formal definitions of both these series. How is ENSO constructed? I don't know.</i>
30 31 32	On the existing manuscript we define
33	The Southern Oscillation is the atmospheric pressure component of ENSO,
34	and is an oscillation in the surface air pressure between the tropical eastern and
35	the western Pacific Ocean waters. It is calculated from normalized Tahiti
36	minus Darwin sea level pressure. The SOI only takes into account sea level
37	pressure. In contrast, the El Niño component of ENSO is specified in terms of
38	changes in the Pacific Ocean sea surface temperature relative to the average
39	temperature. It is considered to be more valid to conduct an analysis in which

1	the temperature is an outcome (dependent variable) without also having
2	(Pacific Ocean) temperature as an input (independent variable). The
3	correlation between SOI and the other ENSO indices is high, so we believe
4	this assumption is robust.
5	
6 7	We suggest replacing the above with the following:
8	the suggest replacing the use to thin the renotting.
9 10	Concerning the El Nino-Southern Oscillation, according to IPCC (2014) the
11	term El Niño was initially used to describe a warm-water current that
12	periodically flows along the coast of Ecuador and Peru, disrupting the local
13	fishery. It has since become identified with a basin-wide warming of the
14	tropical Pacific Ocean east of the dateline. This oceanic event is associated
15	with a fluctuation of a global-scale tropical and subtropical surface
16	atmospheric pressure pattern called the Southern Oscillation. This
17	atmosphere-ocean phenomenon is coupled, with typical time scales of two to
18	about seven years, and known as the El Niño-Southern Oscillation (ENSO).
19	
20	The El Nino (temperature) component of ENSO is measured by changes in the
21	sea surface temperature of the central and eastern equatorial Pacific relative to
22	the average temperature. The Southern Oscillation (pressure) ENSO
23	component is often measured by the surface pressure anomaly difference
24	between Tahiti and Darwin.
25	
26	During an ENSO event, the prevailing trade winds weaken, reducing
27	upwelling and altering ocean currents such that the sea surface temperatures
28	warm, further weakening the trade winds. This event has a great impact on the
29	wind, sea surface temperature and precipitation patterns in the tropical Pacific.
30	It has climatic effects throughout the Pacific region and in many other parts of
31	the world.
32	
33	For the present study we choose the SOI component of ENSO to stand for
34	ENSO as a whole. This is because it is considered to be more valid to conduct

an analysis in which temperature is an outcome (dependent variable) without

1	also having (Pacific Ocean) temperature as an input (independent variable).
2	The correlation between SOI and the other ENSO indices is high, so we
3	believe this assumption is robust.
4 5 6 7 8	
9	
10 11 12 13 14 15 16 17	Detailed Comments: 4 . (Page 12, lines 9 and 30) <i>The use of the term "derivative" as</i> a synonym for "difference" is, to this reader, an irritating tic. "Derivative" suggests that the models in question are discrete approximations to continuous time relations, but nowhere are these relations specified or the approximations formalized. Indeed, the tests for Granger causality, of the form given, could not be formalized at all in a continuous time framework! Let's be clear that the models presented here are explicitly formulated for discrete sequences of observations. Differences, like lags, are an inherent feature of these models, not approximations to anything.
18	
19 20 21	Response: Will change derivative to difference.
22	
23 24 25	Detailed Comments: 5. (Page 13, lines 7-16) <i>Please see the main discussion above.</i>
26	Response provided above.
27 28 29 30	Detailed Comments: 6. <i>There are lots of missing references in the paper. See in particular pages 13, lines 30-31, and 14, lines 4-6, but there are others.</i>
31 32 33 34	Response: All references in body of newly amended manuscript have been checked with References section, missing references added and superfluous removed.
35 36 37 38 39 40 41	Detailed Comments: 7 . (Page 15, lines 9-10) Note that BLUE is a property pertaining to the classical (fixed regressor) regression model, which is not appropriate to time series. Autocorrelated disturbances may result in bias when the model includes lagged endogenous variables among the regressors.
42 43 44 45 46	The OLS estimator is BLUE in the context of time-series data provided that the errors in the model satisfy the assumptions of a zero mean, no autocorrelation, and homoskedasticity; and provided that the regressors are non-random (or at least not correlated with the errors). "Fixed regressors" are not actually needed for OLS to be BLUE.

1 2 3 4 5 6 7 8 9	If the regressors include lagged values of the dependent variable, then OLS will be biased in small samples. However, this bias vanishes in very large samples, as OLS is still a consistent estimator in this situation. If, in addition to these lagged variables, we also have autocorrelated errors, the OLS will be inconsistent. By using a dynamic model specification (which typically includes using lagged values of the dependent variable as regressors) we can typically ensure that the model's errors are in fact serially independent. In this case there is a small-sample bias, but it will be negligible with samples of the size used in the paper.
10	Based on the above we propose to replace the text (page 15, line 30):
11	Notably and importantly this does not bias the OLS coefficient estimates.
12	With
13	Notably and importantly this does not bias the OLS coefficient estimates given
14	the sample sizes used in this study.
15	
16	Detailed Comments: 8. (Page 18) The discussion of the "I(d)" categorization of
17	series on this page is totally muddled. Beenstock et al. find temperature to be $I(1)$ and
18	CO_2 (level) to be $I(2)$. Please redraft with care.
19	
20	Proposed redraft is as follows:
21	
22	Both first-difference CO ₂ being shown to lead temperature, and the two series
23	displaying close correspondence, are considered a firm basis for the time
24	series analysis of the statistical relationship between first-difference CO ₂ and
25	temperature which follows. For this further analysis, we choose global surface
26	temperature as the temperature series because, while its maximum correlation
27	is not the highest (Figure 5), its global coverage by definition is greatest.
28	
29	The following sections provide the results of the time series analysis. (In this
30	section, TEMP stands for global surface temperature ((HadCRUT4), and other
31	block capital terms are those used in the modelling).
32	
33	The order of integration, denoted $I(d)$, is an important characteristic of a time
34	series. It reports the minimum number of differences required to obtain a
35	covariance stationary series. As stated above, all series used in a time series
36	regression must be series which are stationary without further differencing
37	(Greene 2012), that is, in the notation, display an order of integration of I(0). If
38	a series has an order of integration greater than zero, it can be transformed by
39 40	appropriate differencing into a new series which is stationary.
40 41	By means of the Augmented Dickey–Fuller (ADF) test for unit roots, Table 3
41 42	provides the information concerning stationarity for the level of, and first-
42 43	difference of, CO ₂ , as well as for global surface temperature. Test results are
43 44	provided for both monthly and annual data. The test was applied with an
44 45	allowance for both a drift and deterministic trend in the data, and the degree of
Ъ	and wanter for both a arrit and deterministic trend in the data, and the degree of

1	augmentation in the Dickey-Fuller regressions was determined by minimizing
2	the Schwarz Information Criterion.
3	
4	The results show that for both the monthly and annual series used, the
5	variables TEMP and FIRST-DIFFERENCE CO ₂ are stationary (I(0)); but
6	level of CO_2 is not. Level of CO_2 is shown to be I(1) because (Table 3) its first
7	differencefirst-difference is stationary.
8	
9	In contrast to this result, however, Beenstock et al. (2012), using annual data,
10	report that their series for the level of atmospheric CO_2 forcing is an $I(2)$
11	variable and therefore is stationary in <i>second</i> differences.
12	
13	With regard to the reconciliation of these two varying results, we refer to the
14	study of Pretis and Hendry (2013) which reviewed Beenstock et al. (2012).
15	Pretis and Hendry (2013) take issue with the finding of $I(2)$ for the
16	anthropogenic forcings studied – including CO ₂ - and find evidence that this
17	finding results from the combination of two different data sets measured in
18	different ways which make up the 1850-2011 data set which Beenstock et al.
19	test. Regarding this composite series Pretis and Hendry (2013) write:
20	
21	In the presence of these different measurements exhibiting structural
22	changes, a unit-root test on the entire sample could easily not reject the
23	null hypothesis of $I(2)$ even when the data are in fact $I(1)$. Indeed, once
24	we control for these changes, our results contradict the findings in
25	Beenstock et al. (2012).
26	
27	Pretis and Hendry (2013) give their results for CO ₂ in their Table 1. Note that,
28	in the table, level of CO_2 data is transformed into first-difference data
29	(Beenstock et al claim the <i>level</i> of CO_2 is I(2); if that is the case, the first-
30	difference of the level of CO ₂ Pretis and Hendry (2013) should find would be
31	I(1)).
32	
33	Pretis and Hendry (2013) state:
34	
35	Unit-root tests are used to determine the level of integration of time
36	series. Rejection of the null hypothesis provides evidence against the
37	presence of a unit-root and suggests that the series is $I(0)$ (stationary)
38	rather than I(1) (integrated).
39	based on augmented Dickey-Fuller (ADF) tests (see Dickey and
40	Fuller, 1981), the first difference first-difference of annual radiative
41	forcing of CO ₂ is stationary initially around a constant (over 1850–
42	1957), then around a linear trend (over 1958–2011). Although these
43	tests are based on sub-samples corresponding to the shift in the
44	measurement system, there is sufficient power to reject the null
45	hypothesis of a unit root.
46	
47	Hence for annual data Pretis and Hendry (2013) find first-difference CO ₂ to be
48	stationary - $I(0)$, not $I(1)$ - as we do (Table 3).
49	

With this question of the order of integration of the time series considered, we 1 now turn to the next step of the time series analysis. 2 3 4 5 **Detailed Comments: 9.** The application of the Toda-Yamamoto result is most 6 7 interesting, but it needs to be seen in context. These authors propose tests for a VAR in levels with an unknown number of unit roots. However, please note that in such a 8 model, Granger causality of an I(1) series by an I(2) series is ruled out by 9 construction. A model generating variables with different orders of integration can 10 only embody long-run relations between variables transformed to have the same 11 orders of integration: in particular, between the level of an I(1) and the differences of 12 13 an I(2), or between the level of an I(0) and the differences of an I(1)). (To verify this 14 statement, consider the VAR () $A L x u_{tt}$ and verify the properties that=A L () must 15 satisfy to ensure that $A L()_{1-}$ -contains different powers of the factor 1 L appearing in different rows.) The outcome of the reported test is inevitable, given the other 16 reported results. I guess it does not harm to report it, but with suitable caveats. 17 18 19 20 Our response is as follows: 21 22 In their text Applied Time Series Econometrics. Cambridge University Press, (2004), Lutkepohl and Kratzig state (page 148): 23 24 Because testing for Granger-causality requires checking whether specific coefficients 25 are zero, standard tests for zero restrictions on VAR coefficients may be used here (γ 26 2- or *F*-tests based on the Wald principle are typically thought of in this context). 27 Unfortunately, they may have nonstandard asymptotic properties if the VAR contains 28 I(1) variables. In particular, Wald tests for Granger-causality are known to result in 29 nonstandard limiting distributions depending on the cointegration properties of the 30 31 system and possibly on nuisance parameters [see Toda & Phillips (1993)]. 32 Fortunately, these problems can be overcome easily, as pointed out by Toda 33 34 & Yamamoto (1995) and Dolado & Lutkepohl (1996). As mentioned in Section 3.3.1, the nonstandard asymptotic properties of the standard tests on the coefficients of 35 cointegrated VAR processes are due to the singularity of the asymptotic distribution 36 37 of the estimators. The singularity can be removed by fitting a VAR process whose order exceeds the true order, however. It can be 38 shown that this device leads to a non-singular asymptotic distribution of the relevant 39 coefficients. Thus, simply overfitting the VAR order and ignoring the extra 40 parameters in testing for Granger-causality overcomes the problems associated with 41 standard tests – at least if asymptotic properties are of interest. 42 43 44 45 46 47 **Detailed Comments: 10.** (Page 27, lines 11-13) The regression of (say) x - ay on z is clearly different for different choices of constant a. It could be significant (or 48

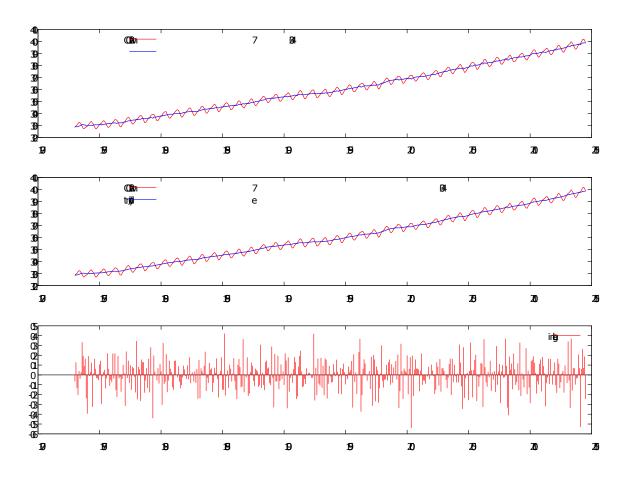
49 cointegrated in the nonstationary case) for some value of a, and not for others. The

case that the projection error of a GCM can be captured as the simple difference of the two standardized series needs to be much more carefully argued. Response: This point is valued. Will address in the new, separate paper. **Detailed Comments: 11.** *My guess is that "the APCD paper" referred to in Page 30,* line 20, and elsewhere refers to the first version of the present paper. If so, this needs to be made explicit. Response: this is correct – the term is not used in the present Author Response References Beenstock, M., Reingewertz, Y., and Paldor, N.: Polynomial cointegration tests of anthropogenic impact on global warming, Earth Syst. Dynam., 3, 173–188, doi:10.5194/esd-3-173-2012, 2012. Bloem A.M., Dippelsman R.J., Maehle N.O.: *Quarterly National Accounts Manual:* Concepts, Data Sources, and Compilation. International Monetary Fund: Washington, DC, 2001. Chatfield, C.: The Analysis of Time Series, 5th ed., Chapman & Hall, New York, NY, 1996. Diebold, Francis X.: Discussion: The effect of seasonal adjustment filters on tests for a unit root, Journal of Econometrics, 55, pages 99-103, 1993. Dolado, J.J. and Lutkepohl, H.: Making Wald tests for cointegrated VAR systems. Econometric Reviews 15, 369-386, 1996. Gomez, V. and Maravall A.: Programs TRAMO and SEATS, Instruction for User. Banco de Espana, Working Paper 9628, 1996. Ghysels, E. and Perron, P.: The effect of seasonal adjustment filters on tests for a unit root. Journal of Econometrics, 55, 57 98, 1993. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2014. Ladiray D. and Quenneville B.: Seasonal Adjustment with the X-11 Method. New York: Springer, 2001. Lutkepohl H, Kratzig M.: Applied Time Series Econometrics. Cambridge University Press, Cambridge, 2004.

- 1 Maddala, G. S. and Kim, I. M.: Unit Roots, Cointegration and Structural
- 2 *Change*, Cambridge University Press, Cambridge, 1998.
- 3
- Narayan, P.K. and Popp S.: A new unit root test with two structural breaks in level
 and slope at unknown time. Journal of Applied Statistics 37: 1425-1438, 2010.
- Pretis, F. and Hendry, D. F.: Comment on "Polynomial cointegration tests of
 anthropogenic impact on global warming" by Beenstock et al. (2012) some hazards
 in econometric modelling of climate change. Earth System Dynamics 4, 375–384,
 2013.
- 10

Sutcliffe, A.: Seasonal Adjustment: Comparison of Philosophies, Australian Bureau
 of Statistics Working Paper 99/2 (1999).

Thoning, K. W., Tans, P. P. and Komhyr, W.D.: Atmospheric carbon dioxide at
Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. Journal
of Geophysical Research-Atmospheres, 94, 8549-8565, 1989.


18

Toda, H. Y. and Yamamoto, T.: Statistical inferences in vector autoregressions with
 possibly integrated processes, Journal of Econometrics, 66, 225-250. 1995.

- 21
- 22
- 23

Appendix 1: Tramo model output

26 27 трамо

SIGNAL EXTRACTION IN 'ARIMA' TIME SERIES (BETA VERSION) (*)

BY

V. GOMEZ & A. MARAVALL,

with the programming assistance of G. CAPORELLO

Thanks are due to G. FIORENTINI and C. PLANAS for their research assistance

(Based on an original program developed by J.P.BURMAN at the Bank of England, version 1982)

(*) Copyright : V. GOMEZ, A. MARAVALL (1994,1996)

REDUCED OUTPUT

SERIES TITLE: co2rawfr

PREADJUSTED WITH TRAMO: YES

NO OF OBSERVATIONS =499

54												
55	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
56 57		DEC										
58												
59	1973	328.54	329.56	330.3	331.5	332.48	332.07	330.87	329.31	327.51	327.18	
60		328.16	328.64									
61	1974	329.35	330.71	331.48	332.65	333.2	332.12	330.99	329.17	327.41	327.21	
62		328.34	329.5									
63	1975	330.68	331.41	331.85	333.29	333.91	333.4	331.74	329.88	328.57	328.36	
64		329.33	330.59									
63 64 65 66	1976	331.66	332.75	333.46	334.78	334.78	334.06	332.95	330.64	328.96	328.77	
66		330.18	331.65									
67	1977	332.69	333.23	334.97	336.03	336.82	336.1	334.79	332.53	331.19	331.21	
68		332.35	333.47									
67 68 69	1978	335.1	335.26	336.61	337.77	338.01	337.98	336.48	334.37	332.33	332.41	
70		333.76	334.83									
71	1979	336.21	336.65	338.13	338.94	339	339.2	337.6	335.56	333.93	334.12	
72		335.26	336.78									
72 73	1980	337.8	338.28	340.04	340.86	341.47	341.26	339.34	337.45	336.1	336.05	
74		337.21	338.29									

$\frac{1}{2}$	1981	339.36 338.59	340.51 339.9	341.57	342.56	343.01	342.49	340.68	338.49	336.92	337.12	
$\frac{2}{3}$	1982	340.92	341.69	342.86	343.92	344.67	343.78	342.23	340.11	338.32	338.39	
1 2 3 4 5 6 7 8 9	1983	339.48 341.64	340.88 342.87	343.59	345.25	345.96	345.52	344.15	342.25	340.17	340.3	
6 7	1984	341.53 344.05	343.07 344.77	345.46	346.77	347.55	346.98	345.55	343.2	341.35	341.68	
89	1985	343.06 345.25	344.54 346.06	347.66	348.2	348.92	348.4	346.66	344.85	343.2	343.08	344.4
10 11	1986	345.82 346.54	347.13	348.05	349.77	350.53	349.9	348.11	346.09	345.01	344.47	
12 13	1987	345.86 348.38	347.15 348.7	349.72	351.32	352.14	351.61	349.91	347.84	346.52	346.65	
14 15	1988	347.96 350.38	349.18 351.68	352.24	353.66	354.18	353.68	352.58	350.66	349.03	349.08	
16 17	1989	350.15 352.89	351.44 353.24	353.8	355.59	355.89	355.3	353.98	351.53	350.02	350.29	
18 19	1990	351.44 353.79	352.84 354.88	355.65	356.27	357.29	356.32	354.88	352.89	351.28	351.59	
20	1991	353.05 354.87	354.27 355.68	357.06	358.51	359.09	358.1	356.12	353.89	352.3	352.32	
22 23	1992	353.79 356.17	355.07 356.93	357.82	359	359.55	359.32	356.85	354.91	352.93	353.31	
21 22 23 24 25	1992	354.27 356.86	355.53 357.27	358.36	359.27	360.19	359.52	357.42	355.46	354.1	354.12	355.4
26 27	1994	356.84 358.22	358.98	359.91	361.32	361.68	360.8	359.39	357.42	355.63	356.09	555.4
28 29	1995	357.56 359.87	358.87 360.79	361.77	363.23	363.77	363.22	361.7	359.11	358.11	357.97	359.4
30 31		360.61										559.4
32	1996	362.04 360.84	363.17 362.18	364.17	364.51	365.16	364.93	363.53	361.38	359.6	359.54	
32 33 34 35	1997	363.04 362.44	364.09 364.33	364.47	366.25	366.69	365.59	364.34	362.2	360.31	360.71	
35 36 37	1998	365.18 365.52	365.98 367.08	367.13	368.61	369.49	368.95	367.74	365.79	364.01	364.35	
38	1999	368.12 366.68	368.98 368.04	369.6	370.96	370.77	370.33	369.28	366.86	364.94	365.35	
39 40	2000	369.25 368.33	369.5 369.67	370.56	371.82	371.51	371.71	369.85	368.2	366.91	366.99	
41 42	2001	370.52 369.69	371.49 371.18	372.53	373.37	373.82	373.18	371.57	369.63	368.16	368.42	
43 44	2002	372.45 373.71	373.14	373.93	375	375.65	375.5	374	371.83	370.66	370.51	372.2
45 46	2003	374.87 374.64	375.62 375.93	376.48	377.74	378.5	378.18	376.72	374.31	373.2	373.1	
47 48	2004	377 375.93	377.87 377.45	378.73	380.41	380.63	379.56	377.61	376.15	374.11	374.44	
49 50	2005	378.47 378.29	379.76 379.92	381.14	382.2	382.47	382.2	380.78	378.73	376.66	376.98	
51 52 53 54 55	2006	381.35 380.18	382.16 381.79	382.66	384.73	384.98	384.09	382.38	380.45	378.92	379.16	
53 54	2007	382.93 382.42	383.81 383.89	384.56	386.4	386.58	386.05	384.49	382	380.9	381.14	
55 56	2008	385.44 384.13	385.73 385.56	385.97	387.16	388.5	387.88	386.42	384.15	383.09	382.99	
56 57 58	2009	386.94 387.31	387.42	388.77	389.44	390.19	389.45	387.78	385.92	384.79	384.39	386
59 60	2010	388.5 388.65	389.94 389.73	391.09	392.53	393.04	392.15	390.22	388.26	386.83	387.2	
61	2011	391.25 390.24	391.82 391.83	392.49	393.34	394.21	393.72	392.42	390.19	389.04	388.96	
62 63 64	2012	393.12 392.81	393.6 394.28	394.45	396.18	396.78	395.83	394.3	392.41	391.06	391.01	
65 66	2013	395.54 395.11	396.8 396.81	397.31	398.35	399.76	398.58	397.2	395.15	393.51	393.66	
67 68	2014	395.11	397.91	399.58	401.29	401.78	401.15	399				

TRANSFORMATION: Z -> Z

```
NONSEASONAL DIFFERENCING D=1
        SEASONAL DIFFERENCING BD=1
       TYPE OF ESTIMATION : FROM TRAMO
       MODEL FITTED
         NONSEASONAL P=0 D=1 Q=1
          SEASONAL BP=0 BD=1 BQ=1
         PERIODICITY MQ=12
           MEAN
                  =
                      0.00000
           SE
                = ******
              ARIMA PARAMETERS
           TH = -0.3766
           SE = ****
           BTH = -0.8978
           SE = ****
       RESIDUALS
      YEAR
              JAN
                       FEB
                               MAR
                                       APR
                                               MAY
                                                        JUN
                                                                JUL
                                                                        AUG
                                                                                SEP
                                                                                         OCT
                                                                                                 NOV
              DEC
      1973
               -0.052
                       0.186
                               -0.185
                                       -0.069
                                                0.389
                                                        0.277
                                                                0.378
                                                                        0.589
                                                                                0.044
                                                                                         -0.288
                                                                                                 -
      0.345
1974
              -0.873
-0.682
                                                                0.095
                       0.268
                               -0.098
                                       -0.066
                                                -0.083
                                                        -0.584
                                                                        0.177
                                                                                -0.053
                                                                                         -0.164
                                                                                                 -
      0.124
               -0.034
```

1	1975	0.14	-0.106	-0.549	0.037	0.032	0.086	-0.215	0.006	0.345	-0.009	-
$\frac{2}{3}$	0.219 1976	0.029 0.038	0.232	-0.099	0.062	-0.58	-0.362	0.192	-0.3	-0.175	-0.171	0.182
4	1970	0.038	0.232	-0.099	0.002					-0.175		
5	1977	0.137 -0.064	-0.303	0.748	0.111	0.29	-0.02	0.087	-0.252	0.189	0.187	0.022
2 3 4 5 6 7 8 9	1978	0.561	-0.487	0.201	0.022	-0.319	0.454	0.066	-0.08	-0.475	-0.015	0.161
8	1979	-0.054 0.255	-0.251	0.38	-0.255	-0.57	0.531	0.006	-0.022	0.002	0.258	0.036
10		0.361										
11	1980	0.023 -0.127	-0.263	0.607	-0.119	0.08	0.289	-0.385	-0.017	0.283	0.098	0.002
11 12 13 14	1981	-0.099	0.389	0.081	-0.112	-0.09	-0.111	-0.376	-0.327	-0.083	0.211	0.358
15	1982	0.25 -0.002	0.002	0.052	-0.038	0.242	-0.348	-0.171	-0.161	-0.245	-0.005	-
16	0.131 1983	0.144 -0.292	0.352	-0.272	0.446	0.359	0.191	0.216	0.215	-0.374	-0.003	0.023
18		0.322										
$\frac{19}{20}$	1984	0.03 0.316	-0.084	-0.424	-0.017	0.234	0.008	0.073	-0.303	-0.293	0.214	0.252
17 18 19 20 21 22 23 24 25 26 27	1985	-0.233	-0.083	0.526	-0.444	-0.011	-0.026	-0.257	0.147	0.095	-0.123	0.047
$\frac{22}{23}$	1986	0.157 -0.247	-0.309	-0.296	0.492	0.366	0.008	-0.269	-0.093	0.571	-0.348	0.023
24	1987	0.003 0.237	-0.375	-0.202	0.346	0.352	0.116	-0.111	-0.084	0.272	0.267	0.159
26		-0.015										0.159
	1988 0.152	0.176 -0.055	0.63	-0.278	0.094	-0.065	-0.009	0.458	0.285	0.07	0.094	-
$\overline{29}$	1989	0.392	-0.296	-0.574	0.332	-0.185	-0.146	0.139	-0.377	-0.056	0.26	0.01
31	1990	0.116 -0.086	0.309	-0.089	-0.711	0.174	-0.383	-0.09	0.041	-0.007	0.29	0.34
32	1991	0.049 -0.448	-0.142	0.372	0.362	0.092	-0.388	-0.637	-0.413	-0.156	-0.086	0.185
34		0.059										0.105
35 36	1992 0.253	0.104 -0.125	0.013	-0.103	-0.11	-0.111	0.339	-0.803	-0.168	-0.453	0.164	-
37	1993	0.256	-0.277	-0.001	-0.334	0.182	-0.03	-0.477	-0.079	0.24	0.031	0.049
28 29 30 31 32 33 34 35 36 37 38 39 40	1994	0.172 0.387	0.16	-0.007	0.198	-0.209	-0.377	0.13	0.129	-0.139	0.335	0.349
40 41	1995	0.139 -0.038	0.159	0.049	0.248	0.019	0.069	0.16	-0.487	0.438	-0.088	0.127
42 43		-0.045										
44	1996 0.069	0.332 0.021	0.49	0.195	-0.84	-0.273	0.273	0.343	0.078	-0.193	-0.219	-
45 46 47	1997	-0.249 0.789	0.154	-0.552	0.412	-0.016	-0.539	0.163	0.025	-0.3	0.215	0.524
47	1998	0.056	-0.006	0.22	0.339	0.414	0.238	0.458	0.33	-0.044	0.218	-0.08
48 49	1999	0.171 0.038	0.05	-0.312	-0.007	-0.816	-0.134	0.44	-0.163	-0.352	0.148	0.07
50		0.007										
51 52	2000	0.149 -0.012	-0.522	-0.053	-0.021	-0.858	0.473	-0.191	0.403	0.521	0.118	0.067
53 54	2001	-0.233 0.123	0.113	0.151	-0.364	-0.14	-0.178	-0.149	0.08	0.182	0.178	0.017
49 50 51 52 53 54 55 56 57 58 59	2002	0.261	-0.001	-0.153	-0.206	0.12	0.422	0.196	-0.034	0.423	-0.152	0.318
56 57	2003	0.244 0.175	0.036	-0.053	0.037	0.301	0.282	0.179	-0.269	0.35	-0.098	0.15
58		-0.052										
60 61	2004	-0.035 0.189	0.08	-0.03	0.46	-0.109	-0.64	-0.665	0.397	-0.375	0.083	0.149
61 62	2005 0.069	0.007 0.203	0.507	0.657	0.051	-0.184	0.193	0.222	0.075	-0.473	0.013	-
63	2006	0.429	0.134	-0.411	0.678	0.053	-0.364	-0.294	0.002	0.091	0.126	-
64 65	0.309 2007	0.069 0.053	0.065	-0.14	0.465	-0.077	-0.014	0.004	-0.457	0.339	0.21	0.019
66		0.034										
67 68 69	2008	0.447 -0.103	-0.381	-0.801	-0.487	0.751	0.206	0.186	-0.122	0.453	-0.096	-0.23
69 70	2009	0.181 -0.076	-0.235	0.431	-0.524	0.051	-0.169	-0.176	0.171	0.442	-0.372	0.156
71 72	2010	-0.021	0.68	0.522	0.351	0.115	-0.276	-0.465	-0.062	0.016	0.292	0.216
73	2011	-0.269 0.235	-0.164	-0.303	-0.566	0.132	0.163	0.367	-0.03	0.304	-0.079	-
74	0.105	0.156										

	0.213	-0.267	-0.137	0.423	0.199	-0.283	-0.062	0.165	0.145	-0.089
2013	0.115	0.539	-0.17	-0.328	0.722	-0.28	0.085	0.041	-0.2	-0.004
2014	0.3 -0.126	-0.752	0.542	0.637	0.079	0.084	-0.568			
RESII	DUALS STA	TISTICS								
	MEAN=	0.1819E-01	(SE	= 0.0130)					
	SKEWNESS	S= -0.2727H	E+00	(SE = 0.10)	097)					
	KURTOSIS:	= 0.3284E	+01 (SE = 0.219	93)					
	NDARD DEV									
Clearance	ess is within a		td darriatia	na from ao	ro occonti		tria			
SKewne	.55 15 within a	ippiox 2.5 s			io - essentia	any symme	dife.			
Kurtosi	s is within ab	out 1 std. d	ev. from 3,	so this also	supports n	ormality				
Curtosi	s is within ab	oout 1 std. d	ev. from 3,	so this also	o supports n	ormality				
Kurtosi	s is within ab	oout 1 std. d	ev. from 3,	so this also	o supports n	ormality				
					o supports n	ormality				
	s is within ab CORRELAT				o supports n	ormality				
					o supports n	ormality				
					0.0301	ormality 0.0144				
AUTO	0.0275	-0.0809	-0.0056	-0.038	0.0301	0.0144				
	CORRELAT	'IONS OF F	RESIDUAL			-				
AUTO	0.0275	-0.0809	-0.0056	-0.038	0.0301	0.0144				
AUTO	0.0275 0.0448	-0.0809 0.0448	-0.0056 0.0451	-0.038 0.0451	0.0301 0.0452	0.0144 0.0452				
AUTO	CORRELAT 0.0275 0.0448 -0.08	-0.0809 0.0448	-0.0056 0.0451 0.0096	-0.038 0.0451 -0.0327	0.0301 0.0452 -0.0134	0.0144 0.0452 -0.0066				
AUTO	CORRELAT 0.0275 0.0448 -0.08	-0.0809 0.0448	-0.0056 0.0451 0.0096	-0.038 0.0451 -0.0327	0.0301 0.0452 -0.0134	0.0144 0.0452 -0.0066				
AUTO SE SE	0.0275 0.0448 -0.08 0.0452 -0.0323	 -0.0809 0.0448 0.0447 0.0455 0.093	-0.0056 0.0451 0.0096 0.0456 0.0529	-0.038 0.0451 -0.0327 0.0456 -0.0588	0.0301 0.0452 -0.0134 0.0456 -0.0152	0.0144 0.0452 -0.0066 0.0456 -0.0549				
AUTO	0.0275 0.0448 -0.08 0.0452	TONS OF F -0.0809 0.0448 0.0447 0.0455	-0.0056 0.0451 0.0096 0.0456	-0.038 0.0451 -0.0327 0.0456	0.0301 0.0452 -0.0134 0.0456	0.0144 0.0452 -0.0066 0.0456				
AUTO SE SE	0.0275 0.0448 -0.08 0.0452 -0.0323	 -0.0809 0.0448 0.0447 0.0455 0.093	-0.0056 0.0451 0.0096 0.0456 0.0529	-0.038 0.0451 -0.0327 0.0456 -0.0588	0.0301 0.0452 -0.0134 0.0456 -0.0152	0.0144 0.0452 -0.0066 0.0456 -0.0549				
AUTO SE SE	0.0275 0.0448 -0.08 0.0452 -0.0323 0.0456	 -0.0809 0.0448 0.0447 0.0455 0.093 0.0457	-0.0056 0.0451 0.0096 0.0456 0.0529 0.0461	-0.038 0.0451 -0.0327 0.0456 -0.0588 0.0462	0.0301 0.0452 -0.0134 0.0456 -0.0152 0.0463	0.0144 0.0452 -0.0066 0.0456 -0.0549 0.0463				
AUTO SE SE SE	CORRELAT 0.0275 0.0448 -0.08 0.0452 -0.0323 0.0456 -0.068	 -0.0809 0.0448 0.0447 0.0455 0.093 0.0457 0.0068	-0.0056 0.0451 0.0096 0.0456 0.0529 0.0461 -0.0342	-0.038 0.0451 -0.0327 0.0456 -0.0588 0.0462 -0.0199	0.0301 0.0452 -0.0134 0.0456 -0.0152 0.0463 0.0219	0.0144 0.0452 -0.0066 0.0456 -0.0549 0.0463 -0.0082				
AUTO SE SE SE	CORRELAT 0.0275 0.0448 -0.08 0.0452 -0.0323 0.0456 -0.068	 -0.0809 0.0448 0.0447 0.0455 0.093 0.0457 0.0068	-0.0056 0.0451 0.0096 0.0456 0.0529 0.0461 -0.0342	-0.038 0.0451 -0.0327 0.0456 -0.0588 0.0462 -0.0199	0.0301 0.0452 -0.0134 0.0456 -0.0152 0.0463 0.0219	0.0144 0.0452 -0.0066 0.0456 -0.0549 0.0463 -0.0082				
AUTO SE SE SE	CORRELAT 0.0275 0.0448 -0.08 0.0452 -0.0323 0.0456 -0.068 0.0465	 -0.0809 0.0448 0.0447 0.0455 0.093 0.0457 0.0068 0.0467	-0.0056 0.0451 0.0096 0.0456 0.0529 0.0461 -0.0342 0.0467	-0.038 0.0451 -0.0327 0.0456 -0.0588 0.0462 -0.0199 0.0467	0.0301 0.0452 -0.0134 0.0456 -0.0152 0.0463 0.0219 0.0467	0.0144 0.0452 -0.0066 0.0456 -0.0549 0.0463 -0.0082 0.0468				

	-0.0509	0.0473	-0.01	-0.0094	0.0774	-0.0691
SE	0.0469	0.047	0.0471	0.0471	0.0471	0.0474
Mark Leg	ggett comm	ent: Canno	ot reject ran	domness		
THE LJ	JNG-BOX	Q VALUE	E IS 22.8	32		
IF RESII	DUALS AF	RE RANDO	OM IT SHO	OULD BE D	ISTRIBUT	TED AS CHI-SQUARED
AUTOC	ORRELAT	IONS OF	SQUARED) RESIDUA	L	
Mark Leg	ggett comm	ent: Canno	ot reject ran	domness		
			E IS 21.1			
IF RESII	DUALS AF	RE RANDO	OM IT SHO	OULD BE D	ISTRIBUT	TED AS CHI-SQUARED
DERI	VATION (OF THE C	OMPONEN	NT MODEL	S: OK	
DERI	VATION (OF THE C	OMPONEN	√T MODEL	5 : OK	
DERI			OMPONEN HE COMP		S : OK	
DERI					S : OK	
DERI					S : OK	
DERI					S : OK	
DERI					S : OK	
DERI					S : OK	
DERI					S : OK	
	MODE	LS FOR T	HE COMP		S : OK	
TREND-0	MODE 	LS FOR T	HE COMP		S : OK	
	MODE CYCLE 0.0089	LS FOR T	HE COMP		S : OK	

1 3 4 5 6 7 8 9 10	INNOV.	VAR.	(*)	0.08811								
6 7 8 9	SEAS.	NUMER	ATOR									
10 11 12	1	1.4444	1.5374	1.4777	1.2869	1.04	0.7691	0.4978	0.2666	0.0486	-0.0932	-
12 13 14	0.3898 SEAS.	DENOM	INATOR									
14 15	1	1	1	1	1	1	1	1	1	1	1	1
16 17	INNOV.	VAR.	(*)	0.00294								
15 16 17 18 19 20 21 22 23 24												
25 26	IRREGU	LAR										
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	VAR.	0.42657										
34 35	SEASON		ADJUST	ED	NUMER/	ATOR						
36 37	1	-1.3681	0.3736	LD	NUMERA	TOK						
38	1	-1.5001	0.5750									
40 41	SEASON		ADJUST	ED	DENOMI	NATOR						
41 42 43	1	-2	1	ED	DENOM	NATOK						
43 44 45	INNOV.			0.90798								
45 46 47	INNOV.	VAR.	(*)	0.90798								
48	(*)	IN	UNITS	OF	VAR(A)							
49 50 51		INISTIC			FROM	TRAMO						
51 52 53		linistic		INEINI	FROM	IKAMU						
55 54												
55 56	NONE	TION	0.5	THE			OV					
57 58	DERIVA	TION	OF	THE	FILTERS		OK					
59 60 61												
62 63												
65 65	CO	OMPONEN	TS (STAT	IONARY T	RANSFOR	MATION)	:SECOND	MOMENT	ſS			
60 67												
$\begin{array}{c} 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74 \end{array}$	TREND-0	CYCLE	ADJUST	ED								
/-												

LAG	COMPON ESTIMAT		ESTIMAT	OR	ESTIMAT	ΓE	COMPON	ENT	ESTIMATOR
LAG	1	AUTCOR	0	0.399	0.385	-0.624	-0.624	-0.574	
LAG	12	AUTCOR	0	-0.051	-0.103	0	-0.051	0.01	
VAR.(*)	0.175	0.038	0.04	2.734	2.594	2.432			
IRREGUL	.AR	SEASON	AL						
LAG	COMPON ESTIMAT	ENT E	ESTIMAT	OR	ESTIMAT	ΓE	COMPON	ENT	ESTIMATOR
LAG	1	AUTCOR	0	-0.312	-0.263	0.921	0.742	0.818	
LAG	12	AUTCOR	0	-0.051	-0.029	0	0.924	0.945	
VAR.(*)	0.427	0.279	0.276	0.034	0.001	0.001			
(*) IN UI	NITS OF V	AR(A)							
		TIMATIO! n units of V	N ERROR ^v ar(a))	VARIANCI	E				
	(1			USTED					
	-	FREND-CY	CLE ADJ	USIED					

REVISION 0.034 IN CON-0.117 CURRENT ERROR TOTAL ESTIMATION 0.259 0.069 ERROR (CONCURRENT ESTIMATOR) PERCENTAGE REDUCTION IN THE STANDARD ERROR OF THE REVISION AFTER ADDITIONAL YEARS (COMPARISON WITH CONCURRENT ESTIMATORS) AFTER 1 YEAR 75.02 10.15 AFTER 2 YEAR 77.57 19.33 AFTER 3 YEAR 79.86 27.58 AFTER 4 YEAR 81.92 34.98 AFTER 5 YEAR 83.77 41.63 AVERAGE PERCENTAGE REDUCTION IN RMSE FROM CONCURRENT ADJUSTMENT 6.026 STANDARD ERROR OF THE CONCURRENT RATES OF ESTIMATORS (In points of annualized percent growth. Linear approximations) TREND-CYCLE SA SERIES ORIGINAL SERIES PERIOD TO PERIOD GROWTH 0.104 0.935E-01 OF THE SERIES (T11) PERIOD GROWTH OF 0.223 0.294 A 3-PERIOD OF THE CENTERED SERIES (T31)

 $\begin{array}{c}
1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\end{array}$

(CENTERED) ESTIMATOR 0.510 0.539

0.540

OF THE ANNUAL GROWTH

(T 1 12)

SEASONAL COMPONENT

14												
15	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
16		DEC										
17												
18	1973	-0.073	0.623	1.501	2.582	3.029	2.37	0.779	-1.346	-3.086	-3.228	-
19	2.129	-1.022										
20	1974	-0.069	0.623	1.504	2.586	3.028	2.37	0.775	-1.355	-3.093	-3.232	-
21	2.131	-1.016	0.004	1 6 1 1	2 501	2 0 2 0	2 2 7 2	0 771	1.267	2 1 0 2	2 2 2 7	
22	1975	-0.061	0.624	1.511	2.591	3.029	2.373	0.771	-1.367	-3.103	-3.237	-
23 24	2.133 1976	-1.01 -0.052	0.624	1.521	2.598	3.03	2.378	0.768	-1.379	-3.116	-3.243	-
25	2.135	-1.005	0.024	1.521	2.390	5.05	2.378	0.708	-1.379	-5.110	-5.245	-
$\tilde{26}$	1977	-0.044	0.621	1.529	2.602	3.032	2.385	0.765	-1.39	-3.128	-3.247	-
27	2.134	-0.998	0.021	1.0 2	2.002	5.052	2.5 00	0.700	1.07	5.120	5.2.17	
28 29	1978	-0.036	0.62	1.536	2.604	3.033	2.392	0.759	-1.4	-3.14	-3.251	-
29	2.134	-0.99										
30	1979	-0.03	0.622	1.54	2.607	3.036	2.397	0.752	-1.412	-3.151	-3.254	-
31	2.133	-0.981										
32	1980	-0.027	0.627	1.542	2.61	3.045	2.4	0.744	-1.423	-3.161	-3.257	-
33	2.132	-0.972	0.000			2	a (a)			0.150		
34 25	1981	-0.024	0.633	1.54	2.614	3.055	2.401	0.738	-1.434	-3.172	-3.262	-
32 33 34 35 36	2.131 1982	-0.962	0.639	1.535	2.617	2 064	2 402	0.724	-1.442	-3.181	2 266	
37	2.131	-0.02 -0.953	0.039	1.555	2.017	3.064	2.402	0.734	-1.442	-3.181	-3.266	-
38	1983	-0.016	0.643	1.528	2.618	3.071	2.402	0.729	-1.45	-3.188	-3.268	-
39	2.128	-0.943										
40	1984	-0.008	0.648	1.524	2.619	3.076	2.4	0.721	-1.461	-3.194	-3.27	-
41 42 43 44	2.125	-0.934										
42	1985	0.001	0.653	1.521	2.622	3.08	2.398	0.712	-1.472	-3.197	-3.272	-
43	2.122	-0.928	0.650	1.516	2 (2)	2 00 4	2 205	0.704	1 404	2 202	2 272	2.12
44	1986	0.01 -0.923	0.659	1.516	2.626	3.084	2.395	0.704	-1.484	-3.202	-3.273	-2.12
46	1987	0.021	0.669	1.513	2.63	3.086	2.39	0.695	-1.497	-3.211	-3.274	-
47	2.118	-0.917					,					
48	1988	0.032	0.681	1.515	2.634	3.086	2.384	0.687	-1.509	-3.221	-3.275	-
49	2.115	-0.911										
50	1989	0.043	0.693	1.519	2.639	3.088	2.379	0.677	-1.523	-3.234	-3.278	-
51	2.113	-0.903	0.702	1.507	0.644	2 001	0.077	0.000	1.526	2.247	2 202	
52 53	1990	0.052	0.703	1.527	2.644	3.091	2.377	0.666	-1.536	-3.247	-3.283	-
55 54	2.112 1991	-0.897 0.061	0.713	1.534	2.651	3.094	2.377	0.656	-1.548	-3.258	-3.289	_
55	2.112	-0.892	0.713	1.554	2.031	5.094	2.377	0.050	-1.346	-3.238	-3.209	-
56	1992	0.072	0.722	1.54	2.655	3.092	2.375	0.649	-1.557	-3.266	-3.293	-
56 57	2.112	-0.887										
58 59	1993	0.083	0.733	1.543	2.658	3.087	2.368	0.643	-1.565	-3.272	-3.297	-
59	2.111	-0.88										
60	1994	0.093	0.743	1.546	2.662	3.081	2.36	0.641	-1.573	-3.276	-3.301	-2.11
61 62	1995	-0.873	0.752	1 5 40	2 (()	2.074	2 2 5 2	0.64	1 670	2.20	2 204	
63	2.108	0.101 -0.866	0.753	1.548	2.664	3.074	2.352	0.64	-1.578	-3.28	-3.304	-
64	1996	0.109	0.762	1.548	2.665	3.066	2.345	0.638	-1.581	-3.283	-3.307	-
65	2.107	-0.856	0.702	1.0.10	2.000	2.000	2.0 10	0.020	1.001	0.200	0.007	
66	1997	0.117	0.767	1.546	2.668	3.06	2.337	0.634	-1.585	-3.287	-3.309	-
67	2.105	-0.848										
68	1998	0.126	0.771	1.545	2.671	3.052	2.331	0.628	-1.589	-3.286	-3.308	-
69 70	2.103	-0.841	0.77(1.546	0 (70	2.045	0.000	0.60	1 505	2 205	2 200	
70 71	1999	0.137 -0.837	0.776	1.546	2.673	3.045	2.326	0.62	-1.595	-3.285	-3.309	-
72	2.101 2000	-0.837 0.146	0.78	1.547	2.674	3.043	2.323	0.61	-1.602	-3.282	-3.311	-
72 73	2.101	-0.835	0.75	1.0 1/	2.0/7	5.015	2.525	0.01	1.002	5.202	5.511	
74	2001	0.153	0.785	1.549	2.677	3.048	2.323	0.602	-1.61	-3.281	-3.316	-
75	2.104	-0.835										

1	2002	0.159	0.789	1.548	2.68	3.056	2.323	0.596	-1.617	-3.281	-3.321	-
2 3 4 5 6 7 8 9	2.107	-0.836										
3	2003	0.164	0.793	1.548	2.687	3.068	2.323	0.589	-1.623	-3.283	-3.327	-
45	2.112 2004	-0.839 0.169	0.796	1.549	2.695	3.08	2.322	0.582	-1.629	-3.286	-3.332	
6	2.118	-0.842	0.790	1.349	2.095	5.08	2.322	0.362	-1.029	-3.280	-3.332	-
ž	2005	0.174	0.799	1.548	2.7	3.091	2.322	0.578	-1.634	-3.285	-3.334	-
8	2.122	-0.844										
9	2006	0.18	0.799	1.544	2.701	3.101	2.321	0.573	-1.641	-3.28	-3.334	-
10	2.123	-0.844										
11 12	2007	0.187	0.799	1.54	2.696	3.111	2.319	0.568	-1.648	-3.274	-3.334	-
12	2.122 2008	-0.844 0.194	0.798	1.54	2.69	3.119	2.318	0.563	-1.652	-3.269	-3.337	-
14	2.121	-0.845	0.798	1.34	2.09	5.119	2.310	0.505	-1.052	-3.209	-3.337	-
15	2009	0.197	0.797	1.543	2.689	3.129	2.316	0.556	-1.656	-3.268	-3.341	-2.12
16		-0.846										
17	2010	0.198	0.796	1.545	2.69	3.138	2.315	0.552	-1.659	-3.268	-3.344	-
18	2.118	-0.844										
19 20	2011	0.201	0.793	1.542	2.688	3.145	2.314	0.549	-1.66	-3.268	-3.347	-
20	2.118 2012	-0.841 0.203	0.79	1.541	2.69	3.153	2.314	0.546	-1.661	-3.271	-3.351	
21 22	2.119	-0.838	0.79	1.341	2.09	5.155	2.314	0.540	-1.001	-3.271	-3.331	-
$\overline{2}\overline{3}$	2013	0.203	0.786	1.541	2.693	3.161	2.317	0.544	-1.661	-3.273	-3.353	-
24	2.119	-0.837										
25	2014	0.202	0.78	1.541	2.696	3.165	2.319	0.543				
26 27												
$\frac{27}{28}$												
28 29	STAND	DARD ERR	OR OF SE	ASONAL								
$\overline{30}$	STANL		OR OF SL	ASONAL								
3ĭ												
30 31 32 33												
33	X 10.	.0D-1										
34 35												
36												
37												
38												

STANDARD ERROR OF SEASONAL

38 39	VEAD	TANT	FFD	MAD			ПЛI	пп		CED	OCT	NOV
39 40	YEAR	JAN DEC	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
41		DLC										
42												
43	1973	0.77	0.766	0.764	0.762	0.761	0.761	0.761	0.761	0.761	0.759	0.757
44 45	1074	0.737	0.720	0.727	0.726	0.725	0.725	0.725	0.725	0.724	0.722	0.722
43 46	1974	0.732 0.705	0.729	0.727	0.726	0.725	0.725	0.725	0.725	0.724	0.723	0.722
46 47	1975	0.703	0.698	0.696	0.695	0.694	0.694	0.694	0.694	0.694	0.693	0.691
48 49	1970	0.677	0.090	0.070	0.070	0.071	0.07 .	0.071	0.07 .	0.07 .	0.075	0.071
49	1976	0.674	0.671	0.67	0.669	0.668	0.668	0.668	0.668	0.668	0.667	0.666
50		0.654										
51	1977	0.651	0.649	0.648	0.647	0.647	0.647	0.647	0.647	0.646	0.646	0.645
51 52 53	1978	0.635 0.633	0.631	0.63	0.629	0.629	0.629	0.629	0.629	0.629	0.628	0.627
54	1770	0.619	0.051	0.05	0.02)	0.027	0.02)	0.027	0.02)	0.02)	0.020	0.027
54 55	1979	0.617	0.616	0.615	0.614	0.614	0.614	0.614	0.614	0.614	0.613	0.613
56 57		0.606										
57	1980	0.604	0.603	0.603	0.602	0.602	0.602	0.602	0.602	0.602	0.601	0.601
58 59	1981	0.595 0.594	0.593	0.592	0.592	0.592	0.592	0.592	0.592	0.592	0.591	0.591
60	1981	0.594	0.393	0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.391	0.391
61	1982	0.585	0.585	0.584	0.584	0.584	0.584	0.584	0.584	0.584	0.583	0.583
62		0.579										
61 62 63 64	1983	0.578	0.578	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0.576
64 65	1004	0.573	0.570	0.570	0.570	0.571	0.571	0.571	0.571	0.571	0.571	0.571
65 66	1984	0.573 0.569	0.572	0.572	0.572	0.571	0.571	0.571	0.571	0.571	0.571	0.571
67	1985	0.568	0.568	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
67 68		0.565										
69	1986	0.564	0.564	0.564	0.564	0.563	0.563	0.563	0.563	0.563	0.563	0.563
70		0.561										
71	1987	0.561 0.559	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.56	0.56	0.56
72 73	1988	0.559	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558
74 74	1700	0.557	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-												

$\frac{1}{2}$	1989	0.557 0.555	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	1990	0.555 0.554	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555
5 6	1991	0.554 0.553	0.554	0.554	0.553	0.553	0.553	0.553	0.553	0.553	0.553	0.553
7 8	1992	0.553	0.553	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
9 10	1993	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
11 12	1994	0.552 0.552 0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
13 14	1995	0.552 0.552 0.553	0.552	0.552	0.552	0.552	0.553	0.553	0.553	0.553	0.553	0.553
15 16	1996	0.553 0.555 0.555	0.553	0.553	0.553	0.554	0.554	0.554	0.554	0.555	0.555	0.555
17 18	1997	0.555 0.555 0.556	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.556	0.556	0.556
19 20	1998	0.556 0.558	0.556	0.556	0.556	0.556	0.556	0.557	0.557	0.558	0.558	0.558
20 21 22	1999	0.558 0.558 0.561	0.558	0.558	0.558	0.558	0.558	0.559	0.559	0.56	0.56	0.56
23 24	2000	0.561 0.563	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.563	0.563	0.563
25 26	2001	0.563 0.567	0.563	0.563	0.564	0.564	0.564	0.564	0.565	0.567	0.567	0.567
27 28	2002	0.567 0.571	0.567	0.567	0.567	0.567	0.568	0.568	0.569	0.571	0.571	0.571
29	2003	0.571 0.571 0.577	0.571	0.571	0.572	0.572	0.572	0.573	0.573	0.576	0.577	0.577
30 31 32	2004	0.577 0.584	0.577	0.577	0.577	0.577	0.578	0.578	0.579	0.583	0.583	0.584
32 33 34	2005	0.584 0.584 0.592	0.584	0.584	0.584	0.584	0.585	0.585	0.586	0.591	0.591	0.592
35 36	2006	0.592 0.592 0.602	0.592	0.592	0.592	0.592	0.593	0.594	0.595	0.601	0.601	0.602
37 38	2007	0.602 0.602 0.614	0.602	0.602	0.602	0.603	0.603	0.604	0.606	0.613	0.613	0.614
39 40	2008	0.614 0.614 0.629	0.614	0.614	0.614	0.615	0.616	0.617	0.619	0.627	0.628	0.629
40 41 42	2009	0.629 0.629 0.647	0.629	0.629	0.629	0.63	0.631	0.633	0.635	0.645	0.646	0.646
43 44	2010	0.647 0.668	0.647	0.647	0.647	0.648	0.649	0.651	0.654	0.666	0.667	0.668
45 46	2011	0.668 0.694	0.668	0.668	0.669	0.67	0.671	0.674	0.677	0.691	0.693	0.694
47 48	2012	0.694	0.694	0.694	0.695	0.696	0.698	0.701	0.705	0.722	0.723	0.724
49 50	2013	0.725 0.725 0.761	0.725	0.725	0.726	0.727	0.729	0.732	0.737	0.757	0.759	0.761
51	2014	0.761	0.761	0.761	0.762	0.764	0.766	0.77				
52 53 54												
55	TREND	-CYCLE										
56 57 58												
58 59 60	YEAR	JAN DEC	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
61 62		DLC										
63 64	1973	328.678 330.127	328.81 329.898	328.931	329.121	329.413	329.738	330.067	330.326	330.405	330.32	
65 66	1974	329.812 330.504	329.897 330.567	329.986	330.035	330.05	330.074	330.205	330.364	330.443	330.47	
67 68	1975	330.636 331.572	330.644 331.649	330.631	330.713	330.854	330.978	331.104	331.281	331.456	331.537	
69 70	1976	331.783 332.354	331.912 332.555	331.975	331.964	331.903	331.905	331.992	332.053	332.094	332.183	
71	1977	332.72	332.923	333.203	333.457	333.644	333.795	333.929	334.071	334.238	334.39	
72 73 74	1978	334.502 334.793 235.827	334.645 334.887 335.05	334.995	335.11	335.24	335.434	335.593	335.642	335.649	335.715	
/4		335.827	335.95									

$\frac{1}{2}$	1979	336.078 337.48	336.203 337.653	336.31	336.339	336.403	336.608	336.817	336.973	337.136	337.307
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	1980	337.792	337.958	338.175	338.342	338.494	338.65	338.77	338.929	339.118	339.246
45	1981	339.315 339.533	339.386 339.737	339.885	339.944	339.978	340.003	340.011	340.058	340.195	340.406
6	1901	340.629	340.809	557.005	557.711	557.710	5 10.005	5 10.011	510.050	510.175	510.100
7	1982	340.949	341.09	341.23	341.347	341.427	341.46	341.489	341.527	341.567	341.621
ĝ	1983	341.69 341.898	341.773 342.079	342.297	342.567	342.852	343.106	343.33	343.465	343.52	343.598
10	1700	343.738	343.893	5 12.277	5.12.007	5.2.002	5.5.100	0.0.00	5 151 160	0.0.02	5.5.570
11 12	1984	344.005	344.057	344.107	344.229	344.403	344.561	344.663	344.703	344.772	344.942
13	1985	345.147 345.399	345.298 345.557	345.72	345.786	345.853	345.959	346.078	346.22	346.335	346.417
14		346.511	346.58								
15 16	1986	346.59 347.986	346.622 348.097	346.778	347.044	347.286	347.428	347.53	347.69	347.848	347.918
17	1987	348.182	348.244	348.396	348.663	348.933	349.128	349.274	349.449	349.669	349.876
18	1907	350.046	350.217	510.570	5 10.005	5 10.955	519.120	519.271	519.119	519.009	519.070
19 20	1988	350.453	350.693	350.856	351.005	351.193	351.45	351.763	352.025	352.188	352.281
20	1989	352.347 352.56	352.453 352.575	352.609	252 74	252 066	252 097	353.11	252 106	252 214	252 161
$\frac{21}{22}$	1909	353.592	353.708	332.009	352.74	352.866	352.987	555.11	353.196	353.314	353.464
23	1990	353.838	353.958	353.978	353.964	354.023	354.113	354.242	354.416	354.607	354.816
21 22 23 24 25	1001	354.983	355.038	255 442	255 ((0	255 752	255 (00	255 507	255 552	255 507	255 701
23	1991	355.053 355.837	355.186 355.967	355.442	355.669	355.752	355.689	355.587	355.552	355.597	355.701
26 27	1992	356.082	356.187	356.28	356.374	356.485	356.528	356.459	356.397	356.4	356.438
28 29		356.469	356.524								
29	1993	356.606 357.588	356.666 357.792	356.725	356.815	356.936	356.999	357.014	357.114	357.281	357.433
30 31	1994	358.019	358.212	358.374	358.505	358.569	358.628	358.761	358.924	359.101	359.332
32		359.557	359.718								
33 34	1995	359.865 361.484	360.048 361.669	360.264	360.483	360.67	360.821	360.919	361.019	361.182	361.343
35	1996	361.928	362.177	362.258	362.218	362.297	362.524	362.736	362.848	362.882	362.903
36		362.949	362.999								
32 33 34 35 36 37 38 39	1997	363.063 364.535	363.14 364.88	363.236	363.38	363.475	363.519	363.624	363.74	363.879	364.152
39	1998	365.113	365.335	365.631	365.981	366.338	366.673	366.985	367.224	367.395	367.552
40	1000	367.702	367.848	•							
41 42	1999	367.978 368.742	368.063 368.854	368.099	368.083	368.06	368.167	368.345	368.421	368.469	368.597
43	2000	368.907	368.916	368.952	368.967	369.007	369.193	369.453	369.75	370.037	370.238
44		370.369	370.451								
45 46	2001	370.533 371.836	370.663 372.017	370.766	370.792	370.826	370.915	371.055	371.244	371.455	371.656
47	2002	372.188	372.308	372.393	372.512	372.744	373.052	373.322	373.554	373.782	374
48		374.242	374.479								
49 50	2003	374.666 376.651	374.824 376.779	374.981	375.185	375.459	375.749	375.966	376.136	376.322	376.499
51	2004	376.907	377.067	377.254	377.408	377.426	377.353	377.372	377.499	377.629	377.804
52		378.039	378.274								
53 54	2005	378.552 380.528	378.923 380.785	379.264	379.455	379.606	379.831	380.052	380.16	380.209	380.327
55	2006	381.05	381.247	381.44	381.669	381.802	381.844	381.925	382.064	382.222	382.353
56		382.466	382.611								
57	2007	382.79 384.568	382.976 384.755	383.192	383.412	383.568	383.698	383.812	383.933	384.142	384.376
51 52 53 54 55 56 57 58 59	2008	384.881	384.843	384.761	384.88	385.196	385.511	385.743	385.947	386.144	386.271
60		386.352	386.476								
61	2009	386.627	386.777	386.9	386.965	387.048	387.178	387.349	387.582	387.789	387.926
63	2010	388.08 388.587	388.282 389.005	389.393	389.653	389.78	389.815	389.856	389.982	390.193	390.432
61 62 63 64		390.613	390.741								
65 66 67 68	2011	390.869	390.939	390.933	390.969	391.148	391.431	391.708	391.942	392.148	392.308
67	2012	392.455 392.793	392.634 392.914	393.09	393.328	393.514	393.647	393.825	394.057	394.289	394.539
68		394.833	395.125								
69 70	2013	395.418	395.676	395.823	395.991	396.231	396.422	396.587	396.744	396.879	397.048
70 71	2014	397.256 397.531	397.44 397.66	397.98	398.331	398.547	398.644	398.7			
72 73											
14											

STANDARD ERROR OF TREND-CYCLE

6 7 8 9 10	YEAR	JAN DEC	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
11	1973	0.122 0.114	0.116	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.114
12 13 14 15	1974	0.114 0.114 0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114
15	1975	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.113	0.113
16 17	1976	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
10 19 20	1977	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
18 19 20 21 22 23 24 25 26	1978	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.112
23	1979	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
24 25 26	1980	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
20 27 28	1981	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
20 29 20	1982	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
30 31	1983	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
32 33 24	1984	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
34 35	1985	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
30 37	1986	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
27 28 29 30 31 32 33 34 35 36 37 38 39 40	1987	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
41	1988	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
42 43 44 45	1989	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
44 45 46	1990	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
46 47	1991	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
48 49	1992	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
50 51 52 53	1993	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
	1994	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
54 55 56	1995	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
57	1996	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
58 59	1997	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
60 61	1998	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
61 62 63 64	1999	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
65	2000	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
66 67 68	2001	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
68 69 70	2002	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
71	2003	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
72 73 74	2004	0.112 0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112

1	2005	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
3	2006	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
4 5	2007	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
6 7	2008	0.112 0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.113	0.113
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	2009	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
10 11	2010	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
11 12 13	2011	0.113 0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.114
14 15	2012	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114
16 17	2012	0.114 0.114 0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.115	0.114
18		0.115							0.114	0.114	0.115	0.115
19 20	2014	0.115	0.115	0.115	0.115	0.115	0.116	0.122				
21 22 23 24 25	SEASON	JALLY AT	DJUSTED S	SERIES								
$\frac{1}{24}$	5E/1501		5001LD C	LIULD								
26 27	YEAR	JAN	FEB N	1AR AF	PR MAY	y JUN	JUL	AUG	SEP OC	Γ ΝΟΥ	DEC	
28 29	1 12/11	57114			K MITT	5010	JOL	nou	SEI CC	1 1101	DLC	
30 31												
32	1973	328.613	328.937	328.799	328.918	329.451	329.7	330.091	330.656	330.596	330.408	
32 33 34 35	1974	330.289 329.419	329.662 330.087	329.976	330.064	330.172	329.75	330.215	330.525	330.503	330.442	
36	1975	330.471 330.741	330.516 330.786	330.339	330.699	330.881	331.027	330.969	331.247	331.673	331.597	
37 38	1976	331.463 331.712	331.6 332.126	331.939	332.182	331.75	331.682	332.182	332.019	332.076	332.013	
39 40	1977	332.315 332.734	332.655 332.609	333.441	333.428	333.788	333.715	334.025	333.92	334.318	334.457	
41 42	1978	334.484 335.136	334.468 334.64	335.074	335.166	334.977	335.588	335.721	335.77	335.47	335.661	
43 44	1979	335.894 336.24	335.82 336.028	336.59	336.333	335.964	336.803	336.848	336.972	337.081	337.374	
45 46	1980	337.393 337.827	337.761 337.653	338.498	338.25	338.425	338.86	338.596	338.873	339.261	339.307	
47 48	1981	339.342 339.384	339.262 339.877	340.03	339.946	339.955	340.089	339.942	339.924	340.092	340.382	
49 50	1982	340.721 340.94	340.862 341.051	341.325	341.303	341.606	341.378	341.496	341.552	341.501	341.656	
51	1983	341.611 341.656	341.833 342.227	342.062	342.632	342.889	343.118	343.421	343.7	343.358	343.568	
52 53 54	1984	343.658 344.058	344.013 344.122	343.936	344.151	344.474	344.58	344.829	344.661	344.544	344.95	
54 55 56	1985	345.185 345.249	345.474 345.407	346.139	345.578	345.84	346.002	345.948	346.322	346.397	346.352	
56 57 58	1985	346.522 346.53	346.748 346.471	346.534	347.144	347.446		347.406		348.212	347.743	
58 59		347.98	348.073				347.505		347.574			
60 61 62	1987	348.359 350.078	348.031 350.097	348.207	348.69	349.054	349.22	349.215	349.337	349.731	349.924	
63	1988	350.348 352.265	350.999 352.351	350.725	351.026	351.094	351.296	351.893	352.169	352.251	352.355	
64 65	1989	352.847 353.553	352.547 353.743	352.281	352.951	352.802	352.921	353.303	353.053	353.254	353.568	
66 67	1990	353.738 355.162	354.177 355.167	354.123	353.626	354.199	353.943	354.214	354.426	354.527	354.873	
68 69	1991	354.809 355.902	354.967 355.962	355.526	355.859	355.996	355.723	355.464	355.438	355.558	355.609	
70 71	1992	356.098 356.382	356.208 356.417	356.28	356.345	356.458	356.945	356.201	356.467	356.196	356.603	
72 73	1993	356.777 357.511	356.537 357.72	356.817	356.612	357.103	357.152	356.777	357.025	357.372	357.417	
74 75	1994	358.127 359.67	358.237 359.743	358.364	358.658	358.599	358.44	358.749	358.993	358.906	359.391	
15		337.07	337.143									

1	1995	359.769	360.037	360.222	360.566	360.696	360.868	361.06	360.688	361.39	361.274	
2 3 4 5 6 7	1996	361.508 361.931	361.476 362.408	362.622	361.845	362.094	362.585	362.892	362.961	362.883	362.847	
4		362.947	363.036									
5	1997	362.923 364.545	363.323 365.178	362.924	363.582	363.63	363.253	363.706	363.785	363.597	364.019	
Ž	1998	365.054	365.209	365.585	365.939	366.438	366.619	367.112	367.379	367.296	367.658	
8 9	1999	367.623 367.983	367.921 368.204	368.054	368.287	367.725	368.004	368.66	368.455	368.225	368.659	
10		368.781	368.877									
11 12	2000	369.104 370.431	368.72 370.505	369.013	369.146	368.467	369.387	369.24	369.802	370.192	370.301	
13 14	2001	370.367 371.794	370.705 372.015	370.981	370.693	370.772	370.857	370.968	371.24	371.441	371.736	
15	2002	372.291	372.351	372.382	372.32	372.594	373.177	373.404	373.447	373.941	373.831	
16 17	2003	374.307 374.706	374.546 374.827	374.932	375.053	375.432	375.857	376.131	375.933	376.483	376.427	
18		376.752	376.769									
19 20	2004	376.831 378.048	377.074 378.292	377.181	377.715	377.55	377.238	377.028	377.779	377.396	377.772	
21	2005	378.296 380.412	378.961 380.764	379.592	379.5	379.379	379.878	380.202	380.364	379.945	380.314	
21 22 23 24	2006	381.17	381.361	381.116	382.029	381.879	381.769	381.807	382.091	382.2	382.494	
24 25	2007	382.303 382.743	382.634 383.011	383.02	383.704	383.469	383.731	383.922	383.648	384.174	384.474	
26		384.542	384.734									
27 28	2008	385.246 386.251	384.932 386.405	384.43	384.47	385.381	385.562	385.857	385.802	386.359	386.327	
29 30	2009	386.743 388.12	386.623 388.156	387.227	386.751	387.061	387.134	387.224	387.576	388.058	387.731	
31	2010	388.302	389.144	389.545	389.84	389.902	389.835	389.668	389.919	390.098	390.544	
32 33	2011	390.768 391.049	390.574 391.027	390.948	390.652	391.065	391.406	391.871	391.85	392.308	392.307	
34 35	2012	392.358 392.917	392.671 392.81	392.909	393.49	393.627	393.516	393.754	394.071	394.331	394.361	
36		394.929	395.118									
37 38	2013	395.337 397.229	396.014 397.647	395.769	395.657	396.599	396.263	396.656	396.811	396.783	397.013	
39 40	2014	397.598	397.13	398.039	398.594	398.615	398.831	398.457				
41												
42 43	STANE	OARD ERRO	OR OF SEA	SONALLY	ADJUSTI	ED SERIES	3					
44 45												
46	N/ 10	0.0.1										
47 48	X 10.	0D-1										
49 50												
51												
52 53 54 55	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
54 55		DEC										
56 57	1050		0.54	0.54	0.5(2	0.50	0.50	0.50	0.501	0.501	0.550	
58	1973	0.77 0.737	0.766	0.764	0.762	0.761	0.761	0.761	0.761	0.761	0.759	0.757
59 60	1974	0.732 0.705	0.729	0.727	0.726	0.725	0.725	0.725	0.725	0.724	0.723	0.722
61	1975	0.701	0.698	0.696	0.695	0.694	0.694	0.694	0.694	0.694	0.693	0.691
62 63	1976	0.677 0.674	0.671	0.67	0.669	0.668	0.668	0.668	0.668	0.668	0.667	0.666
64 65	1977	0.654 0.651	0.649	0.648	0.647	0.647	0.647	0.647	0.647	0.646	0.646	0.645
66		0.635										
67 68	1978	0.633 0.619	0.631	0.63	0.629	0.629	0.629	0.629	0.629	0.629	0.628	0.627
69 70	1979	0.617 0.606	0.616	0.615	0.614	0.614	0.614	0.614	0.614	0.614	0.613	0.613
71	1980	0.604	0.603	0.603	0.602	0.602	0.602	0.602	0.602	0.602	0.601	0.601
72 73	1981	0.595 0.594	0.593	0.592	0.592	0.592	0.592	0.592	0.592	0.592	0.591	0.591
74		0.586										

$\frac{1}{2}$	1982	0.585 0.579	0.585	0.584	0.584	0.584	0.584	0.584	0.584	0.584	0.583	0.583
3	1983	0.578 0.573	0.578	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0.576
4 5 6	1984	0.573	0.572	0.572	0.572	0.571	0.571	0.571	0.571	0.571	0.571	0.571
6 7 8	1985	0.568	0.568	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
9 10	1986	0.564 0.561	0.564	0.564	0.564	0.563	0.563	0.563	0.563	0.563	0.563	0.563
11 12	1987	0.561 0.559	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.56	0.56	0.56
13 14	1988	0.559	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558
15 16	1989	0.557 0.555	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556
17 18	1990	0.555 0.554	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555
19 20	1991	0.554 0.553	0.554	0.554	0.553	0.553	0.553	0.553	0.553	0.553	0.553	0.553
21 22	1992	0.553 0.552	0.553	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
23 24	1993	0.552 0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
25 26	1994	0.552 0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
27 28	1995	0.552 0.553	0.552	0.552	0.552	0.552	0.553	0.553	0.553	0.553	0.553	0.553
29 30	1996	0.553 0.555	0.553	0.553	0.553	0.554	0.554	0.554	0.554	0.555	0.555	0.555
31 32	1997	0.555 0.556	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.556	0.556	0.556
$\overline{3\overline{3}}$ $3\overline{4}$	1998	0.556 0.558	0.556	0.556	0.556	0.556	0.556	0.557	0.557	0.558	0.558	0.558
35 36	1999	0.558 0.561	0.558	0.558	0.558	0.558	0.558	0.559	0.559	0.56	0.56	0.56
37 38	2000	0.561 0.563	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.563	0.563	0.563
39 40	2001	0.563 0.567	0.563	0.563	0.564	0.564	0.564	0.564	0.565	0.567	0.567	0.567
41 42	2002	0.567	0.567	0.567	0.567	0.567	0.568	0.568	0.569	0.571	0.571	0.571
43 44	2003	0.571 0.577	0.571	0.571	0.572	0.572	0.572	0.573	0.573	0.576	0.577	0.577
45 46 47	2004	0.577 0.584	0.577	0.577	0.577	0.577	0.578	0.578	0.579	0.583	0.583	0.584
48	2005 2006	0.584 0.592 0.592	0.584 0.592	0.584 0.592	0.584 0.592	0.584 0.592	0.585 0.593	0.585 0.594	0.586 0.595	0.591 0.601	0.591 0.601	0.592 0.602
49 50 51	2000	0.602 0.602	0.602	0.602	0.602	0.603	0.603	0.594	0.595	0.613	0.613	0.614
51 52 53 54 55	2007	0.614 0.614	0.614	0.614	0.614	0.615	0.616	0.617	0.619	0.627	0.628	0.629
54 55	2000	0.629	0.629	0.629	0.629	0.63	0.631	0.633	0.635	0.645	0.646	0.646
56 57	2009	0.647	0.647	0.647	0.647	0.648	0.649	0.651	0.654	0.666	0.667	0.668
58 59	2010	0.668	0.668	0.668	0.669	0.67	0.671	0.674	0.677	0.691	0.693	0.694
60 61	2012	0.694 0.694	0.694	0.694	0.695	0.696	0.698	0.701	0.705	0.722	0.723	0.724
62 63	2012	0.725	0.725	0.725	0.726	0.727	0.729	0.732	0.737	0.757	0.759	0.761
64 65	2013	0.761 0.761	0.761	0.761	0.762	0.764	0.766	0.77				
66					-	-						

Mark Leggett comment: These are considered small relative to the seasonally adjusted series itself (above)

IRREGULAR COMPONENT	

$\frac{1}{2}$	IRREGU	JLAR CON	MPONENT									
1 2 3 4 5 6 7 8 9	YEAR	JAN DEC	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
8	1973	-0.065	0.127	-0.132	-0.203	0.039	-0.039	0.024	0.331	0.191	0.088	0.162
10	1974	-0.236 -0.393	0.19	-0.011	0.029	0.122	-0.324	0.011	0.161	0.06	-0.028	-
11 12 13 14	0.033	-0.05 0.105	0.142	-0.292	-0.014	0.027	0.049	-0.135	-0.034	0.217	0.06	-
13 14 15	0.109 1976	-0.049 -0.071	0.215	-0.036	0.218	-0.153	-0.223	0.19	-0.034	-0.018	-0.17	-
15 16 17	0.039 1977	0.1 0.014	-0.314	0.237	-0.029	0.144	-0.08	0.096	-0.151	0.08	0.067	-
17 18 19	0.018 1978	-0.177 0.343	-0.246	0.079	0.056	-0.263	0.154	0.127	0.128	-0.18	-0.055	0.067
20	1979	-0.13 0.162	-0.175	0.28	-0.006	-0.439	0.195	0.031	-0.002	-0.055	0.067	-
$\frac{21}{22}$	0.087 1980	0.108 0.035 -0.124	-0.305	0.323	-0.092	-0.069	0.21	-0.174	-0.056	0.144	0.061	0.027
23 24 25	1981	-0.124 -0.149 0.054	0.14	0.145	0.002	-0.023	0.086	-0.069	-0.134	-0.102	-0.024	0.092
23 26 27	1982 0.079	-0.009	-0.039	0.095	-0.044	0.178	-0.082	0.007	0.025	-0.065	0.035	-
$\frac{27}{28}$	0.079 1983	0.06 -0.242	0.148	-0.235	0.065	0.037	0.012	0.091	0.234	-0.161	-0.03	-0.08
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1984	0.12 0.053	0.065	-0.17	-0.078	0.071	0.018	0.165	-0.042	-0.228	0.009	0.039
$31 \\ 32 \\ 33$	1985	0.177	-0.15	0.419	-0.208	-0.013	0.043	-0.13	0.102	0.062	-0.065	0.011
33 34 35	1986 0.006	0.168 -0.061 -0.024	-0.151	-0.244	0.1	0.159	0.077	-0.123	-0.116	0.364	-0.175	-
36 37	0.008 1987	-0.024 0.177 -0.12	-0.213	-0.189	0.027	0.122	0.092	-0.06	-0.112	0.062	0.047	0.032
38 39	1988 0.082	-0.12 -0.105 -0.103	0.306	-0.131	0.021	-0.1	-0.154	0.13	0.144	0.063	0.074	-
40	0.082 1989 0.039	0.288 0.035	-0.027	-0.328	0.211	-0.064	-0.067	0.193	-0.143	-0.06	0.104	-
42	0.039 1990	-0.101 0.13	0.219	0.145	-0.338	0.176	-0.17	-0.028	0.011	-0.08	0.057	0.179
41 42 43 44 45	1991	-0.244 -0.004	-0.219	0.084	0.19	0.244	0.034	-0.123	-0.114	-0.04	-0.092	0.065
46 47	1992 0.087	-0.004 0.016 -0.107	0.021	0.001	-0.029	-0.027	0.417	-0.258	0.07	-0.204	0.165	-
48 49	1993 0.076	0.171 -0.071	-0.129	0.091	-0.204	0.167	0.153	-0.238	-0.089	0.091	-0.016	-
50	1994	0.108	0.025	-0.011	0.153	0.03	-0.188	-0.012	0.069	-0.195	0.058	0.113
51 52 53	1995	-0.095 -0.193	-0.011	-0.042	0.084	0.026	0.046	0.14	-0.331	0.207	-0.068	0.024
54 55	1996 0.002	0.004 0.037	0.231	0.364	-0.373	-0.203	0.061	0.156	0.113	0.001	-0.057	-
56 57	1997	-0.14 0.298	0.182	-0.312	0.201	0.156	-0.266	0.083	0.045	-0.282	-0.133	0.011
58 59	1998 0.079	-0.059 0.074	-0.127	-0.047	-0.042	0.1	-0.055	0.127	0.154	-0.098	0.106	-
60 61	1999	0.005	0.141	-0.045	0.204	-0.335	-0.164	0.315	0.034	-0.244	0.061	0.039
62 63	2000	0.197 0.054	-0.196	0.061	0.178	-0.54	0.194	-0.213	0.052	0.155	0.062	0.062
64 65	2001 0.042	-0.166 -0.003	0.042	0.216	-0.099	-0.054	-0.057	-0.087	-0.004	-0.013	0.08	-
66 67	2002	0.103 0.067	0.042	-0.011	-0.193	-0.151	0.126	0.082	-0.107	0.16	-0.169	0.065
68 69	2003	0.039	0.004	-0.049	-0.132	-0.027	0.108	0.164	-0.203	0.161	-0.072	0.101
70	2004	-0.076 0.018	0.007	-0.073	0.307	0.125	-0.115	-0.344	0.28	-0.233	-0.033	0.008
71 72 73	2005 0.117	-0.256 -0.022	0.038	0.328	0.045	-0.227	0.048	0.15	0.203	-0.264	-0.013	-
74 75	2006 0.163	0.12 0.023	0.113	-0.324	0.36	0.077	-0.074	-0.118	0.027	-0.021	0.14	-

$\frac{1}{2}$	2007 0.026	-0.047 -0.021	0.036	-0.172	0.292	-0.099	0.033	0.11	-0.285	0.032	0.099	-
$\frac{2}{3}$	2008	0.366	0.09	-0.33	-0.409	0.184	0.052	0.114	-0.145	0.215	0.056	-
4 5	0.101 2009	-0.071 0.116	-0.155	0.326	-0.214	0.013	-0.044	-0.126	-0.006	0.269	-0.195	0.041
6 7	2010	-0.126 -0.285	0.139	0.152	0.187	0.122	0.02	-0.188	-0.063	-0.095	0.112	0.156
89	2011	-0.167 0.181	0.088	0.014	-0.317	-0.083	-0.025	0.163	-0.092	0.16	-0.001	-
10 11	0.097 2012	0.037 0.125	-0.104	-0.181	0.162	0.113	-0.131	-0.072	0.014	0.041	-0.178	0.096
12 13	2013	-0.007 -0.081	0.338	-0.054	-0.334	0.368	-0.158	0.068	0.067	-0.097	-0.035	_
14 15	0.027 2014	0.207 0.068	-0.53	0.059	0.264	0.068	0.187	-0.242				
16	2011	0.000	0.00	0.007	0.20.	0.000	0.107	0.2.2				

Mark Leggett comment: This should be essentially "white noise", and the TRAMO plots above suggests that it is

* * PROCESSING COMPLETED * *

Granger causality from the first and second 1 differencerivatives of atmospheric CO₂ to global 2 surface temperature and the El Niño-Southern 3 **Oscillation respectively** 4 5 L.M.W. Leggett ¹ and D.A. Ball ¹ 6 7 (1) (Global Risk Policy Group Pty Ltd, Townsville, Queensland, Australia) www.globalriskprogress.com 8 Correspondence to: L.M.W. Leggett (mleggett.globalriskprogress@gmail.com) 9 10 11 Abstract 12 13 A significant gap now of some 16 years in length has been shown to exist between the 14 15 observed global surface temperature trend and that expected from the majority of climate simulations, and this gap is presently continuing to increase. For its own sake, 16 17 and to enable better climate prediction for policy use, the reasons behind this mismatch need to be better understood. While an increasing number of possible 18 19 causes have been proposed, the candidate causes have not yet converged. 20 The standard model which is now displaying the disparity has it that temperature will 21 22 rise roughly linearly with atmospheric CO₂. However research also exists showing correlation between the interannual variability in the growth rate of atmospheric CO₂ 23 24 and temperature. Rate of change of CO₂ had not been considered a causative 25 mechanism for temperature because it was concluded that causality ran from 26 temperature to rate of change of CO₂. 27 28 However more recent studies have found little or no evidence for temperature leading rate of change of CO₂ but instead evidence for simultaneity. With this background, 29

30 this paper reinvestigates \underline{sd} the relationship between rate of change of CO₂ and two of

1 the major climate variables, atmospheric temperature and the El Niño-Southern 2 Oscillation (ENSO). 3 Using time series analysis in the form of dynamic regression modelling with 4 autocorrelation correction, it is demonstrated that first-difference CO₂ leads 5 6 temperature and that there is a highly statistically significant correlation between first-7 difference CO₂ and temperature. Further, a correlation is found for second-difference 8 CO₂ with the Southern Oscillation Index, the atmospheric-pressure component of 9 ENSO. This paper also demonstrates that both these correlations display Granger causality. 10 11 It is shown that the first-difference CO₂ and temperature model shows no trend 12 mismatch in recent years. 13 14 15 These results may contribute to the prediction of future trends for global temperature and ENSO. 16 17 18 Interannual variability in the growth rate of atmospheric CO₂ is standardly attributed to variability in the carbon sink capacity of the terrestrial biosphere. The terrestrial 19 20 biosphere carbon sink is created by the difference between photosynthesis and 21 respiration (net primary productivity): a major way of measuring global terrestrial 22 photosynthesis is by means of satellite measurements of vegetation reflectance, such as the Normalized Difference Vegetation Index (NDVI). In a preliminary analysis, 23 24 this study finds a close correlation between an increasing NDVI and the increasing 25 climate model/temperature mismatch (as quantified by the difference between the 26 trend in the level of CO_2 and the trend in temperature). 27 It is believed that the results in this paper provide strong evidence that the global-28 climate is the result of the combination of two mechanisms one a physical 29 mechanism based on the level of atmospheric CO2, the other a mechanism embodied-30 in the terrestrial biosphere and based on the rate of change of CO₂. 31 32

2 3

27

1 Introduction

Understanding current global climate requires an understanding of trends both in 4 5 Earth's atmospheric temperature and the El Niño–Southern Oscillation (ENSO), a 6 characteristic large-scale distribution of warm water in the tropical Pacific Ocean and the dominant global mode of year-to-year climate variability (Holbrook et al. 2009). 7 However, despite much effort, the average projection of current climate models has 8 become statistically significantly different from the 21st century global surface_-9 temperature trend (Fyfe et al. 2013; Fyfe and Gillett 2014) and has failed to reflect the 10 statistically significant evidence that annual-mean global temperature has not risen in 11 12 the 21st century (Fyfe et al. 2013; Kosaka and Shang-Ping 2013). temperature trend (Fyfe et al. 2013, 2014) and has failed to reflect the statistically-13 14 significant evidence that annual-mean global temperature has not risen in the 21st 15 century (Fyfe 2013; Kosaka 2013). 16 17

-The situation is illustrated visually in Figure 1 which shows the increasing departure over recent years of the global surface temperature trend from that projected by a 18 representative mid-range global climate model (GCM) for global surface temperature 19 - the CMIP3, SRESA1B scenario model (Meehl et al. 2007)KNMI 2013). It is noted 20 that the level of atmospheric CO_2 is a good proxy for the International Panel on 21 22 Climate Change (IPCC) models predicting the global surface temperature trend: according to IPCC (2014), on decadal to interdecadal time scales and under 23 continually increasing effective radiative forcing, the forced component of the global 24 25 surface temperature trend responds to the forcing trend relatively rapidly and almost linearly. 26

Modelling also provides a wide range of predictions for future ENSO variability,
some showing an increase, others a decrease, and some no change (Guilyardi et al.
2012; Bellenger 2013). The extremes of this ENSO variability cause extreme weather
<u>events (such as floods and droughts) in many regions of the world.</u>
A wide range of physical explanations has now been proposed for the global warming
slowdown. These involve proposals either for changes in the way the radiative
mechanism itself is working or for the increased influence of other physical

mechanisms. Chen and Tung (2014) place these proposed explanations into two 1 2 categories. The first involves a reduction in radiative forcing: by a decrease in stratospheric water vapour, an increase in background stratospheric volcanic aerosols, 3 by 17 small volcano eruptions since 1999, increasing coal-burning in China, the 4 indirect effect of time-varying anthropogenic aerosols, a low solar minimum, or a 5 combination of these. The second category of candidate explanation involves 6 planetary sinks for the excess heat. The major focus for the source of this sink has 7 8 been physical and has involved ocean heat sequestration. However, evidence for the 9 precise nature of the ocean sinks is not yet converging: according to Chen and Tung (2014) their study followed the original proposal of Meehl et al. (2011) that global 10 deep-ocean heat sequestration is centred on the Pacific. However, their observational 11 results were that such deep-ocean heat sequestration is mainly occurring in the 12 Atlantic and the Southern oceans. 13

14

Alongside the foregoing possible physical causes, Hansen et al. (2013) have suggested that the mechanism for the pause in the global temperature increase since 1998 might be the planetary biota, in particular the terrestrial biosphere: that is (IPCC 2007), the fabric of soils, vegetation and other biological components, the processes that connect them and the carbon, water and energy that they store.

20

21 It is widely considered that the interannual variability in the growth rate of

22 atmospheric CO_2 is a sign of the operation of the influence of the planetary biota.

23 Again, IPCC (2007) states: "The atmospheric CO₂ growth rate exhibits large

24 interannual variations. The change in fossil fuel emissions and the estimated

variability in net CO₂ uptake of the oceans are too small to account for this signal,

26 which must be caused by year-to-year fluctuations in land-atmosphere fluxes."

27 In the IPCC Fourth Assessment Report, Denman et al. (2007) state (italics denote

28 present author emphasis): "Interannual and inter-decadal variability in the growth rate

of atmospheric CO₂ is dominated by the *response of the land biosphere to climate*

30 *variations.* The terrestrial biosphere *interacts strongly with the climate*, providing

both positive and negative feedbacks due to biogeophysical and biogeochemical

32 processes. ... Surface climate is determined by the balance of fluxes, which can be

33 changed by radiative (e.g., albedo) or non-radiative (e.g., water cycle related

processes) terms. Both radiative and non-radiative terms *are controlled by details of vegetation*."

3

Denman et al. (2007) also note that many studies have confirmed that the variability 4 of CO₂ fluxes is mostly due to land fluxes, and that tropical lands contribute strongly 5 to this signal. A predominantly terrestrial origin of the growth rate variability can be 6 inferred from (1) atmospheric inversions assimilating time series of CO₂ 7 8 concentrations from different stations, (2) consistent relationships between $\delta 13C$ and 9 CO_{2} (3) ocean model simulations, and (4) terrestrial carbon cycle and coupled model simulations. For one prominent estimate carried out by the Global Carbon Project, the 10 land sink is calculated as the residual of the sum of all sources minus the sum of the 11 atmosphere and ocean sinks (Le Quere et al. 2014). 12

13

14 The activity of the land sink can also be estimated directly. The terrestrial biosphere 15 carbon sink is created by photosynthesis: a major way of measuring global land 16 photosynthesis is by means of satellite measurements of potential photosynthesis from greenness estimates. The measure predominantly used such measure is the 17 18 Normalized Difference Vegetation Index (NDVI) (Running et al. 2004; Zhang et al. 2014). NDVI data are available from the start of satellite observations in 1980 to the 19 20 present. For this period the trend signature in NDVI has been shown to correlate 21 closely with that for atmospheric CO₂ (Barichivich et al. 2013). This noted, we have 22 not been able to find studies which have compared NDVI data with the difference 23 between climate models and temperature.

24 25 26

27

28

29

30

31

32

2 Methodological issues and objectives of the study

2.1 Methodological issues

Before considering further material it is helpful now to consider a range of methodological issues and concepts. The first concept is to do with the notion of causality.

According to Hidalgo and Sekhon (2011) there are four prerequisites to enable an
assertion of causality. The first is that the cause must be prior to the effect. The

1	second prerequisite is "constant conjunction" between variables (Hume (1751), cited
2	in Hidalgo and Sekhon (2011)) between variables. This relates to the degree of fit
3	between variables. The final requirements are those concerning manipulation and
4	random placement into experimental and control categories. It is noted that each of
5	the four prerequisites is necessary but not sufficient on its own for causality.
6 7	Concerning-With regard to the last two criteria, the problem for global studies such as
8	global climate studies is that manipulation and random placement into experimental
9	and control categories cannot be carried out.
10	
11	One method using correlational data, however, approaches more closely the quality of
12	information derived from random placement into experimental and control categories.
13	The concept is that of Granger causality (Granger 1969). According to Stern and
14	Kaufmann (2014), a time series variable " x " (e.g. atmospheric CO ₂) is said to
15	"Granger-cause" variable "y" (e.g. surface temperature) if past values of x help predict
16	the current level of y, better than do just the past values of y, given all other relevant
17	information.
18	
19	Reference to the above four aspects of causality will be made to help structure the
20	review of materials in the following sections.
21	
22	
23	2.2 Objectives of the study
24	
25	What has been considered to influence the biota's creation of the pattern observed in
25 26	What has been considered to influence the biota's creation of the pattern observed in the trend in the growth rate of atmospheric CO ₂ ? The candidates for the influences on
26	the trend in the growth rate of atmospheric CO_2 ? The candidates for the influences on
26 27	the trend in the growth rate of atmospheric CO_2 ? The candidates for the influences on the biota have mainly been considered in prior research to be atmospheric variations,
26 27 28	the trend in the growth rate of atmospheric CO ₂ ? The candidates for the influences on the biota have mainly been considered in prior research to be atmospheric variations, primarily temperature and/or ENSO (e.g., Kuo et al. 1990; Wang W. et al. 2013).
26 27 28 29	the trend in the growth rate of atmospheric CO ₂ ? The candidates for the influences on the biota have mainly been considered in prior research to be atmospheric variations, primarily temperature and/or ENSO (e.g., Kuo et al. 1990; Wang W. et al. 2013). Despite its proposed role in global warming overall, CO ₂ (in terms of the initial state
26 27 28 29 30	the trend in the growth rate of atmospheric CO ₂ ? The candidates for the influences on the biota have mainly been considered in prior research to be atmospheric variations, primarily temperature and/or ENSO (e.g., Kuo et al. 1990; Wang W. et al. 2013). Despite its proposed role in global warming overall, CO ₂ (in terms of the initial state of atmospheric CO ₂ exploited by plants at time A) has not generally been isolated and

This state of affairslack of attention to the influence of the biosphere on climate
variables seems to have come about for two reasons, one concerning ENSO, the other,
temperature. For ENSO, the reason is that the statistical studies are unambiguous that
ENSO leads rate of change of CO₂ (e.g., Lean and Rind 2008). On the face of it,
therefore, this ruled out CO₂ as the first mover of the ecosystem processes. For
temperature, the reason was that the question of whether atmospheric temperature
leads rate of change of CO₂ or vice versa is less settled.

In the first published study on this question, Kuo et al. (1990) provided evidence that
the signature of interannual atmospheric CO₂ (measured as its first differencefirstdifference) fitted temperature (passing therefore one of the four tests for causality, of
close conjunction).

The relative fits of both level of and first difference first-difference of atmospheric
CO₂ with global surface temperature up to the present are depicted in Figure 2.
Attention is drawn to both signature (fine grained data structure) and, by means of
polynomial smoothing, core trend for each data series.

Concerning signature, while clearly first-difference CO₂ and temperature are not
 identical, each is more alike than either is to the temperature model based on level of
 CO₂. As well, the polynomial fits show that the same likeness groupings exist for core
 trend.

20 Kuo et al. (1990) also provided evidence concerning another of the causality prerequisites – priority. This was that the signature of first-difference CO₂ lagged 21 temperature (by 5 months). This idea has been influential. More recently, despite-22 23 Adams and Piovesan (2005) noted ing that climate variations, acting on ecosystems, 24 are believed to be responsible for variation in CO₂ increment, but there are major uncertainties in identifying processes, including uncertainty concerning instantaneous 25 26 (present authors' emphasis) versus lagged responses.; and Wang W. et al. (2013) 27 observing observed that the strongest coupling is found between the CO₂ growth rate 28 and the *concurrent* (present authors' emphasis) tropical land temperature. Wang et al. 29 (2013) nonetheless state in their conclusion that the strong temperature– CO_2 coupling they observed is best explained by the additive responses of tropical terrestrial 30 respiration and primary production to temperature variations, which reinforce each 31

other in enhancing *temperature's control* (present author emphasis) on tropical net
 ecosystem exchange.

3 Another perspective on the relative effects of rising atmospheric CO₂ concentrations on the one hand and temperature on the other has been provided by extensive direct 4 5 experimentation on plants. In a large scale meta-analysis of such experiments, Dieleman et al. (2012) drew together results on how ecosystem productivity and soil 6 processes responded to combined warming and CO₂ manipulation, and compared it 7 8 with those obtained from single factor CO_2 and temperature manipulation. While the 9 meta-analysis found that responses to combined CO₂ and temperature treatment 10 showed the greatest effect, this was only slightly larger than for the CO₂-only 11 treatment. By contrast, the effect of the CO₂-only treatment was markedly larger than for the warming-only treatment. 12 13 Concerning In looking at leading and lagging climate series more generally, the first 14 finding of correlations between the rate of change (in the form of the first-15 16 difference first-difference) of atmospheric CO_2 and a climate variable was with the foregoing and the Southern Oscillation Index (SOI) component of ENSO (Bacastow 17 1976). Here evidence was presented that the SOI led first-difference atmospheric CO₂. 18 19 There have been further such studies (see Imbers (2013) for overview) which, taken together, consistently show that the highest correlations are achieved with SOI leading 20 21 temperature by some months (3-4 months).

22

23 In light of the foregoing, this paper reanalyses by means of time series regression

24 analysis the question of which of first-difference CO_2 and temperature leads which.

25 The joint temporal relationship between interannual atmospheric CO₂, global surface

temperature and ENSO (indicated by the SOI) is also investigated.

27

The foregoing also shows that a strong case can be made for further investigating the planetary biota influenced by atmospheric CO_2 as a candidate influence on (cause of) climate outcomes. This question is also explored in this paper.

31

32 A number of Granger causality studies have been carried out on climate time series

33 (see review in Attanasio 2012). Of papers we have found which assessed atmospheric-

- 1 CO₂ and global surface temperature – some six (Sun and Wang 1996; Triacca 2005; 2 Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann-2014) -while all but one (Triacca 2005) found Granger causality, it was not with CO₂-3 concentration but with CO₂ radiative forcing (InCO₂ (Attanasio and Triacca 2011). 4 5 A number of Granger causality studies have been carried out on climate time series 6 (see review in Attanasio 2012). We found six papers which assessed atmospheric CO₂ 7 and global surface temperature (Sun and Wang 1996; Triacca 2005; Kodra et al. 2011; 8 9 Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann 2014). Of these, while all but one (Triacca 2005) found Granger causality, it was not with CO₂ 10 concentration as studied in this paper but with CO₂ radiative forcing (lnCO₂ 11 (Attanasio and Triacca 2011)). 12 13 14 As well, all studies used annual not monthly data. Such annual data for each of 15 atmospheric CO₂ and temperature is not stationary of itself but must be transformed into a new, stationary, series by differencing (Sun and Wang 1996). Further, data at 16 this level of aggregation can "mask" correlational effects that only become apparent 17 18 when higher frequency (e.g., monthly) data are used. 19 20 Rather than using a formal Granger causality analysis, a number of authors have instead used conventional multiple regression models in attempts to quantify the 21 22 relative importance of natural and anthropogenic influencing factors on climate 23 outcomes such as global surface temperature. These regression models use 24 contemporaneous explanatory variables. For example, see Lean and Rind (2008, 25 2009); Foster and Rahmstorf (2011); Kopp and Lean (2011); Zhou and Tung (2013). 26 This type of analysis effectively assumes a causal direction between the variables being modelled. It is incapable of providing a proper basis for testing for the presence 27 or absence of causality. In some cases account has been taken of autocorrelation in the 28 29 model's errors, but this does not overcome the fundamental weakness of standard multiple regression in this context. In contrast, Granger causality analysis that we 30
- adopt in this paper provides a formal testing of both the presence and direction
 of this causality (Granger 1969).
- 33
- 34

1 From such studies, a common set of main influencing factors (also called explanatory 2 or predictor variables) has emerged. These are (Lockwood (2008); Folland (2013); Zhou and Tung (2013)): El Nino–Southern Oscillation (ENSO), or Southern 3 Oscillation Index (SOI) alone (SOI); volcano aerosol optical depth; total solar 4 irradiance; and the trend in anthropogenic greenhouse gas (the predominant 5 anthropogenic greenhouse gas being CO_2). In these models, ENSO/SOI is the factor 6 7 embodying interannual variation. Imbers et al. (2013) show that a range of different 8 studies using these variables have all produced similar and close fits with the global 9 surface temperature.

10

With this background, this paper first presents an analysis concerning whether the firstdifferencefirst-difference of atmospheric CO₂ leads or lags global surface temperature. That assessedAfter assessing this, questions of autocorrelation, strength of correlation, and of causality are then explored. Given this exploration of correlations involving first-difference atmospheric CO₂, the possibility of the correlation of second_-difference CO₂ with climate variables is also explored.

17

18

19 Correlations are assessed at a range of time scales to seek the time extent over which relationships are held, and thus whether they are a special case or possibly longer term 20 21 in nature. The time scales involved are, using instrumental data, over two periods starting respectively from 1959 and 1877; and, using paleoclimate data, over a period 22 commencing from 1515. The correlations are assessed by means of regression models 23 explicitly incorporating autocorrelation using dynamic modelling methods. Granger 24 causality between CO₂ and, respectively, temperature and SOI is also explored. 25 26 Atmospheric CO₂ rather than emissions data is used, and where possible at monthly rather than annual aggregation. Finally, as noted, we have not been able to find studies 27 which have compared the gap between climate models and temperature with NDVI 28 29 data, so an assessment of this question is carried out. All assessments were carried out using the time series statistical software packages Gnu Regression, Econometrics and 30 31 Time-series Library (GRETL) (Available from: http://gretl.sourceforge.net/ (<u>[Accessed January 23, 2014</u>)) and IHS Eviews (IHS EViews, 2011). 32 33

3. Data and methods

We present results of time series analyses of climate data. The data assessed are
global surface temperature, atmospheric carbon dioxide (CO₂) and the Southern
Oscillation Index (SOI). The regressions are presented in several batches based on the
length of data series for which the highest temporal resolution is available. The first
batch of studies involves the data series for which the available high resolution series
is shortest: this is for atmospheric carbon dioxide (CO₂) and commences in 1958.
These studies are set at monthly resolution.

The second batch of studies is for data able to be set at monthly resolution not
involving CO₂. These studies begin with the time point at which the earliest available
monthly SOI data commences, 1877.

The final batch of analyses utilises annual data. These studies use data starting variously in the 16th or 18th centuries.

Data from 1877 and more recently <u>is are</u> from instrumental sources; earlier data <u>is are</u> from paleoclimate sources.

For instrumental data sources for global surface temperature, we used the Hadley Centre-Climate Research Unit combined land SAT and SST (HadCRUT) version 4.2.0.0 (Morice et al. 2012), for atmospheric CO₂, the U.S. Department of Commerce National Oceanic & Atmospheric Administration Earth System Research Laboratory Global Monitoring Division Mauna Loa, Hawaii, monthly CO₂ series (Keeling et al. 2009), and for volcanic aerosols the National Aeronautic and Space Administration Goddard Institute for Space Studies Stratospheric Aerosol Optical Thickness series (Sato et al. 1993). Southern Oscillation Index (SOI) data (Troup 1965) is from the Science Delivery Division of the Department of Science, Information Technology, Innovation and the Arts (DSITIA) Queensland, Australia. Solar irradiance data is from Lean, J. (personal communication 2012).

1	Concerning-With regard to the El Nino-Southern Oscillation, according to IPCC
2	(2014) the term El Niño was initially used to describe a warm-water current that
3	periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. It
4	has since become identified with a basin-wide warming of the tropical Pacific Ocean
5	east of the dateline. This oceanic event is associated with a fluctuation of a global-
6	scale tropical and subtropical surface atmospheric pressure pattern called the Southern
7	Oscillation. This atmosphere-ocean phenomenon is coupled, with typical time scales
8	of two to about seven years, and known as the El Niño-Southern Oscillation (ENSO).
9	
10	The El Niñno (temperature) component of ENSO is measured by changes in the sea
11	surface temperature of the central and eastern equatorial Pacific relative to the average
12	temperature. The Southern Oscillation (atmospheric pressure) ENSO component is
13	often measured by the surface pressure anomaly difference between Tahiti and
14	Darwin.
15	
16	For the present study we choose the SOI atmospheric pressure component rather than
17	the temperature component of ENSO to stand for ENSO as a whole. This is because it
18	is considered to be more valid to conduct an analysis in which temperature is an
19	outcome (dependent variable) without also having temperature as an input
20	(independent variable). The correlation between SOI and the other ENSO indices is
21	high, so we believe this assumption is robust.
22	
23	
24	The Southern Oscillation is the atmospheric pressure component of ENSO, and is an
25	oscillation in the surface air pressure between the tropical eastern and the western
26	Pacific Ocean waters. It is calculated from normalized Tahiti minus Darwin sea level
27	pressure. The SOI only takes into account sea level pressure. In contrast, the El Niño-
28	component of ENSO is specified in terms of changes in the Pacific Ocean sea surface
29	temperature relative to the average temperature. It is considered to be more valid to
30	conduct an analysis in which the temperature is an outcome (dependent variable)
31	without also having (Pacific Ocean) temperature as an input (independent variable).
32	The correlation between SOI and the other ENSO indices is high, so we believe this
33	assumption is robust.

Paleoclimate data sources are: Atmospheric CO₂, from 1500<u>-</u> ice cores (Robertson et al. (2001)); (NH) temperature, from 1527<u>-</u> tree ring data (-Moberg, A. et al. 2005;
 SOI, from 1706<u>-</u> tree ring data (-Stahle et al. (1998)).

4

5

6

7

8

Normalized Difference Vegetation Index (NDVI) monthly data from 1980 to 2006 is from the GIMMS (Global Inventory Modeling and Mapping Studies) data set_(,-<u>Tucker et al. 2005)accessed via KNMI (2014)</u>. NDVI data from 2006 to 2013 was provided by the Institute of Surveying, Remote Sensing and Land Information, University of Natural Resources and Life Sciences, Vienna.

9 10

Statistical methods used are standard (Greene 2012). Categories of methods used are: 11 normalisation; differentiation (approximated by differencing); and time series analysis. 12 Within time series analysis, methods used are: smoothing; leading or lagging of data 13 series relative to one another to achieve best fit; assessing a prerequisite for using data 14 15 series in time series analysis, that of stationarity; including autocorrelation in models 16 by use of dynamic regression models; and investigating causality by means of a multivariate time series model, known as a vector autoregression (VAR) and its 17 18 associated Granger causality test. These methods will now be described in turn.

19

20 To make it easier to visually assess visually the relationship between the key climate 21 variables, the data were normalised using statistical Z scores or standardised deviation scores (expressed as "Relative level" in the figures). In a Z-scored data series, each 22 23 data point is part of an overall data series that sums to a zero mean and variance of 1, enabling comparison of data having different native units. Hence, when several Z-24 scored time series are depicted in a graph, all the time series will closely superimpose, 25 enabling visual inspection to clearly discern the degree of similarity or dissimilarity 26 between them. 27

28

See the individual figure legends for details on the series lengths.

29

30 In the time series analyseis, SOI and global atmospheric surface temperature are the

31 dependent variables. For these two variables, wWe tested the relationship between_

32 <u>each of these variables and</u> (1) the change in atmospheric CO_2 and (2) the variability

1 in its rate of change. We express these CO₂-related variables as finite differences, 2 which is a convenient approximation to differences (Hazewinkel 2001; Kaufmann et-3 al. 2006). The finite differences used here are of both the first- and second-order types (we label these "first" and "second" differences in the text). Variability is explored 4 using both intra-annual (monthly) data and interannual (yearly) data. The period 5 covered in the figures is shorter than that used in the data preparation because of the 6 7 loss of some data points due to calculations of differences and of moving averages (in 8 monthly terms of up to 13 x 13), which commenced in January 1960.

9

Smoothing methods are used to the degree needed to produce similar amounts of 10 smoothing for each data series in any given comparison. Notably, to achieve this 11 outcome, series resulting from higher levels of differences require more smoothing. 12 Smoothing is carried out initially by means of a 13-month moving average – this also 13 minimises any remaining seasonal effects. If further smoothing is required, then this is 14 15 achieved (Hyndman 2010) by taking a second moving average of the initial moving 16 average (to produce a double moving average) (Hyndman 2010). Often, this is performed by means of a further 13 month moving average to produce a 13 x 13 17 18 moving average._____For descriptive statistics to describe the long-term variation of a time series trend, polynomial smoothing is sometimes used. 19

20 It is important to consider what effects this filtering of our data may have on the 21 ensuing statistical analysis. In these analyses, only the CO₂ series was smoothed and 22 therefore requires assessment. To do this, we tested if the smoothed (2 x 13 month 23 moving average) first-difference CO₂ series used here has different key dynamics to 24 that of the original raw (unsmoothed) data from which the smoothed series was derived. Lagged correlogram analysis showed that the maximum, and statistically 25 significant, correlation of the smoothed series with the unsmoothed series occurs 26 when there is no phase shift. This suggests that the particular smoothing used should 27 provide no problems in the assessment of which of first difference first-difference CO₂ 28 29 and temperature has priority.

Second, there is extensive evidence that while the effect that seasonal adjustment (via smoothing) on the usual tests for unit roots in time-series data is to reduce their power in small samples, this distortion is *not* an issue with samples of the size used in this

1	study. For example, (-see, e.g., Ghysels (1990), Frances (1991), Ghysels and Perron
2	(1993), and Diebold (1993)). Moreover, Olekalns (1994) shows that seasonal
3	adjustment by using dummy variables also impacts adversely on the finite-sample
4	power of these tests, so there is little to be gained by considering this alternative
5	approach. Finally, one of the results emerging from the Granger causality literature is
6	that while such causality can be "masked" by the smoothing of the data, apparent
7	causality cannot be "created" from non-causal data. For example, see Sims (1971),
8	Wei (1982), Christiano and Eichenbaum (1987), Marcellino (1999), Breitung and
9	Swanson (2002), and Gulasekaran and Abeysinghe (2002).
10	Finally, seasonally adjusting the data by a range of alternative approaches did not
11	qualitatively change the results discussed in the paper. The results of these
12	assessments are given in the Supplement.
13	This means that our results relating to the existence of Granger causality should not be
14	affected adversely by the smoothing of the data that has been undertaken.
15	
16	
17	
18	Variables are led or lagged relative to one another to achieve best fit. These leads or
19	lags were determined by means of time-lagged correlations (correlograms). The
20	correlograms were calculated by shifting the series back and forth relative to each
21	other, 1 month at a time.
22	
23	With this background, the convention used in this paper for unambiguously labelling
24	data series and their treatment after smoothing or leading or lagging is depicted in the
25	following example. The atmospheric CO ₂ series is transformed into its second
26	difference and smoothed twice with a 13 month moving average. The resultant series
27	is then Z-scored. This is expressed as Z2x13mma2ndDerivCO ₂ .
28	
29	As well, it is nNoted that, to assist readability in text involving repeated references,
30	atmospheric CO_2 is sometimes referred to simply as CO_2 and global surface
31	temperature as temperature.
1	

2 The time series methodology used in this paper involves the following procedures. 3 First, any two or more time series being assessed by time series regression analysis must be what is termed stationary in the first instance, or be capable of being made 4 5 stationary (by differencing). A series is stationary if its properties (mean, variance, 6 covariances) do not change with time (Greene 2012). The (augmented) Dickey-Fuller 7 test is applied to each variable. For this test, the null hypothesis is that the series has a 8 unit root, and hence is non-stationary. The alternative hypothesis is that the series is 9 integrated of order zero.

10

1

11 Second, the residuals from any time series regression analysis then conducted must

12 not be significantly different from white noise. This is done seeking correct model

13 specification for the analysis.

14

After Greene (2012): the results of standard ordinary least squares (OLS) regression analysis assume that the errors in the model are uncorrelated. Autocorrelation of the errors violates this assumption. This means that the OLS estimators are no longer the Best Linear Unbiased Estimators (BLUE). Notably and importantly this does not bias the OLS coefficient estimates. However statistical significance can be overestimated, and possibly greatly so, when the autocorrelations of the errors at low lags are positive. Addressing autocorrelation can take either of two alternative forms: *correcting for it*

(for example, for first order autocorrelation by the Cochrane-Orcutt procedure), or
 taking it into account.

25

In the latter approach, the autocorrelation is taken to be a consequence of an

27 inadequate specification of the temporal dynamics of the relationship being

estimated. The method of dynamic modelling (Pankratz 1991) addresses this by

29 seeking to explain the current behavior of the dependent variable in terms of both

30 contemporaneous and past values of variables. In this paper the dynamic modelling

- 31 approach is taken.
- 32

To assess the extent of autocorrelation in the residuals of the initial non-dynamic OLS models run, the Breusch-Godfrey procedure is used. Dynamic models are then used to

1 take account of such autocorrelation. To assess the extent to which the dynamic 2 models achieve this, Kiviet's Lagrange multiplier F-test (LMF) statistic for autocorrelation (Kiviet 1986) is used. 3

4

7

Hypotheses related to Granger causality (see Introduction) are tested by estimating a 5 multivariate time series model, known as a vector autoregression (VAR), for level of 6 and first-difference CO₂ and other relevant variables. The VAR models the current values of each variable as a linear function of their own past values and those of the 8 9 other variables. Then we test the hypothesis that x does not cause y by evaluating restrictions that exclude the past values of x from the equation for y and vice versa. 10

11 Stern and Kander (2011) observe that Granger causality is not identical to causation in the classical philosophical sense, but it does demonstrate the likelihood of such 12 13 causation or the lack of such causation more forcefully than does simple 14 contemporaneous correlation. However, where a third variable, z, drives both x and y, 15 x might still appear to drive y though there is no actual causal mechanism directly 16 linking the variables (any such third variable must have some plausibility - see 17 Discussion and Ceonclusions below).

4 Results

18

19 20

21 22

23 24

25

26

27

28 29

30

4.1. Relationship between first-difference CO₂ and temperature

4.1.1. Priority

Figure 2 showed that, while clearly first-difference CO₂ and temperature are not identical in signature, each is more alike than either is to the temperature model based on level of CO₂. As well the figure shows that the same likeness relationships exist for the core trend. The purpose of the forthcoming sections is to see the extent to which these impressions are statistically significant.

31 The first question assessed is that of priority: which of first-difference atmospheric 32 CO₂ and global surface temperature leads the other. The two series are shown for the 33 period 1959 to 2012 in Figure 3.

1	It is not possible to discern from the above plot which precise relative phasing of the
2	two series leads to the best fit, and hence the answer to the question of which series-
3	leads which. To quantify the degree of difference in phasing between the variables,
4	time-lagged correlations (correlograms) were calculated by shifting the series back
5	and forth relative to each other, one month at a time.
6	
7	First, what does the above relationship look like in correlogram form, and what is the
8	appearance of the correlograms for the other commonly used global temperature
9	categories - tropical, Northern hemisphere and Southern hemisphere? These
10	correlograms are given in Figure 4 for global and regional data.
11	
12 13	It can be seen that, fFor all four relationships shown, first-difference CO ₂ always leads
14	temperature. The leads differ as quantified in Table 1.
15	temperature. The reads affer as quantified in Factor 1.
16	It is possible for a lead to exist overall on average but for a lag to occur for one or
17	other specific subsets of the data. This question is explored in Figure 5 and Table 2.
18	Here the full 1959-2012 period of monthly data – some 640 months – for each of the
19	temperature categories is divided into three approximately equal sub-periods, to
20	provide 12 correlograms. It can be seen that in all 12 cases, first-difference CO ₂ leads
21	temperature. It is also noted that earlier sub-periods tend to display longer first-
22	difference CO ₂ leads. For the most recent sub-period the highest correlation is when
23	the series are neither led nor lagged.
24 25 26 27 28 29	4.1.2 Correspondence between first-difference CO_2 and global surface temperature curves
30 31	Next, the second prerequisite for causality, close correspondence, is also seen between
32	first-difference CO_2 and global surface temperature in Figure 3.
33	first-difference CO ₂ and global surface temperature in Figure 5.
34	4.1.3 Time series analysis
35	· · · · · · · · · · · · · · · · · · ·
36	Both first-difference CO ₂ being shown to lead temperature, and the two series
37	displaying close correspondence, are considered a firm basis for the time series

analysis of the statistical relationship between first-difference CO₂ and temperature which follows. For this further analysis, we choose global surface temperature as the temperature series because, while its maximum correlation is not the highest (Figure 5), its global coverage by definition is greatest._

The following sections provide the results of the time series analysis. (In this section, TEMP stands for global surface temperature ((HadCRUT4), and other block capital terms are those variable names used in the modelling).

The order of integration, denoted I(d), is an important characteristic of a time series. It reports the minimum number of differences required to obtain a covariance stationary series. As stated above, all series used in a time series regression must be -series which are stationary without further differencing -(Greene 2012)₃₅ that is, in the notation, display an order of integration of I(0). If a series has an order of integration greater than zero, it can be transformed by appropriate differencing into a new series which is stationary.

By means of the Augmented Dickey–Fuller (ADF) test for unit roots, Table 3 provides the information concerning stationarity for the level of, and first-difference of, CO₂, as well as for global surface temperature. Test results are provided for both monthly and annual data. The test was applied with an allowance for both a drift and deterministic trend in the data, and the degree of augmentation in the Dickey-Fuller regressions was determined by minimizing the Schwarz Information Criterion.

The results show that for both the monthly and annual series used, the variables TEMP and FIRST-DIFFERENCE CO_2 are stationary (I(0)); but level of CO_2 is not. Level of CO_2 is shown to be I(1) because (Table 3) its <u>first difference first-difference</u> is stationary.

In contrast-to this result, however, Beenstock et al. (2012), using annual data, report
that their series for the level of atmospheric CO₂ forcing is an- I-(2) variable and
therefore is stationary in *second* differences.

1	With regard tTo the reconciliation reconcile of these two varying results, we refer to
2	the study of Pretis and Hendry (2013) ₄ (2013) which who reviewed Beenstock et al.
3	(2012). Pretis and Hendry (2013)-(2013) -take issue with the finding of $I(2)$ for the
4	anthropogenic forcings studied – including $CO_2 \pm$ and find evidence that this finding
5	results from the combination of two different data sets measured in different ways
6	which make up the 1850-2011 data set which Beenstock et al. test. Regarding this
7	composite series Pretis and Hendry (2013) write:
8	
9	In the presence of these different measurements exhibiting structural changes,
10	a unit-root test on the entire sample could easily not reject the null hypothesis
11	of $I(2)$ even when the data are in fact $I(1)$. Indeed, once we control for these
12	changes, our results contradict the findings in Beenstock et al. (2012).
13	
14	Pretis and Hendry (2013) give their results for CO ₂ in their Table 1. Note that, in the
15	table, level of CO ₂ data is transformed into first-difference data (Beenstock et al claim
16	the <i>level</i> of CO_2 is I(2); if that is the case, the first difference first-difference of the
17	level of CO_2 Pretis and Hendry (2013) should find would be I(1)).
18	
19	Pretis and Hendry (2013) state:
20	
21	Unit-root tests are used to determine the level of integration of time series.
22	Rejection of the null hypothesis provides evidence against the presence of a
23	unit-root and suggests that the series is $I(0)$ (stationary) rather than $I(1)$
24	(integrated).
25	based on augmented Dickey–Fuller (ADF) tests (see Dickey and Fuller,
26	1981), the first difference first-difference of annual radiative forcing of CO_2 is
27	stationary initially around a constant (over 1850–1957), then around a linear
28	trend (over 1958–2011). Although these tests are based on sub-samples
29	corresponding to the shift in the measurement system, there is sufficient power
30	to reject the null hypothesis of a unit root.
31	
32	Hence for annual data Pretis and Hendry (2013) find first-difference CO ₂ to be
33	stationary $\underline{-I}(0)$, not $I(1)$ $\underline{-as}$ is found in this study (Table 3).
21	

With this question of the order of integration of the time series considered, we now 1 2 turn to the next step of the time series analysis. This concerns the implications fortime series analysis of, aAs Table 3, above, and Pretis and Hendry (2013) show, and 3 Table 3 in this paper shows, the variable of the level of CO₂ being is non-stationary 4 (specifically, integrated of order one, i.e., I(1)). Here an important methodological-5 point arises: aAttempting to assess TEMP in terms of the level of CO₂ would result in 6 an "unbalanced regression", as the dependent variable (TEMP) and the explanatory 7 variable (CO₂) have different orders of integration. It is well known (e.g., Banerjee et 8 9 al. 1993, pp. 190-191, and the references therein) that in unbalanced regressions the tstatistics are biased away from zero. That is, one can appear to find statistically 10 significant results when in fact they are not present. In fact, that this occuroccurrence 11 s of spurious significance is found when we regress TEMP on CO_2 . This reason is 12 strong evidence that any analysis should involve the variables TEMP and FIRST-13 DIFFERENCE CO₂, and not TEMP and CO₂. 14 15 For TEMP and FIRST-DIFFERENCE CO₂, then, one must next assess the extent if 16 any of to which autocorrelation affectsing the time series model. This is done by 17 18 obtaining diagnostic statistics from an OLS regression. This regression shows, by means of the Breusch-Godfrey test for autocorrelation (up to order 12 – that is, 19 20 including all monthly lags up to 12 months), that there is statistically significant 21 autocorrelation at lags of one and two months, leading to an overall Breusch-Godfrey Test statistic (LMF) = 126.901, with p-value = $P(F(12,626) > 126.901) = 1.06e_{0.06} x$ 22 **10**⁻¹⁵⁸. 23 24 25 The aAutocorrelation is taken to be a consequence of an inadequate specification of 26 the temporal dynamics of the relationship being estimated. With this in mind, a

- dynamic model (Greene 2012) with two lagged values of the dependent variable as
 additional independent variables has been estimated. _
- 29

Results are shown in Table 4. <u>There, t</u><u>T</u>he LMF test shows that there is now no
statistically significant unaccounted-for autocorrelation, thus supporting the use of
this dynamic model specification._

1	Inspection of Table 4 shows that a highly statistically significant model has been
2	established. First it shows that the temperature in a given period is strongly
3	influenced by the temperature of closely preceding periods (\underline{s} See Discussion for a
4	possible mechanism for this). Further, it provides evidence that there is also a clear,
5	highly statistically significant role in the model for first-difference CO ₂ .
6	
7	
8	4.1.4 Granger causality analysis
9	
10	We now can turn to assessing if first-difference atmospheric CO ₂ may not only
11	correlate with, but also contribute causatively to, global surface temperature. This is
12	done by means of Granger causality analysis.
13	
14	Recalling that both TEMP and FIRST-DIFFERENCE CO ₂ are stationary, it is
15	appropriate to test the null hypothesis of no Granger causality from FIRST-
16	DIFFERENCE CO ₂ to TEMP by using a standard Vector Autoregressive (VAR)
17	model without any transformations to the data. The Akaike Iinformation Ceriterion
18	(AIC) and the Schwartz Linformation Ceriterion (SIC) were used to select an optimal
19	maximum lag length (k) for the variables in the VAR. This lag length was then
20	lengthened, if necessary, to ensure that:
21	(i) The estimated model was dynamically stable (i.e., all of the inverted roots
22 23	of the characteristic equation lie inside the unit circle);
23 24	(ii) The errors of the equations were serially independent.
24 25	(ii) The errors of the equations were seriarly independent.
26	
27	The relevant EViews output from the VAR model is entitled VAR Granger
28	Causality/Block Exogeneity Wald Tests and documents the following summary
29	results _. → Wald Statistic (p-value): Null is there is No Granger Causality from FIRST-
30	DIFFERENCE CO ₂ to TEMP: Number of lags K=4; Chi-Square 26.684 (p-value =
31	0.000).
32	
33	A p-value of this level is highly statistically significant and means the null hypothesis
34	of No Granger Causality is very strongly rejected. That is, over the period studied
35	there is strong evidence that FIRST-DIFFERENCE CO ₂ Granger-causes TEMP

1	
2	Despite the lack of stationarity in the level of CO ₂ time series (meaning it cannot be
3	used to model temperature), one can still assess the answer to the question: "Is there
4	evidence of Granger causality between level of CO ₂ and TEMP?"
5	
6	In answering this question, because the TEMP series is stationary, but the CO ₂ series
7	is non-stationary (it is integrated of order one, $I(1)$), the testing procedure is modified
8	slightly. Once again, the levels of both series are used. For each VAR model, the
9	maximum lag length (k) is determined, but then one additional lagged value of both
10	TEMP and CO ₂ is included in each equation of the VAR. However, the Wald test for
11	Granger non-causality is applied only to the coefficients of the original k lags of CO ₂ .
12	Toda and Yamamoto (1995) show that this modified Wald test statistic will still have
13	an asymptotic distribution that is chi-square, even though the level of CO_2 is non-
14	stationary.
15	
16	Here the relevant Wald Statistic (p-value): Null is there is No Granger Causality from
17	level of CO ₂ to TEMP: Number of lags K= 4; Chi-Square 2.531 (p-value = 0.470).
18	
19	The lack of statistical significance in the p-value is strong evidence that level of CO_2
20	does not Granger-cause TEMP.
21	
22	With the above two assessments done, it is significant that concerning with regard to
23	global surface temperature we are able to discount causality involving the level of
24	CO ₂ , but establish causality involving first-difference CO ₂ .
25	
26 27 28	4.2 Relationship between second-difference CO ₂ and temperature and Southern Oscillation Index
29	
30 31	4.2.1 Priority and correspondence
32	Given the results of this exploration of correlations involving first-difference
33	atmospheric CO ₂ , the possibility of the correlation of second-difference CO ₂ with
34	climate variables is also explored. The climate variables assessed are global surface
35	temperature and the Southern Oscillation Index (SOI). In this section, data is from the

1	full period for which monthly instrumental CO ₂ data is available, 1958 to the present.
2	For this period, the series neither led nor lagged appear as follows (Figure 6):
3	
4	
5	Let us look (Figure 6) at the two key pairs of interannually varying factors. For the
6	purpose of this figure, to facilitate depiction of trajectory, second-difference CO_2 (left
7	axis) and SOI (right axis) are offset so that all four curves display a similar origin in
8	1960.
9	
10	The fFigure 6 shows that, alongside the already demonstrated close similarity between
11	first-difference CO ₂ and temperature <u>already demonstrated</u> , there is a second apparent
12	distinctive pairing between second-difference CO ₂ and SOI
13	
14	The figure shows that the overall trend, amplitude and phase $_$ - the signature $_$ - of
15	each pair of curves is both matched within each pair and different from the other pair.
16	The remarkable sorting of the four curves into two groups is readily apparent. Each
17	pair of results provides context for the other - and highlights the different nature of
18	the other pair of results.
19	
20	
21	Recalling that (even uncorrected for any autocorrelation); correlational data still holds
22	information concerning regression coefficients, we initially use OLS correlations
23	without assessing autocorrelation to provide descriptive statistics. Table 5 includes,
24	first-without any phaseshifting to seek to-maximise fit, the full-six pairwise
25	correlations arising from all possible combinations of the four variables other than
26	with themselves. Here it can be seen that the two highest correlation coefficients (in
27	bold in the table) are, first <u>ly</u> , between first-difference CO_2 and temperature, and,
28	second <u>ly</u> , between second-difference CO_2 and SOI.
29 30	In Table 6_{a} phase shifting has been carried out to maximise fit (shifts shown in
31	variable titles in the table). This results in an even higher correlation coefficient for
32	second-difference CO ₂ and SOI.
33	
34	

1 The link between all three variable realms $-CO_2$, SOI and temperature -can befurther observed in Figure 7 and Table 7. Figure 7 shows SOI, second-difference 2 atmospheric CO₂ and first-difference temperature, each of the latter two series phase-3 shifted for maximum correlation with SOI (as in- Table 5). Concerning Looking at 4 priority, Table 6 shows that maximum correlation occurs when second-difference CO₂ 5 leads SOI. It is also noted that the correlation coefficients for the correlations 6 between the curves shown in Table 6 have all converged in value compared to those 7 8 shown in Table 5.

9

18

19

20 21 22

23 24

25

26

27

28

29

Concerning Looking at the differences between the curves shown in Figure 7, two of what the major departures there are between the curves are coincide with volcanic aerosols – from the El Chichon volcanic eruption in 1982 and the Pinatubo eruption in 13992 (Lean and Rind 2009). With tThese volcanism-related factors taken into account, it is notable (when expressed in the form of the transformations in Figure 7) that the signatures of all three curves are so essentially similar that it is almost as if all three curves are different versions of \pm or responses to \pm the same initial signal.

So, a case can be made that first- and second-difference CO₂ and temperature and SOI respectively are all different aspects of the same process.

4.2.2 Time series analysis

Let usWe now assess more formally assess the relationship between second-
difference CO2 and SOI. As for first-difference CO2 and temperature above,
stationarity has been established. Again, similarly to first-difference CO2 and
temperature, there is statistically significant autocorrelation at lags of one and two
months, leading to an overall Breusch-Godfrey Test statistic (LMF) of 126.9, with p-
value = $P(F(12,626) > 126.901) = 1.06e06 \times 10^{-158}$.

30 31

32

33

Table 8 shows the results of a dynamic model with the dependent variable used ateach of the two lags as further independent variables-

34

In Table 8 the results first show (LMF test) that: there is now no statistically
 significant unaccounted-for-autocorrelation which has not been accounted for.

2 Further inspection of <u>As</u> Table 8 shows, that a highly statistically significant model has

3 been established. As for temperature, it shows that the SOI in a given period is

4 strongly influenced by the SOI of closely preceding periods. Again as for temperature,

5 it provides evidence that there is a clear role in the model for second-difference CO₂.

6 With this established, it is noted that while the length of series in the foregoing

7 analysis was limited by the start date of the atmospheric CO₂ series (January 1958),

8 high temporal resolution (monthly) SOI goes back considerably further, to 1877. This

9 long period SOI series (for background see Troup (1965)) is that provided by the

10 Australian Bureau of Meteorology, sourced here from the Science Delivery Division

11 of the Department of Science, Information Technology, Innovation and the Arts,

12 Queensland, Australia. As equivalent temperature data is also available (the global

13 surface temperature series already used above (HadADCRUT4) goes back as far as

14 1850), these two longer series are now plotted in Figure 8.

15

16 What is immediately noted <u>Notable</u> is the continuation over this longer period of the

- striking similarity between the two signatures already shown in Figure 7<u>over this</u>
- 18 <u>longer period</u>.
- 19

Turning to regression analysis, as previously the Breusch-Godfrey procedure shows
that, for lags up to lag 12, the lion's sharemajority of autocorrelation is again
restricted to the first two lags. Table 9 shows the results of a dynamic model with the

23 dependent variable used at each of the two lags as further independent variables.

24

In comparison with Table 8, the extended time series modelled in Table 9 shows a

remarkably similar R-squared statistic: 0.466 compared with 0.477. By contrast, the

- 27 partial regression coefficient for second-difference CO₂ has increased, to 0.14
- compared with 0.077. These points made, tThe main finding is that there is little or no-
- 29 difference in the relationship when it is extended back to 1877. (It is beyond the scope
- 30 of this study, but the relationship of SOI and second-difference CO₂ means it is now
- 31 possible to produce a proxy for monthly atmospheric CO_2 from 1877 \rightarrow a date

approximately 75 years prior to the start in January 1958 of the CO₂ monthly instrumental record in January 1958.)

4.2.3 Granger causality analysis

This section assesses whether second-difference CO₂ can be considered to Grangercause SOI. This assessment is carried out using data for the period 1959 to 2012-data.

Test rResults onf the stationarity or otherwisetests for of each series are given in Table 10. Each series is shown to be stationary. These results imply that we can approach the issue of possible Granger causality by using a conventional VAR model, in the levels of the data, with no need to use a "modified" Wald test (as used in the Toda and Yamamoto (1995) methodology).

Simple OLS regressions of SOI against separate lagged values of second-difference CO_2 (DCO2 (including an intercept) confirm the finding that the highest correlation is when a two-period lag is used.

A 2-equation VAR model is needed for reverse-sign SOI and second-difference CO₂. The first task is to determineUsing SIC, the optimal maximum lag length to be used for the variables. Using the SIC, this is found to be 2 lags. When the VAR model is estimated with this lag structure however (Table 11), testing the null hypothesis that there is no serial correlation at lag order h, shows that there is evidence of autocorrelation in the residuals.

This suggests that the maximum lag length for the variables needs to be increased.

lag length is 3. (Beyond this value, the autocorrelation results deteriorated

substantially, but the conclusions below, regarding Granger causality, were not

The best results (in terms of lack of autocorrelation) were found when the maximum

33

altered.)

Table 12 shows that the preferred, 3-lag model, still suffers a little from

1 autocorrelation. However, as we have a relatively large sample size, this will not

- 2 impact adversely on the Wald test for Granger causality.
- 3

4 The relevant EViews output from the VAR model is entitled VAR Granger

5 Causality/Block Exogeneity Wald Tests and documents the following summary

6 results —: Wald Statistic (p-value): Null is there is No Granger Causality from second-

7 difference CO₂ to sign-reversed SOI: Chi-Square 22.554 (p-value = 0.0001).

8 The forgoing Wald statistic shows that the null hypothesis is strongly rejected \rightarrow in

9 other words, there is very strong evidence of Granger Causality from second-

10 difference CO₂ to sign-reversed SOI.

11

12

13

- 14 **4.3 Paleoclimate data**
- 15

16 So far, the time period considered in this study has been pushed back in the instrumental data realm to 1877. If non-instrumental paleoclimate proxy sources are 17 18 used, CO₂ data now at annual frequency can be taken further back. The following 19 example uses CO_2 and temperature data. The temperature reconstruction used here 20 commences in 1500 and is that of Frisia et al. (2003), derived from annually laminated speliothem (stalagmite) records. A second temperature record (Moberg et 21 22 al. 2005) is from tree ring data. The atmospheric CO₂ record (Robertson et al. (2001) 23 is from fossil air trapped in ice cores and from instrumental measurements. The trends 24 for these series are shown in Figure 9.

25

Visual inspection of the figure shows that there is a strong overall likeness in 26 signature between the two temperature series, and between them and first-difference 27 CO_2 . The similarity of signature is notably less with level of CO_2 . It can be shown 28 29 that level of CO₂ is not stationary and, even with the two other series which are stationary, the strongly smoothed nature of the temperature data makes removal of the 30 31 autocorrelation present impossible. Nonetheless, noting that data uncorrected for 32 autocorrelation still provides valid correlations (Greene 2012) – only the statistical 33 significance is uncertain - it is simply noted that first-difference CO₂ displays a

better correlation with temperature than level of CO₂ for each temperature series (Table 13).

4.4 Normalized Difference Vegetation Index (NDVI)

Using the Normalized Difference Vegetation Index (NDVI) time series as a measure of the activity of the land biosphere, this section now investigates the land biosphere as a candidate mechanism for the issue, identified in the Introduction, that of -the increasing difference between the observed global surface temperature trend and that suggested by general circulation climate models-and that observed.

The level of atmospheric CO₂ is a good proxy for the IPCC models predicting the global surface temperature trend -: according to IPCC (2013), on decadal to-15 interdecadal time scales and under continually increasing effective radiative forcing-16 (ERF), the forced component of the global surface temperature trend responds to the 17 ERF trend relatively rapidly and almost linearly. This trend can be taken to represent 18 that expected from the operation of the standard anthropogenic global warming model, 19 its mechanism being a physical one in which (IPCC, 2013, NASA 2015) about half of 20 21 the light reaching Earth's atmosphere passes through the air and clouds to the surface, 22 where it is absorbed and then radiated upward in the form of infrared heat. About 90percent of this heat is then absorbed by the greenhouse gases and radiated back-23 24 toward the surface, which is warmed. If greenhouse gases have been increasing-25 (including because ofthrough increasing anthropogenic emissions), that contributes to-26 an increase in the infrared radiation they emit (including that back toward the surface, which is warmed further). On this basis, an indicator of the difference between the 27 28 elimate model trend and the observed temperature is prepared by subtracting the Zscored actual temperature trend from the Z-scored CO₂ trend. In the paper, this-29 30 indicator is sometimes termed the climate model/temperature difference or the difference between the level-of-CO₂-model for temperature and the observed-31 32 temperature. 33

1 2 3	The trend in the terrestrial CO_2 sink is estimated annually as part of the assessment of
4	the well-known global carbon budget (Le Quere at al. 2014). It is noted that there is
5	a risk of involving a circular argument concerning correlations between the terrestrial
6	CO ₂ sink and interannual (first_difference) CO ₂ because the terrestrial CO ₂ sink is
7	defined as the residual of the global carbon budget (Le Quere at al. 2014). By contrast,
8	the Normalized Difference Vegetation Index (NDVI) involves direct (satellite-derived)
9	measurement of terrestrial plant activity. For this reason, and because, of the two
10	series, only NDVI is provided in monthly form, we will use only NDVI in what
11	follows.
12 13 14 15	4.4.1. Issues of method concerning the NDVI-related analyses
16 17	Two issues of method arise from the NDVI-related analyses. These are: sensitivity of
18	methods for detecting the order of integration of a time series; and, for the Granger-
19	Causality testing used, the optimal selection of the number of lags of the time series-
20	variables involved for use in the analysis.
21	
22	These two matters issues will be dealt with in turn.
23	
24	
25	4.4.1.1. Determination of order of integration of time series
26	
27	The data series used until now – the shortest monthly series starting in 1959 – have
28	meant that, using the most commonly used test of series order of integration (the
29	Augmented Dickey-Fuller test (Dickey and Fuller 1981)) it has been unambiguous as
30	to the order of integration of each series.
31	
32	The more recent start date arising from the use of the NDVI series – 1981 – has meant
33	that the series used in the NDVI-related analyses have been made up of fewer
34	observations, and are centred over a different period of history compared with the data
35	commencing in 1959.
36	

1	This has meant that one series – first-derivative CO2 – for the data commencing in-
2	1981 has displayed ADF unit root test results which place it on the cusp between I(0)-
3	and <i>I(1)</i> .
4	
5	According to Zivot and Wang (2006), the ADF test and another test, the Phillips-
6	Perron test (Phillips and Perron (1988)) have in general very low power to-
7	discriminate between I(0) and I(1) alternatives when the two alternatives are close-
8	together. Zivot and Wang (2006) recommend that for maximum power in these
9	circumstances, the tests of Elliot, Rothenberg, and Stock (1996), and Ng and Perron-
10	(2001) should be used.
11	
12	For this reason, the above and some further unit root tests for the order of
13	integration of a time-series are used in this stage of the study. The full list of tests is:
14	
15	the Augmented Dickey Fuller (ADF) test (Dickey and Fuller 1981); the Phillips-
16	Perron test (Phillips and Perron 1988); the Elliott-Rothenberg-Stock Point-
17	Optimal test (Elliot et al. 1996); the Ng-Perron Modified Unit Root test (Ng-
18	and Perron 2001). The null hypothesis for the foregoing tests is non-
19	stationarity.
20	
21	The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al. 1992)
22	is also used. The null hypothesis for this test is stationarity.
23	
24	Use of both stationarity and non-stationarity hypotheses can add robustness to the
25	assessment of the order of integration of a time-series.
26	
27	For the KPSS and Phillips-Perron tests the bandwidth, b, was selected using the
28	Newey-West method, with the Bartlett kernel. In the remaining unit root tests the
29	Akaike Iinformation Ceriterion (AIC) and the Schwartz Iinformation Ceriterion (SIC)
30	were used to select an optimal maximum lag length (k) for the variables.
31	
32	4.4.1.2. Lag-length selection for Granger causality testing

1	We turn now to a matter concerning lag-length selection for Granger causality testing.
2	Thornton and Batten (1985) assessed the accuracy of Granger tests under a range of
3	lag selection techniques ranging from arbitrarily chosen lags, lags chosen by three-
4	statistical criteria, and an extensive search of the lag space.
5	Thornton and Batten (1985) conclude:
6	
7	As a generalization there appears to be no substitute for selecting a model
8	specification criterion ex ante or for an extensive search of the lag space if one-
9	is to ensure that the causality test results are not critically dependent on the
10	judicious (or perhaps fortuitous) choice of the lag structure.
11	
12	With this background, in the present study Granger causality testing of NDVI-related
13	data series pairs was conducted as follows:
14	If hypothesis and the prior dynamic regression modelling used suggested a
15	possible Granger link, tests were run based on model lags suggested from the
16	results of the prior modelling;
17	If a Granger causality test set up as just described was positive at its default lag-
18	selection settings, that result was reported. If not, an extensive search of the-
19	lag space was carried out. That result was reported, positive or negative.
20	
21	
22	4.4.2. Results
23 24	Results are organised under the following headings:
25 26	4.4.2.1. Order of integration of series
27	4.4.2.2. Preparation of the pooled global NDVI series used
28	4.4.3. Relationship between climate variables and NDVI
29	
30 31	4.4.2.1. Order of integration of series

1	
2	As mentioned in Section 3,. Data and methods, of the ACPD paper, any two or more-
3	time series being assessed by time series regression analysis must be stationary in the
4	first instance, or be capable of being transformed into a new stationary series (by
5	differencing). A series is stationary if its properties (mean, variance, covariances) do-
6	not change with time (Greene 2012).—
7 8	In the first instance, Augmented Dickey-Fuller (ADF) stationarity tests are calculated-
9	for each variable. Results and lag lengths chosen are given in Table 14.
10	
11	The table shows that for this data from 1981, level of CO_2 and temperature are $I(0)$, as
12	they were for the data from 1959. This is not the case for first-derivative CO ₂ .
13 14	As can be seen, the ADF test result for first-derivative CO ₂ for data from 1981 to-
15	$2012 \text{ of } 0.0895 \text{ shows that first-derivative CO}_2 \text{ approaches the statistical significance}$
16	level of 0.05 required to be $I(0)$, but does not reach it. In other words, for first-
17	derivative CO_2 , the two $I(0)$ and $I(1)$ alternatives are close together.
18	
19	For the reasons given by Zivot and Wang (2006) above, the order of integration of
20	first-derivative CO_2 is therefore assessed by the wider range of tests for order of
21	integration listed above, including the two tests nominated by Zivot and Wang (2006)
22	as more sensitive when <i>I(0)</i> and <i>I(1)</i> alternatives are close together.
23	
24	The results are given in Tables 15 to 17. All tests were run at their automatic setting
25	for lags. For all tests, the null hypothesis is that the series is <i>I(1)</i> , and the alternative is
26	that it is <i>I(0)</i> ; except for the KPSS test (where the null hypothesis is that the series is
27	I(0), and the alternative is that it is $I(1)$.
28	
29	The ADF tests have been applied with an allowance for a drift and trend in the data,
30	and the SIC was used to select degree of augmentation, k. For the KPSS tests the
31	bandwidth, b, was selected using the Newey-West method, with the Bartlett kernel.
32	
33	The significance level each test meets or surpasses is indicated by an asterisk in each
34	column of the table.
35	

1	Tables 15 to	17 show that the extra	tests are not unanimous	for the first derivative
1	100031510	17 Show that the extra	tests are not unannious	Tor the mst-derivative-

- 2 CO₂ series.
- 3

5	
4	The test using the alternative Schwartz or Akaike Information Criteria agree for two-
5	tests, DF-GLS and Ng-Perron. Here the I(0) statistical significance was between 0.05-
6	and 0.1. For the other two tests, the Akaike Information Criterion gave lower-
7	probabilities: Elliott-Rothenberg-Stock Point Optimal between 0.05 and 0.1; ADF-
8	greater than 0.1. For the Schwartz Information Criterion the figures were p<.01 and
9	statistical significance was between 0.05 and 0.1.
10	
11	Finally, there were two tests KPSS and Phillips-Perron—which used bandwidth
12	criteria for the selection of an optimal lag length. Each of these tests characterised
13	first-derivative CO ₂ as I(0): statistical significance was at 0.05 and 0.01 respectively.
14	
15	One of the tests recommended by Zivot and Wang (2006) for a series on the cusp of
16	I(0) and I(1) — that of Elliot, Rothenberg, and Stock (1996) — gives a result for first
17	difference CO ₂ from 1981 to 2012 of <i>I(0)</i> at better than the 1% level; however, the
18	similarly recommended Ng and Perron test gives I(0) at between the 5% and 10%-
19	level. Overall, three of the ten tests displayed probabilities of 5% or better, a further-
20	remaining six of between 5% and 10%. One of the 10 tests, the ADF under the Akaike
21	Information Criterion, gave a result of greater than 10%.
22	
23	It can be argued that the foregoing tests overall lean towards CO2 from 1981 being-
24	I(0). To be conservative, however, in the following analyses first-derivative CO2 is-
25	assessed separately both as I(0) and I(1).
26	
27	
28	4.4.1. Preparation of the global NDVI series used in this paper
29	
30	Globally aggregated GIMMS NDVI data from the Global Land Cover Facility site is
31	available from 1980 to 2006. This dataset is referred to here as NDVIG. Spatially
32	disaggregated GIMMS NDVI data from the GLCF site is available from 1980 to the
33	end of 2013. An analogous global aggregation of this spatially disaggregated GIMMS

34 NDVI data – from 1985 to end 2013 – was obtained from the Institute of Surveying,

1	Remote Sensing and Land Information, University of Natural Resources and Life
2	Sciences, Vienna. This dataset is abbreviated to NDVIV.
3	The Normalized Difference Vegetation Index (NDVI) involves direct (satellite-
4	derived) measurement of terrestrial plant activity.
5	
6	To provide the full temporal span of the global NDVI data set used in this study, two-
7	NDVI series aggregated to global level were pooled. Each of the two series is derived
8	from the same underlying spatially disaggregated Global Inventory Modeling and
9	Mapping Studies (GIMMS) data set provided by the Global Land Cover Facility-
10	(GLCF) of the University of Maryland. This data is derived from imagery obtained
11	from the Advanced Very High Resolution Radiometer (AVHRR) instrument carried
12	by NOAA meteorological satellites. Pooling t The two series enabled the longest time
13	span of data aggregated at global level.
14	
15	Globally aggregated GIMMS NDVI data from the Global Land Cover Facility (GLCF)
16	site is available from 1980 to 2006. This dataset is referred to here as NDVIG.
17	Spatially disaggregated GIMMS NDVI data from the Global Land Cover Facility
18	(GLCF) site is available from 1980 to end 2013. An analogous global aggregation of
19	this spatially disaggregated GIMMS NDVI data from 1985 to end 2013 was
20	obtained from the Institute of Surveying, Remote Sensing and Land Information,
21	University of Natural Resources and Life Sciences, Vienna. This dataset is-
22	abbreviated to NDVIV.
23	
24	These two seriedatasets were pooled as follows.
25	
26	Figure 10 shows the appearance of the two series. Each series is Z-scored by the same
27	common period of overlap (1985-2006). The extensive period of overlap can be seen,
28	as can the close similarity in trend between the two series.
29 30	
31	The figure also shows that the seasonal adjustment smoothings vary between the two
32	series. Seasonality was removed for the NDVIV series using the 13 month moving
33	average smoothing used throughout this paper. This required two passes using the 13
34	month moving average, which leads to a smoother result than seen for the NDVIG
35	series.

1	
2	Pretis and Hendry (2013) (2013) observe that pooling data (i) from very different
3	measurement systems and (ii) displaying different behaviour in the sub-samples can
4	lead to errors in the estimation of the level of integration of the pooled series.
5	
6	The first risk of error (from differences in measurement systems) is overcome here as
7	both the NDVI series are from the same original disaggregated data set. The risk
8	associated with the sub-samples displaying different behaviour and leading to errors
9	in levels of integration is considered in the following section by assessing the order of
10	each input series separately, and then the order of the pooled series.
11	
12	Table 14 provides order of integration test results for the three NDVI series. The
13	analysis shows all series are stationary $(I(0))$.
14	
15	Because of the comparability of the NDVI series specified above, it wasIt is, therefore,
16	valid to pool the two sreeisseries. This Pooling was done the series were pooled by
17	adding-appending the Z-scored NDVIV data to the Z-scored NDVIG data at the point
18	where the Z-scored NDVIG data ended (in the last month of 2006).
19	
20	of the
21	-of this question As discussed above in the Introduction, Figure 1 shows that there-
22	since around the year 2000 there is an increasing difference between the temperature
23	projected by a mid-level IPCPC model and that observed.
24	
25	Any cause for this increasing difference must itself show an increase in activity over
26	this period.
27	
28	The purpose of this section is, therefore: (i) to derive an initial simple indicative
29	quantification of the increasing difference between the temperature model and
30	observation observation; and (ii) to assess whether global NDVI is increasing. If
31	NDVI is increasing, this is support for NDVI being a candidate for the cause of the
32	temperature model-observation difference. If there is a statistically significant
33	relationship between the two increases, this is further support for NDVI being a
34	candidate for the cause of the model-observation difference, and hence worthy of

1 further detailed research. A full analysis of this question is beyond the scope of the 2 present paper. 3 4 4.4.2 Preparation of the indicative series for the difference between the 5 6 temperature projected from a mid-level IPCPC model and that observed 7 A simple quantification of the difference between the temperature projected from a 8 mid-level IPCPC model and that observed can be derived by subtracting the (Z-scored) 9 temperature projected from the IPCC mid-range scenario model (CMIP3, SRESA1B 10 scenario) run for the IPCPC fourth assessment report (IPCC, 2007)) shown in Figure 11 1, from the observed global surface temperature also shown in Figure 1. This 12 guantification is depicted in Figure 13 for monthly data and, to reduce the influence of 13 noise and seasonality, in Figure 14 for the same data pooled into three-year bins. 14 15 4.4.3. Comparison of the pooled NDVI series with the difference between 16 projected and observed global surface temperature 17 18 19 Figure 13, displaying monthly data, compares NDVI with the difference between the 20 temperature projected from an IPCC mid-range scenario model (CMIP3, SRESA1B 21 22 scenario) run for the IPPC fourth assessment report (IPCC 2007)) and global surface temperature (red dotted curve). Both curves rise towards in more recent years. 23 24 To assess the nature of the core trends in each series, in x Figure 14 information on-25 short- term changes in the series is removed by pooling the monthly data shown in-26 Figure 14 into 36-month bins.14 27 28 The trends for the <u>eurves</u>36-month pooled data in Figure 14 show considerable 29 commonality. OLS regression analysis of the relationship between the curves in 30 31 Figure 14 shows that the best fit between the curves involves no lead or lag. The correlation between the curves displays an adjusted R-squared value of 0.86. This is 32

33 statistically significant (p = 0.00185). As expected with such aggregated multi-year

1	data, the relationship shows little or no autocorrelation (Test statistic: $LMF = 1.59$
2	<u>with p-value = $P(F(5,3) > 1.59) = 0.37$).</u>
3	
4	The foregoing similarity between the trend in the NDVI and the difference between
5	IPCC temperature modelling and observed temperature is evidence supporting the
6	possibility that the NDVI may contribute to the observed global surface temperature
7	departing from the IPCC modelling.
8	
9	
10	The process we follow in this section is outlined below .:
11	
12	Relevant correlations involving first-derivative CO2 characterised as I(1) are first-
13	assessed because of the near-stationarity of first-derivative CO ₂ for the period 1981 to-
14	2012.
15	
16	As a check, we assess whether first-derivative CO ₂ for the period from 1981 to 2012-
17	has similar relationships to global surface temperature to those seen for the period-
18	1959 to 2012.
19	
20	We then explore remaining questions from our hypothesis concerning Granger-
21	causality and NDVI. These are firstly that there is Granger causality from first-
22	derivative CO ₂ to NDVI, and secondly from temperature to NDVI.
23	
24	Finally, we ask whether NDVI is Granger-causal for the difference between the level-
25	of-CO ₂ model for temperature and the observed temperature.
26	
27	Where each series in a series pair is stationary, assessments are done for each of the
28	questions above both by OLS dynamic regression modelling, and by Granger-
29	causality testing. The dynamic modelling is informative in itself, but as outlined
30	above also informs correct model specification in terms of optimising model
31	independent-variable lag for Granger causality testing (Thornton and Batten 1985).
32	
33	The following information is relevant to each of the instances of OLS dynamic-
34	regression modelling which follow. As described in Section 4.1.3, <i>Time series</i>

1	analysis, of the ACPD paper, for OLS dynamic regression modelling, one must assess-
2	the extent (if any) of autocorrelation affecting the time series model. This is done by-
3	obtaining diagnostic statistics from an OLS regression. This regression shows, by
4	means of the Breusch-Godfrey test for autocorrelation (up to order 20 - that is,
5	including all monthly lags up to 20 months), .
6	
7	If autocorrelation is found, it is taken to be a consequence of an inadequate
8	specification of the temporal dynamics of the relationship being estimated. With this
9	in mind, a dynamic model (Greene 2012) with sufficient lagged values of the
10	dependent variable as additional independent variables is estimated.
11	
12	If the autocorrelation can be removed, this will be shown by the use of the LMF test,
13	supporting the use of this dynamic model specification.
14	
15	4.4.3.1. First-derivative CO2 as I(1)
16	Characterising first-derivative CO2 as I(1) means dynamic regression modelling of the
17	type presented above cannot be used. As in Section 4.1.4, Granger causality analysis,
18	of the ACPD paper, one can still assess the answer to the question: "Is there evidence-
19	of Granger causality between first-derivative CO2 characterised as I(1) and relevant-
20	variables?" In this case the variables are global surface temperature and NDVI.
21	
22	
23	4.4.3.1.1 Does first-derivative CO ₂ as <i>I(1)</i> display Granger causality of global
24	surface temperature ?
25	
26	In answering this question, because the TEMP series is stationary, but the first-
27	difference CO ₂ -series is being treated as non-stationary (as integrated of order one,
28	I(1)), the testing procedure is modified slightly. Once again, the levels of both series-
29	are used. This time a standard Vector Autoregressive (VAR) model is used. For each-
30	VAR model, the maximum lag length is determined, but then one additional lagged
31	value of both TEMP and first-difference CO ₂ is included in each equation of the VAR.
32	However, the Wald test for Granger non-causality is applied only to the coefficients-
33	of the original k lags of first-difference CO2. Toda and Yamamoto (1995) show that-

1	this modified Wald test statistic will still have an asymptotic distribution that is chi-
2	square, even though the level of CO ₂ is non-stationary.
3	
4	Here the relevant Wald Statistic for the null hypothesisthat is there is no Granger-
5	causality from first-derivative CO2 as I(0) to temperature is shown in Table 19 to-
6	produce a Chi-Square of 32.79 (p=0.0001).
7	
8	The high statistical significance in the p-value is strong evidence that first-derivative-
9	CO ₂ , even treated as I(1), still displays Granger causality of temperature.
10 11 12 13 14 15	
16 17	4.4.3.1.2 Does first-derivative CO ₂ as <i>I(1)</i> display Granger causality of NDVI?
18	The identical steps to those in the previous section are used. Here the relevant Wald
19	Statistic (Null hypothesis that is there is No Granger Causality from first-derivative-
20	CO ₂ as <i>I(1)</i> to temperature) is shown in Table 20 to produce a Chi-Square of 3.184-
21	(p=0.9223).
22	
23	Hence in contrast with temperature, for the I(1) characterisation first-derivative CO2-
24	does not display Granger causality of NDVI.
25	
26 27 28 29	4.4.3.2 Characterising first-derivative CO ₂ as <i>I(θ)</i>
30 31 32	4.4.3.2.1. Does first-derivative CO ₂ as <i>I(0)</i> still display Granger causality of temperature for the 1981 to 2012 period?
33	A key finding earlier in the paper is that for the period 1959 to 2012, first-derivative
34	CO2-leads global surface temperature, is significant in an OLS dynamic regression-
35	model, and is Granger-causal of global surface temperature. This section repeats that
36	analysis (characterising first-derivative CO_2 as $I(0)$) for the period used for the NDVI
37	data, 1981 to 2012.
38	

1	Figure 11 displays the data series, and shows the similarity between the Z-scored-
2	curves.
3 4	
5	Inspection of Table 21 shows that a highly statistically significant model has been
6	established. First it shows that the temperature in a given period is strongly
7	influenced by the temperature of closely preceding periods. Further it provides-
8	evidence that there is also a clear, highly statistically significant role in the model for-
9	first-derivative CO2 for the period from 1981 to 2012, just as for the period from 1959-
10	to 2012.
11	
12	The next section assesses whether first-derivative CO2 can be considered to display-
13	Granger causality for global surface temperature for the 1981 to 2012 period.
14	
15	The relevant EViews output is from the Pairwise Granger Causality Test. Table 22-
16	documents the following summary results: F-statistic 5.02 (p-value = 0.01).
17	The forgoing statistic shows that the null hypothesis is rejected : in other words,
18	there is strong evidence of Granger Causality from first-derivative CO2 to global-
19	surface temperature for the shorter 1981 to 2012 period.
20	
21 22	The table shows that the same first-derivative CO ₂ which, characterised as <i>I(1)</i> ,
23	displayed Granger causality for temperature (Table 19), characterised as <i>I(0)</i> also-
24	displays Granger causality for temperature.
25	
26	
27	4.4.3.3. Granger causality of NDVI
28 29	4.4.3.3.1 Does first-derivative CO ₂ as <i>I(0)</i> display Granger causality of NDVI ?
30	
31	Figure 12 shows Z-scored values for first-derivative CO ₂ and NDVI. Considerable
32	similarity between the signatures is seen.
33 34	An OLS dynamic regression model is set up using the procedure outlined in Section
35	3.2 above. Results are given in Table 23.
36	
37	

1	Inspection of Table 23 shows that a highly statistically significant model has been
2	established. First it shows that, as seen for temperature, the NDVI in a given period is-
3	strongly influenced by the NDVI of closely preceding periods. Further it provides-
4	evidence that there is also a statistically significant role in the model for first-
5	derivative CO ₂ .
6	
7	The next sections assess whether first-derivative CO2 can be considered to display-
8	Granger causality of NDVI. Two assessments are made using different criteria for lag-
9	selection: the first using the Akaike Information Criterion; the second using the
10	method of extensive search of the lag space (Thornton and Batten 1985).
11	
12	The relevant EViews output is from the Pairwise Granger Causality Test and Table 24-
13	documents the following summary results: F-statistic 3.01 (p-value = 0.05).
14	This statistic shows that using the Akaike Information Criterion for lag selection, the
15	null hypothesis is very slightly accepted – in other words, for the AIC there is (by a
16	very narrow margin) an absence of evidence of Granger Causality from first-
17	derivative CO ₂ -to NDVI.
18	
19	Given the above result, what is the result from the extensive search method? The
20	relevant EViews output is again from the Pairwise Granger Causality Test and Table
21	25 provides the following results: F-statistic 5.11 (p-value = 0.024).
22	This statistic shows that using the extensive search method for lag selection, the null-
23	hypothesis is rejected by a greater amount than for the AIC method, which reaches
24	statistical significance in other words, there is evidence of Granger Causality from
25	first-derivative CO ₂ to NDVI.
26	
27	In summary, under the <i>I(0)</i> characterisation, first-derivative CO ₂ displays Granger-
28	causality of NDVI, while under I(1), it does not.
29 30	
30 31	
32	
33	4.4.3.3.2 Does TEMP display Granger causality of NDVI?
34	

1	Figure 13 shows Z-scored values for first-derivative CO2 and NDVI. With the
2	exception of the period 2003-2004, considerable similarity between the signatures is
3	seen.
4	
5	An OLS dynamic regression model is set up using the procedure outlined in Section-
6	3.2 above. Results are given in Table 26.
7 8	
9	Inspection of Table 26 shows that a highly statistically significant model has been
10	established. First it shows that, as seen for first-derivative CO2, the NDVI in a given-
11	period is strongly influenced by the NDVI of closely preceding periods. Further it-
12	provides evidence that there is also a highly statistically significant role in the model-
13	for temperature.
14	
15	The next section assesses whether temperature can be considered to display Granger
16	causality of NDVI. The relevant EViews output is again from the Pairwise Granger-
17	Causality Test and is shown in Table 27.
18	
19 20	
21	Table 27 documents the following summary results: F-statistic 11.59 (p-value =1.00E-
22	05). This statistic shows that the null hypothesis is rejected, by a highly statistically
23	significant amount - in other words, there is strong evidence of Granger causality-
24	from temperature to NDVI.
25	
26 27	
28	4.4.3.43 Does NDVI display Granger causality of the difference between the
29	level-of-CO2-model for temperature and the observed temperature?
30 31	
32	Figure 14 shows Z-scored values for f NDVI and the difference between the Z-scored
32 33	level of atmospheric CO ₂ (standing for the level-of-CO ₂ model for temperature) and
33	the Z-scored observed temperature. Considerable similarity between the signatures is
35	seen.
55	

1 2	An OLS dynamic regression model is set up using the procedure outlined in Section-
3	3.2 above. Results are given in Table 28.
4	
5	Inspection of Table 28 shows that a highly statistically significant model has been
6	established. First it shows that the difference between the level-of-CO ₂ model for-
7	temperature and the observed temperature in a given period is strongly influenced by
8	that of closely preceding periods. Further it provides evidence that there is also a
9	clear, highly statistically significant role in the model for NDVI.
10	
11	With these results, Figure 15 is as for Figure 14 but with the NDVI series led
12	indicated by the OLS dynamic regression modelling in Table 25.
13	
14 15	A marked overall similarity between the two series is seen, both in core trend (as-
16	illustrated by polynomial curves of best fit) and in details of signature.
17	
18	The next sections assess whether NDVI can be considered to display Granger-
19	causality of the difference between the level-of-CO2 model for temperature and the
20	observed temperature. As for first-derivative CO2 and NDVI in Section 3.2.2.1 above,-
21	two assessments are made using different criteria for lag selection: the first using the
22	Akaike Information Criterion; the second using the method of extensive search of the
23	lag space (Thornton and Batten 1985).
24	
25	The relevant EViews output is from the Pairwise Granger Causality Test and Table 29-
26	documents the following summary results: F-statistic 1.03 (p-value = 0.36).
27	This statistic shows that using the Akaike Information Criterion for lag selection, the
28	null hypothesis is rejected in other words, for the AIC there is an absence of
29	evidence of Granger causality from NDVI to the difference between the level-of-CO2-
30	model for temperature and the temperature observed.
31	
32	The relevant EViews output from the extensive search method is again from the
33	Pairwise Granger Causality Test and Table 30 documents the following summary
34	results: F-statistic 1.81 (p-value = 0.03). This statistic shows that using the extensive

1	search method for lag selection, the null hypothesis is rejected - in other words, there-
2	is evidence of Granger causality from first-derivative CO2 to NDVI.
3	The way in which the search reveals the statistically significant lag is depicted
4	visually in Figure 16. Note the statistical significance of results of tests based on lags-
5	14 to 16.
6	
7 8	Considering the results of Section 4.4 overall, the following analysis is made.
9	Even considering first-derivative CO ₂ as possibly being I(1) for the period 1981 to-
10	2012, it is believed that there is sufficient redundancy in the range of data series and
11	relationships used in the NDVI section to answer the question as to whether-
12	vegetation at global scale causes the difference between the linear CO2-temperature-
13	model and observed temperature.
14	
15	The redundancy comes about as follows. The Granger-causality with Toda-
16	Yamamoto procedure results presented in Tables 16 and 17 show that, while first-
17	derivative CO2 as I(1) does not display Granger causality of NDVI, first-derivative-
18	CO2-as I(1) does display Granger causality of temperature. And temperature-
19	characterised as $I(0)$ — as it is unambiguously is shown to be (Table 11) — is shown to
20	display Granger causality of NDVI (Table 14).
21	
22	So whichever level of integration first-difference CO2 is characterised as, adequate-
23	dynamic-regression and Granger-causality linkages are in place for the flow of-
24	causality from first-derivative CO ₂ and temperature to NDVI.
25	
26	It is also shown, in this case without ambiguities concerning the I(0) nature of series,
27	that NDVI displays Granger causality of the difference between the linear CO2-
28	temperature model and observed temperature.
29	
30	In conclusion, it is considered that the results in this section show a Granger-causal
31	chain from first-derivative CO2 and temperature to NDVI, and from NDVI to the
32	difference between the linear CO ₂ -temperature model and observed temperature.

4 5

5 Discussion

Firstly it is noted that tThe results in this paper show that there are clear links - at the
highest standard of non-experimental causality: that of Granger causality between first- and second-difference CO₂ and the major climate variables of global
surface temperature and the Southern Oscillation Index, respectively.

10

11

12 Concerning The results show that rRelationships between first- and second-difference 13 CO₂ and climate variables are present for all the time scales studied: that is, including 14 temporal start points situated as long ago as 1500. In the instances where time series 15 analysis accounting for autocorrelation could be successfully conducted, the results were always statistically significant. For the further instances (for those studies using 16 17 data series commencing before 1877) the data was not amenable to time series 18 analysis <u>-</u> and therefore also not amenable to testing for Granger causality <u>-</u> due to 19 the strongly smoothed nature of the temperature data available which made removal of the autocorrelation impossible (see Section 4.3). Nonetheless, the scale of the non-20 21 corrected correlations observed wasere of the same order of magnitude as those of the instances that were able to be corrected for autocorrelation. 22 23 24 Given the time scales over which these effects are observed, taken as a whole the

- results taken as a whole clearly suggest that the mechanism observed is long term, and
- not, for example, a creation of the period of the steepest increase in anthropogenic
- 27 CO₂ emissions, a period which commenced in the 1950s (IPCC 2014).
- 28 Taking autocorrelation fully into account in the time series analyses demonstrates the
- 29 major role of immediate past instances of the dependent variable (temperature, and
- 30 SOI) in influencing its own present state. This was found in all cases where time
- 31 series models could be prepared. This was not to detract from the role of first- and
- 32 second-difference CO_2 in all relevant cases, they were significant in the models as
- 33 <u>well.</u>
- 34

1	According to Wilks (1995) and Mudelsee (2010), such autocorrelation in the		
2	atmospheric sciences also called persistence or "memory" is characteristic for many		
3	types of climatic fluctuations.		
4 5	In the survice section of the terms and first differences. CO indictionship the		
	In the specific case of the temperature and first-difference CO ₂ relationship, the		
6	significant autocorrelation for temperature occurred with present temperature being		
7	affected by the immediately prior month and the month before that. As mentioned		
8	above, for atmospheric CO ₂ and global surface temperature, others (Sun and Wang		
9	<u>1996; Triacca 2005; Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio 2012;</u>		
10	Stern and Kaufmann 2014) have conducted Granger causality analyses involving the		
11	use of lags of both dependent and independent variables. These studies, however, are		
12	not directly comparable with the present study. Firstly, while reporting the presence or		
13	absence of Granger causality, the studies did not report lead or lag information.		
14	Secondly, the studies used annual data, so could not investigate the dynamics of the		
15	relationships at the interannual (monthly) level where our findings were greatest.		
16			
17	The anthropogenic global warming (AGW) hypothesis has two main dimensions		
18	(IPCC 2007; Pierrehumbert 2011): (i) that increasing CO ₂ causes increasing		
19	atmospheric temperature (via a radiative forcing mechanism) and (ii) that most of the		
20	increase in atmospheric CO ₂ in the last hundred years has been due to human causes.		
21			
22	The results presented in this paper are supportive of the AGW hypothesis for two		
23	reasons: firstly, increasing atmospheric CO ₂ is shown to drive increasing temperature;		
24	and secondly, the results deepen the evidence for a CO ₂ influence on climate in that		
25	second-difference CO ₂ is shown to drive the SOI.		
26			
27	The difference between this evidence for the effect of CO ₂ on climate and that of the		
28	standard AGW hypothesis is that the standard model proposes that temperature will		
29	rise roughly linearly with atmospheric CO ₂ , whereas the present results show that the		
30	climate effects result from persistence of previous effects and from rates of change of		
31	<u>CO₂.</u>		
32			
33	On the face of it, then, this model seems to leave little room for the linear radiative		
34	forcing aspect of the AGW hypothesis.		

1	
2	However more research is needed in this area.
3	
4	Reflection on Figure 1 shows that the radiative mechanism would be supported if a
5	second mechanism existed to cause the difference between the temperature projected
6	for the radiative mechanism and the temperature observed. The observed temperature
7	would then be seen to result from the addition of the effects of these two mechanisms.
8	As discussed in the Introduction Honor at al. (2012) have successful that the
9	As discussed in the Introduction, Hansen et al. (2013) have suggested that the
10	mechanism for the pause in the global temperature increase since 1998 may be the
11	planetary biota, in particular the terrestrial biosphere. As an initial indicative
12	quantified characterisation of this possibility, Section 4.4 derived a simple measure of
13 14	the increasing difference between the global surface temperature trend projected from a mid-range scenario climate model and the observed trend. This depiction of the
14	<u>difference displayed a rising trend.</u> The time series trend for the globally aggregated
15	Normalized Difference Vegetation Index – which represents the changing levels of
17	activity of the terrestrial biosphere was also presented. This was shown also to
18	display a rising trend.
19	
20	If by further research, for example by Granger causality analysis, the global
20	vegetation can be shown to embody the second mechanism, this would be evidence
22	that the observed global temperature does result from the effects of two mechanisms
23	in operation together – the radiative, level-of- CO_2 mechanism, with the biological
24	first-difference of CO_2 mechanism.
25	
26	Hence the biosphere mechanism would supplement, rather than replace, the radiative
27	mechanism.
28	
29	Further comprehensive time series analysis of the NDVI data and relevant climate
30	data, beyond the scope of the present paper, could throw light on these questions.
31	
32	A further notable finding T demonstratesis the major role of immediate past instances
33	of the dependent variable in influencing its own present state. This was found in all-

34 cases where time series models could be prepared, and was true for temperature, and

1 SOI. This was not to detract from the role of first- and second-difference CO₂- in all-2 relevant cases, they were significant in the models as well. 3 Tthe anthropogenic global warming hypothesis states that increased global warming is-4 5 caused in part by increased atmospheric carbon dioxide, and that, especially since the 1950s, the increased human burning of fossil fuel has been a major contributor to the 6 7 increased atmospheric CO₂-content which has come about. 8 9 Tthe results presented in this paper are supportive of the anthropogenic globalwarming hypothesis in its aspect of which states that CO₂ affects temperature. This is-10 simply because (first-difference) atmospheric CO₂ is shown to drive global-11 temperature. The results also deepen the evidence for a CO₂ influence on climate in-12 that second-difference CO₂ is shown to drive the SOI. 13 14 The difference between this evidence for the effect of CO₂ on climate and that of the 15 16 standard AGW hypothesis is that the standard model has it that temperature will riseroughly linearly with atmospheric CO₂, whereas as the present results show the 17 18 elimate effects are from autocorrelation and rates of change of CO2-. 19 20 However, concerning temperature, as stated at the outset there is now a significant 21 gap now of some 16 years in length between the projections from the linear CO₂-22 model and the observed global surface temperature trend, whereas there is no such-23 gap between projection and observation from the first-difference CO₂-model. 24 25 Turning to potential mechanisms for the effect, it was noted above that Hansen et al. 26 (2013) have suggested that the mechanism for the pause in the global temperature 27 increase since 1998 might be the planetary biota, in particular the terrestrial biosphere. 28 29 As an initial indicative quantified characterisation of this possibility, Section 4.4derives a simple measure of the increasing difference between the global surface-30 temperature trend projected from a mid-range scenario climate model and the trend-31 32 observed. This depiction of the difference displays a rising trend. The time seriestrend for the globally aggregated Normalized Difference Vegetation Index which 33 represents the changing levels of activity of the terrestrial biosphere - is also presented. 34

1	This is shown also to display a rising trend. The relationship between the two trends,
2	for pooled data, is substantial and statistically significant.
3	
4	Further comprehensive time series analysis of this data is beyond the scope of the
5	present paper, but the above result provides further evidence that the terrestrial
6	biosphere mechanism should be considered a candidate cause of the departure of
7	temperature from that predicted by the level-of-CO2 mechanism alone.
8	
9	
10 11	References
12 13 14 15	Adams, J. M. and Piovesan, G.: Long series relationships between global interannual CO ₂ increment and climate: Evidence for stability and change in role of the tropical and boreal-temperate zones. Chemosphere, 59, 1595 – 1612, 2005.
16 17 18 19	Attanasio, A. and Triacca, U.: Detecting human influence on climate using neural networks based Granger causality," Theor. Appl. Climatol., 103,1-2,103-107, 2011.
20 21 22	Attanasio, A.: Testing for linear Granger causality from natural/anthropogenic forcings to global temperature anomalies Theor. Appl. Climatol. 110:281–289, 2012.
23 24 25	Bacastow, R. B.: Modulation of atmospheric carbon dioxide by the southern oscillation, Nature, 261, 116–118, 1976.
26 27 28 29	Banerjee, A. Dolado, J. Galbraith, J.W. and Hendry, D.F.: Co-integration, error- correction, and the econometric analysis of non-stationary data. Oxford University Press, Oxford, 1993.
30 31 32 33 34	Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M., Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO ₂ at high northern latitudes from 1950 to 2011, Glob. Change Biol., 19, 3167–3183, 2013.
35 36 37	Beenstock, M., Reingewertz, Y., and Paldor, N.: Polynomial cointegration tests of anthropogenic impact on global warming, Earth Syst. Dynam., 3, 173–188, doi:10.5194/esd-3-173-2012, 2012.
38 39 40 41 42	Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO representation in climate models: from CMIP3 to CMIP5, Clim. Dynam., 42, 1999-2018, 2014.
42 43 44 45 46	Breitung, J. and Swanson, N. R.: Temporal aggregation and spurious instantaneous causality in multiple time series models. Journal of Time Series Analysis, 23, 651-665, 2002.

1 2 3 4	Canty, T., Mascioli, N. R. Smarte, M. D. and Salawitch R. J. An empirical model of global climate – part 1: A critical evaluation of volcanic cooling, Atmos. Chem. Phys. 13 3997–4031 2013.
4 5 6 7	Chen, X., and Tung, K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897, DOI: 10.1126/science.1254937, 2014.
8 9 10 11	Christriano, L. J. and Eichenbaum, M.: Temporal aggregation and structural inference in macroeconomics. Carnegie-Rochester Conference Series on Public Policy, 26, 63-130, 1987.
12 13 14 15 16 17 18 19 20 21	Denman, K.L., G. Brasseur, G. Chidthaisong, A. Ciais, P. P.M. Cox, P.M. Dickinson, R.E. Hauglustaine, D. Heinze, Holland, C.E, Jacob, D. Lohmann, U. Ramachandran, S. da Silva Dias, P.L. Wofsy, S.C. and Zhang, X.: Couplings between changes in the climate system and biogeochemistry, Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S. Qin,D. Manning, M. Chen, Z. MMarquis, M. Avery, K.B. Tignor, M. and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
22 23 24 25 26	Dickey, D.A. and Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427–431, 1979.Dickey, D. A. and Fuller, W. A.: Likelihood ratio statistics for autoregressive time
27 28 29	series with a unit root, Econometrica, 49, 1057–1072, 1981. Diebold, F. X.: Discussion: Effect of seasonal adjustment filters on tests for a unit
30 31 32 33 34 35 36 27	 root. Journal of Econometrics, 55, 99-103, 1993. Dieleman, W. I. J. Vicca, S. Dijkstra, F. A. Hagedorn, F. Hovenden, M. J. Larsen, K. S. Morgan, J. A., Volder, A. Beier, C. Dukes, J. S. King, J. Leuzinger, S. Linder, S. Luo, Y. Oren, R. De Angelis, P. Tingey, D. Hoosbeek, M. R. and Janssens, I. A. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO₂ and temperature, Glob. Change Biol., 18, 2681–2693, 2012.
37 38 39	Elliott, G., Rothenberg T. J and Stock J. H.: Efficient tests for an autoregressive unit root, Econometrica, 64, 813-836, 1996.
40 41 42 43	Folland C.K., Colman A.W., Smith D.M., Boucher O., Parker D.E., and Vernier J.P. : High predictive skill of global surface temperature a year ahead, Geophys. Res. Lett., 40, 761–767, 2013.
44 45 46	Foster, G. and Rahmstorf, S.: Global temperature evolution 1979–2010, Environ. Res. Lett., 6, 044022, 2011.
47 48	Franses, P. H.: Moving average filters and unit roots. Economics Letters, 37, 399-403., 1991.

1 2 3 4 5 6	Frisia, S., A. Borsato, N. Preto, and F. McDermott.: Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate, Earth and Planetary Science Letters, 216, 411–424, 2003.
7 8	Fyfe, J. C., Gillett, N.P, and Zwiers, F. W.: Overestimated global warming over the past 20 years, Nature Climate Change, 3 767–769, 2013.
9 10	Fyfe J.C and Gillett, N.P.: Recent observed and simulated warming, Nature Climate Change, 4, 150-151, 2014.
11 12 13 14 15	Ghysels, E.: Unit root tests and the statistical pitfalls of seasonal adjustment: The case of U.S. postwar real gross national product. Journal of Business and Economic Statistics, 8, 145-152, 1990.
16 17 18	Ghysels, E. and Perron, P.: The effect of seasonal adjustment filters on tests for a unit root. Journal of Econometrics, 55, 57-98, 1993.
19 20 21	Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37, 3, 424-438, 1969.
22 22 23	Greene, W. H.: Econometric Analysis (7th ed.), Prentice Hall, Boston, 2012.
24 25 26	Gnu Regression, Econometrics and Time-Series Library. GRETL 1.7.5. Available from: <u>http://gretl.sourceforge.net/</u> [Accessed April 23, 2008
27 28 29	Gribbons, B. and Herman, J.: True and quasi-experimental designs. Practical assessment, research and evaluation, 5, <u>http://PAREonline.net/getvn.asp?v=5&n=14</u> , 1997.
 30 31 32 33 24 	Guemas V., Doblas-Reyes F.J., Andreu-Burillo I. and Asif M.: Retrospective prediction of the global warming slowdown in the past decade, Nature Climate Change, 3, 649–653, 2013.
34 35 36 37	Guilyardi, E., Bellenger H., Collins M., Ferrett S., Cai, W., and Wittenberg A.: A first look at ENSO in CMIP5, Clivar. Exch., 17, 29–32, 2012.
38 39 40	Gulasekaran, R. and Abeysinghe, T.: The distortionary effects of temporal aggregation on Granger causality. Working Paper No. 0204, Department of Economics, National University of Singapore, 2002.
41 42 43 44	Ghosh, S. and Rao, C. R. eds.: Design and Analysis of Experiments, Handbook of Statistics, 13, North-Holland, 1996.
45 46 47	Hansen, J., Kharecha, P., and Sato, M.: Climate forcing growth rates: doubling down on our Faustian bargain, Environ. Res. Lett., 8, 2013.
48 49	Hidalgo, F. and Sekhon, J.: Causality. In Badie, B., Berg-Schlosser, D., and Morlino, L. (Eds.), International encyclopedia of political science, 204-211, 2011.

1	
2	Holbrook, N.J. Davidson, J. Feng, M. Hobday, A.J. Lough, J.M. McGregor, S. and
3	Risbey, J.S.: El niño-southern oscillation, In: A marine climate change impacts and
4	adaptation report card for Australia 2009, (Eds. Poloczanska, E.S. Hobday, A.J. and
5	Richardson, A.J.) NCCARF Publication, 05/09, 2009.
6	
7	Hume D.: An enquiry into human understanding (1751) cited in: Hidalgo, F., &
8	Sekhon, J.: Causality. In Badie, B., Berg-Schlosser, D. & Morlino, L. (Eds.)
9	International encyclopedia of political science, 204-211, 2011.
10	
11	Hyndman, R.J.: Moving averages. in Lovirc, M. (ed.), International encyclopedia of
12	statistical science. 866-869 Springer, New York, 2010.
13	
14	IHS EViews: EViews 7.2, Irvine CA., 2011.
15	
16	Imbers, J., Lopez, A., Huntingford, C., and Allen M. R.: Testing the robustness of the
17	anthropogenic climate change detection statements using different empirical models, J.
18	Geophys. ResAtmos., 118, 3192–3199, 2013.
19	
20	IPCC: Climate Change 2007: The physical science basis. Contribution of working
21	group I to the fourth assessment report of the intergovernmental panel on climate
22	change [IPCC, Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M.
23	and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom
24	and New York, NY, USA, 2007.
25	
26	IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of
27	Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
28	Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J.
29	Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley
30	(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
31	USA, 1535 pp.
32	
33	Kaufmann R.K., Kauppi H., and Stock J.H.: Emissions, concentrations, and
34	temperature: a time series analysis, Clim. Change, 77, 249–278, 2006.
35	
36	Keeling R-F, Piper S-C, Bollenbacher A-F, Walker S-J (2009) Carbon Dioxide
37	Research Group, Scripps Institution of Oceanography (SIO), University of California,
38	La Jolla, California USA 92093-0444, Feb 2009.,
39	http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2, last access: 14 July 2014.
40	
41	Kiviet, J.F.: On the rigour of some misspecification tests for modelling dynamic
42	relationships, Review of Economic Studies, 53, 241-261, 1986.
43	Kalas E. Chattarias C. and Ca. 1. A.D. E. 1. C
44	Kodra, E., Chatterjee, S., and Ganguly, A.R.: Exploring Granger causality between
45	global average observed time series of carbon dioxide and temperature, Theoretical
46 47	and Applied Climatology, 104, 3-4, 325-335, 2011.
47 48	Konn G and Loon I.I. A new lower value of total solar irrediance: evidence and
48	Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance: evidence and
49	climate significance. Geophys. Res. Lett., 38, 2011.

- Kosaka, Y. and Shang-Ping, X.: Recent global-warming hiatus tied to equatorial
- 3 Pacific surface cooling, Nature, doi:10.1038/nature12534, 2013.
- 4
- 5 Kuo C., Lindberg C., and Thomson D.J.: Coherence established between atmospheric
- 6 carbon dioxide and global temperature, Nature, 343, 709–714, 1990.
- 7 Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P. and Shin, Y.: Testing the null
- 8 hypothesis of stationarity against the alternative of a unit root, Journal of
- 9 Econometrics 54, 159–178, 1992.
- 10 11
- 12 Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T., Ciais, P.,
- 13 Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P.,
- 14 Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P.,
- 15 Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato,
- 16 E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Omar,
- A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P.,
- 18 Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Tilbrook, B.,
- vanHeuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., Zaehle, S., and Yue, C.:
- 20 Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235–263, 2014
- 21
- 22 Lean, J.L. and Rind, D.H.: How natural and anthropogenic influences alter global and
- regional surface temperatures: 1889 to 2006, Geophys. Res. Lett., 35, 2008.

- Lean, J.L. and Rind, D.H.: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett., 35, 2008.
- 28 Lockwood M.: Recent changes in solar outputs and the global mean surface
- temperature. III. Analysis of contributions to global mean air surface temperature rise.
 Proceedings of the Royal Society, Mathematical Physical and Engineering Sciences,
- 31 464, 1387–1404, 2008.
- 32
- 33 Marcellino, M.: Some consequences of temporal aggregation in empirical
- analysis. Journal of Business and Economic Statistics, 17, 129-136, 1999.
- 35 Meehl, G. A. Arblaster, J.M. Fasullo, J.T.1, Hu, A, and Trenberth, K.E.: Model-based
- evidence of deep-ocean heat uptake during surface-temperature hiatus periods, Nature
 Climate Change, DOI: 10.1038/NICLIMATE1229.2011
- 37 Climate Change, DOI: 10.1038/NCLIMATE1229, 2011.
- 38
- 39 Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J.
- 40 Stouffer, and K. E. Taylor: The WCRP CMIP3 multi-model dataset: A new era in
- 41 climate change research, Bulletin of the American Meteorological Society, **88**, 1383-
- 42 1394. 2007. (CMIP3) Multi-Model Mean20c3m/sresa1,
- 43 http://climexp.knmi.nl/selectfield_CO2, last access 10 June 2014
- 44

Lean, J. L. and Rind , D.H.: How will Earth's surface temperature change in future decades? Geophys. Res. Lett. 36, L15708, 2009.

1 2 3	Moberg, A., D.M. Sonechkin, K. Holmgren, N.M. Datsenko and W. Karlén.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 7026, 613-617, 2005.
4 5 6 7 8 9 10	Morice, C.P., Kennedy, J.J., Rayner, N.A. and Jones, P.D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. Journal of Geophysical Research, 117 , 2012. D08101, <u>doi:10.1029/2011JD017187</u> <u>http://www.metoffice.gov.uk/hadobs/hadcrut4/data/download.html</u> , last access 25 August 2014.
11 12 13 14	Mudelsee, M.: Climate Time Series Analysis. Springer, 2010.
14 15 16 17	Ng, S. and Perron, P.: Lag length selection and the construction of unit root tests with good size and power, Econometrica, 69, 1519-1554, 2001.
17 18 19	Olekalns, N.: Testing for unit roots in seasonally adjusted data. Economics Letters, 45, 273-279, 1994.
20 21 22	Pankratz, A.: Forecasting with Dynamic Regression Models. Wiley, <u>1991. New York</u> , <u>386 pp. 1991.</u>
23 24 25 26	Pierrehumbert, R.: Infrared radiation and planetary temperature. Physics Today, 64, 33–38, 2011.
27 28 29 30 31	Pretis, F. and Hendry, D. F.: Comment on "Polynomial cointegration tests of anthropogenic impact on global warming" by Beenstock et al. (2012) - some hazards in econometric modelling of climate change. Earth System Dynamics 4, 375–384, 2013.
32 33 34	Phillips, P.C.B. and Perron, P.: Testing for a unit root in time series regression, Biometrika, 75, 335–346, 1988.
35 36 37 38	Robertson, A. Overpeck, J. Rind, D. Mosley-Thompson, D. E. Zielinski, G. Lean, J. Koch, D. Penner, J. Tegen, I. & Healy, R.: Hypothesized climate forcing time series for the last 500 years, Journal of Geophysical Research, 106, D14, 2001.
 39 40 41 42 	Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M. C., and Hashimoto, H.: A continuous satellite-derived measure of global terrestrial primary production, BioScience, 54, 547–560, 2004
43 44 45 46	Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22987–22994, 1993. http://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt, last access 10 August 2014.
47 48 49	Stahle, D.W., R.D. D'Arrigo, P.J. Krusic, M.K. Cleaveland, E.R. Cook, R.J. Allan, J.E. Cole, R.B. Dunbar, M.D. Therrell, D.A. Gay, M.D. Moore,

- 1 M.A. Stokes, B.T. Burns, J. Villanueva-Diaz and L.G. Thompson: Experimental
- 2 dendroclimatic reconstruction of the Southern Oscillation. Bull. American
- 3 Meteorological Society 79: 2137-2152, 1998.
- 4 5
- Stern, D.I. and Kander, A.: The role of energy in the industrial revolution and modern
- economic growth, CAMA Working Paper Series, Australian National University,2011.
- 8
- 9 Stern, D.I and Kaufmann, R.K.: Anthropogenic and natural causes of climate change,
 10 Climatic Change, 122, 257-269, DOI 10.1007/s10584-013-1007-x, 2014.
- 11
- Sun, L. and Wang, M.: Global warming and global dioxide emission: an empirical
 study, Journal of Environmental Management, 46, 327–343, 1996.
- 14
- 15 Thornton, D. L. and Batten, D. S.: Lag-length selection and tests of Granger causality
- between money and income. Journal of Money, Credit and Banking, 17, 164-178,
- 17 1985.
- Toda, H. Y. and Yamamoto, T.: Statistical inferences in vector autoregressions with
 possibly integrated processes, Journal of Econometrics, 66, 225-250. 1995.
- 20
- 21 Triacca, U.: Is Granger causality analysis appropriate to investigate the relationship
- 22 between atmospheric concentration of carbon dioxide and global surface air
- temperature?, Theoretical and Applied Climatology, 81, 133–135, 2005.
- 24
- Troup, A.J.: The Southern Oscillation, Quarterly Journal of Royal Meteorological
 Society, 91, 490-506, 1965.
- https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex
 /soidatafiles/MonthlySOI1887-1989Base.txt, last access 25 August 2014.
- 29
- 30 Tucker, C.J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E.
- 31 Vermote and N. El Saleous, An extended AVHRR 8-km NDVI data set compatible
- with MODIS and SPOT vegetation NDVI data, International Journal of Remote
 Sensing, 26, 4485-5598, 2005.
- <u>http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=ndvi</u>, last access
 30 July 2014.
- 36
- Tung, K.-K. and Zhou, J.: Using data to attribute episodes of warming and cooling in
 instrumental records, PNAS, 110, 2058-2063, 2013.
- 39
- 40 Wang, C., Deser, C., Yu, J.-Y., DiNezio, P., and Clement, A.: El Niño–Southern
- 41 Oscillation (ENSO): a review, in: Coral Reefs of the Eastern Pacific, Glynn, P.
 42 Manzello, D., and Enochs, I., Springer Science, 2012.
- 43
- 44 Wang, W., Ciais, P., Nemani, R. R., Canadell, J. G., Piao, S., Sitch, S., White, M. A.,
- 45 Hashimoto, H., Milesi, C., and Myneni, R. B.: Variations in atmospheric CO₂ growth
- rates coupled with tropical temperature, Proc. Natl. Acad. Sci. USA, 110, 13061–
 13066, 2013.
- 48

1 2 3 4	Wei, W. W. S.: The effect of systematic sampling and temporal aggregation on causality – a cautionary note. Journal of the American Statistical Association, 77, 316-319, 1982.
5 6 7	Wilks, D.S.: Statistical methods in the atmospheric sciences: an introduction. Academic Press; 2011.
8 9 10 11 12 13	Zhang, Y., Guanter, L., Berry J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt. M., and Köhler P.: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models, Global Change Biology, doi: 10.1111/gcb.12664, 2014.
14 15 16 17	Zhou, J. and Tung, K.: Deducing multidecadal anthropogenic global warming trends using multiple regression analysis, Journal of the Atmospheric Sciences, 70, 1-8, 2013.
18 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	Table 1. Lag of first-difference CO ₂ relative to surface temperature series for global, tropical, northern hemisphere and southern hemisphere categories
34 35	

	Lag in months of first- difference CO ₂ relative to global surface temperature category
Hhadcrut4SH	-1
<mark>H</mark> hadcrut4Tro p	-1
H <mark>Hh</mark> ad CRUT<u>c</u> <u>rut</u>4_nh	-3
<u>H</u> hadcrut4Glo b	-2

-

- Table 2. Lag of FIRST-DIFFERENCE CO₂ relative to surface temperature series for
 global, tropical, northern hemisphere and southern hemisphere categories, each for
- 19 three time-series sub-periods

Temperature category	Time period	Lag of first- difference CO ₂ relative to global surface temperature series
NH	1959.87 to 1976.46	-6
	1976.54 to	
NH	1993.21	-6
Global	1959.87 to 1976.46	-4
SH	1959.87 to 1976.46	-3
	1976.54 to	
Global	1993.21	-2
Tropical	1959.87 to 1976.46	0
	1976.54 to	
Tropical	1993.21	0
Tropical	1993.29 - 2012.37	0
Global	1993.29 - 2012.37	0
NH	1993.29 - 2012.37	0
	1976.54 to	
SH	1993.21	0
SH	1993.29 - 2012.37	0

- 1 Table 3. Augmented Dickey–Fuller (ADF) test for tests for unit roots stationarity in
- 2 both monthly and annual data 1969 to 2012 for, level of atmospheric CO₂, first-
- 3 difference O_2 and global surface temperature

	Monthly d	lata			Annual data			
	ADF statistic*	p-value	Order of integration	Test interpret- ation	ADF statistic*	p- value	Order of integration	Test interpret ation
Level of				Non-				Non-
CO ₂	-0.956	0.9481	l(1)	stationary	-0.309	0.991	l(1)	stationary
First- Difference CO2	-17.103	5.72 E- 54	I(0)	Stationary	-4.319	0.003	I(0)	Stationary
Temp	-5.115	0.00011	I(0)	Stationary	-3.748	0.019	I(0)	Stationary
lobal surfa	2	ature for m	onthly data	first-differer for the perio	1			
lobal surfa	ice tempera	ature for m	onthly data	for the period Whole model adjusted R- mo	1	12, with		

 Led2mTEMP

 18
 [1] Z-scored

 19
 [2] Whole mode

 20
 [2] Whole mode

Led1mTEMP

[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation

< 0.00001

<0.00001

0.565

0.306

Table 5. Pairwise correlations (correlation coefficients (R)) between selected climate variables

	2x13mmafirstderiv CO ₂	Hadcrut4Global	3x13mma2ndderivCO ₂
Hadcrut4Global	0.7	1	
3x13mma2ndderivCO ₂	0.06	-0.05	1
13mmaReverseSOI	0.25	0.14	0.37

Table 6. Pairwise correlations (correlation coefficients (R)) between selected climate variables, phase-shifted as shown in the table

	Led2m2x13mmafirstderivCO2	Hadcrut4Global	Led4m3x13mma2ndderivCO ₂
Hadcrut4Global	0.71	1	
Led4m3x13mma2nddifferiv			
CO ₂	0.23	0.09	1
13mmaReverseSOI	0.16	0.14	0.49

Table 7. Pairwise correlations (correlation coefficients (R)) between selected climate variables, phase-shifted as shown in the table

	ZLed2m2x13mma2ndderivCO ₂	ZReverse <mark>LongP</mark> addockSOI
ZReverse LongPaddock SOI		
	0.28	1.00
ZLed3m13mmafirst <u>diffderiv</u> hadcrut4		
global	0.35	0.41

- 1 Table 8. OLS dynamic regression between second-difference atmospheric CO₂ and
- 2 reversed Southern Oscillation Index for monthly data for the period 1959 2012, with
- 3 autocorrelation taken into account

Independent variable/s [1]	Dep- endent variable [1]	Independent variable regression coefficients	Indep- endent variable P-value	Whole model adjusted R- squared	Whole model P-value	LM test for autocorr- elation [2]
Led3m2x13mma 1stderivCO ₂	ReverseSOI	0.07699	<0.011	0.478	1.80E- 89	0.214
Led1mReverseSOI		0.456	<0.00001			
Led2mreverseSOI		0.272	<0.00001			

5 [1] Z-scored 6 [2] Whole mo

6 [2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation

12 Table 9. OLS dynamic regression between first-difference global surface temperature

- 13 and reversed Southern Oscillation Index for monthly data for the period 1877-2012,
- 14 with autocorrelation taken into account

Indep-endent variable/s [1]	Dep- endent variable [1]	Independent variable regression coefficients	Indep- endent variable P-value	Whole model adjusted R- squared	Whole model P-value	LM test for autocorr- elation [2]
Led3m12mma1stdifferivT					0.005	
EMP	ReverseSOI	0.140	<0.00001	0.466	3.80E- 221	0.202
	Reveisesui	0.140	<0.00001	0.400	221	0.202
Led1mReverseSOI		0.465	<0.00001			
Led2mReverseSOI		0.210	<0.00001			

[1] Z-scored
[2] Whole model: LM test for autocorrelation up to order 3 - Null hypothesis: no autocorrelation

- •

24	Table 10: Augmented Dickey–Fuller (ADF) test for stationarity for monthly data
25	1959 to 2012 for second-difference CO ₂ and sign-reversed SOI

	ADF statistic	p-value	Test interpretation
Second- difference			
CO ₂	-10.077	0.000	Stationary
Sign-			
reversed SOI	-6.681	0.000	Stationary

2

3

4 5

6

Table 11. VAR Residual Serial Correlation LM Tests component of Granger_ causality testing of relationship between second-difference CO2 CO2 and SOI. Initial 2-lag model

	LM-Stat	P-value*
1	10.62829	0.0311
2	9.71675	0.0455
3	2.948737	0.5664
4	9.711391	0.0456
5	10.67019	0.0305
6	37.13915	0
7	1.268093	0.8668
	5	110.6282929.7167532.94873749.711391510.67019637.13915

*P-values from chi-square with 4 df.

7

Table 12. VAR Residual Serial Correlation LM Tests component of Granger_ 8

9 causality testing of relationship between second-difference $\underline{CO_2}$ CO2-and SOI.

Preferred 3-lag model 10

11

Lag order		LM-Stat	P-value*
	1	1.474929	0.8311
	2	4.244414	0.3739
	3	2.803332	0.5913
	4	13.0369	0.0111
	5	8.365221	0.0791
	6	40.15417	0
	7	1.698265	0.791

*P-values from chi-square with 4 df.

12 13

14

Table 13. Correlations (R) between paleoclimate CO₂ and temperature estimates 15 1500-1940

	Temperature (speliothem)	Temperature (tree ring)
Level of CO ₂ CO2		
CO2_(ice core)	0.369	0.623

1st differiv. CO2 (ice		
core)	0.558	0.721

 Table 14: ADF test results for time series based on automatic Schwarz Information

4 Criterion (SIC) lag length selection-

-	ADF	
-		Prob.
1stderivCO ₂	Lag Length: 15- (Automatic - based- on SIC, maxlag=16)	0.0895
	Lag Length: 1- (Automatic - based- on SIC,	
Temp	maxlag=16)	-0.0000
	Lag Length: 1- (Automatic - based-	
NDVI	on SIC, maxlag=16	-0.0000
Climate- model/temperature- difference	Lag Length: 1- (Automatic - based-	
	on SIC, maxlag=16)	- 0.0000

- **Table 15.** Order of integration test results for first-derivative CO₂
- 10 for monthly data from 1981-2012. The Akaike iInformation Ceriterion (AIC) was-
- 11 used to select an optimal maximum lag length (k) for the variables in the test. The
- 12 null hypothesis for the tests is non-stationarity, except for the KPSS test for which the
- 13 null hypothesis is stationarity.

-	Test critical values	ADF	DF- GLS	Elliott- Rothenberg- Stock Point- Optimal-	Ng- Perron Modified- ERS- Point- Optimal- statistic
Test	-	0.75	0.70		
statistic		-2.75	-2.73	- <u>5.77</u>	6.11
-	1% level	-3.98	-3.48	-3.97	4.03
-	5% level	-3.42	— -2.90	5.63	
	10%				
				1	

Table 14. Order of integration test results for NDVI series for monthly data from

19 1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal

20 maximum lag length in the tests.

NDVI Series	Null Hypothesis: the series has a unit root	Probability of unit root
NDVIV	Lag Length: 16 (Automatic - based on SIC, maxlag=16)	0.0122
NDVIG	Lag Length: 1 (Automatic - based on SIC, maxlag=15)	7.23e-14
NDVIGV	Lag Length: 1 (Automatic - based on SIC, maxlag=16)	4.18E-16

 Table 16. Order of integration test results for first-derivative CO2

for monthly data from 1981-2012. The Schwartz iInformation cCriterion (SIC) was-

used to select an optimal maximum lag length (k) for the variables in the test. The

null hypothesis for the tests is non-stationarity, except for the KPSS test for which the

null hypothesis is stationarity.

-	Test critical values	ADF	DF-GLS	Elliott- Rothenberg- Stock Point- Optimal-	Ng- Perron Modified- ERS- Point- Optimal- statistic
Test statistic	-	-3.183	-2.73	3.193	6.105
-	1% level	- 3.984	-3.476	3.971*	4.03
-	5% level	- <u>3.422</u>	-2.898	5.625	5.48
_	10%- level	-3.134*	-2.585*	6.886	6.670*

Table 17. Order of integration test results for first-derivative CO₂ for monthly data from 1981-2012. Tests use bandwidth criteria for lag selection. The null hypothesis for the tests is non-stationarity, except for the KPSS test for which the null hypothesis

23 is stationarity.

2	Δ
4	

-	Test- critical- values	KPSS- does- not use- AIC-or- SIC	Phillips- Perron- does- not use- AIC-or- SIC
Test	-		
statistic		0.07	-3.60

-	1% level	0.22*	-3.98
-	5% level	0.15	-3.42*
	10%		
-	level	0.12	-3.13

- **Table 18.** Order of integration test results for NDVI series for monthly data from
- 5 1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal-
- 6 maximum lag length in the tests.

NDVI- Series	Null Hypothesis: the series has a unit root	Probability of unit root
NDVIV	Lag Length: 16 (Automatic - based on SIC, maxlag=16)	- 0.0122
NDVIG	Lag Length: 1 (Automatic - based on SIC, maxlag=15)	7.23e-14
NDVIGV	Lag Length: 1 (Automatic - based on SIC, maxlag=16)	4.18E-16

Table 19. Pairwise Granger causality tests for first-derivative CO₂ and temperature

Null- Hypothesis:	Lags- suggest- ed by- AIC	Number of lags imple- mented	Total observ- ations	Included observ- ations	Chi-sq	df	Prob.	Interpret- ation
TEMP does		Add one- more lag to-						TEMP does not GC
not GC		allow for fact						1stderivCO
1stderivCO ₂		that 1stderiv						2
	8	CO ₂ CO2 is	378	369	7.39	8	p=0.4962	
		characterised-						
		I(1), but don't						
		include extra						
		lag in GC						
		test (Toda						1stderivCO
1stderivCO ₂		and						2
-does not		Yamamoto ,1						-does-GC-
GC TEMP	8	995)	378	369	32.79	8	р=0.0001	TEMP

- **Table 20**. Pairwise Granger causality tests for first-derivative CO₂
- 14 -characterised as *I(1)* and NDVI

Null Hypothesis:	Lags- suggest- ed by- AIC	Number of lags imple- mented	Total- observ- ations	Included observ- ations	Chi-sq	df	Prob	Interpret- ation
		Add one						NDVI does
NDVI does- not GC-		more lag to allow for fact						not GC 1stderivCO
								ISIUEIIVGO
1stderivCO₂		that 1stderiv						2
-	8		378	369	3.184	8	p=0.9223	-

-1stderivCO ₂		CO ₂ is- characterised- I(1), but don't- include extra- lag in GC- test (Toda- and-						- 1stderivCO 2
-1stderivCO ₂		and						2
-does not		Yamamoto ,1						-does not-
GC NDVI	8	995)	378	369	12.312	8	p=0.1378	GC-NDVI

Table 21. OLS dynamic regression between first-derivative atmospheric CO2
and global surface temperature for monthly data for the period 1981-2012, with
autocorrelation taken into account

Independent-variable/s- [1]	Dep- endent- variable- [1]	Independent- variable- regression- coefficients	Indep- endent- variable- P-value	Whole- model- adjusted- R- squared	Whole model P- value	LM test for- autocorr- elation- [2]
Twox13mma1stderivCO ₂	TEMP	0.107	0.00077	0.770	4 <u>.00E-</u> 118	0.445
Led1mTEMP	-	0.545	<0.00001	-	-	-
Led2mTEMP	-	0.293	<0.00001	-	-	-

 1] Z-scored

 [2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation

Table 22. Pairwise Granger causality tests for first-derivative atmospheric CO2 and global surface temperature

Null Hypothesis:	Criterion- for number- of lags- selected	Number of lags imple- mented	Observ- ations	F- Statistic	Probab- ility	Interpretation of- statistically- significant- probabilities
TEMP does not	AIC					
Granger Cause - 1stderivCO ₂						
13(00111002		2	373	2.88	0.06	_
-1stderivCO ₂						-1stderivCO ₂
does not Granger						-Granger-
Cause TEMP		-	-	5.02	0.01	Causes TEMP

Table 23. OLS dynamic regression between first-derivative atmospheric CO2 and NDVI for monthly data for the period 1981 - 2012, with autocorrelation taken intoaccount-

Indep- endent- variable/s- [1]	Dep- endent- variable- [1]	Independent- variable- regression- coefficients	Indep- endent- variable- P-value	Whole model- adjusted- R- squared	Whole model P-value	LM test for- autocorr- elation [2]
Twox13mma 1stderivCO ₂			0.04400	0.540	3.74E-	
	NDVI	0.094	0.01103	0.549	64	0.092

Led1mNDVI	-	0.765	< 0.00001	-	-	-	
Led2mNDVI	-	-0.075	0.15231	-	-	-	
[1] Z-scored		·				•	

2 Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation

Table 24. Pairwise Granger causality tests for first-derivative CO2

and NDVI: lag selection by AIC

Null Hypothesis:	Criterion- for- number- of lags- selected	Number of lags- imple- mented	Observations	F- Statistic	Probability	Interpretation- of- statistically- significant- probabilities
-NDVI does not-	AIC					
Granger Cause 1stderivCO ₂						-Not-
Totality of E		2	373	1.25	0.29	significant
-1stderivCO ₂						
-does not Granger- Cause NDVI		-	-	3.01	0.0504	- Not- significant

Table 25. First-derivative CO2 displays Granger causality of NDVI: lag selection by-

- extensive search

Null Hypothesis:	Criterion- for- number- of lags- selected	Number of lags imple- mented	Observations	F- Statistic	Probability	Interpretation- of- statistically- significant- probabilities
-NDVI does not	Result of					
Granger Cause	extensive					
1stderivCO₂	search of		074	0.07	0.050	
	lag-	1	374	0.87	0.352	-
-1stderivCO ₂	space					-1stderivCO ₂
-does not Granger-						-Granger-
Cause NDVI		-	-	5.11	0.024	Causes NDVI

```
Table 26. OLS dynamic regression between global surface temperature and NDVI-
for monthly data for the period 1981 - 2012, with autocorrelation taken into account
```

- 27

Indep- endent- variable/s- [1]	Dependent- variable- [1]	Independent- variable- regression- coefficients	Independent- variable P- value	Whole- model- adjusted- R- squared	Whole model P- value	LM test for- autocorrelation- [2]
					1.18E-	
TEMP	NDVI	0.215	<0.00001	0.574	68	0.536
Led1mNDVI	-	0.720	<0.00001	-	-	-

			-0.122	0.01974				
	Leuzinindvi	-	-0.122	0.010/4	-	-	-	
[1] Z-scored	[1] 7-scored							

[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation

Table 27. Pairwise Granger causality tests for temperature and NDVI

Criterion Interpretation Number of for of number statistically lags of lags implesignificant Fselected AIC mented **Null Hypothesis: Observations Statistic Probability** probabilities NDVI does not NDVI Granger Granger Cause TEMP 2 373 3.18 0.043 Causes TEMP TEMP-TEMP does not Granger-Granger Cause NDVI 11.59 1.00E-05 **Causes NDVI**

8 9

9 10

Table 28. OLS dynamic regression between NDVI and the difference between the

observed level of atmospheric CO₂ and global surface temperature for monthly data
 for the period 1981 - 2012, with autocorrelation taken into account-

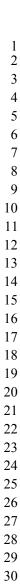
12 13

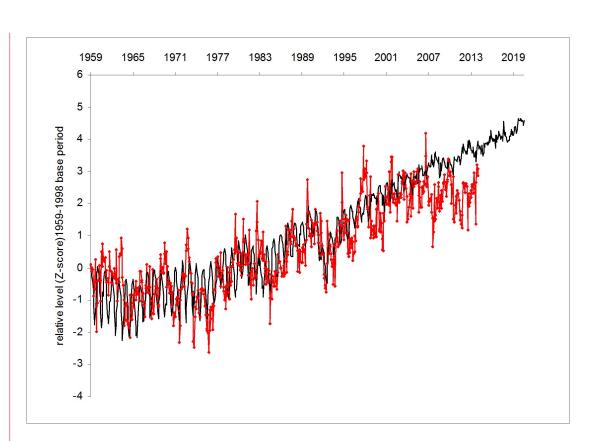
Indep-endent- variable/s [1]	Depen-dent- variable [1]	Independent- variable- regression- coefficients	Independent- variable P- value	Whole- model- adjusted- R- squared	Whole- model- P- value	LM test for- autocorrelation- [2]
Led17mNDVI	Climate- model/temperature- difference	0.069	0.00795	0.557	1.36E- 62	0.874
Led1mClimate- model/temperature- difference	-	0.490	<0.00001	_	-	-
Led2mClimate- model/temperature- difference	-	0.265	< <u>0.00001</u>	-	-	-

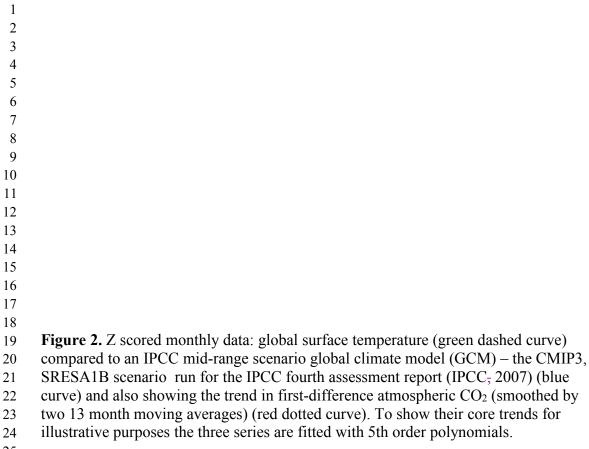
[1] 2

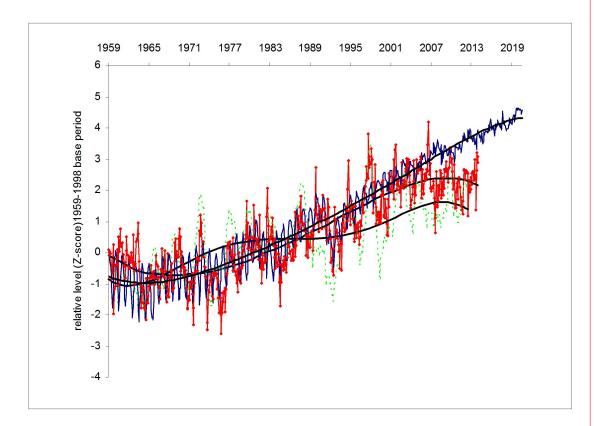
25

2] Whole model: LM test for autocorrelation up to order 20 – Null hypothesis: no autocorrelation


Table 29. Pairwise Granger causality tests for NDVI and the difference between the observed level of atmospheric CO₂ and global surface temperature: Akaike-Information cCriterion used to select lag


Null Hypothesis:	Criterion- for- number- of lags- selected	Number of- lags- imple- mented	Observations	F- Statistic	Probability	Interpretation- of- statistically- significant- probabilities
-Climate	AIC					
model/temperature-						
difference does not						
Granger Cause						-Not-
Led17mNDVI		2	356	2.35	0.10	significant


	Led17mNDVI does not Granger Cause climate- model/temperature- difference		-	-	1.03	0.36	- Not- significant	
1								
2								
3								
4								
5								
6								
7	Table 30. Pairwise Granger causality tests for NDVI and the difference between the							
8	bserved level of atmospheric CO2 and global surface temperature: extensive search							
9	of the lag space							


Null Hypothesis:	Criterion for- number- of lags- selected	Number of lags imple- mented	Observations	F- Statistic	Probability	Interpretation of statistically- significant- probabilities
Climate-	Result of					
model/temperature-	extensive					
difference does not	search of					
Granger Cause	lag-					
Led17mNDVI	space	15	343	0.83	0.65	-
						Led17mNDVI-
Led17mNDVI does not						Granger Causes
Granger Cause climate						climate
model/temperature						model/temperature
difference		-	-	1.81	0.03	difference

- Figure 1. Monthly data: global surface temperature (HadADCRUT4 dataset) (red
 dotted curve) and an IPCC mid-range scenario model (CMIP3, SRESA1B scenario)
 run for the IPPC fourth assessment report (IPCC, 2007) (blue curve), each expressed
- 31 in terms of Z scores to aid visual comparison (see Sect. 1).

Figure 3. Z scored monthly data: global surface temperature (red curve) compared to first-difference atmospheric CO₂ smoothed by two 13 month moving averages (black dotted curve).

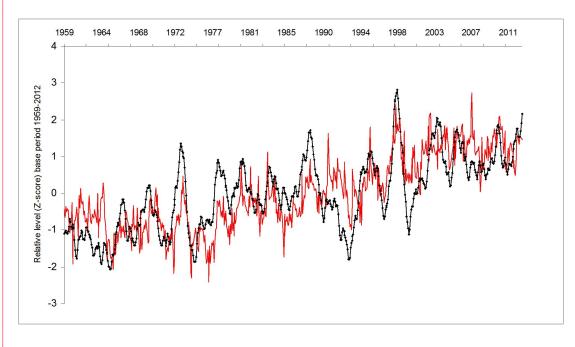
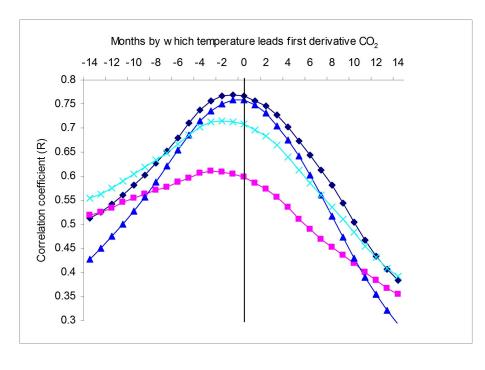
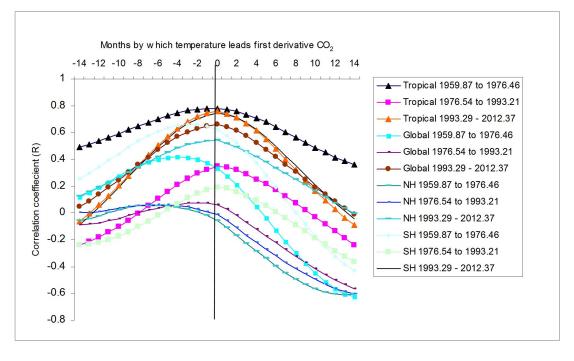
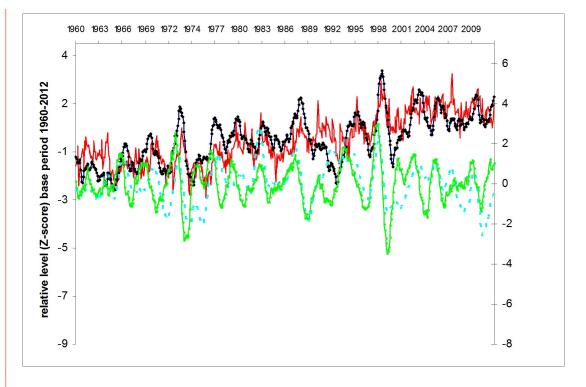
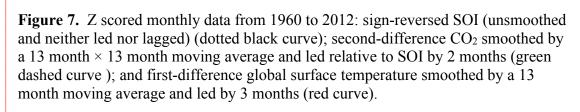


Figure 4. Correlograms of first-difference CO_2 with surface temperature for global (turquoise curve with crosses), tropical (blue curve with triangles), Northern Hemisphere (purple curve with boxes) and Southern Hemisphere (black curve with diamonds) categories


Figure 5. Correlograms of first-difference CO₂ with surface temperature for global,
 tropical, Northern Hemisphere and Southern Hemisphere categories, each for three
 time-series sub-periods.


6 7

8 9

Figure 6. Z scored monthly data: global surface temperature (red curve) and firstdifference atmospheric CO₂ smoothed by two 13 month moving averages (black dotted curve) (left-hand scale); sign-reversed SOI smoothed by a 13 month moving average (blue dashed curve) and second-difference atmospheric CO₂ smoothed by three 13 month moving averages (green barred curve) (right-hand scale)

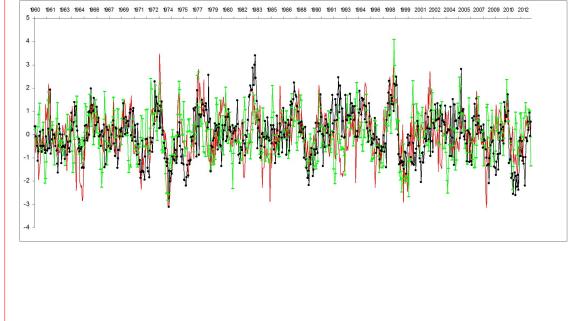
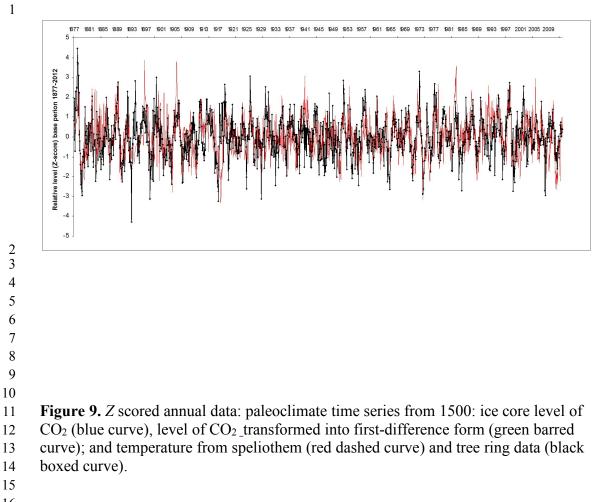
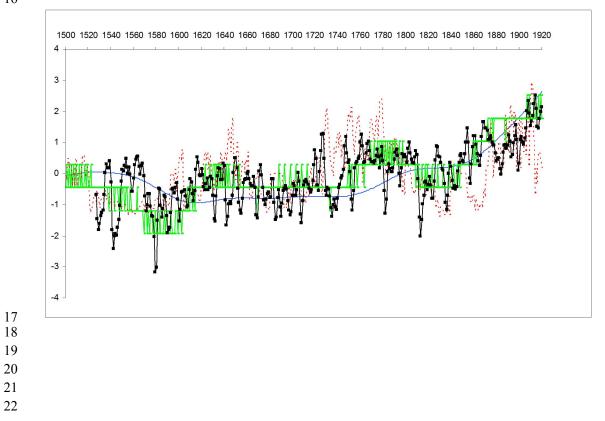




Figure 8. Z scored monthly data from 1877 to 2012: sign-reversed SOI (unsmoothed and neither led nor lagged) (red curve); and first-difference global surface temperature smoothed by a 13 month moving average and led relative to SOI by 3 months (black

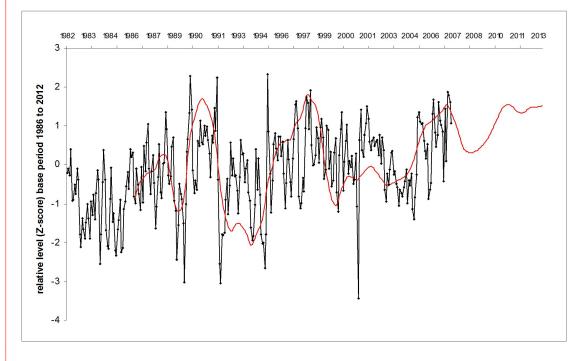


Figure 10: *Z* scored monthly data: NDVIG (black dotted curve) compared to NDVIV (red curve).

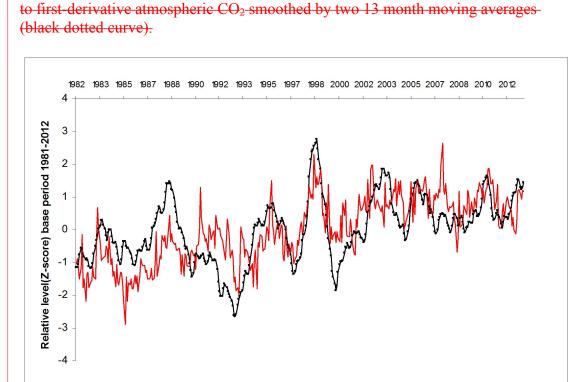
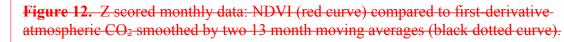
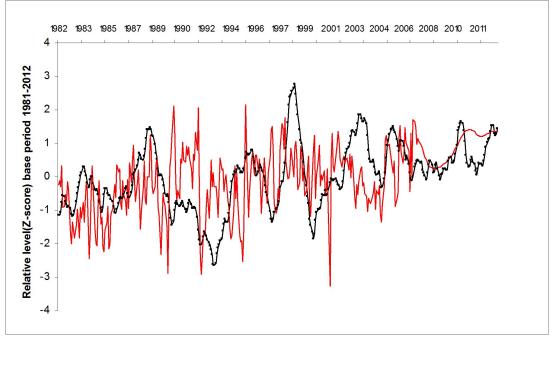
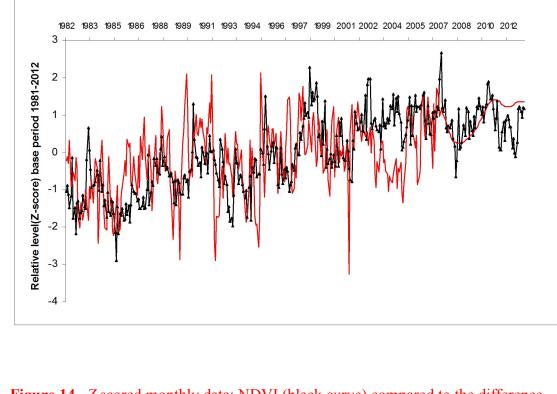





Figure 11. Z scored monthly data: global surface temperature (red curve) compared-

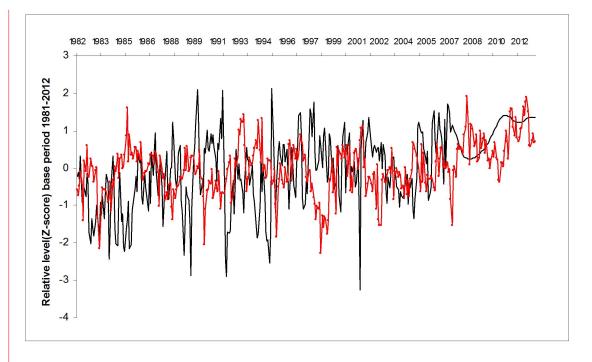
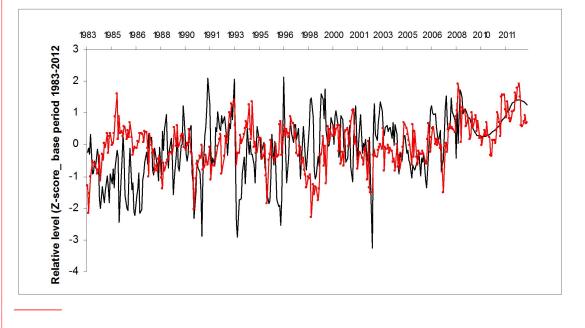
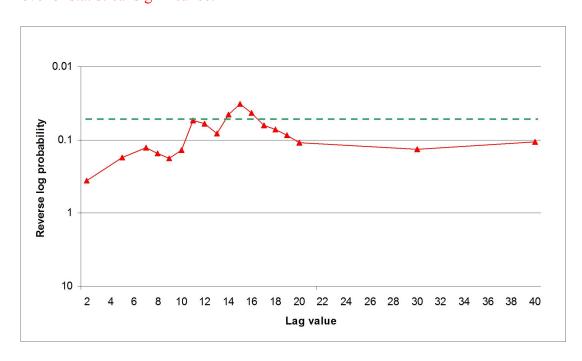


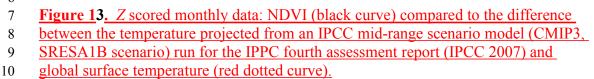
Figure 13. *Z* scored monthly data: NDVI (red curve) compared to first-derivative atmospheric CO₂-smoothed by two 13 month moving averages (black dotted curve).

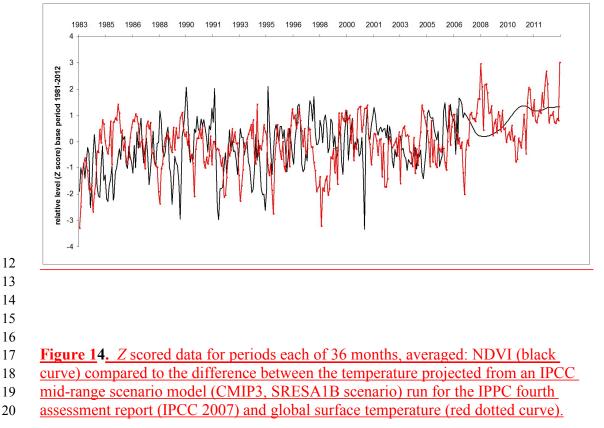
- Figure 14. Z scored monthly data: NDVI (black eurve) compared to the difference between the observed level of atmospheric CO₂ and global surface temperature (red-
- 12 between the observed level of atmospheric CC
 13 dotted curve).

Figure 15. Z scored monthly data: NDVI (black curve) led by 17 months compared to the difference between the observed level of atmospheric CO₂ and global surface temperature (red dotted curve). Months of lead of the NDVI series indicated by OLS dynamic regression modelling




Figure 16. Reverse log probability values (red dotted curve) for lags generated by
 extensive search of the lag space from lag 2 to lag 40 for the null hypothesis that


17 NDVI does not Granger-cause the difference between the observed level of-


1 atmospheric CO₂ and global surface temperature. Green dashed line represents 0.05-

2 level of statistical significance.

