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1 Overall Response2
3

The referee’s comments are again valued and we have attempted to follow up the4
points raised we hope to some degree comprehensively.5

6
In our response we first provide the referee’s comments in their entirety (pages 2 to 5).7

8
We then (from page 5 onward) provide our responses to individual comments9

2 Referee’s Comments10

Referee’s comments on11
“Granger causality from the first and second derivatives of atmospheric CO2 to12
global surface temperature, ENSO and NDVI”13
By L. M. W. Leggett and D. A. Ball14

15
This is a rather different paper from the first version on which I have commented for16
ACP. It is much longer and there is a complete new section dealing with “NDVI”,17
whose relationship with the second difference of CO2 concentration is investigated.18

19
My views are mixed. In principle these results are very interesting. In particular, the20
findings of various previous studies are re-iterated and confirmed, specifically that21
there is no relationship, in the relevant historical data, between surface temperature22
and the level of CO2 concentration in the atmosphere, while a positive relation does23
exist between temperature and the difference of CO2.24

25
The significance of these facts (if they are facts) can hardly be underestimated, since26
they contradict the hypothesis on which (what we may call) “global warming27
alarmism” is predicated. , Evidently, the worst that continuously increasing CO2 has28
done is to raise temperature by a fixed amount, which observation suggest is pretty29
small. If this pattern continues into the future it is, clearly, not an alarming prospect.30
Does this finding place the authors among the “97% of scientists who believe in31
anthropogenic global warming” (as President Obama and others have it) or the other32
3%? I’m not clear about this, but these are interesting questions, to be sure.33

34
The authors have developed their methodology with care, and their literature35
references show that they have a good knowledge of the relevant econometrics and36
time series literature. One can therefore put some faith in their empirical findings.37
Nonetheless there are some aspects of their analysis that worry me, in particular the38
“smoothing” of series by moving averages.39

40
41
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Note that although these are monthly series, smoothing is not the same thing as5
seasonal adjustment, and its effects on test outcomes are unclear. The attached plot,6
which I’ve prepared, shows 600 independent Gaussian drawings, and also the series7
obtained by applying two successive 13-point moving average transformations to8
these points. The time series properties of these two series can hardly be treated as9
equivalent, especially for testing sensitive questions such as phase shifts of one or two10
periods. In particular, the results of unit root tests are not going to be comparable.11
Smoothing exaggerates stochastic trends by suppressing high frequency components.12
I really don’t think we can take tests based on these smoothed series at face value.13

14
The authors must first explain coherently why they regard these transformations as15
necessary to the analysis. At best, they seem to be claiming that the effect is to make a16
nicer plot, which is hardly adequate. Second, if they convince at the first step they17
need to show the effects of their transformations by comparing their test results for the18
smoothed and unsmoothed series.19

20
Something else that concerned me in these causality tests is that although the series in21
question are being treated as stationary (acceptably in my view) there are still22
“deterministic” upward drifts in the series. These need to be fitted separately from the23
higher frequency components, to capture the required “constant conjunction”24
specified in the definition of causality, and ensure that this is not spurious. (Note that25
every linear trends is correlated with every other, by construction!) The regressions26
ought to contain trend terms so that the data are, in effect, de-trended, before27
correlations are computed. This does not appear to have been done, and it should be.28

29
My third major comment concerns the new section on NDVI. Interesting correlations30
for sure (subject to the caveats above), but the discussion goes far out on a limb and is,31
for my taste, unacceptably speculative. First, the series constructed as the difference32
of standardized CO2 and standardized temperature is a proxy for anything only by a33
severe stretch of the imagination. Surely, GCMs must (at best) link temperature34
projections to a particular fraction of projected CO2. (See comment 10 below.) Even if35
we accept the suggestion that GCM projections are linear in CO2 concentration, the36
simple difference between CO2 and temperature may or may not capture (in the37
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“constant conjunction” sense) the true forecast discrepancy. Hence, the correlation1
with NDVI is either interesting by chance, or spurious. I would need firmer evidence2
to be convinced. The discussion in Section 5 reads like off-the-cuff theorising of the3
most casual sort. Of course, there is ample evidence, supported by sound theory, for4
the hypothesis that higher CO2 concentrations are “greening” the planet. To that extent,5
the authors have a good point. However, it seems to me that their model (involving6
the second differences of CO2, etc.) needs to be much more carefully derived and7
argued than it is at present. It’s not good enough to simply report a curious correlation8
and extrapolate from it a whole theory of the biosphere, This seems like blatant data9
mining.10

11
My suggestion to the authors is to subtract the section on NDVI, as ample material for12
a new paper although a good deal of additional work is called for. Then, to redraft the13
first part of the paper taking note of the various comments offered here.14

15
I recommend in particular that plots of the raw data series are shown in the paper, so16
that the effects of the authors’ manipulations can be judged (and also, ideally, the17
series be made available for download).18

19
20

Detailed Comments21
22

1. The paragraph in lines 19-25 on page 8 is incoherent. Please redraft. (There are23
various other places where the quality of exposition could be improved. Please redraft24
with careful attention to readability.)25

26
2. Lines 13-21 on page 9 are a reworking of the preceding paragraph. Please delete27
whichever is the unintended version.28

29
3. (Page 11, lines 26-27). The point about SOI versus ENSO could be better made. Is30
“more valid” a better reason for the preference than “simpler”? It would be very31
helpful to readers to give brief formal definitions of both these series. How is ENSO32
constructed? I don’t know.33

34
4. (Page 12, lines 9 and 30) The use of the term “derivative” as a synonym for35
“difference” is, to this reader, an irritating tic. “Derivative” suggests that the models36
in question are discrete approximations to continuous time relations, but nowhere are37
these relations specified or the approximations formalized. Indeed, the tests for38
Granger causality, of the form given, could not be formalized at all in a continuous39
time framework! Let’s be clear that the models presented here are explicitly40
formulated for discrete sequences of observations. Differences, like lags, are an41
inherent feature of these models, not approximations to anything.42

43
5. (Page 13, lines 7-16) Please see the main discussion above.44

45
6. There are lots of missing references in the paper. See in particular pages 13, lines46
30-31, and 14, lines 4-6, but there are others.47

48
7. (Page 15, lines 9-10) Note that BLUE is a property pertaining to the classical49
(fixed regressor) regression model, which is not appropriate to time series.50
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Autocorrelated disturbances may result in bias when the model includes lagged1
endogenous variables among the regressors.2

3
8. (Page 18) The discussion of the “I(d)” categorization of series on this page is totally4
muddled. Beenstock et al. find temperature to be I(1) and CO2 (level) to be I(2).5
Please redraft with care.6

7
9. The application of the Toda-Yamamoto result is most interesting, but it needs to be8
seen in context. These authors propose tests for a VAR in levels with an unknown9
number of unit roots. However, please note that in such a model, Granger causality of10
an I(1) series by an I(2) series is ruled out by construction. A model generating11
variables with different orders of integration can only embody long-run relations12
between variables transformed to have the same orders of integration: in particular,13
between the level of an I(1) and the differences of an I(2), or between the level of an14
I(0) and the differences of an I(1)). (To verify this statement, consider the VAR ( ) A L15
x u t t and verify the properties that A L ( ) must satisfy to ensure that A L ( )116
contains different powers of the factor 1 L appearing in different rows.) The outcome17
of the reported test is inevitable, given the other reported results. I guess it does not18
harm to report it, but with suitable caveats.19

20
10. (Page 27, lines 11-13) The regression of (say) x  ay on z is clearly different for21
different choices of constant a. It could be significant (or cointegrated in the22
nonstationary case) for some value of a, and not for others. The case that the23
projection error of a GCM can be captured as the simple difference of the two24
standardized series needs to be much more carefully argued.25

26
11. My guess is that “the APCD paper” referred to in Page 30, line 20, and elsewhere27
refers to the first version of the present paper. If so, this needs to be made explicit.28

29

3 Author Responses to Individual Comments30

The comments are addressed as follows (specific Comments content quoted verbatim31
citing Comments page number and indented).32

As they all relate to smoothing and seasonal adjustment we group the following points33
from the comments together and, for convenience for response, in the following order.34

Referee’s comments page 1. Note that although these are monthly series,35
smoothing is not the same thing as seasonal adjustment…36

37
Page 2. The authors must first explain coherently why they regard these38
transformations as necessary to the analysis. At best, they seem to be claiming39
that the effect is to make a nicer plot, which is hardly adequate.40

41
Page 1. …(the) effects (of smoothing) on test outcomes are unclear.42

43
Page 2. …especially for testing sensitive questions such as phase shifts of one44
or two periods.45
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1
Page 2. In particular, the results of unit root tests are not going to be2
comparable3

4
Page 2. I recommend in particular that plots of the raw data series are shown5
in the paper, so that the effects of the authors’ manipulations can be judged6
(and also, ideally, the series be made available for download).7

8
Page 2. … they need to show the effects of their transformations by9
comparing their test results for the smoothed and unsmoothed series.10

11

Comment 5 from the initial review by the referee (C10403, 22 December12
2014): The only legitimate way to conduct these kind of tests, where timing13
shifts of one or two months is critical, is on the raw observations, where14
extraneous data features such as seasonality have been accounted for by15
effective modelling. This may be tricky, but in the case of a seasonal pattern it16
might, for example, be effective to employ polynomial dummy variables to17
explain seasonal changes…18

19
Page 2. I really don’t think we can take tests based on these smoothed series at20
face value.21

22
Page 2…especially for testing sensitive questions such as phase shifts of one23
or two periods.24

25
Page 2. Smoothing exaggerates stochastic trends by suppressing high26
frequency components.27

28
29

These are now dealt with individually in the order listed above.30

31

Referee comment page 1. Note that although these are monthly series, smoothing is32
not the same thing as seasonal adjustment…33

It is noted that in the econometrics realm, the draft current update to Chapter 7.34
Seasonal Adjustment of the IMF Quarterly National Accounts Manual 2001 (Bloem et35
al., 2001) http://www.imf.org/external/pubs/ft/qna/ considers moving average36
smoothing to be an established form of seasonal adjustment, stating as follows (page37
4):38

Several methods have been developed to remove seasonal patterns from a39
series. Broadly speaking, they can be divided into two groups: moving average40
methods and model-based methods.41

http://www.imf.org/external/pubs/ft/qna/
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Referee comment page 2. The authors must first explain coherently why they regard1
these transformations as necessary to the analysis. At best, they seem to be claiming2
that the effect is to make a nicer plot, which is hardly adequate.3

4
Our explanation is as follows, again taken from the update to Bloem et al. (2001).5
Page 3:6

7
8
9

Seasonal adjustment of the QNA allows a timely assessment of the current10
economic conditions and identification of turning points in key11
macroeconomic variables, such as quarterly GDP. Economic variables are12
influenced by systematic and recurrent within-a-year patterns due to weather-13
and social- factors, commonly referred to as the seasonal pattern (or14
seasonality). When seasonal variations dominate period-to-period changes in15
the original series (or seasonally unadjusted series), it is difficult to identify16
non-seasonal effects, such as long-term movements, cyclical variations, or17
irregular factors, which carry the most important economic signals for QNA18
users.19

20
Seasonal adjustment is the process of removing seasonal and calendar effects21
from a time series. This process is performed by means of analytical22
techniques that break down the series into components with different dynamic23
features. These components are unobserved and have to be identified from the24
observed data based on a priori assumptions on their expected behavior. In a25
broad sense, seasonal adjustment comprises the removal of both within-a-year26
seasonal movements and the influence of calendar effects (such as the27
different number of working days, or moving holidays). By removing the28
repeated impact of these effects, seasonally adjusted data highlight the29
underlying long-term trend and short-run innovations in the series.30

31
32

More details on the moving average methods and model-based methods are as follows33
(update to Bloem et al. (2001), Page 4):34

35
(Moving average methods) derive the seasonally adjusted data by applying a36
sequence of moving average filters to the original series and its37
transformations. These methods are all variants of the X-11 method, originally38
developed by the U.S. Census Bureau (Shiskin and others, 1967). The current39
version of the X-11 family is X-13ARIMA-SEATS (X-13A-S), which will40
often be referred to in this chapter. Model-based methods derive the41
unobserved components in accord with specific time series models, primarily42
autoregressive integrated moving average (ARIMA) models. The most popular43
model-based seasonal adjustment method is TRAMO-SEATS,6developed by44
the Bank of Spain (Gomez and Maravall, 1996).45

46
TRAMO is the acronym for Time Series Regression with Autoregressive47
integrated moving average (ARIMA) Errors and Missing Observations.48
SEATS stands for Signal Extraction for ARIMA Time Series.49

50
51
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Referee comment page 1. …(the) effects (of smoothing) on test outcomes are unclear.1
2

Referee comment page 2. In particular, the results of unit root tests are not going to3
be comparable.4

5
There is an extensive literature dealing with the effect that seasonal adjustment has on6
standard tests for unit roots. A short, but very clear discussion of the early part of this7
literature is provided by Maddala and Kim (1998, pp. 364-365). One important result8
is that, in finite samples: "the ADF and Philliups-Perron statistics for testing a unit9
root will be biased towards nonrejection of the unit root null if filtered data are used."10
(Here, the term "filtered" refers to "seasonally adjusted".)11

12
In other words, these tests have lower power in finite samples when applied to13
seasonally adjusted data.14

15
However the asymptotic (large sample) properties of the ADF and similar tests have16
been shown to be unaffected by seasonally adjusting the data.17

18
What is a large sample? In assessing performance of unit root tests, Narayan and Popp19
(2010) used sample sizes of T = 50, 100, 300, and 500.They showed that over with 10020
data points, key statistics start to become asymptotic. Our sample size is T = over 600.21

Results below (Table 14) based on both adjusted and unadjusted data bear this out22
empirically.23

One way of interpreting these results is that we have demonstrated that our sample24
size is sufficiently large for this potential loss of power of unit root tests to be a non-25
issue in our study.26

27

Referee comments page 2. I recommend in particular that plots of the raw data28
series are shown in the paper, so that the effects of the authors’ manipulations can be29
judged (and also, ideally, the series be made available for download).30

31
Referee comments page 2. … they need to show the effects of their transformations32
by comparing their test results for the smoothed and unsmoothed series.33

Referee comment 5 from the initial review by the referee (C10403, 22 December34
2014): The only legitimate way to conduct these kind of tests, where timing shifts of35
one or two months is critical, is on the raw observations, where extraneous data36
features such as seasonality have been accounted for by effective modelling. This may37
be tricky, but in the case of a seasonal pattern it might, for example, be effective to38
employ polynomial dummy variables to explain seasonal changes…39

40
In response to the above three comments, in the following section the raw and then41
variously seasonally adjusted data (including by both moving averages and42
modelling), are both plotted (Figures 1 to 13) and then the core correlational analysis43
conducted in the paper carried out and statistically tested (Tables 1 to 13).44
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1
This analysis shows the results for various forms of adjustment, and in particular2
carries out (Figures 9 and 10; Tables 9 and 10) seasonal adjustment by modelling as3
discussed by the referee in the initial review (C10403, 22 December 2014). This4
seasonal adjustment using modelling is done by means of the TRAMO/SEATS5
model. It is run using raw monthly data on the levels of atmospheric CO2.6

7
For comparison, the result from a second, published, seasonal adjustment of8
atmospheric CO2 time series by modelling is also presented (NOAA: seasonally9
adjusted CO2 data series from10
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt ; its modelling method11
is described in Thoning et al. (1989). Results are in Figures 7 and 8 and Tables 7 and12
8.13

14
Discussion of the results of the analyses in this section in connection with the15
referee’s comments occur after Table 14: Summary of dynamic regression results.16

17
18

Abbreviations used in figures and tables: FD - first difference; SD - second difference;19
HadGL - HadCrut4 global surface temperature; CO2_NOAAseascorr - seasonally20
corrected CO2 data published by NOAA; TRAMO: seasonally corrected CO2 data21
resulting from TRAMO/SEATS method.22

23
24

Monthly data, ZFDCO2 no smoothing25

26
Figure 1. Z scored monthly data: First difference atmospheric CO2 (black dotted curve)27

compared to global surface temperature (red curve)28
29

Table 1: OLS, using observations 1-65430
Dependent variable: ZHad4Gl31

32
Coefficient Std. Error t-ratio p-value

const 0.00464901 0.0144919 0.3208 0.74847
led1mZHad4Gl 0.565413 0.0375822 15.0447 <0.00001 ***

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt
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Led2mZHad4Gl 0.260223 0.0424148 6.1352 <0.00001 ***
led4mZHad4Gl 0.131589 0.0337038 3.9043 0.00010 ***
ZFDCO2 0.0265 0.014517 1.8254 0.06839 *

1
Mean dependent var −0.006217 S.D. dependent var 0.998938
Sum squared resid 89.08538 S.E. of regression 0.370494
R-squared 0.863285 Adjusted R-squared 0.862442
F(4, 649) 1024.526 P-value(F) 1.0e-278
Log-likelihood −276.1073 Akaike criterion 562.2147
Schwarz criterion 584.6302 Hannan-Quinn 570.9067
rho −0.002069 Durbin-Watson 2.004137

2
LM test for autocorrelation up to order 11 -3
Null hypothesis: no autocorrelation4
Test statistic: LMF = 1.190885
with p-value = P(F(11,638) > 1.19088) = 0.2895436

7

8

9

Monthly data, 13mmaZFDCO2 smooth10
11

12
13

Figure 2. Z scored monthly data: First difference atmospheric CO2 smoothed with two14
13-month moving averages (black dotted curve) compared to global surface15
temperature (red curve)16

17
18
19

Table 2: OLS, using observations 1-64020
Dependent variable: ZHad4Gl21

22
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Coefficient Std. Error t-ratio p-value
const 0.00428239 0.0147572 0.2902 0.77177
led2mZ2x13mFD
CO2

0.102015 0.0216835 4.7047 <0.00001 ***

Led1mZHad4Gl 0.564726 0.0377431 14.9623 <0.00001 ***
led2mZHad4Gl 0.306035 0.0374109 8.1804 <0.00001 ***

1
Mean dependent var 0.003075 S.D. dependent var 1.002326
Sum squared resid 88.63759 S.E. of regression 0.373319
R-squared 0.861930 Adjusted R-squared 0.861279
F(3, 636) 1323.454 P-value(F) 6.7e-273
Log-likelihood −275.5088 Akaike criterion 559.0175
Schwarz criterion 576.8634 Hannan-Quinn 565.9444
rho −0.011403 Durbin-Watson 2.022743

2
LM test for autocorrelation up to order 20 -3
Null hypothesis: no autocorrelation4
Test statistic: LMF = 1.10285
with p-value = P(F(20,616) > 1.1028) = 0.341326

7

Annual data, FDCO2 and Had4Gl8
9

10

11
Figure 3. Z scored annual data: First difference atmospheric CO2 smoothed with two12
13-month moving averages (black dotted curve) compared to global surface13
temperature (red curve)14

15
16
17

Table 3: OLS, using observations 1-5218
Dependent variable: ZAnnHad4Gl19

20
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Coefficient Std. Error t-ratio p-value
const 0.0215094 0.0504468 0.4264 0.67170
ZAnn2x13mFDCO
2

0.447195 0.0609389 7.3384 <0.00001 ***

led1yZAnnHad4Gl 0.624044 0.0609126 10.2449 <0.00001 ***
1

Mean dependent var 0.017148 S.D. dependent var 1.001857
Sum squared resid 6.465283 S.E. of regression 0.363242
R-squared 0.873699 Adjusted R-squared 0.868544
F(2, 49) 169.4814 P-value(F) 9.65e-23
Log-likelihood −19.58008 Akaike criterion 45.16017
Schwarz criterion 51.01390 Hannan-Quinn 47.40435
rho −0.099887 Durbin-Watson 2.147075

2
LM test for autocorrelation up to order 11 -3
Null hypothesis: no autocorrelation4
Test statistic: LMF = 0.8945295
with p-value = P(F(11,38) > 0.894529) = 0.5538976

7

Monthly data: Second difference CO2 and first8

difference temp, No smoothing9
10

11
Figure 4. Z scored monthly data: second-difference atmospheric CO2 (black dotted12
curve) compared to first-difference global surface temperature (red curve)13

14
15

Table 4: OLS, using observations 1-65016
Dependent variable: ZFDHad4GL17

18
Coefficient Std. Error t-ratio p-value

const 0.00276484 0.0359273 0.0770 0.93868
Led3mZSDCO2 0.0986082 0.0359743 2.7411 0.00629 ***



13

Led1mZFDHad4G
L

−0.418447 0.0386966 -10.8135 <0.00001 ***

Led2mZFDHad4G
L

−0.146011 0.0415859 -3.5111 0.00048 ***

Led3mZFDHad4G
L

−0.140405 0.0387674 -3.6217 0.00032 ***

1
Mean dependent var 0.002485 S.D. dependent var 1.003691
Sum squared resid 541.1463 S.E. of regression 0.915962
R-squared 0.172305 Adjusted R-squared 0.167172
F(4, 645) 33.56815 P-value(F) 1.84e-25
Log-likelihood −862.7432 Akaike criterion 1735.486
Schwarz criterion 1757.871 Hannan-Quinn 1744.169
rho −0.010671 Durbin-Watson 2.021077

2
LM test for autocorrelation up to order 11 -3
Null hypothesis: no autocorrelation4
Test statistic: LMF = 1.287675
with p-value = P(F(11,634) > 1.28767) = 0.2270986

7

Monthly data: Second difference CO2 and first8

difference temp, 3x13mma smoothing9
10
11

12
Figure 5. Z scored monthly data smoothed by 13-month moving average: second-13
difference atmospheric CO2 (black dotted curve) compared to first-difference global14
surface temperature (red curve)15

16
17

Table 5: OLS, using observations 1-65018
Dependent variable: Z13mmaFDZHad4Gl19
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1
Coefficient Std. Error t-ratio p-value2

const 0.0201245 0.0260442 0.7727 0.439983
Z13mmaSDZ2x13mCO2 0.166377 0.0299439 5.5563 <0.00001 ***4
led1mZ13mmaFDZHad4Gl 0.485095 0.038189 12.7025<0.00001 ***5
led2mZ13mmaFDZHad4Gl 0.218271 0.0376337 5.7999 <0.00001 ***6

7
Mean dependent var 0.061759 S.D. dependent var 1.0123368
Sum squared resid 288.7032 S.E. of regression 0.6654299
R-squared 0.569909 Adjusted R-squared 0.5679310
F(3, 652) 287.9859 P-value(F) 5.40E-11911
Log-likelihood −661.6138 Akaike criterion 1331.22812
Schwarz criterion 1349.172 Hannan-Quinn 1338.18513
rho 0.013684 Durbin-Watson 1.97194814

15
LM test for autocorrelation up to order 11 -16
Null hypothesis: no autocorrelation17
Test statistic: LMF = 1.518418
with p-value = P(F(11,641) > 1.5184) = 0.12015419

20
21

Annual data: Second difference CO2 and first22

difference temp23

24

25
Figure 6. Z scored annual data: second-difference atmospheric CO2 (black dotted26
curve) compared to first-difference global surface temperature (red curve)27

28

29
Table 6: OLS, using observations 1-5230
Dependent variable: ZFDAnnHad4Gl31

32
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Coefficient Std. Error t-ratio p-value1
const 0 0.100406 0 12
ZSDAnnCO2 0.697174 0.101385 6.8765 <0.00001 ***3

4
Mean dependent var 0 S.D. dependent var 15
Sum squared resid 26.21139 S.E. of regression 0.7240366
R-squared 0.486051 Adjusted R-squared 0.4757727
F(1, 50) 47.28595 P-value(F) 9.36E-098
Log-likelihood −55.97351 Akaike criterion 115.9479
Schwarz criterion 119.8495 Hannan-Quinn117.443110
rho −0.289599 Durbin-Watson 2.56175211

12
13

LM test for autocorrelation up to order 10 -14
Null hypothesis: no autocorrelation15
Test statistic: LMF = 1.8367716
with p-value = P(F(10,40) > 1.83677) = 0.085060817

18
19
20
21

Monthly data, FDCO2 NOAA seascorr, no further22

smoothing23

24

25
Figure 7. Z scored monthly data, : first-difference atmospheric CO2 (NOAA26
seasonally corrected) (black dotted curve) compared to level of global surface27
temperature (red curve)28

29
Table 7: OLS, using observations 1-64930
Dependent variable: ZHad4Gl31

32
Coefficient Std. Error t-ratio p-value33
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const 0.00164552 0.0164019 0.1003 0.920121
Led5mZFDCO2 seascorr0.0337206 0.0164708 2.0473 0.04103 **2
led1mZHad4Gl 0.685278 0.0380884 17.9918 <0.00001 ***3
Led1mZHad4Gl 0.237719 0.0381737 6.2273 <0.00001 ***4

5
Mean dependent var 0.005216 S.D. dependent var 1.0064166
Sum squared resid 112.5346 S.E. of regression 0.4176997
R-squared 0.828542 Adjusted R-squared 0.8277458
F(3, 645) 1038.955 P-value(F) 1.90E-2469
Log-likelihood −352.3114 Akaike criterion 712.622910
Schwarz criterion 730.5246 Hannan-Quinn 719.56711
rho 0.009035 Durbin-Watson 1.95937212

13
LM test for autocorrelation up to order 11 -14
Null hypothesis: no autocorrelation15
Test statistic: LMF = 3.3867216
with p-value = P(F(11,634) > 3.38672) = 0.00014209317

18
19
20

Monthly data, FDCO2seascorr 4x3mma smooth21
22

23
Figure 8. Z scored monthly data: first-difference atmospheric CO2 (NOAA seasonally24
corrected) smoothed by 4 3month moving averages (black dotted curve) compared to25
level of global surface temperature (red curve)26

27
28

Table 8: OLS, using observations 1-63229
Dependent variable: ZHad4Gl30

31
Coefficient Std. Error t-ratio p-value32

const 0.00607628 0.0149984 0.4051 0.6855233
Z4x3mmaFDCO2seascorr 0.0377393 0.0173021 2.1812 0.02954 **34
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l1ZHad4Gl 0.565126 0.0396178 14.2644 <0.00001 ***1
l2ZHad4Gl 0.255092 0.0456426 5.5889 <0.00001 ***2
l3ZHad4Gl −0.0148978 0.0456096 -0.3266 0.744053
l4ZHad4Gl 0.130828 0.0394726 3.3144 0.00097 ***4

5
Mean dependent var 0.004336 S.D. dependent var 1.0014436
Sum squared resid 88.96325 S.E. of regression 0.376987
R-squared 0.859418 Adjusted R-squared 0.8582958
F(5, 626) 765.3852 P-value(F) 6.70E-2649
Log-likelihood −277.1987 Akaike criterion 566.397410
Schwarz criterion 593.0907 Hannan-Quinn 576.764311
rho −0.008269 Durbin-Watson 2.01652812

13
14

LM test for autocorrelation up to order 11 -15
Null hypothesis: no autocorrelation16
Test statistic: LMF = 1.3834417
with p-value = P(F(11,615) > 1.38344) = 0.17607918

Monthly data, FDCO2 TRAMO seasonal19

adjustment no further smooth20

21
Figure 9. Z scored monthly data: first-difference atmospheric CO2 (TRAMO22

seasonally corrected) (black dotted curve) compared to level of global surface23
temperature (red curve)24

25
26

Table 9: OLS, using observations 1-54127
Dependent variable: ZHad4Gl28

29
30

Coefficient Std. Error t-ratio p-value31
const 0.00580134 0.0165292 0.351 0.7257432
Led1ZFDCO2_TRAMO 0.0169459 0.016621 1.0195 0.308433
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L1ZHad4Gl 0.594865 0.0405482 14.6706 <0.00001 ***1
L2ZHad4Gl 0.342522 0.0404153 8.4751 <0.00001 ***2

3
Mean dependent var 0.008321 S.D. dependent var 0.9964244
Sum squared resid 79.36784 S.E. of regression 0.3844465
R-squared 0.851966 Adjusted R-squared 0.8511396
F(3, 537) 1030.179 P-value(F) 3.00E-2227
Log-likelihood−248.4681 Akaike criterion 504.93618
Schwarz criterion 522.1098 Hannan-Quinn511.65229
rho −0.020425 Durbin-Watson 2.03577210

11
LM test for autocorrelation up to order 11 -12
Null hypothesis: no autocorrelation13
Test statistic: LMF = 1.6596714
with p-value = P(F(11,526) > 1.65967) = 0.079299715

16
17
18

Monthly data, FDCO2 TRAMO seasonal19

adjustment plus further 4X3mma smoothing20

21
22

Figure 10. Z scored monthly data: first-difference atmospheric CO2 (TRAMO23
seasonally corrected) smoothed by three 3-month moving averages (black dotted24
curve) compared to level of global surface temperature (red curve)25

26
27

Table 10: OLS, using observations 1-54028
Dependent variable: ZHad4Gl29

30
Coefficient Std. Error t-ratio p-value31

const −0.0518209 0.0345242 -1.501 0.1339432
Led1m3x3mmaFDCO2_TRAMO 0.50309 0.238916 2.1057 0.03569 **33
Led1mZHad4Gl 0.589466 0.040646 14.5024 <0.00001 ***34
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Led2mZHad4Gl 0.333687 0.0404246 8.2545 <0.00001 ***1
2

Mean dependent var 0.133697 S.D. dependent var 0.9887033
Sum squared resid 77.36309 S.E. of regression 0.3799134
R-squared 0.853171 Adjusted R-squared 0.8523495
F(3, 536) 1038.164 P-value(F) 8.70E-2236
Log-likelihood −241.6008 Akaike criterion 491.20167
Schwarz criterion 508.3678 Hannan-Quinn 497.91528
rho −0.021301 Durbin-Watson 2.0411039

10
LM test for autocorrelation up to order 11 -11
Null hypothesis: no autocorrelation12
Test statistic: LMF = 1.6547513
with p-value = P(F(11,525) > 1.65475) = 0.080509714

15
16
17
18
19

Monthly data, ZFDHad4Gl and reverse SOI, no20

smoothing21

22

23
Figure 11. Z scored monthly data: first-difference atmospheric CO2 (TRAMO24
seasonally corrected) smoothed by three 3-month moving averages (black dotted25
curve) compared to level of global surface temperature (red curve)26

27
28

Table 11: OLS, using observations 1-164729
Dependent variable: ZReverseSOI30

31
Coefficient Std. Error t-ratio p-value32

const 0.000821969 0.0182354 0.0451 0.9640533
ZFDZHad4Gl 0.0551914 0.018288 3.0179 0.00258 ***34
L1ZReverseSOI 0.47422 0.0244903 19.3636 <0.00001 ***35
L2ZReverseSOI 0.187349 0.0266996 7.0169 <0.00001 ***36
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L3ZReverseSOI 0.0874809 0.0244789 3.5737 0.00036 ***1
2

Mean dependent var 0.002695 S.D. dependent var 1.0004093
Sum squared resid 899.2797 S.E. of regression 0.740054
R-squared 0.454104 Adjusted R-squared 0.4527745
F(4, 1642) 341.4746 P-value(F) 5.50E-2146
Log-likelihood −1838.678 Akaike criterion 3687.3567
Schwarz criterion 3714.39 Hannan-Quinn 3697.388
rho −0.007240 Durbin-Watson 2.012959

10
LM test for autocorrelation up to order 11 -11
Null hypothesis: no autocorrelation12
Test statistic: LMF = 1.6965713
with p-value = P(F(11,1631) > 1.69657) = 0.068514414

15
16
17
18

Monthly data, ZFDHad4Gl smoothed by 13mma,19

and reverse SOI20

21

22
Figure 12. Z scored monthly data: led 3 month first-difference global surface23
temperature smoothed by a 13-month moving average (black dotted curve) compared24
to level of (reverse) Southern Oscillation Index (red curve)25

26
27

Table 12 : OLS, using observations 1-164828
Dependent variable: ZReverseSOI29

30
Coefficient Std. Error t-ratio p-value31
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const 0.000305 0.0179903 0.017 0.986461
Led3mZ13mmaFDHad4Gl 0.14137 0.019169 7.374 <0.00001 ***2
L1ZReverseSOI 0.442205 0.0245285 18.028 <0.00001 ***3
L2ZReverseSOI 0.172003 0.0264475 6.5036 <0.00001 ***4
L3ZReverseSOI 0.0818258 0.0241703 3.3854 0.00073 ***5

6
Mean dependent var 0.002074 S.D. dependent var 1.00047
Sum squared resid 876.331 S.E. of regression 0.73038
R-squared 0.468372 Adjusted R-squared 0.46709
F(4, 1643) 361.8771 P-value(F) 1.50E-210
Log-likelihood −1817.994 Akaike criterion 3645.911
Schwarz criterion 3673.024 Hannan-Quinn 3656.012
rho −0.006071 Durbin-Watson 2.01010213

14
LM test for autocorrelation up to order 11 -15
Null hypothesis: no autocorrelation16
Test statistic: LMF = 1.1548317
with p-value = P(F(11,1632) > 1.15483) = 0.3141518

Annual data, ZFDHad4Gl and reverse SOI19

20

21
Figure 13. Z annual data: first-difference global surface temperature (black dotted22
curve) compared to level of (reverse) Southern Oscillation Index (red curve)23

24

25
Table 13: OLS, using observations 1-14726
Dependent variable: reverseAnnSOI27

28
Coefficient Std. Error t-ratio p-value29

const 0 0.0738511 0 130
FDAnnHad4Gl 0.451394 0.0741036 6.0914 <0.00001 ***31
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1
Mean dependent var 0 S.D. dependent var 12
Sum squared resid 116.2516 S.E. of regression 0.8953973
R-squared 0.203756 Adjusted R-squared 0.1982654
F(1, 145) 37.10503 P-value(F) 9.57E-095
Log-likelihood −191.3353 Akaike criterion 386.67066
Schwarz criterion 392.6514 Hannan-Quinn 389.10077
rho 0.121635 Durbin-Watson 1.7505048

9
LM test for autocorrelation up to order 11 -10
Null hypothesis: no autocorrelation11
Test statistic: LMF = 0.66979812
with p-value = P(F(11,134) > 0.669798) = 0.76495313

14

15
16

Table 14: Summary of dynamic regression results17
18

Condition

FDCO2 or
FDHad4Gl
partial
regression
coefficient

Significance
of
independent
variable
(FDCO2,
etc.) partial
regression
coefficient
(p-value)

Adjusted
R-
square
of entire
model

LMF p-
value
(green
indicates
no
significant
auto-
correlation
at order
tested)

Monthly: FDCO2 and
temperature
(Hadcrut4Gl)

Monthly,
no filter

0.027 0.0684 * 0.862

0.290

Monthly,
filtered
(2x13mma)

0.102 <0.00001 *** 0.861

0.341

Monthly:
FDCO2_NOAAseascorr
and Hadcrut4Gl

Monthly,
no filter

0.034 0.0410 ** 0.828

0.00014

Monthly,
filtered
(4x3mma)

0.038 0.02954 ** 0.858

0.176

Monthly:
FDCO2_TRAMO and
Had4Gl

Monthly,
no filter

0.017 0.308 0.851

0.079

Monthly,
filtered
(4x3mma)

0.503 0.0357 ** 0.852

0.081
Annual (no seasonality to filter) FDCO2
and Hadcrut4Gl

0.447 <0.00001 *** 0.862

0.554

SDCO2 and FDHad4Gl

Monthly,
no filter

0.099 0.00629 *** 0.167

0.227

Monthly,
filtered
(2x13mma)

0.166 <0.00001 *** 0.568

0.120

Annual (no
seasonality
to filter)

0.697 <0.00001 *** 0.476

0.085
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FD temperature and
(reverse) SOI

Monthly,
no filter

0.057 0.00189 *** 0.453

0.053

Monthly,
filtered
(2x13mma)

0.141 <0.00001 *** 0.466

0.239

Annual (no
seasonality
to filter)

0.451 <0.00001 *** 0.198

0.562
1
2

Comment:3
Thirteen analyses are summarised in the table. In all but one case, models were4
achieved with no significant autocorrelation remaining. The green highlighting shows5
results which are both statistically significant and show differenced CO2 correlated6
with temperature, or differenced temperature correlated with the SOI.7
Of the 12 cases without significant autocorrelation, 10 are green highlighted, and one8
is light green. In other words, most of the approaches assessed above (i) support the9
findings of the paper, and (ii) the use of its particular seasonal smoothing method.10

11
In more detail, it is seen firstly that, even using raw data, in three of the four instances12
assessed, the findings made in the paper using its smoothed data are supported.13

14
Secondly, the highest partial regression coefficient p-value is seen for the smoothing15
for first-difference CO2 used in the paper, 2x13mma.16

17
The question of the best method to use is explored further using cross-correlogram18
analysis in Table 15 and Figure 15.19

20
Table 15 also enables further assessment of the question of whether first difference21
CO2 leads or lags global surface temperature. (Re Referee comment Page 2.22
“…especially for testing sensitive questions such as phase shifts of one or two23
periods.”)24

25
26

Table 15: Cross-correlogram analyses. Maximum correlation achieved for each27
analysis is highlighted in green28

29

Correlation between:

Lag

ZFDCO2
and
Had4Gl

ZFDCO2
NOAA
seas
corr
and
Had4gl

Z4x3mmaFDCO2
NOAA seas corr
and had4gl

Z2x13mFDCO2
and Had4gl

FDCO2_TRAMO
and Had4Gl

4x3mmaFDCO2_TRAMO
and Had4Gl

-60 0.017 0.070 0.235 0.420 0.058 0.156
-59 0.011 0.058 0.246 0.434 0.046 0.165
-58 0.013 0.059 0.266 0.449 0.036 0.178
-57 0.015 0.079 0.291 0.466 0.061 0.196
-56 0.005 0.077 0.317 0.483 0.062 0.215
-55 0.002 0.102 0.335 0.501 0.084 0.230
-54 0.004 0.090 0.342 0.517 0.069 0.240



24

-53 0.021 0.093 0.344 0.534 0.067 0.249
-52 0.037 0.067 0.347 0.548 0.052 0.261
-51 0.053 0.104 0.357 0.560 0.089 0.276
-50 0.042 0.102 0.372 0.567 0.075 0.288
-49 0.024 0.096 0.386 0.571 0.077 0.297
-48 0.020 0.105 0.396 0.574 0.085 0.303
-47 0.023 0.114 0.401 0.576 0.107 0.308
-46 0.024 0.099 0.402 0.576 0.081 0.309
-45 0.026 0.106 0.399 0.575 0.092 0.306
-44 0.018 0.101 0.390 0.570 0.080 0.295
-43 0.007 0.104 0.375 0.564 0.081 0.277
-42 0.009 0.098 0.355 0.556 0.072 0.256
-41 0.020 0.081 0.335 0.552 0.053 0.240
-40 0.034 0.068 0.322 0.549 0.049 0.234
-39 0.051 0.093 0.317 0.545 0.072 0.240
-38 0.038 0.079 0.316 0.537 0.066 0.249
-37 0.022 0.088 0.317 0.528 0.075 0.256
-36 0.014 0.075 0.315 0.520 0.063 0.256
-35 0.016 0.083 0.314 0.514 0.071 0.250
-34 0.021 0.083 0.308 0.510 0.076 0.234
-33 0.024 0.090 0.301 0.507 0.068 0.215
-32 0.006 0.059 0.296 0.504 0.034 0.200
-31 -0.001 0.075 0.302 0.503 0.050 0.198
-30 0.003 0.075 0.318 0.505 0.047 0.209
-29 0.023 0.103 0.335 0.510 0.087 0.223
-28 0.042 0.100 0.342 0.516 0.079 0.229
-27 0.048 0.079 0.338 0.518 0.065 0.228
-26 0.040 0.089 0.327 0.517 0.074 0.224
-25 0.021 0.080 0.318 0.513 0.059 0.225
-24 0.014 0.072 0.316 0.511 0.052 0.232
-23 0.016 0.087 0.323 0.512 0.073 0.242
-22 0.020 0.084 0.333 0.513 0.069 0.250
-21 0.022 0.096 0.340 0.514 0.069 0.253
-20 0.012 0.092 0.338 0.514 0.080 0.247
-19 -0.001 0.092 0.328 0.514 0.077 0.234
-18 -0.001 0.081 0.315 0.515 0.060 0.220
-17 0.011 0.061 0.306 0.521 0.041 0.214
-16 0.041 0.088 0.306 0.531 0.057 0.221
-15 0.052 0.076 0.312 0.542 0.067 0.237
-14 0.047 0.091 0.322 0.552 0.080 0.254
-13 0.022 0.072 0.333 0.559 0.053 0.267
-12 0.019 0.102 0.345 0.571 0.086 0.278
-11 0.019 0.092 0.354 0.584 0.085 0.287
-10 0.026 0.093 0.361 0.598 0.091 0.294
-9 0.028 0.094 0.366 0.614 0.084 0.299
-8 0.018 0.094 0.377 0.629 0.084 0.308
-7 0.004 0.094 0.395 0.646 0.076 0.325
-6 0.008 0.098 0.422 0.662 0.088 0.353
-5 0.030 0.142 0.451 0.681 0.125 0.386
-4 0.047 0.117 0.471 0.698 0.114 0.415
-3 0.064 0.132 0.483 0.711 0.118 0.435
-2 0.052 0.122 0.487 0.715 0.131 0.446
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-1 0.034 0.133 0.488 0.712 0.126 0.448
0 0.023 0.127 0.488 0.707 0.123 0.447
1 0.020 0.118 0.487 0.696 0.107 0.440
2 0.032 0.139 0.485 0.682 0.133 0.431
3 0.030 0.118 0.475 0.663 0.103 0.411
4 0.019 0.137 0.456 0.639 0.124 0.381
5 0.002 0.112 0.426 0.612 0.085 0.344
6 0.002 0.093 0.390 0.587 0.076 0.307
7 0.021 0.098 0.353 0.561 0.089 0.273
8 0.044 0.080 0.320 0.536 0.059 0.245
9 0.056 0.068 0.293 0.511 0.060 0.224
10 0.045 0.076 0.271 0.482 0.055 0.207
11 0.019 0.057 0.252 0.453 0.050 0.189
12 0.011 0.075 0.233 0.427 0.061 0.167
13 0.007 0.051 0.213 0.404 0.026 0.142
14 0.010 0.040 0.197 0.386 0.024 0.123
15 0.012 0.049 0.188 0.372 0.029 0.112
16 0.000 0.051 0.184 0.358 0.046 0.108
17 -0.014 0.045 0.182 0.348 0.029 0.103
18 -0.009 0.060 0.185 0.346 0.038 0.103
19 0.000 0.020 0.192 0.350 -0.003 0.110
20 0.039 0.069 0.206 0.361 0.049 0.126
21 0.053 0.059 0.219 0.369 0.041 0.143
22 0.043 0.060 0.230 0.375 0.046 0.155
23 0.024 0.066 0.237 0.380 0.048 0.160
24 0.010 0.058 0.242 0.385 0.040 0.163
25 0.011 0.057 0.245 0.393 0.040 0.164
26 0.022 0.085 0.247 0.402 0.066 0.165
27 0.015 0.055 0.249 0.410 0.036 0.165
28 0.000 0.050 0.256 0.416 0.030 0.170
29 -0.010 0.076 0.268 0.422 0.048 0.183
30 -0.009 0.078 0.283 0.431 0.061 0.204
31 0.011 0.087 0.293 0.441 0.059 0.225
32 0.037 0.070 0.296 0.451 0.068 0.242
33 0.058 0.080 0.294 0.458 0.066 0.252
34 0.049 0.075 0.292 0.460 0.075 0.255
35 0.030 0.075 0.292 0.458 0.065 0.253
36 0.019 0.077 0.294 0.456 0.071 0.250
37 0.019 0.076 0.298 0.455 0.070 0.250
38 0.023 0.074 0.302 0.453 0.063 0.251
39 0.025 0.095 0.302 0.450 0.084 0.250
40 0.005 0.078 0.295 0.443 0.065 0.244
41 -0.013 0.066 0.282 0.435 0.054 0.233
42 -0.013 0.079 0.267 0.428 0.068 0.223
43 0.000 0.057 0.256 0.423 0.050 0.221
44 0.033 0.062 0.250 0.422 0.062 0.224
45 0.057 0.076 0.247 0.419 0.079 0.226
46 0.045 0.051 0.245 0.411 0.046 0.223
47 0.029 0.069 0.247 0.405 0.062 0.215
48 0.016 0.065 0.245 0.397 0.051 0.203
49 0.018 0.069 0.241 0.392 0.059 0.190
50 0.022 0.064 0.235 0.389 0.049 0.180
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51 0.016 0.042 0.232 0.385 0.038 0.176
52 0.005 0.067 0.233 0.381 0.057 0.175
53 -0.011 0.073 0.235 0.375 0.070 0.179
54 -0.020 0.049 0.238 0.374 0.029 0.184
55 0.000 0.071 0.244 0.378 0.062 0.196
56 0.027 0.055 0.250 0.382 0.048 0.207
57 0.055 0.080 0.257 0.384 0.073 0.216
58 0.045 0.057 0.257 0.379 0.043 0.212
59 0.034 0.086 0.253 0.371 0.079 0.201
60 0.013 0.049 0.241 0.362 0.030 0.180

1
2

Table 15 shows, first, that, while there are some differences in the precise number of3
periods by which first-difference CO2 leads temperature, the key point in this aspect4
of our study is supported - that in none of the six cases assessed does temperature lead5
first-difference CO2.Two of these cases are new to the study – NOAAand TRAMO.6

7
Figure 15 plots the data in Table 15.8

9
Figure 15: Cross-correlograms between variously seasonally-adjusted first difference10
CO2 time series and the Hadcrut4 global surface temperature time series. The dashed11
line shows the 0.05 level of statistical significance12

13
14
15
16

The figure shows the following. First, it is of interest that there is very close17
conjunction between the two (NOAA and TRAMO) model-based methods of seasonal18
adjustment. Secondly, the 2x13mma FDCO2 series displays the highest correlation19
with temperature. Thus this observation, along with its displaying the highest20
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statistical significance in the dynamic regression analyses (see Table 14 above) is1
support for its continued use as the method of seasonal adjustment in the paper.2

3
We propose including these results in their entirety in a Supplement, and making this4
reference to the Supplement in the text of the manuscript (Page 14, line 23):5

6
Finally, seasonally adjusting the data by a range of alternative approaches did7
not qualitatively change the results discussed in the paper. Results of these8
analyses are given in the Supplement.9

10
11
12
13
14

Referee comment page 2: Something else that concerned me in these causality tests15
is that although the series in question are being treated as stationary (acceptably in16
my view) there are still “deterministic” upward drifts in the series. These need to be17
fitted separately from the higher frequency components, to capture the required18
“constant conjunction” specified in the definition of causality, and ensure that this is19
not spurious. (Note that every linear trend is correlated with every other, by20
construction!) The regressions ought to contain trend terms so that the data are, in21
effect, de-trended, before correlations are computed. This does not appear to have22
been done, and it should be.23

24
This question is addressed by running and comparing vector autoregression (VAR)25
analyses with and without trend terms.26

27
It is noted that the lag lengths required for the VARs are chosen using the AIC28
criterion. This is a conservative test. As Lutkepohl and Kratzig (2004) note (pages29
152-153):30

31
The larger number of lagged differences … is always the number suggested by32
AIC, whereas the lower number is the proposal of the HQ criterion. Recall that33
choosing the order too small can lead to size distortions for the tests while34
selecting too large an order may imply reductions in power.35

36
37

In what follows unit root and lag detection pre-tests required for the two VARs are38
first carried out. These are followed by the two VARS themselves. Results are then39
discussed. In the tables highlighting is used to indicate key results.40

41
42
43
44
45

Table 16: Augmented Dickey-Fuller tests for unit root for first-difference CO246
47

Augmented Dickey-Fuller test for Z2x13mmaFDCO248
including 16 lags of (1-L)Z2x13mmaFDCO249
(max was 17, criterion modified AIC)50
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sample size 6411
unit-root null hypothesis: a = 12

3
test without constant4
model: (1-L)y = (a-1)*y(-1) + ... + e5
1st-order autocorrelation coeff. for e: -0.0026
lagged differences: F(16, 624) = 93.524 [0.0000]7
estimated value of (a - 1): -0.009429868
test statistic: tau_nc(1) = -2.369949
asymptotic p-value 0.017210

11
test with constant12
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e13
1st-order autocorrelation coeff. for e: -0.00214
lagged differences: F(16, 623) = 93.354 [0.0000]15
estimated value of (a - 1): -0.0093930516
test statistic: tau_c(1) = -2.3596417
asymptotic p-value 0.153518

19
with constant and trend20
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e21
1st-order autocorrelation coeff. for e: 0.00022
lagged differences: F(16, 622) = 95.210 [0.0000]23
estimated value of (a - 1): -0.031391524
test statistic: tau_ct(1) = -4.2611325
asymptotic p-value 0.00354926

27
The ADF test indicates that for the first-difference CO2 data, VARS can be run28
straightforwardly for tests without constant and for tests with constant and trend but29
not for tests with constant alone.30

31
32
33

Table 17: Augmented Dickey-Fuller test for ZHad4Gl34
including 7 lags of (1-L)ZHad4Gl35
(max was 17, criterion modified AIC)36
sample size 65037
unit-root null hypothesis: a = 138

39
test without constant40
model: (1-L)y = (a-1)*y(-1) + ... + e41
1st-order autocorrelation coeff. for e: 0.00242
lagged differences: F(7, 642) = 15.533 [0.0000]43
estimated value of (a - 1): -0.035025144
test statistic: tau_nc(1) = -2.2454145
asymptotic p-value 0.0238746

47
test with constant48
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e49
1st-order autocorrelation coeff. for e: 0.00250
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lagged differences: F(7, 641) = 15.536 [0.0000]1
estimated value of (a - 1): -0.03489522
test statistic: tau_c(1) = -2.235343
asymptotic p-value 0.19384

5
with constant and trend6
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e7
1st-order autocorrelation coeff. for e: 0.0028
lagged differences: F(7, 640) = 8.542 [0.0000]9
estimated value of (a - 1): -0.16360110
test statistic: tau_ct(1) = -5.1145111
asymptotic p-value 0.000107512

13
As for the first-difference CO2 data, the ADF test indicates that for the Hadcrut4GL14
temperature data VARS can be run straightforwardly for tests without constant and15
for tests with constant and trend but not for tests with constant alone.16

17
----------------------------------------18

19
VAR analysis 1 – no constant or trend20

21
22

Table 18: Optimum lag length for VAR23
24

VAR system, maximum lag order 36 – no constant or trend25
26

The asterisks below indicate the best (that is, minimized) values27
of the respective information criteria, AIC = Akaike criterion,28
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.29

30
lags loglik p(LR) AIC BIC HQC31

32
1 7.18572 -0.010243 0.018264 0.00083633
2 235.29686 0.00000 -0.730858 -0.673843 -0.70869934
3 248.28923 0.00003 -0.759772 -0.674249 -0.72653435
4 257.57998 0.00095 -0.776784 -0.662754 -0.73246636
5 261.97150 0.06676 -0.778043 -0.635505 -0.72264637
6 277.88264 0.00000 -0.816343 -0.645297 -0.74986638
7 282.70818 0.04673 -0.818997 -0.619444 -0.74144139
8 299.89548 0.00000 -0.861400 -0.633339 -0.77276440
9 300.92326 0.72554 -0.851843 -0.595274 -0.75212841
10 307.05981 0.01543 -0.858713 -0.573637 -0.74791842
11 313.15046 0.01605 -0.865436 -0.551851 -0.74356143
12 335.85323 0.00000 -0.925573 -0.583481 -0.79261944
13 336.91819 0.71188 -0.916136 -0.545536 -0.77210245
14 427.84019 0.00000 -1.195628 -0.796520 -1.04051546
15 438.41452 0.00030 -1.216767 -0.789152 -1.05057447
16 455.90637 0.00000 -1.260149 -0.804027 -1.08287748
17 461.74444 0.01993 -1.266059 -0.781429 -1.07770849
18 466.49280 0.04981 -1.268466 -0.755328 -1.06903450
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19 469.52362 0.19459 -1.265349 -0.723704 -1.0548391
20 475.38505 0.01954 -1.271335 -0.701182 -1.0497442
21 482.05851 0.00970 -1.279931 -0.681270 -1.0472613
22 485.15055 0.18582 -1.277011 -0.649843 -1.0332624
23 492.11321 0.00754 -1.286538 -0.630862 -1.0317095
24 509.98611 0.00000 -1.331145 -0.646961 -1.0652376
25 539.07116 0.00000 -1.411804 -0.699113 -1.1348177
26 541.08460 0.40238 -1.405417 -0.664218 -1.1173508
27 612.09531 0.00000 -1.620885 -0.851179* -1.3217399
28 619.09157 0.00732 -1.630520 -0.832305 -1.32029310
29 627.34628 0.00241 -1.644200* -0.817478 -1.322895*11
30 630.89450 0.13088 -1.642748 -0.787518 -1.31036212
31 633.62100 0.24389 -1.638653 -0.754915 -1.29518813
32 638.37697 0.04950 -1.641084 -0.728839 -1.28653914
33 641.66155 0.16048 -1.638783 -0.698031 -1.27315915
34 644.21450 0.27660 -1.634130 -0.664870 -1.25742716
35 645.51207 0.62769 -1.625441 -0.627673 -1.23765817
36 653.29252 0.00367 -1.637597 -0.611321 -1.23873418

19
-------------------------------------------------20

21
Table 19. VAR analysis 1 - no constant or trend22

23
24

VAR system, lag order 2925
OLS estimates, observations 30-658 (T = 629)26

Log-likelihood = 636.0637927
Determinant of covariance matrix = 0.0004536364228

AIC = -1.653629
BIC = -0.834030
HQC = -1.335231

Portmanteau test: LB(48) = 217.173, df = 76 [0.0000]32
33

Equation 1: Z2x13mmaFDCO234
35

Coefficient Std. Error t-ratio p-value
Z2x13mmaFDCO2
_1

1.72593 0.0413617 41.7277 <0.00001 ***

Z2x13mmaFDCO2
_2

−0.781579 0.0821668 -9.5121 <0.00001 ***

Z2x13mmaFDCO2
_3

0.0661491 0.0834604 0.7926 0.42835

Z2x13mmaFDCO2
_4

−0.0260817 0.076265 -0.3420 0.73249

Z2x13mmaFDCO2
_5

0.0693752 0.0762971 0.9093 0.36359

Z2x13mmaFDCO2
_6

−0.0421609 0.0758172 -0.5561 0.57837

Z2x13mmaFDCO2
_7

−0.0711063 0.0757778 -0.9384 0.34846
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Z2x13mmaFDCO2
_8

0.047906 0.0759431 0.6308 0.52841

Z2x13mmaFDCO2
_9

−0.00711034 0.0761064 -0.0934 0.92560

Z2x13mmaFDCO2
_10

−0.0289113 0.0760203 -0.3803 0.70386

Z2x13mmaFDCO2
_11

0.246549 0.076003 3.2439 0.00125 ***

Z2x13mmaFDCO2
_12

0.127804 0.0766581 1.6672 0.09602 *

Z2x13mmaFDCO2
_13

−1.26186 0.0769009 -16.4089 <0.00001 ***

Z2x13mmaFDCO2
_14

1.46629 0.0934632 15.6884 <0.00001 ***

Z2x13mmaFDCO2
_15

−0.680634 0.108196 -6.2908 <0.00001 ***

Z2x13mmaFDCO2
_16

0.0806417 0.0933387 0.8640 0.38797

Z2x13mmaFDCO2
_17

0.0557084 0.0767349 0.7260 0.46815

Z2x13mmaFDCO2
_18

0.0416344 0.0766399 0.5432 0.58717

Z2x13mmaFDCO2
_19

−0.0486445 0.0760808 -0.6394 0.52283

Z2x13mmaFDCO2
_20

−0.0407226 0.0762461 -0.5341 0.59348

Z2x13mmaFDCO2
_21

0.0343481 0.0762676 0.4504 0.65262

Z2x13mmaFDCO2
_22

−0.0170778 0.0762014 -0.2241 0.82275

Z2x13mmaFDCO2
_23

0.0426641 0.0762064 0.5598 0.57580

Z2x13mmaFDCO2
_24

0.24763 0.0764245 3.2402 0.00126 ***

Z2x13mmaFDCO2
_25

0.0518783 0.0771286 0.6726 0.50146

Z2x13mmaFDCO2
_26

−0.793164 0.0771768 -10.2772 <0.00001 ***

Z2x13mmaFDCO2
_27

0.673644 0.0839021 8.0289 <0.00001 ***

Z2x13mmaFDCO2
_28

−0.324441 0.0819737 -3.9579 0.00009 ***

Z2x13mmaFDCO2
_29

0.138495 0.0412347 3.3587 0.00084 ***

ZHad4Gl_1 0.0101494 0.00794208 1.2779 0.20179
ZHad4Gl_2 0.00118148 0.00873495 0.1353 0.89245
ZHad4Gl_3 −0.00784056 0.00888824 -0.8821 0.37808
ZHad4Gl_4 −0.00435003 0.00889417 -0.4891 0.62497
ZHad4Gl_5 −0.0123628 0.00890794 -1.3878 0.16573
ZHad4Gl_6 0.00349266 0.00885988 0.3942 0.69357
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ZHad4Gl_7 −0.00876787 0.00885169 -0.9905 0.32233
ZHad4Gl_8 0.00456575 0.00886092 0.5153 0.60657
ZHad4Gl_9 −0.00234467 0.0088358 -0.2654 0.79083
ZHad4Gl_10 −0.00883043 0.00880715 -1.0026 0.31646
ZHad4Gl_11 0.000844746 0.00881626 0.0958 0.92370
ZHad4Gl_12 0.00781879 0.0087901 0.8895 0.37411
ZHad4Gl_13 −0.0148777 0.00879569 -1.6915 0.09129 *
ZHad4Gl_14 0.0112028 0.00887775 1.2619 0.20750
ZHad4Gl_15 0.00806641 0.00889173 0.9072 0.36469
ZHad4Gl_16 −0.005193 0.00886845 -0.5856 0.55840
ZHad4Gl_17 0.00226975 0.0088638 0.2561 0.79799
ZHad4Gl_18 0.000249724 0.00879491 0.0284 0.97736
ZHad4Gl_19 −0.00607713 0.0087459 -0.6949 0.48743
ZHad4Gl_20 0.0112006 0.00875814 1.2789 0.20146
ZHad4Gl_21 −0.00086959

4
0.00876724 -0.0992 0.92102

ZHad4Gl_22 −0.00087501
3

0.00874311 -0.1001 0.92032

ZHad4Gl_23 −0.00620297 0.00873374 -0.7102 0.47785
ZHad4Gl_24 −3.40208e-

05
0.00873703 -0.0039 0.99689

ZHad4Gl_25 0.00197494 0.00878987 0.2247 0.82231
ZHad4Gl_26 −0.00316451 0.0087708 -0.3608 0.71838
ZHad4Gl_27 −0.00881157 0.0087779 -1.0038 0.31588
ZHad4Gl_28 0.0146304 0.00860441 1.7003 0.08961 *
ZHad4Gl_29 0.0159557 0.00787513 2.0261 0.04322 **

1
Mean dependent var 0.052991 S.D. dependent var 0.989697
Sum squared resid 2.544154 S.E. of regression 0.066750
R-squared 0.995876 Adjusted R-squared 0.995464
F(58, 571) 2377.275 P-value(F) 0.000000
rho −0.017482 Durbin-Watson 2.032816

F-tests of zero restrictions:2
All lags of Z2x13mmaFDCO2F(29, 571) = 1994.8 [0.0000]3

All lags of ZHad4Gl F(29, 571) = 1.0698 [0.3692]4
All vars, lag 29 F(2, 571) = 8.1696 [0.0003]5

6
7

Equation 2: ZHad4Gl8
9

Coefficient Std. Error t-ratio p-value
Z2x13mmaFDCO2
_1

0.351762 0.218073 1.6130 0.10729

Z2x13mmaFDCO2
_2

−0.160469 0.433212 -0.3704 0.71121

Z2x13mmaFDCO2
_3

0.0183659 0.440032 0.0417 0.96672

Z2x13mmaFDCO2
_4

−0.297947 0.402096 -0.7410 0.45901

Z2x13mmaFDCO2 0.560611 0.402265 1.3936 0.16397
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_5
Z2x13mmaFDCO2
_6

−0.144199 0.399735 -0.3607 0.71843

Z2x13mmaFDCO2
_7

−0.423575 0.399527 -1.0602 0.28951

Z2x13mmaFDCO2
_8

0.295925 0.400398 0.7391 0.46016

Z2x13mmaFDCO2
_9

−0.260102 0.401259 -0.6482 0.51711

Z2x13mmaFDCO2
_10

0.230741 0.400805 0.5757 0.56505

Z2x13mmaFDCO2
_11

−0.200734 0.400714 -0.5009 0.61661

Z2x13mmaFDCO2
_12

0.528353 0.404168 1.3073 0.19165

Z2x13mmaFDCO2
_13

−1.10078 0.405448 -2.7150 0.00683 ***

Z2x13mmaFDCO2
_14

1.10679 0.492771 2.2461 0.02508 **

Z2x13mmaFDCO2
_15

−0.243162 0.570447 -0.4263 0.67007

Z2x13mmaFDCO2
_16

0.00763635 0.492114 0.0155 0.98762

Z2x13mmaFDCO2
_17

−0.606518 0.404573 -1.4992 0.13439

Z2x13mmaFDCO2
_18

0.397971 0.404072 0.9849 0.32509

Z2x13mmaFDCO2
_19

0.326914 0.401124 0.8150 0.41541

Z2x13mmaFDCO2
_20

−0.384669 0.401996 -0.9569 0.33902

Z2x13mmaFDCO2
_21

0.420224 0.402109 1.0450 0.29644

Z2x13mmaFDCO2
_22

−0.360486 0.40176 -0.8973 0.36996

Z2x13mmaFDCO2
_23

0.230553 0.401787 0.5738 0.56632

Z2x13mmaFDCO2
_24

−0.284056 0.402937 -0.7050 0.48112

Z2x13mmaFDCO2
_25

0.195071 0.406649 0.4797 0.63162

Z2x13mmaFDCO2
_26

−0.534194 0.406903 -1.3128 0.18977

Z2x13mmaFDCO2
_27

0.514871 0.442361 1.1639 0.24494

Z2x13mmaFDCO2
_28

0.0404195 0.432194 0.0935 0.92552

Z2x13mmaFDCO2
_29

−0.12579 0.217404 -0.5786 0.56309

ZHad4Gl_1 0.459533 0.0418734 10.9743 <0.00001 ***
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ZHad4Gl_2 0.228872 0.0460537 4.9697 <0.00001 ***
ZHad4Gl_3 −0.0136179 0.0468619 -0.2906 0.77147
ZHad4Gl_4 0.0681717 0.0468932 1.4538 0.14656
ZHad4Gl_5 0.00674787 0.0469658 0.1437 0.88581
ZHad4Gl_6 −0.0438299 0.0467124 -0.9383 0.34849
ZHad4Gl_7 0.0379334 0.0466692 0.8128 0.41666
ZHad4Gl_8 0.0743408 0.0467178 1.5913 0.11210
ZHad4Gl_9 −0.0259374 0.0465854 -0.5568 0.57790
ZHad4Gl_10 0.0402099 0.0464344 0.8660 0.38688
ZHad4Gl_11 −0.00953732 0.0464824 -0.2052 0.83750
ZHad4Gl_12 −0.0105286 0.0463444 -0.2272 0.82036
ZHad4Gl_13 0.0221907 0.0463739 0.4785 0.63247
ZHad4Gl_14 −0.0191303 0.0468066 -0.4087 0.68291
ZHad4Gl_15 −0.0239415 0.0468803 -0.5107 0.60976
ZHad4Gl_16 −0.0267643 0.0467576 -0.5724 0.56727
ZHad4Gl_17 0.0192374 0.046733 0.4116 0.68075
ZHad4Gl_18 0.00459367 0.0463698 0.0991 0.92112
ZHad4Gl_19 0.0720049 0.0461114 1.5615 0.11895
ZHad4Gl_20 −0.0257433 0.0461759 -0.5575 0.57740
ZHad4Gl_21 0.0172551 0.046224 0.3733 0.70907
ZHad4Gl_22 −0.0212647 0.0460967 -0.4613 0.64475
ZHad4Gl_23 0.0197747 0.0460473 0.4294 0.66776
ZHad4Gl_24 0.124019 0.0460647 2.6923 0.00730 ***
ZHad4Gl_25 0.0307578 0.0463433 0.6637 0.50715
ZHad4Gl_26 −0.0435799 0.0462427 -0.9424 0.34638
ZHad4Gl_27 −0.0885494 0.0462802 -1.9133 0.05621 *
ZHad4Gl_28 0.0259696 0.0453654 0.5725 0.56724
ZHad4Gl_29 0.0257739 0.0415204 0.6208 0.53501

1
Mean dependent var 0.020080 S.D. dependent var 1.005738
Sum squared resid 70.72152 S.E. of regression 0.351931
R-squared 0.888712 Adjusted R-squared 0.877602
F(58, 571) 78.61760 P-value(F) 1.6e-234
rho 0.000459 Durbin-Watson 1.998971

F-tests of zero restrictions:2
All lags of Z2x13mmaFDCO2F(29, 571) = 2.3595 [0.0001]3

All lags of ZHad4Gl F(29, 571) = 40.83 [0.0000]4
All vars, lag 29 F(2, 571) = 0.33815 [0.7132]5

6
7

For the system as a whole8
Null hypothesis: the longest lag is 289

Alternative hypothesis: the longest lag is 2910
Likelihood ratio test: Chi-square(4) = 18.6029 [0.0009]11

12
13

-----------------------------------------14
15
16
17
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1
VAR analysis 2 – trend included2

3
Table 20. VAR analysis 2 - detection of optimal lag4

5
VAR system, maximum lag order 36 – trend included6

7
The asterisks below indicate the best (that is, minimized) values8
of the respective information criteria, AIC = Akaike criterion,9
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.10

11
lags loglik p(LR) AIC BIC HQC12

13
1 36.70207 -0.092290 -0.035274 -0.07013114
2 253.77638 0.00000 -0.777416 -0.691893 -0.74417715
3 267.15165 0.00002 -0.807562 -0.693531 -0.76324416
4 275.59926 0.00203 -0.821863 -0.679324 -0.76646517
5 281.21406 0.02410 -0.827055 -0.656009 -0.76057818
6 299.10682 0.00000 -0.871726 -0.672173 -0.79417019
7 303.50594 0.06635 -0.873009 -0.644948 -0.78437320
8 317.09842 0.00002 -0.903853 -0.647285 -0.80413821
9 318.76870 0.50253 -0.896362 -0.611286 -0.78556722
10 327.97361 0.00103 -0.913098 -0.599514 -0.79122423
11 336.76348 0.00149 -0.928500 -0.586408 -0.79554624
12 364.32016 0.00000 -1.004245 -0.633645 -0.86021125
13 367.92961 0.12476 -1.002989 -0.603882 -0.84787626
14 444.46876 0.00000 -1.236234 -0.808619 -1.07004127
15 456.36771 0.00009 -1.261632 -0.805510 -1.08436028
16 470.70653 0.00001 -1.294876 -0.810246 -1.10652529
17 474.44426 0.11280 -1.294033 -0.780895 -1.09460230
18 477.57257 0.18079 -1.291230 -0.749585 -1.08071931
19 480.23258 0.25601 -1.286921 -0.716768 -1.06533132
20 484.88749 0.05381 -1.289027 -0.690367 -1.05635833
21 491.75400 0.00820 -1.298244 -0.671076 -1.05449534
22 495.61201 0.10255 -1.297788 -0.642112 -1.04295935
23 503.76590 0.00263 -1.311144 -0.626961 -1.04523636
24 523.01402 0.00000 -1.360174 -0.647482 -1.08318637
25 557.15012 0.00000 -1.457074 -0.715875 -1.16900738
26 559.18176 0.39751 -1.450745 -0.681039 -1.15159939
27 622.54853 0.00000 -1.641635 -0.843421* -1.331409*40
28 628.88984 0.01294 -1.649163 -0.822442 -1.32785841
29 635.36967 0.01147 -1.657137* -0.801908 -1.32475242
30 638.03464 0.25509 -1.652845 -0.769107 -1.30938043
31 640.48257 0.29815 -1.647854 -0.735609 -1.29331044
32 645.59597 0.03678 -1.651434 -0.710681 -1.28581045
33 648.43487 0.22454 -1.647701 -0.678440 -1.27099746
34 651.36807 0.20935 -1.644270 -0.646502 -1.25648847
35 652.64971 0.63334 -1.635530 -0.609254 -1.23666748
36 661.06225 0.00209 -1.649718 -0.594935 -1.23977649

50
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1
Table 20. VAR analysis 2 – trend included2

3
VAR system, lag order 294

OLS estimates, observations 30-658 (T = 629)5
Log-likelihood = 637.618086

Determinant of covariance matrix = 0.000451400037
AIC = -1.65228
BIC = -0.81859
HQC = -1.328310

Portmanteau test: LB(48) = 219.26, df = 76 [0.0000]11
12

Equation 1: Z2x13mmaFDCO213
14

Coefficient Std. Error t-ratio p-value
Z2x13mmaFDCO2
_1

1.72161 0.0413889 41.5958 <0.00001 ***

Z2x13mmaFDCO2
_2

−0.778323 0.0820744 -9.4831 <0.00001 ***

Z2x13mmaFDCO2
_3

0.066736 0.0833424 0.8007 0.42361

Z2x13mmaFDCO2
_4

−0.0263525 0.0761566 -0.3460 0.72945

Z2x13mmaFDCO2
_5

0.0688404 0.0761892 0.9035 0.36662

Z2x13mmaFDCO2
_6

−0.0418151 0.0757095 -0.5523 0.58095

Z2x13mmaFDCO2
_7

−0.0709658 0.07567 -0.9378 0.34873

Z2x13mmaFDCO2
_8

0.0474232 0.0758355 0.6253 0.53200

Z2x13mmaFDCO2
_9

−0.00693413 0.0759981 -0.0912 0.92733

Z2x13mmaFDCO2
_10

−0.0286644 0.0759122 -0.3776 0.70587

Z2x13mmaFDCO2
_11

0.245987 0.0758956 3.2411 0.00126 ***

Z2x13mmaFDCO2
_12

0.128783 0.0765513 1.6823 0.09306 *

Z2x13mmaFDCO2
_13

−1.26004 0.0767996 -16.4068 <0.00001 ***

Z2x13mmaFDCO2
_14

1.46186 0.0933702 15.6566 <0.00001 ***

Z2x13mmaFDCO2
_15

−0.678441 0.10805 -6.2789 <0.00001 ***

Z2x13mmaFDCO2
_16

0.0814008 0.093207 0.8733 0.38285

Z2x13mmaFDCO2
_17

0.0549384 0.0766271 0.7170 0.47369

Z2x13mmaFDCO2 0.0412421 0.0765312 0.5389 0.59017



37

_18
Z2x13mmaFDCO2
_19

−0.0482152 0.0759729 -0.6346 0.52592

Z2x13mmaFDCO2
_20

−0.0409021 0.0761376 -0.5372 0.59133

Z2x13mmaFDCO2
_21

0.0339944 0.0761593 0.4464 0.65551

Z2x13mmaFDCO2
_22

−0.0171144 0.0760929 -0.2249 0.82213

Z2x13mmaFDCO2
_23

0.0428004 0.076098 0.5624 0.57404

Z2x13mmaFDCO2
_24

0.247376 0.0763159 3.2415 0.00126 ***

Z2x13mmaFDCO2
_25

0.0529869 0.0770218 0.6879 0.49177

Z2x13mmaFDCO2
_26

−0.791654 0.0770726 -10.2715 <0.00001 ***

Z2x13mmaFDCO2
_27

0.670938 0.0837993 8.0065 <0.00001 ***

Z2x13mmaFDCO2
_28

−0.324589 0.0818571 -3.9653 0.00008 ***

Z2x13mmaFDCO2
_29

0.139405 0.0411799 3.3853 0.00076 ***

ZHad4Gl_1 0.00991418 0.0079321 1.2499 0.21186
ZHad4Gl_2 0.00110205 0.00872266 0.1263 0.89950
ZHad4Gl_3 −0.00784665 0.00887558 -0.8841 0.37703
ZHad4Gl_4 −0.00443465 0.00888167 -0.4993 0.61776
ZHad4Gl_5 −0.0124287 0.00889535 -1.3972 0.16289
ZHad4Gl_6 0.00344782 0.00884731 0.3897 0.69690
ZHad4Gl_7 −0.00882284 0.00883915 -0.9982 0.31863
ZHad4Gl_8 0.00445706 0.00884856 0.5037 0.61466
ZHad4Gl_9 −0.00241577 0.00882333 -0.2738 0.78434
ZHad4Gl_10 −0.00893226 0.00879484 -1.0156 0.31024
ZHad4Gl_11 0.000694529 0.00880419 0.0789 0.93715
ZHad4Gl_12 0.00770992 0.00877784 0.8783 0.38013
ZHad4Gl_13 −0.0149396 0.00878325 -1.7009 0.08950 *
ZHad4Gl_14 0.0109846 0.00886614 1.2389 0.21588
ZHad4Gl_15 0.00790526 0.00887963 0.8903 0.37370
ZHad4Gl_16 −0.00527712 0.00885598 -0.5959 0.55149
ZHad4Gl_17 0.00215937 0.00885144 0.2440 0.80735
ZHad4Gl_18 0.00018374 0.00878249 0.0209 0.98332
ZHad4Gl_19 −0.00617904 0.00873368 -0.7075 0.47955
ZHad4Gl_20 0.0111163 0.00874582 1.2710 0.20423
ZHad4Gl_21 −0.00089272 0.00875477 -0.1020 0.91882
ZHad4Gl_22 −0.00080851

8
0.00873076 -0.0926 0.92625

ZHad4Gl_23 −0.00613741 0.00872141 -0.7037 0.48190
ZHad4Gl_24 −7.91095e-

05
0.00872464 -0.0091 0.99277

ZHad4Gl_25 0.00193099 0.0087774 0.2200 0.82595
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ZHad4Gl_26 −0.00313812 0.00875833 -0.3583 0.72025
ZHad4Gl_27 −0.00884439 0.00876543 -1.0090 0.31340
ZHad4Gl_28 0.0146501 0.00859216 1.7051 0.08873 *
ZHad4Gl_29 0.0162128 0.00786551 2.0613 0.03973 **
time 1.24186e-05 7.6587e-06 1.6215 0.10546

1
Mean dependent var 0.052991 S.D. dependent var 0.989697
Sum squared resid 2.532473 S.E. of regression 0.066655
R-squared 0.995895 Adjusted R-squared 0.995477
F(59, 570) 2343.695 P-value(F) 0.000000
rho −0.018122 Durbin-Watson 2.033779

2
3

F-tests of zero restrictions:4
All lags of Z2x13mmaFDCO2F(29, 570) = 1952.6 [0.0000]5

All lags of ZHad4Gl F(29, 570) = 1.0738 [0.3639]6
All vars, lag 29 F(2, 570) = 8.3406 [0.0003]7

8
9

Equation 2: ZHad4Gl10
11

Coefficient Std. Error t-ratio p-value
Z2x13mmaFDCO2
_1

0.344439 0.218668 1.5752 0.11577

Z2x13mmaFDCO2
_2

−0.154957 0.433619 -0.3574 0.72096

Z2x13mmaFDCO2
_3

0.0193596 0.440318 0.0440 0.96495

Z2x13mmaFDCO2
_4

−0.298405 0.402354 -0.7416 0.45861

Z2x13mmaFDCO2
_5

0.559706 0.402526 1.3905 0.16493

Z2x13mmaFDCO2
_6

−0.143613 0.399992 -0.3590 0.71970

Z2x13mmaFDCO2
_7

−0.423337 0.399783 -1.0589 0.29009

Z2x13mmaFDCO2
_8

0.295107 0.400657 0.7366 0.46169

Z2x13mmaFDCO2
_9

−0.259804 0.401517 -0.6471 0.51786

Z2x13mmaFDCO2
_10

0.231159 0.401063 0.5764 0.56459

Z2x13mmaFDCO2
_11

−0.201686 0.400975 -0.5030 0.61517

Z2x13mmaFDCO2
_12

0.530009 0.404439 1.3105 0.19056

Z2x13mmaFDCO2
_13

−1.09769 0.405751 -2.7053 0.00703 ***

Z2x13mmaFDCO2
_14

1.09929 0.493297 2.2284 0.02624 **
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Z2x13mmaFDCO2
_15

−0.23945 0.570856 -0.4195 0.67504

Z2x13mmaFDCO2
_16

0.00892138 0.492435 0.0181 0.98555

Z2x13mmaFDCO2
_17

−0.607821 0.40484 -1.5014 0.13381

Z2x13mmaFDCO2
_18

0.397307 0.404333 0.9826 0.32621

Z2x13mmaFDCO2
_19

0.327641 0.401384 0.8163 0.41468

Z2x13mmaFDCO2
_20

−0.384973 0.402254 -0.9570 0.33895

Z2x13mmaFDCO2
_21

0.419625 0.402368 1.0429 0.29744

Z2x13mmaFDCO2
_22

−0.360548 0.402017 -0.8968 0.37018

Z2x13mmaFDCO2
_23

0.230784 0.402044 0.5740 0.56618

Z2x13mmaFDCO2
_24

−0.284486 0.403196 -0.7056 0.48074

Z2x13mmaFDCO2
_25

0.196948 0.406925 0.4840 0.62858

Z2x13mmaFDCO2
_26

−0.531638 0.407193 -1.3056 0.19221

Z2x13mmaFDCO2
_27

0.510289 0.442732 1.1526 0.24956

Z2x13mmaFDCO2
_28

0.040169 0.432471 0.0929 0.92603

Z2x13mmaFDCO2
_29

−0.12425 0.217563 -0.5711 0.56816

ZHad4Gl_1 0.459135 0.0419072 10.9560 <0.00001 ***
ZHad4Gl_2 0.228737 0.0460839 4.9635 <0.00001 ***
ZHad4Gl_3 −0.0136282 0.0468919 -0.2906 0.77144
ZHad4Gl_4 0.0680285 0.046924 1.4498 0.14768
ZHad4Gl_5 0.00663623 0.0469963 0.1412 0.88776
ZHad4Gl_6 −0.0439058 0.0467425 -0.9393 0.34797
ZHad4Gl_7 0.0378404 0.0466994 0.8103 0.41811
ZHad4Gl_8 0.0741568 0.0467491 1.5863 0.11323
ZHad4Gl_9 −0.0260578 0.0466158 -0.5590 0.57639
ZHad4Gl_10 0.0400376 0.0464653 0.8617 0.38923
ZHad4Gl_11 −0.00979162 0.0465147 -0.2105 0.83335
ZHad4Gl_12 −0.0107129 0.0463755 -0.2310 0.81740
ZHad4Gl_13 0.0220859 0.0464041 0.4759 0.63429
ZHad4Gl_14 −0.0194998 0.046842 -0.4163 0.67736
ZHad4Gl_15 −0.0242143 0.0469133 -0.5162 0.60595
ZHad4Gl_16 −0.0269067 0.0467883 -0.5751 0.56547
ZHad4Gl_17 0.0190505 0.0467643 0.4074 0.68389
ZHad4Gl_18 0.00448196 0.0464 0.0966 0.92308
ZHad4Gl_19 0.0718324 0.0461421 1.5568 0.12008
ZHad4Gl_20 −0.0258862 0.0462063 -0.5602 0.57554
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ZHad4Gl_21 0.0172159 0.0462536 0.3722 0.70988
ZHad4Gl_22 −0.0211521 0.0461267 -0.4586 0.64672
ZHad4Gl_23 0.0198857 0.0460773 0.4316 0.66622
ZHad4Gl_24 0.123943 0.0460944 2.6889 0.00738 ***
ZHad4Gl_25 0.0306834 0.0463731 0.6617 0.50845
ZHad4Gl_26 −0.0435352 0.0462724 -0.9408 0.34718
ZHad4Gl_27 −0.0886049 0.0463099 -1.9133 0.05621 *
ZHad4Gl_28 0.026003 0.0453945 0.5728 0.56699
ZHad4Gl_29 0.0262092 0.0415554 0.6307 0.52849
time 2.10237e-05 4.04628e-05 0.5196 0.60356

1
Mean dependent var 0.020080 S.D. dependent var 1.005738
Sum squared resid 70.68804 S.E. of regression 0.352156
R-squared 0.888764 Adjusted R-squared 0.877446
F(59, 570) 77.19086 P-value(F) 1.2e-233
rho 0.000443 Durbin-Watson 1.998998

F-tests of zero restrictions:2
All lags of Z2x13mmaFDCO2F(29, 570) = 2.2811 [0.0002]3

All lags of ZHad4Gl F(29, 570) = 39.45 [0.0000]4
All vars, lag 29 F(2, 570) = 0.3401 [0.7118]5

6
7

For the system as a whole8
Null hypothesis: the longest lag is 289

Alternative hypothesis: the longest lag is 2910
Likelihood ratio test: Chi-square(4) = 18.9972 [0.0008]11

12
13

These results show that when trend is included in the VAR it is insignificant; and that14
models both with and without trend, as in the paper, show causality from first-15
difference CO2 to temperature, and not from temperature to first-difference CO2.16

17
18
19

Referee third major comment: My third major comment concerns the new section20
on NDVI. Interesting correlations for sure (subject to the caveats above), but the21
discussion goes far out on a limb and is, for my taste, unacceptably speculative. First,22
the series constructed as the difference of standardized CO2 and standardized23
temperature is a proxy for anything only by a severe stretch of the imagination. Surely,24
GCMs must (at best) link temperature projections to a particular fraction of projected25
CO2. (See comment 10 below.) Even if we accept the suggestion that GCM projections26
are linear in CO2 concentration, the simple difference between CO2 and temperature27
may or may not capture (in the “constant conjunction” sense) the true forecast28
discrepancy. Hence, the correlation with NDVI is either interesting by chance, or29
spurious. I would need firmer evidence to be convinced. The discussion in Section 530
reads like off-the-cuff theorising of the most casual sort. Of course, there is ample31
evidence, supported by sound theory, for the hypothesis that higher CO232
concentrations are “greening” the planet. To that extent, the authors have a good33
point. However, it seems to me that their model (involving the second differences of34
CO2, etc.) needs to be much more carefully derived and argued than it is at present.35
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It’s not good enough to simply report a curious correlation and extrapolate from it a1
whole theory of the biosphere, This seems like blatant data mining.2

3
My suggestion to the authors is to subtract the section on NDVI, as ample material for4
a new paper although a good deal of additional work is called for. Then, to redraft5
the first part of the paper taking note of the various comments offered here.6

7
8

Response: The points made are valued and the suggestion is accepted.9
10

The NDVI section is redone and simplified in an attempt to be the minimum11
necessary to illustrate the point that further NDVI research could be conducted; and12
the Discussion is amended accordingly.13

14
The two proposed new sections are as follows:15

16
4.4 Normalized Difference Vegetation Index (NDVI)17

18

Using the Normalized Difference Vegetation Index (NDVI) time series as a19

measure of the activity of the land biosphere, this section now investigates the20

land biosphere as a candidate mechanism for the issue, identified in the21

Introduction, of the increasing difference between the observed global surface22

temperature trend and that suggested by general circulation climate models.23

24
The trend in the terrestrial CO2 sink is estimated annually as part of the25

assessment of the well-known global carbon budget (Le Quere at al. 2014). It26

is noted that there is a risk of circular argument concerning correlations27

between the terrestrial CO2 sink and interannual (first-difference) CO2 because28

the terrestrial CO2 sink is defined as the residual of the global carbon budget29

(Le Quere at al. 2014). By contrast, the Normalized Difference Vegetation30

Index (NDVI) involves direct (satellite-derived) measurement of terrestrial31

plant activity. For this reason and because, of the two series, only NDVI is32

provided in monthly form, we will use only NDVI in what follows.33

34
35

4.4.1. Preparation of the global NDVI series used in this paper36

37

Globally aggregated GIMMS NDVI data from the Global Land Cover Facility38

site is available from 1980 to 2006. This dataset is referred to here as NDVIG.39
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Spatially disaggregated GIMMS NDVI data from the GLCF site is available1

from 1980 to the end of 2013. An analogous global aggregation of this2

spatially disaggregated GIMMS NDVI data – from 1985 to end 2013 – was3

obtained from the Institute of Surveying, Remote Sensing and Land4

Information, University of Natural Resources and Life Sciences, Vienna. This5

dataset is abbreviated to NDVIV.6

7

Pooling the two series enabled the longest time span of data aggregated at8

global level. The two series were pooled as follows. Figure 10 shows the9

appearance of the two series. Each series is Z-scored by the same common10

period of overlap (1985-2006). The extensive period of overlap can be seen, as11

can the close similarity in trend between the two series. The figure also shows12

that the seasonal adjustment smoothings vary between the two series.13

Seasonality was removed for the NDVIV series using the 13 month moving14

average smoothing used throughout this paper. This required two passes using15

the 13 month moving average, which leads to a smoother result than seen for16

the NDVIG series.17

18

Pretis and Hendry (2013) observe that pooling data (i) from very different19

measurement systems and (ii) displaying different behaviour in the sub-20

samples can lead to errors in the estimation of the level of integration of the21

pooled series.22

23

The first risk of error (from differences in measurement systems) is overcome24

here as both the NDVI series are from the same original disaggregated data set.25

The risk associated with the sub-samples displaying different behaviour and26

leading to errors in levels of integration is considered in the following section27

by assessing the order of each input series separately, and then the order of the28

pooled series.29

30

Table 14 provides order of integration test results for the three NDVI series.31

The analysis shows all series are stationary (I(0)). It is, therefore, valid to pool32

the two series. Pooling was done by appending the Z-scored NDVIV data to33
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the Z-scored NDVIG data at the point where the Z-scored NDVIG data ended1

(in the last month of 2006).2

3

As discussed in the Introduction, Figure 1 shows that since around the year4

2000 there is an increasing difference between the temperature projected by a5

mid-level IPCC model and that observed. Any cause for this increasing6

difference must itself show an increase in activity over this period.7

8

The purpose of this section is, therefore: (i) to derive an initial simple9

indicative quantification of the increasing difference between the temperature10

model and observation; and (ii) to assess whether global NDVI is increasing.11

If NDVI is increasing, this is support for NDVI being a candidate for the cause12

of the temperature model-observation difference. If there is a statistically13

significant relationship between the two increases, this is further support for14

NDVI being a candidate for the cause of the model-observation difference,15

and hence worthy of further detailed research. A full analysis of this question16

is beyond the scope of the present paper.17

18

19

4.4.2 Preparation of the indicative series for the difference between the20

temperature projected from a mid-level IPCC model and that observed21

22

A simple quantification of the difference between the temperature projected23

from a mid-level IPCC model and that observed can be derived by subtracting24

the (Z-scored) temperature projected from the IPCC mid-range scenario model25

(CMIP3, SRESA1B scenario run for the IPCC fourth assessment report (IPCC26

2007)) shown in Figure 1, from the observed global surface temperature also27

shown in Figure 1. This quantification is depicted in Figure 13 for monthly28

data and, to reduce the influence of noise and seasonality, in Figure 14 for the29

same data pooled into three-year bins.30

31

4.4.3. Comparison of the pooled NDVI series with the difference between32

projected and observed global surface temperature33

34
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1
Figure 13, displaying monthly data, compares NDVI with the difference2

between the temperature projected from an IPCC mid-range scenario model3

(CMIP3, SRESA1B scenario run for the IPPC fourth assessment report (IPCC4

2007)) and global surface temperature (red dotted curve). Both curves rise in5

more recent years.6

7

The trends for the 36-month pooled data in Figure 14 show considerable8

commonality. OLS regression analysis of the relationship between the curves9

in Figure 14 shows that the best fit between the curves involves no lead or lag.10

The correlation between the curves displays an adjusted R-squared value of11

0.86. This is statistically significant (p = 0.00185). As expected with such12

aggregated multi-year data, the relationship shows little or no autocorrelation13

(Test statistic: LMF = 1.59 with p-value = P(F(5,3) > 1.59) = 0.37). The14

similarity between the trend in the NDVI and the difference between IPCC15

temperature modelling and observed temperature is evidence supporting the16

possibility that the NDVI may contribute to the observed global surface17

temperature departing from the IPCC modelling.18

19

20
21

5 Discussion22
23
24

The results in this paper show that there are clear links – at the highest25

standard of non-experimental causality – that of Granger causality – between26

first- and second-difference CO2 and the major climate variables of global27

surface temperature and the Southern Oscillation Index, respectively.28

29

Relationships between first- and second-difference CO2 and climate variables30

are present for all the time scales studied, including temporal start points31

situated as long ago as 1500. In the instances where time series analysis32

accounting for autocorrelation could be successfully conducted, the results33

were always statistically significant. For the further instances (for those studies34

using data series commencing before 1877) the data was not amenable to time35

series analysis – and therefore also not amenable to testing for Granger36
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causality – due to the strongly smoothed nature of the temperature data1

available which made removal of the autocorrelation impossible (see Section2

4.3). Nonetheless, the scale of the non-corrected correlations observed was of3

the same order of magnitude as those of the instances that were able to be4

corrected for autocorrelation.5

6

Given the time scales over which these effects are observed, the results taken7

as a whole clearly suggest that the mechanism observed is long term, and not,8

for example, a creation of the period of the steepest increase in anthropogenic9

CO2 emissions, a period which commenced in the 1950s (IPCC 2014).10

11

12

Taking autocorrelation fully into account in the time series analyses13

demonstrates the major role of immediate past instances of the dependent14

variable (temperature, and SOI) in influencing its own present state. This was15

found in all cases where time series models could be prepared. This was not16

to detract from the role of first- and second-difference CO2 – in all relevant17

cases, they were significant in the models as well.18

19

According to Wilks (1995) and Mudelsee (2010), such autocorrelation in the20

atmospheric sciences also called persistence or “memory” is characteristic for21

many types of climatic fluctuations.22

23
In the specific case of the temperature and first-difference CO2 relationship,24

the significant autocorrelation for temperature occurred with present25

temperature being affected by the immediately prior month and the month26

before that. As mentioned above, for atmospheric CO2 and global surface27

temperature, others (Sun and Wang 1996; Triacca 2005; Kodra et al. 2011;28

Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann 2014) have29

conducted Granger causality analyses involving the use of lags of both30

dependent and independent variables. These studies, however, are not directly31

comparable with the present study. Firstly, while reporting the presence or32

absence of Granger causality, the studies did not report lead or lag information.33

Secondly, the studies used annual data, so could not investigate the dynamics34
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of the relationships at the interannual (monthly) level where our findings were1

greatest.2

3
The anthropogenic global warming (AGW) hypothesis has two main4

dimensions (IPCC 2007; Pierrehumbert 2011): (i) that increasing CO2 causes5

increasing atmospheric temperature (via a radiative forcing mechanism) and (ii)6

that most of the increase in atmospheric CO2 in the last hundred years has7

been due to human causes.8

9

The results presented in this paper are supportive of the AGW hypothesis for10

two reasons: firstly, increasing atmospheric CO2 is shown to drive increasing11

temperature; and secondly, the results deepen the evidence for a CO2 influence12

on climate in that second-difference CO2 is shown to drive the SOI.13

14

The difference between this evidence for the effect of CO2 on climate and that15

of the standard AGW hypothesis is that the standard model proposes that16

temperature will rise roughly linearly with atmospheric CO2, whereas the17

present results show that the climate effects result from persistence of previous18

effects and from rates of change of CO2.19

20

On the face of it, then, this model seems to leave little room for the linear21

radiative forcing aspect of the AGW hypothesis.22

23

However more research is needed in this area.24

25

Reflection on Figure 1 shows that the radiative mechanism would be26

supported if a second mechanism existed to cause the difference between the27

temperature projected for the radiative mechanism and the temperature28

observed. The observed temperature would then be seen to result from the29

addition of the effects of these two mechanisms.30

31
As discussed in the Introduction, Hansen et al. (2013) have suggested that the32

mechanism for the pause in the global temperature increase since 1998 may be33

the planetary biota, in particular the terrestrial biosphere. As an initial34
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indicative quantified characterisation of this possibility, Section 4.4 derived a1

simple measure of the increasing difference between the global surface2

temperature trend projected from a mid-range scenario climate model and the3

observed trend. This depiction of the difference displayed a rising trend. The4

time series trend for the globally aggregated Normalized Difference5

Vegetation Index – which represents the changing levels of activity of the6

terrestrial biosphere was also presented. This was shown also to display a7

rising trend.8

9

If by further research, for example by Granger causality analysis, the global10

vegetation can be shown to embody the second mechanism, this would be11

evidence that the observed global temperature does result from the effects of12

two mechanisms in operation together – the radiative, level-of-CO213

mechanism, with the biological first-difference of CO2 mechanism.14

15

Hence the biosphere mechanism would supplement, rather than replace, the16

radiative mechanism.17

18

Further comprehensive time series analysis of the NDVI data and relevant19

climate data, beyond the scope of the present paper, could throw light on these20

questions.21

22
23
24
25
26
27
28

Detailed Comments: 1. The paragraph in lines 19-25 on page 8 is incoherent. Please29
redraft. (There are various other places where the quality of exposition could be30
improved. Please redraft with careful attention to readability.)31

32
33

We propose to replace the paragraph in question:34
35

A number of Granger causality studies have been carried out on climate time36

series (see review in Attanasio 2012). Of papers we have found which37

assessed atmospheric CO2 and global surface temperature – some six (Sun and38
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Wang 1996; Triacca 2005; Kodra et al., 2011; Attanasio and Triacca, 2011;1

Attanasio (2012); Stern and Kaufmann 2014) –while all but one (Triacca 2005)2

found Granger causality, it was not with CO2 concentration but with CO23

radiative forcing (lnCO2 (Attanasio and Triacca, 2011).4

5

With the following:6

7

A number of Granger causality studies have been carried out on climate time8

series (see review in Attanasio 2012). We found six papers which assessed9

atmospheric CO2 and global surface temperature (Sun and Wang 1996;10

Triacca 2005; Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio (2012);11

Stern and Kaufmann 2014). Of these, while all but one (Triacca 2005) found12

Granger causality, it was not with CO2 concentration as studied in this paper13

but with CO2 radiative forcing (lnCO2 (Attanasio and Triacca 2011)).14

15

16
17

Detailed Comments: 2. Lines 13-21 on page 9 are a reworking of the preceding18
paragraph. Please delete whichever is the unintended version.19

20
This has been done.21

22
23

Detailed Comments: 3. (Page 11, lines 26-27). The point about SOI versus ENSO24
could be better made. Is “more valid” a better reason for the preference than25
“simpler”? It would be very helpful to readers to give brief formal definitions of both26
these series. How is ENSO constructed? I don’t know.27

28
29
30

On the existing manuscript we define31
32

The Southern Oscillation is the atmospheric pressure component of ENSO,33

and is an oscillation in the surface air pressure between the tropical eastern and34

the western Pacific Ocean waters. It is calculated from normalized Tahiti35

minus Darwin sea level pressure. The SOI only takes into account sea level36

pressure. In contrast, the El Niño component of ENSO is specified in terms of37

changes in the Pacific Ocean sea surface temperature relative to the average38

temperature. It is considered to be more valid to conduct an analysis in which39
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the temperature is an outcome (dependent variable) without also having1

(Pacific Ocean) temperature as an input (independent variable). The2

correlation between SOI and the other ENSO indices is high, so we believe3

this assumption is robust.4

------------------------------5
6

We suggest replacing the above with the following:7
8
9

Concerning the El Nino-Southern Oscillation, according to IPCC (2014) the10

term El Niño was initially used to describe a warm-water current that11

periodically flows along the coast of Ecuador and Peru, disrupting the local12

fishery. It has since become identified with a basin-wide warming of the13

tropical Pacific Ocean east of the dateline. This oceanic event is associated14

with a fluctuation of a global-scale tropical and subtropical surface15

atmospheric pressure pattern called the Southern Oscillation. This16

atmosphere–ocean phenomenon is coupled, with typical time scales of two to17

about seven years, and known as the El Niño-Southern Oscillation (ENSO).18

19

The El Nino (temperature) component of ENSO is measured by changes in the20

sea surface temperature of the central and eastern equatorial Pacific relative to21

the average temperature.The Southern Oscillation (pressure) ENSO22

component is often measured by the surface pressure anomaly difference23

between Tahiti and Darwin.24

25

During an ENSO event, the prevailing trade winds weaken, reducing26

upwelling and altering ocean currents such that the sea surface temperatures27

warm, further weakening the trade winds. This event has a great impact on the28

wind, sea surface temperature and precipitation patterns in the tropical Pacific.29

It has climatic effects throughout the Pacific region and in many other parts of30

the world.31

32

For the present study we choose the SOI component of ENSO to stand for33

ENSO as a whole. This is because it is considered to be more valid to conduct34

an analysis in which temperature is an outcome (dependent variable) without35
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also having (Pacific Ocean) temperature as an input (independent variable).1

The correlation between SOI and the other ENSO indices is high, so we2

believe this assumption is robust.3

4
5
6
7
8
9

Detailed Comments: 4. (Page 12, lines 9 and 30) The use of the term “derivative” as10
a synonym for “difference” is, to this reader, an irritating tic. “Derivative” suggests11
that the models in question are discrete approximations to continuous time relations,12
but nowhere are these relations specified or the approximations formalized. Indeed,13
the tests for Granger causality, of the form given, could not be formalized at all in a14
continuous time framework! Let’s be clear that the models presented here are15
explicitly formulated for discrete sequences of observations. Differences, like lags, are16
an inherent feature of these models, not approximations to anything.17

18
19

Response: Will change derivative to difference.20
21

--------------------------22
23

Detailed Comments: 5. (Page 13, lines 7-16) Please see the main discussion above.24
25

Response provided above.26
27

Detailed Comments: 6. There are lots of missing references in the paper. See in28
particular pages 13, lines 30-31, and 14, lines 4-6, but there are others.29

30
31

Response: All references in body of newly amended manuscript have been checked32
with References section, missing references added and superfluous removed.33

34
35

Detailed Comments: 7. (Page 15, lines 9-10) Note that BLUE is a property36
pertaining to the classical (fixed regressor) regression model, which is not37
appropriate to time series. Autocorrelated disturbances may result in bias when the38
model includes lagged endogenous variables among the regressors.39

40
----------------------41

The OLS estimator is BLUE in the context of time-series data provided that42
the errors in the model satisfy the assumptions of a zero mean, no43
autocorrelation, and homoskedasticity; and provided that the regressors are44
non-random (or at least not correlated with the errors). "Fixed regressors" are45
not actually needed for OLS to be BLUE.46

47
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If the regressors include lagged values of the dependent variable, then OLS1
will be biased in small samples. However, this bias vanishes in very large2
samples, as OLS is still a consistent estimator in this situation. If, in addition3
to these lagged variables, we also have autocorrelated errors, the OLS will be4
inconsistent. By using a dynamic model specification (which typically5
includes using lagged values of the dependent variable as regressors) we can6
typically ensure that the model's errors are in fact serially independent. In this7
case there is a small-sample bias, but it will be negligible with samples of the8
size used in the paper.9

Based on the above we propose to replace the text (page 15, line 30):10

Notably and importantly this does not bias the OLS coefficient estimates.11

With12

Notably and importantly this does not bias the OLS coefficient estimates given13
the sample sizes used in this study.14

15
Detailed Comments: 8. (Page 18) The discussion of the “I(d)” categorization of16
series on this page is totally muddled. Beenstock et al. find temperature to be I(1) and17
CO2 (level) to be I(2). Please redraft with care.18

19
Proposed redraft is as follows:20

21
Both first-difference CO2 being shown to lead temperature, and the two series22
displaying close correspondence, are considered a firm basis for the time23
series analysis of the statistical relationship between first-difference CO2 and24
temperature which follows. For this further analysis, we choose global surface25
temperature as the temperature series because, while its maximum correlation26
is not the highest (Figure 5), its global coverage by definition is greatest.27

28
The following sections provide the results of the time series analysis. (In this29
section, TEMP stands for global surface temperature ((HadCRUT4), and other30
block capital terms are those used in the modelling).31

32
The order of integration, denoted I(d), is an important characteristic of a time33
series. It reports the minimum number of differences required to obtain a34
covariance stationary series. As stated above, all series used in a time series35
regression must be series which are stationary without further differencing36
(Greene 2012), that is, in the notation, display an order of integration of I(0). If37
a series has an order of integration greater than zero, it can be transformed by38
appropriate differencing into a new series which is stationary.39

40
By means of the Augmented Dickey–Fuller (ADF) test for unit roots, Table 341
provides the information concerning stationarity for the level of, and first-42
difference of, CO2, as well as for global surface temperature. Test results are43
provided for both monthly and annual data. The test was applied with an44
allowance for both a drift and deterministic trend in the data, and the degree of45
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augmentation in the Dickey-Fuller regressions was determined by minimizing1
the Schwarz Information Criterion.2

3
The results show that for both the monthly and annual series used, the4
variables TEMP and FIRST-DIFFERENCE CO2 are stationary (I(0)); but5
level of CO2 is not. Level of CO2 is shown to be I(1) because (Table 3) its first6
differencefirst-difference is stationary .7

8
In contrast to this result, however, Beenstock et al. (2012), using annual data,9
report that their series for the level of atmospheric CO2 forcing is an I (2)10
variable and therefore is stationary in second differences.11

12
With regard to the reconciliation of these two varying results, we refer to the13
study of Pretis and Hendry (2013) which reviewed Beenstock et al. (2012).14
Pretis and Hendry (2013) take issue with the finding of I(2) for the15
anthropogenic forcings studied – including CO2 - and find evidence that this16
finding results from the combination of two different data sets measured in17
different ways which make up the 1850-2011 data set which Beenstock et al.18
test. Regarding this composite series Pretis and Hendry (2013) write:19

20
In the presence of these different measurements exhibiting structural21
changes, a unit-root test on the entire sample could easily not reject the22
null hypothesis of I(2) even when the data are in fact I(1). Indeed, once23
we control for these changes, our results contradict the findings in24
Beenstock et al. (2012).25

26
Pretis and Hendry (2013) give their results for CO2 in their Table 1. Note that,27
in the table, level of CO2 data is transformed into first-difference data28
(Beenstock et al claim the level of CO2 is I(2); if that is the case, the first-29
difference of the level of CO2 Pretis and Hendry (2013) should find would be30
I(1) ).31

32
Pretis and Hendry (2013) state:33

34
Unit-root tests are used to determine the level of integration of time35
series. Rejection of the null hypothesis provides evidence against the36
presence of a unit-root and suggests that the series is I(0) (stationary)37
rather than I(1) (integrated).38
…based on augmented Dickey–Fuller (ADF) tests (see Dickey and39
Fuller, 1981), the first differencefirst-difference of annual radiative40
forcing of CO2 is stationary initially around a constant (over 1850–41
1957), then around a linear trend (over 1958–2011). Although these42
tests are based on sub-samples corresponding to the shift in the43
measurement system, there is sufficient power to reject the null44
hypothesis of a unit root.45

46
Hence for annual data Pretis and Hendry (2013) find first-difference CO2 to be47
stationary - I(0), not I(1) - as we do (Table 3).48

49
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With this question of the order of integration of the time series considered, we1
now turn to the next step of the time series analysis.2

3
4
5

Detailed Comments: 9. The application of the Toda-Yamamoto result is most6
interesting, but it needs to be seen in context. These authors propose tests for a VAR7
in levels with an unknown number of unit roots. However, please note that in such a8
model, Granger causality of an I(1) series by an I(2) series is ruled out by9
construction. A model generating variables with different orders of integration can10
only embody long-run relations between variables transformed to have the same11
orders of integration: in particular, between the level of an I(1) and the differences of12
an I(2), or between the level of an I(0) and the differences of an I(1)). (To verify this13
statement, consider the VAR ( ) A L x u t t and verify the properties that A L ( ) must14
satisfy to ensure that A L ( )1contains different powers of the factor 1 L appearing15
in different rows.) The outcome of the reported test is inevitable, given the other16
reported results. I guess it does not harm to report it, but with suitable caveats.17

18
------------------19
Our response is as follows:20

21
In their text Applied Time Series Econometrics. Cambridge University Press, (2004),22
Lutkepohl and Kratzig state (page 148):23

24
Because testing for Granger-causality requires checking whether specific coefficients25
are zero, standard tests for zero restrictions on VAR coefficients may be used here (χ26
2- or F-tests based on the Wald principle are typically thought of in this context).27
Unfortunately, they may have nonstandard asymptotic properties if the VAR contains28
I(1) variables. In particular, Wald tests for Granger-causality are known to result in29
nonstandard limiting distributions depending on the cointegration properties of the30
system and possibly on nuisance parameters [see Toda & Phillips (1993)].31

32
Fortunately, these problems can be overcome easily, as pointed out by Toda33
& Yamamoto (1995) and Dolado & Lutkepohl (1996). As mentioned in Section 3.3.1,34
the nonstandard asymptotic properties of the standard tests on the coefficients of35
cointegrated VAR processes are due to the singularity of the asymptotic distribution36
of the estimators. The singularity can be removed by37
fitting a VAR process whose order exceeds the true order, however. It can be38
shown that this device leads to a non-singular asymptotic distribution of the relevant39
coefficients. Thus, simply overfitting the VAR order and ignoring the extra40
parameters in testing for Granger-causality overcomes the problems associated with41
standard tests – at least if asymptotic properties are of interest.42

43
44
45
46

Detailed Comments: 10. (Page 27, lines 11-13) The regression of (say) x  ay on z47
is clearly different for different choices of constant a. It could be significant (or48
cointegrated in the nonstationary case) for some value of a, and not for others. The49
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case that the projection error of a GCM can be captured as the simple difference of1
the two standardized series needs to be much more carefully argued.2

3
Response: This point is valued. Will address in the new, separate paper.4

5
Detailed Comments: 11. My guess is that “the APCD paper” referred to in Page 30,6
line 20, and elsewhere refers to the first version of the present paper. If so, this needs7
to be made explicit.8

9
Response: this is correct – the term is not used in the present Author Response10

11
12
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36
37
38



57

BY1
2
3
4

V. GOMEZ & A. MARAVALL,5
6
7
8

with the programming assistance of G. CAPORELLO9
10
11
12
13
14
15
16

Thanks are due to G. FIORENTINI and C. PLANAS for their research assistance17
18
19
20

(Based on an original program developed by J.P.BURMAN at the Bank of England, version 1982)21
22
23
24
25
26

(*) Copyright : V. GOMEZ, A. MARAVALL (1994,1996)27
28
29
30
31
32
33
34
35
36

REDUCED OUTPUT37
38

--------------39
40

SERIES TITLE: co2rawfr41
42

PREADJUSTED WITH TRAMO : YES43
44
45
46

NO OF OBSERVATIONS =49947
48
49
50
51
52
53
54

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV55
DEC56

57
58

1973 328.54 329.56 330.3 331.5 332.48 332.07 330.87 329.31 327.51 327.1859
328.16 328.6460

1974 329.35 330.71 331.48 332.65 333.2 332.12 330.99 329.17 327.41 327.2161
328.34 329.562

1975 330.68 331.41 331.85 333.29 333.91 333.4 331.74 329.88 328.57 328.3663
329.33 330.5964

1976 331.66 332.75 333.46 334.78 334.78 334.06 332.95 330.64 328.96 328.7765
330.18 331.6566

1977 332.69 333.23 334.97 336.03 336.82 336.1 334.79 332.53 331.19 331.2167
332.35 333.4768

1978 335.1 335.26 336.61 337.77 338.01 337.98 336.48 334.37 332.33 332.4169
333.76 334.8370

1979 336.21 336.65 338.13 338.94 339 339.2 337.6 335.56 333.93 334.1271
335.26 336.7872

1980 337.8 338.28 340.04 340.86 341.47 341.26 339.34 337.45 336.1 336.0573
337.21 338.2974
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1981 339.36 340.51 341.57 342.56 343.01 342.49 340.68 338.49 336.92 337.121
338.59 339.92

1982 340.92 341.69 342.86 343.92 344.67 343.78 342.23 340.11 338.32 338.393
339.48 340.884

1983 341.64 342.87 343.59 345.25 345.96 345.52 344.15 342.25 340.17 340.35
341.53 343.076

1984 344.05 344.77 345.46 346.77 347.55 346.98 345.55 343.2 341.35 341.687
343.06 344.548

1985 345.25 346.06 347.66 348.2 348.92 348.4 346.66 344.85 343.2 343.08 344.49
345.8210

1986 346.54 347.13 348.05 349.77 350.53 349.9 348.11 346.09 345.01 344.4711
345.86 347.1512

1987 348.38 348.7 349.72 351.32 352.14 351.61 349.91 347.84 346.52 346.6513
347.96 349.1814

1988 350.38 351.68 352.24 353.66 354.18 353.68 352.58 350.66 349.03 349.0815
350.15 351.4416

1989 352.89 353.24 353.8 355.59 355.89 355.3 353.98 351.53 350.02 350.2917
351.44 352.8418

1990 353.79 354.88 355.65 356.27 357.29 356.32 354.88 352.89 351.28 351.5919
353.05 354.2720

1991 354.87 355.68 357.06 358.51 359.09 358.1 356.12 353.89 352.3 352.3221
353.79 355.0722

1992 356.17 356.93 357.82 359 359.55 359.32 356.85 354.91 352.93 353.3123
354.27 355.5324

1993 356.86 357.27 358.36 359.27 360.19 359.52 357.42 355.46 354.1 354.12 355.425
356.8426

1994 358.22 358.98 359.91 361.32 361.68 360.8 359.39 357.42 355.63 356.0927
357.56 358.8728

1995 359.87 360.79 361.77 363.23 363.77 363.22 361.7 359.11 358.11 357.97 359.429
360.6130

1996 362.04 363.17 364.17 364.51 365.16 364.93 363.53 361.38 359.6 359.5431
360.84 362.1832

1997 363.04 364.09 364.47 366.25 366.69 365.59 364.34 362.2 360.31 360.7133
362.44 364.3334

1998 365.18 365.98 367.13 368.61 369.49 368.95 367.74 365.79 364.01 364.3535
365.52 367.0836

1999 368.12 368.98 369.6 370.96 370.77 370.33 369.28 366.86 364.94 365.3537
366.68 368.0438

2000 369.25 369.5 370.56 371.82 371.51 371.71 369.85 368.2 366.91 366.9939
368.33 369.6740

2001 370.52 371.49 372.53 373.37 373.82 373.18 371.57 369.63 368.16 368.4241
369.69 371.1842

2002 372.45 373.14 373.93 375 375.65 375.5 374 371.83 370.66 370.51 372.243
373.7144

2003 374.87 375.62 376.48 377.74 378.5 378.18 376.72 374.31 373.2 373.145
374.64 375.9346

2004 377 377.87 378.73 380.41 380.63 379.56 377.61 376.15 374.11 374.4447
375.93 377.4548

2005 378.47 379.76 381.14 382.2 382.47 382.2 380.78 378.73 376.66 376.9849
378.29 379.9250

2006 381.35 382.16 382.66 384.73 384.98 384.09 382.38 380.45 378.92 379.1651
380.18 381.7952

2007 382.93 383.81 384.56 386.4 386.58 386.05 384.49 382 380.9 381.1453
382.42 383.8954

2008 385.44 385.73 385.97 387.16 388.5 387.88 386.42 384.15 383.09 382.9955
384.13 385.5656

2009 386.94 387.42 388.77 389.44 390.19 389.45 387.78 385.92 384.79 384.39 38657
387.3158

2010 388.5 389.94 391.09 392.53 393.04 392.15 390.22 388.26 386.83 387.259
388.65 389.7360

2011 391.25 391.82 392.49 393.34 394.21 393.72 392.42 390.19 389.04 388.9661
390.24 391.8362

2012 393.12 393.6 394.45 396.18 396.78 395.83 394.3 392.41 391.06 391.0163
392.81 394.2864

2013 395.54 396.8 397.31 398.35 399.76 398.58 397.2 395.15 393.51 393.6665
395.11 396.8166

2014 397.8 397.91 399.58 401.29 401.78 401.15 39967
68
69
70

TRANSFORMATION: Z -> Z71
72
73
74
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NONSEASONAL DIFFERENCING D= 11
2

SEASONAL DIFFERENCING BD= 13
4
5
6

TYPE OF ESTIMATION : FROM TRAMO7
8
9

10
11
12
13
14
15
16
17
18
19

MODEL FITTED20
21
22
23

NONSEASONAL P= 0 D= 1 Q= 124
25

SEASONAL BP= 0 BD= 1 BQ= 126
27

PERIODICITY MQ= 1228
29
30
31

MEAN = 0.0000032
33
34
35

SE = *******36
37
38
39
40
41
42
43
44
45

ARIMA PARAMETERS46
47
48
49

TH = -0.376650
51

SE = *****52
53

BTH = -0.897854
55

SE = *****56
57
58
59
60
61
62
63

RESIDUALS64
65
66
67

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV68
DEC69

70
71

1973 -0.052 0.186 -0.185 -0.069 0.389 0.277 0.378 0.589 0.044 -0.288 -72
0.345 -0.87373
1974 -0.682 0.268 -0.098 -0.066 -0.083 -0.584 0.095 0.177 -0.053 -0.164 -74
0.124 -0.03475
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1975 0.14 -0.106 -0.549 0.037 0.032 0.086 -0.215 0.006 0.345 -0.009 -1
0.219 0.0292
1976 0.038 0.232 -0.099 0.062 -0.58 -0.362 0.192 -0.3 -0.175 -0.171 0.1823

0.3784
1977 0.137 -0.303 0.748 0.111 0.29 -0.02 0.087 -0.252 0.189 0.187 0.0225

-0.0646
1978 0.561 -0.487 0.201 0.022 -0.319 0.454 0.066 -0.08 -0.475 -0.015 0.1617

-0.0548
1979 0.255 -0.251 0.38 -0.255 -0.57 0.531 0.006 -0.022 0.002 0.258 0.0369

0.36110
1980 0.023 -0.263 0.607 -0.119 0.08 0.289 -0.385 -0.017 0.283 0.098 0.00211

-0.12712
1981 -0.099 0.389 0.081 -0.112 -0.09 -0.111 -0.376 -0.327 -0.083 0.211 0.35813

0.2514
1982 -0.002 0.002 0.052 -0.038 0.242 -0.348 -0.171 -0.161 -0.245 -0.005 -15
0.131 0.14416
1983 -0.292 0.352 -0.272 0.446 0.359 0.191 0.216 0.215 -0.374 -0.003 0.02317

0.32218
1984 0.03 -0.084 -0.424 -0.017 0.234 0.008 0.073 -0.303 -0.293 0.214 0.25219

0.31620
1985 -0.233 -0.083 0.526 -0.444 -0.011 -0.026 -0.257 0.147 0.095 -0.123 0.04721

0.15722
1986 -0.247 -0.309 -0.296 0.492 0.366 0.008 -0.269 -0.093 0.571 -0.348 0.02323

0.00324
1987 0.237 -0.375 -0.202 0.346 0.352 0.116 -0.111 -0.084 0.272 0.267 0.15925

-0.01526
1988 0.176 0.63 -0.278 0.094 -0.065 -0.009 0.458 0.285 0.07 0.094 -27
0.152 -0.05528
1989 0.392 -0.296 -0.574 0.332 -0.185 -0.146 0.139 -0.377 -0.056 0.26 0.0129

0.11630
1990 -0.086 0.309 -0.089 -0.711 0.174 -0.383 -0.09 0.041 -0.007 0.29 0.3431

0.04932
1991 -0.448 -0.142 0.372 0.362 0.092 -0.388 -0.637 -0.413 -0.156 -0.086 0.18533

0.05934
1992 0.104 0.013 -0.103 -0.11 -0.111 0.339 -0.803 -0.168 -0.453 0.164 -35
0.253 -0.12536
1993 0.256 -0.277 -0.001 -0.334 0.182 -0.03 -0.477 -0.079 0.24 0.031 0.04937

0.17238
1994 0.387 0.16 -0.007 0.198 -0.209 -0.377 0.13 0.129 -0.139 0.335 0.34939

0.13940
1995 -0.038 0.159 0.049 0.248 0.019 0.069 0.16 -0.487 0.438 -0.088 0.12741

-0.04542
1996 0.332 0.49 0.195 -0.84 -0.273 0.273 0.343 0.078 -0.193 -0.219 -43
0.069 0.02144
1997 -0.249 0.154 -0.552 0.412 -0.016 -0.539 0.163 0.025 -0.3 0.215 0.52445

0.78946
1998 0.056 -0.006 0.22 0.339 0.414 0.238 0.458 0.33 -0.044 0.218 -0.0847

0.17148
1999 0.038 0.05 -0.312 -0.007 -0.816 -0.134 0.44 -0.163 -0.352 0.148 0.0749

0.00750
2000 0.149 -0.522 -0.053 -0.021 -0.858 0.473 -0.191 0.403 0.521 0.118 0.06751

-0.01252
2001 -0.233 0.113 0.151 -0.364 -0.14 -0.178 -0.149 0.08 0.182 0.178 0.01753

0.12354
2002 0.261 -0.001 -0.153 -0.206 0.12 0.422 0.196 -0.034 0.423 -0.152 0.31855

0.24456
2003 0.175 0.036 -0.053 0.037 0.301 0.282 0.179 -0.269 0.35 -0.098 0.1557

-0.05258
2004 -0.035 0.08 -0.03 0.46 -0.109 -0.64 -0.665 0.397 -0.375 0.083 0.14959

0.18960
2005 0.007 0.507 0.657 0.051 -0.184 0.193 0.222 0.075 -0.473 0.013 -61
0.069 0.20362
2006 0.429 0.134 -0.411 0.678 0.053 -0.364 -0.294 0.002 0.091 0.126 -63
0.309 0.06964
2007 0.053 0.065 -0.14 0.465 -0.077 -0.014 0.004 -0.457 0.339 0.21 0.01965

0.03466
2008 0.447 -0.381 -0.801 -0.487 0.751 0.206 0.186 -0.122 0.453 -0.096 -0.2367

-0.10368
2009 0.181 -0.235 0.431 -0.524 0.051 -0.169 -0.176 0.171 0.442 -0.372 0.15669

-0.07670
2010 -0.021 0.68 0.522 0.351 0.115 -0.276 -0.465 -0.062 0.016 0.292 0.21671

-0.26972
2011 0.235 -0.164 -0.303 -0.566 0.132 0.163 0.367 -0.03 0.304 -0.079 -73
0.105 0.15674
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2012 0.131 -0.267 -0.137 0.423 0.199 -0.283 -0.062 0.165 0.145 -0.089 0.4191
0.2132

2013 0.115 0.539 -0.17 -0.328 0.722 -0.28 0.085 0.041 -0.2 -0.004 0.0553
0.34

2014 -0.126 -0.752 0.542 0.637 0.079 0.084 -0.5685
6
7
8
9

10
11
12

RESIDUALS STATISTICS13
14

--------------------15
16
17
18
19
20

MEAN= 0.1819E-01 ( SE = 0.0130 )21
22

SKEWNESS= -0.2727E+00 ( SE = 0.1097 )23
24

KURTOSIS= 0.3284E+01 ( SE = 0.2193 )25
26

STANDARD DEVIATION= 0.2958E+0027
28
29
30

Skewness is within approx 2.5 std. deviations from zero - essentially symmetric.31
32
33
34

Kurtosis is within about 1 std. dev. from 3, so this also supports normality35
36
37
38
39
40

AUTOCORRELATIONS OF RESIDUAL41
42

----------------------------43
44
45
46

0.0275 -0.0809 -0.0056 -0.038 0.0301 0.014447
48

SE 0.0448 0.0448 0.0451 0.0451 0.0452 0.045249
50
51
52

-0.08 0.0447 0.0096 -0.0327 -0.0134 -0.006653
54

SE 0.0452 0.0455 0.0456 0.0456 0.0456 0.045655
56
57
58

-0.0323 0.093 0.0529 -0.0588 -0.0152 -0.054959
60

SE 0.0456 0.0457 0.0461 0.0462 0.0463 0.046361
62
63
64

-0.068 0.0068 -0.0342 -0.0199 0.0219 -0.008265
66

SE 0.0465 0.0467 0.0467 0.0467 0.0467 0.046867
68
69
70

-0.014 -0.0187 0.0307 0.0245 0.0367 -0.00971
72

SE 0.0468 0.0468 0.0468 0.0468 0.0469 0.046973
74
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1
2

-0.0509 0.0473 -0.01 -0.0094 0.0774 -0.06913
4

SE 0.0469 0.047 0.0471 0.0471 0.0471 0.04745
6
7
8

Mark Leggett comment: Cannot reject randomness9
10
11
12
13
14

THE LJUNG-BOX Q VALUE IS 22.8215
16

IF RESIDUALS ARE RANDOM IT SHOULD BE DISTRIBUTED AS CHI-SQUARED (22)17
18
19
20
21
22
23
24

AUTOCORRELATIONS OF SQUARED RESIDUAL25
26

------------------------------------27
28

Mark Leggett comment: Cannot reject randomness29
30
31
32
33
34

THE LJUNG-BOX Q VALUE IS 21.1635
36

IF RESIDUALS ARE RANDOM IT SHOULD BE DISTRIBUTED AS CHI-SQUARED (22)37
38
39
40

DERIVATION OF THE COMPONENT MODELS : OK41
42
43
44
45
46
47
48
49
50
51

MODELS FOR THE COMPONENTS52
53

-------------------------54
55
56
57
58
59
60
61
62
63
64
65
66
67

TREND-CYCLE NUMERATOR68
69

1 0.0089 -0.991170
71

TREND-CYCLE DENOMINATOR72
73

1 -2 174
75
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INNOV. VAR. (*) 0.088111
2
3
4
5
6
7
8

SEAS. NUMERATOR9
10

1 1.4444 1.5374 1.4777 1.2869 1.04 0.7691 0.4978 0.2666 0.0486 -0.0932 -11
0.389812
SEAS. DENOMINATOR13

14
1 1 1 1 1 1 1 1 1 1 1 115

16
INNOV. VAR. (*) 0.0029417

18
19
20
21
22
23
24

IRREGULAR25
26

VAR. 0.4265727
28
29
30
31
32
33
34

SEASONALLY ADJUSTED NUMERATOR35
36

1 -1.3681 0.373637
38
39
40

SEASONALLY ADJUSTED DENOMINATOR41
42

1 -2 143
44

INNOV. VAR. (*) 0.9079845
46
47
48

(*) IN UNITS OF VAR(A)49
50

DETERMINISTIC COMPONENT FROM TRAMO51
52

----------------------------------53
54

NONE55
56

DERIVATION OF THE FILTERS : OK57
58
59
60
61
62
63
64

COMPONENTS (STATIONARY TRANSFORMATION) :SECOND MOMENTS65
66
67
68
69
70

TREND-CYCLE ADJUSTED71
72
73
74
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LAG COMPONENT ESTIMATOR ESTIMATE COMPONENT ESTIMATOR1
ESTIMATE2

3
4

LAG 1 AUTCOR 0 0.399 0.385 -0.624 -0.624 -0.5745
6

LAG 12 AUTCOR 0 -0.051 -0.103 0 -0.051 0.017
8
9

10
11
12
13
14

VAR.(*) 0.175 0.038 0.04 2.734 2.594 2.43215
16
17
18
19
20
21
22

IRREGULAR SEASONAL23
24
25
26

LAG COMPONENT ESTIMATOR ESTIMATE COMPONENT ESTIMATOR27
ESTIMATE28

29
30

LAG 1 AUTCOR 0 -0.312 -0.263 0.921 0.742 0.81831
32

LAG 12 AUTCOR 0 -0.051 -0.029 0 0.924 0.94533
34
35
36
37
38
39
40

VAR.(*) 0.427 0.279 0.276 0.034 0.001 0.00141
42
43
44
45
46

(*) IN UNITS OF VAR(A)47
48
49
50
51
52
53
54
55
56
57
58

ESTIMATION ERROR VARIANCE59
60

(In units of Var(a))61
62
63
64

TREND-CYCLE ADJUSTED65
66
67
68

FINAL ESTIMATION 0.142 0.03469
70

ERROR71
72
73
74
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REVISION IN CON- 0.117 0.0341
2

CURRENT ERROR3
4
5
6

TOTAL ESTIMATION 0.259 0.0697
8

ERROR (CONCURRENT9
10

ESTIMATOR)11
12
13
14
15
16
17
18

PERCENTAGE REDUCTION IN THE STANDARD ERROR OF THE REVISION AFTER ADDITIONAL YEARS19
20
21

(COMPARISON WITH CONCURRENT ESTIMATORS)22
23
24
25
26
27
28
29

AFTER 1 YEAR 75.02 10.1530
31

AFTER 2 YEAR 77.57 19.3332
33

AFTER 3 YEAR 79.86 27.5834
35

AFTER 4 YEAR 81.92 34.9836
37

AFTER 5 YEAR 83.77 41.6338
39
40
41
42
43
44
45

AVERAGE PERCENTAGE REDUCTION IN RMSE FROM CONCURRENT ADJUSTMENT 6.02646
47
48
49
50
51
52

STANDARD ERROR OF THE CONCURRENT RATES OF ESTIMATORS53
54

(In points of annualized percent growth. Linear approximations)55
56
57
58

TREND-CYCLE SA SERIES ORIGINAL SERIES59
60
61
62

PERIOD TO PERIOD GROWTH 0.104 0.935E-0163
64

OF THE SERIES (T11)65
66
67
68

PERIOD GROWTH OF 0.223 0.29469
70

A 3-PERIOD OF THE71
72

CENTERED SERIES (T31)73
74
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1
2

(CENTERED) ESTIMATOR 0.510 0.539 0.5403
4

OF THE ANNUAL GROWTH5
6

(T 1 12)7
8
9

10
SEASONAL COMPONENT11

12
13
14

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV15
DEC16

17
1973 -0.073 0.623 1.501 2.582 3.029 2.37 0.779 -1.346 -3.086 -3.228 -18
2.129 -1.02219
1974 -0.069 0.623 1.504 2.586 3.028 2.37 0.775 -1.355 -3.093 -3.232 -20
2.131 -1.01621
1975 -0.061 0.624 1.511 2.591 3.029 2.373 0.771 -1.367 -3.103 -3.237 -22
2.133 -1.0123
1976 -0.052 0.624 1.521 2.598 3.03 2.378 0.768 -1.379 -3.116 -3.243 -24
2.135 -1.00525
1977 -0.044 0.621 1.529 2.602 3.032 2.385 0.765 -1.39 -3.128 -3.247 -26
2.134 -0.99827
1978 -0.036 0.62 1.536 2.604 3.033 2.392 0.759 -1.4 -3.14 -3.251 -28
2.134 -0.9929
1979 -0.03 0.622 1.54 2.607 3.036 2.397 0.752 -1.412 -3.151 -3.254 -30
2.133 -0.98131
1980 -0.027 0.627 1.542 2.61 3.045 2.4 0.744 -1.423 -3.161 -3.257 -32
2.132 -0.97233
1981 -0.024 0.633 1.54 2.614 3.055 2.401 0.738 -1.434 -3.172 -3.262 -34
2.131 -0.96235
1982 -0.02 0.639 1.535 2.617 3.064 2.402 0.734 -1.442 -3.181 -3.266 -36
2.131 -0.95337
1983 -0.016 0.643 1.528 2.618 3.071 2.402 0.729 -1.45 -3.188 -3.268 -38
2.128 -0.94339
1984 -0.008 0.648 1.524 2.619 3.076 2.4 0.721 -1.461 -3.194 -3.27 -40
2.125 -0.93441
1985 0.001 0.653 1.521 2.622 3.08 2.398 0.712 -1.472 -3.197 -3.272 -42
2.122 -0.92843
1986 0.01 0.659 1.516 2.626 3.084 2.395 0.704 -1.484 -3.202 -3.273 -2.1244

-0.92345
1987 0.021 0.669 1.513 2.63 3.086 2.39 0.695 -1.497 -3.211 -3.274 -46
2.118 -0.91747
1988 0.032 0.681 1.515 2.634 3.086 2.384 0.687 -1.509 -3.221 -3.275 -48
2.115 -0.91149
1989 0.043 0.693 1.519 2.639 3.088 2.379 0.677 -1.523 -3.234 -3.278 -50
2.113 -0.90351
1990 0.052 0.703 1.527 2.644 3.091 2.377 0.666 -1.536 -3.247 -3.283 -52
2.112 -0.89753
1991 0.061 0.713 1.534 2.651 3.094 2.377 0.656 -1.548 -3.258 -3.289 -54
2.112 -0.89255
1992 0.072 0.722 1.54 2.655 3.092 2.375 0.649 -1.557 -3.266 -3.293 -56
2.112 -0.88757
1993 0.083 0.733 1.543 2.658 3.087 2.368 0.643 -1.565 -3.272 -3.297 -58
2.111 -0.8859
1994 0.093 0.743 1.546 2.662 3.081 2.36 0.641 -1.573 -3.276 -3.301 -2.1160

-0.87361
1995 0.101 0.753 1.548 2.664 3.074 2.352 0.64 -1.578 -3.28 -3.304 -62
2.108 -0.86663
1996 0.109 0.762 1.548 2.665 3.066 2.345 0.638 -1.581 -3.283 -3.307 -64
2.107 -0.85665
1997 0.117 0.767 1.546 2.668 3.06 2.337 0.634 -1.585 -3.287 -3.309 -66
2.105 -0.84867
1998 0.126 0.771 1.545 2.671 3.052 2.331 0.628 -1.589 -3.286 -3.308 -68
2.103 -0.84169
1999 0.137 0.776 1.546 2.673 3.045 2.326 0.62 -1.595 -3.285 -3.309 -70
2.101 -0.83771
2000 0.146 0.78 1.547 2.674 3.043 2.323 0.61 -1.602 -3.282 -3.311 -72
2.101 -0.83573
2001 0.153 0.785 1.549 2.677 3.048 2.323 0.602 -1.61 -3.281 -3.316 -74
2.104 -0.83575
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2002 0.159 0.789 1.548 2.68 3.056 2.323 0.596 -1.617 -3.281 -3.321 -1
2.107 -0.8362
2003 0.164 0.793 1.548 2.687 3.068 2.323 0.589 -1.623 -3.283 -3.327 -3
2.112 -0.8394
2004 0.169 0.796 1.549 2.695 3.08 2.322 0.582 -1.629 -3.286 -3.332 -5
2.118 -0.8426
2005 0.174 0.799 1.548 2.7 3.091 2.322 0.578 -1.634 -3.285 -3.334 -7
2.122 -0.8448
2006 0.18 0.799 1.544 2.701 3.101 2.321 0.573 -1.641 -3.28 -3.334 -9
2.123 -0.84410
2007 0.187 0.799 1.54 2.696 3.111 2.319 0.568 -1.648 -3.274 -3.334 -11
2.122 -0.84412
2008 0.194 0.798 1.54 2.69 3.119 2.318 0.563 -1.652 -3.269 -3.337 -13
2.121 -0.84514
2009 0.197 0.797 1.543 2.689 3.129 2.316 0.556 -1.656 -3.268 -3.341 -2.1215

-0.84616
2010 0.198 0.796 1.545 2.69 3.138 2.315 0.552 -1.659 -3.268 -3.344 -17
2.118 -0.84418
2011 0.201 0.793 1.542 2.688 3.145 2.314 0.549 -1.66 -3.268 -3.347 -19
2.118 -0.84120
2012 0.203 0.79 1.541 2.69 3.153 2.314 0.546 -1.661 -3.271 -3.351 -21
2.119 -0.83822
2013 0.203 0.786 1.541 2.693 3.161 2.317 0.544 -1.661 -3.273 -3.353 -23
2.119 -0.83724
2014 0.202 0.78 1.541 2.696 3.165 2.319 0.54325

26
27
28

STANDARD ERROR OF SEASONAL29
30
31
32

X 10.0D-133
34
35
36
37
38

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV39
DEC40

41
42

1973 0.77 0.766 0.764 0.762 0.761 0.761 0.761 0.761 0.761 0.759 0.75743
0.73744

1974 0.732 0.729 0.727 0.726 0.725 0.725 0.725 0.725 0.724 0.723 0.72245
0.70546

1975 0.701 0.698 0.696 0.695 0.694 0.694 0.694 0.694 0.694 0.693 0.69147
0.67748

1976 0.674 0.671 0.67 0.669 0.668 0.668 0.668 0.668 0.668 0.667 0.66649
0.65450

1977 0.651 0.649 0.648 0.647 0.647 0.647 0.647 0.647 0.646 0.646 0.64551
0.63552

1978 0.633 0.631 0.63 0.629 0.629 0.629 0.629 0.629 0.629 0.628 0.62753
0.61954

1979 0.617 0.616 0.615 0.614 0.614 0.614 0.614 0.614 0.614 0.613 0.61355
0.60656

1980 0.604 0.603 0.603 0.602 0.602 0.602 0.602 0.602 0.602 0.601 0.60157
0.59558

1981 0.594 0.593 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.591 0.59159
0.58660

1982 0.585 0.585 0.584 0.584 0.584 0.584 0.584 0.584 0.584 0.583 0.58361
0.57962

1983 0.578 0.578 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.57663
0.57364

1984 0.573 0.572 0.572 0.572 0.571 0.571 0.571 0.571 0.571 0.571 0.57165
0.56966

1985 0.568 0.568 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.56767
0.56568

1986 0.564 0.564 0.564 0.564 0.563 0.563 0.563 0.563 0.563 0.563 0.56369
0.56170

1987 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.56 0.56 0.5671
0.55972

1988 0.559 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.55873
0.55774
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1989 0.557 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.5561
0.5552

1990 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.5553
0.5544

1991 0.554 0.554 0.554 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.5535
0.5536

1992 0.553 0.553 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.5527
0.5528

1993 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.5529
0.55210

1994 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.55211
0.55212

1995 0.552 0.552 0.552 0.552 0.552 0.553 0.553 0.553 0.553 0.553 0.55313
0.55314

1996 0.553 0.553 0.553 0.553 0.554 0.554 0.554 0.554 0.555 0.555 0.55515
0.55516

1997 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.556 0.556 0.55617
0.55618

1998 0.556 0.556 0.556 0.556 0.556 0.556 0.557 0.557 0.558 0.558 0.55819
0.55820

1999 0.558 0.558 0.558 0.558 0.558 0.558 0.559 0.559 0.56 0.56 0.5621
0.56122

2000 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.563 0.563 0.56323
0.56324

2001 0.563 0.563 0.563 0.564 0.564 0.564 0.564 0.565 0.567 0.567 0.56725
0.56726

2002 0.567 0.567 0.567 0.567 0.567 0.568 0.568 0.569 0.571 0.571 0.57127
0.57128

2003 0.571 0.571 0.571 0.572 0.572 0.572 0.573 0.573 0.576 0.577 0.57729
0.57730

2004 0.577 0.577 0.577 0.577 0.577 0.578 0.578 0.579 0.583 0.583 0.58431
0.58432

2005 0.584 0.584 0.584 0.584 0.584 0.585 0.585 0.586 0.591 0.591 0.59233
0.59234

2006 0.592 0.592 0.592 0.592 0.592 0.593 0.594 0.595 0.601 0.601 0.60235
0.60236

2007 0.602 0.602 0.602 0.602 0.603 0.603 0.604 0.606 0.613 0.613 0.61437
0.61438

2008 0.614 0.614 0.614 0.614 0.615 0.616 0.617 0.619 0.627 0.628 0.62939
0.62940

2009 0.629 0.629 0.629 0.629 0.63 0.631 0.633 0.635 0.645 0.646 0.64641
0.64742

2010 0.647 0.647 0.647 0.647 0.648 0.649 0.651 0.654 0.666 0.667 0.66843
0.66844

2011 0.668 0.668 0.668 0.669 0.67 0.671 0.674 0.677 0.691 0.693 0.69445
0.69446

2012 0.694 0.694 0.694 0.695 0.696 0.698 0.701 0.705 0.722 0.723 0.72447
0.72548

2013 0.725 0.725 0.725 0.726 0.727 0.729 0.732 0.737 0.757 0.759 0.76149
0.76150

2014 0.761 0.761 0.761 0.762 0.764 0.766 0.7751
52
53
54

TREND-CYCLE55
56
57
58

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV59
DEC60

61
62

1973 328.678 328.81 328.931 329.121 329.413 329.738 330.067 330.326 330.405 330.3263
330.127 329.89864

1974 329.812 329.897 329.986 330.035 330.05 330.074 330.205 330.364 330.443 330.4765
330.504 330.56766

1975 330.636 330.644 330.631 330.713 330.854 330.978 331.104 331.281 331.456 331.53767
331.572 331.64968

1976 331.783 331.912 331.975 331.964 331.903 331.905 331.992 332.053 332.094 332.18369
332.354 332.55570

1977 332.72 332.923 333.203 333.457 333.644 333.795 333.929 334.071 334.238 334.3971
334.502 334.64572

1978 334.793 334.887 334.995 335.11 335.24 335.434 335.593 335.642 335.649 335.71573
335.827 335.9574
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1979 336.078 336.203 336.31 336.339 336.403 336.608 336.817 336.973 337.136 337.3071
337.48 337.6532

1980 337.792 337.958 338.175 338.342 338.494 338.65 338.77 338.929 339.118 339.2463
339.315 339.3864

1981 339.533 339.737 339.885 339.944 339.978 340.003 340.011 340.058 340.195 340.4065
340.629 340.8096

1982 340.949 341.09 341.23 341.347 341.427 341.46 341.489 341.527 341.567 341.6217
341.69 341.7738

1983 341.898 342.079 342.297 342.567 342.852 343.106 343.33 343.465 343.52 343.5989
343.738 343.89310

1984 344.005 344.057 344.107 344.229 344.403 344.561 344.663 344.703 344.772 344.94211
345.147 345.29812

1985 345.399 345.557 345.72 345.786 345.853 345.959 346.078 346.22 346.335 346.41713
346.511 346.5814

1986 346.59 346.622 346.778 347.044 347.286 347.428 347.53 347.69 347.848 347.91815
347.986 348.09716

1987 348.182 348.244 348.396 348.663 348.933 349.128 349.274 349.449 349.669 349.87617
350.046 350.21718

1988 350.453 350.693 350.856 351.005 351.193 351.45 351.763 352.025 352.188 352.28119
352.347 352.45320

1989 352.56 352.575 352.609 352.74 352.866 352.987 353.11 353.196 353.314 353.46421
353.592 353.70822

1990 353.838 353.958 353.978 353.964 354.023 354.113 354.242 354.416 354.607 354.81623
354.983 355.03824

1991 355.053 355.186 355.442 355.669 355.752 355.689 355.587 355.552 355.597 355.70125
355.837 355.96726

1992 356.082 356.187 356.28 356.374 356.485 356.528 356.459 356.397 356.4 356.43827
356.469 356.52428

1993 356.606 356.666 356.725 356.815 356.936 356.999 357.014 357.114 357.281 357.43329
357.588 357.79230

1994 358.019 358.212 358.374 358.505 358.569 358.628 358.761 358.924 359.101 359.33231
359.557 359.71832

1995 359.865 360.048 360.264 360.483 360.67 360.821 360.919 361.019 361.182 361.34333
361.484 361.66934

1996 361.928 362.177 362.258 362.218 362.297 362.524 362.736 362.848 362.882 362.90335
362.949 362.99936

1997 363.063 363.14 363.236 363.38 363.475 363.519 363.624 363.74 363.879 364.15237
364.535 364.8838

1998 365.113 365.335 365.631 365.981 366.338 366.673 366.985 367.224 367.395 367.55239
367.702 367.84840

1999 367.978 368.063 368.099 368.083 368.06 368.167 368.345 368.421 368.469 368.59741
368.742 368.85442

2000 368.907 368.916 368.952 368.967 369.007 369.193 369.453 369.75 370.037 370.23843
370.369 370.45144

2001 370.533 370.663 370.766 370.792 370.826 370.915 371.055 371.244 371.455 371.65645
371.836 372.01746

2002 372.188 372.308 372.393 372.512 372.744 373.052 373.322 373.554 373.782 37447
374.242 374.47948

2003 374.666 374.824 374.981 375.185 375.459 375.749 375.966 376.136 376.322 376.49949
376.651 376.77950

2004 376.907 377.067 377.254 377.408 377.426 377.353 377.372 377.499 377.629 377.80451
378.039 378.27452

2005 378.552 378.923 379.264 379.455 379.606 379.831 380.052 380.16 380.209 380.32753
380.528 380.78554

2006 381.05 381.247 381.44 381.669 381.802 381.844 381.925 382.064 382.222 382.35355
382.466 382.61156

2007 382.79 382.976 383.192 383.412 383.568 383.698 383.812 383.933 384.142 384.37657
384.568 384.75558

2008 384.881 384.843 384.761 384.88 385.196 385.511 385.743 385.947 386.144 386.27159
386.352 386.47660

2009 386.627 386.777 386.9 386.965 387.048 387.178 387.349 387.582 387.789 387.92661
388.08 388.28262

2010 388.587 389.005 389.393 389.653 389.78 389.815 389.856 389.982 390.193 390.43263
390.613 390.74164

2011 390.869 390.939 390.933 390.969 391.148 391.431 391.708 391.942 392.148 392.30865
392.455 392.63466

2012 392.793 392.914 393.09 393.328 393.514 393.647 393.825 394.057 394.289 394.53967
394.833 395.12568

2013 395.418 395.676 395.823 395.991 396.231 396.422 396.587 396.744 396.879 397.04869
397.256 397.4470

2014 397.531 397.66 397.98 398.331 398.547 398.644 398.771
72
73
74
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STANDARD ERROR OF TREND-CYCLE1
2
3
4
5
6

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV7
DEC8

9
10

1973 0.122 0.116 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.11411
0.11412

1974 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.11413
0.11414

1975 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.113 0.11315
0.11316

1976 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.11317
0.11318

1977 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.11319
0.11320

1978 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.11221
0.11222

1979 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11223
0.11224

1980 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11225
0.11226

1981 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11227
0.11228

1982 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11229
0.11230

1983 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11231
0.11232

1984 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11233
0.11234

1985 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11235
0.11236

1986 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11237
0.11238

1987 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11239
0.11240

1988 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11241
0.11242

1989 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11243
0.11244

1990 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11245
0.11246

1991 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11247
0.11248

1992 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11249
0.11250

1993 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11251
0.11252

1994 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11253
0.11254

1995 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11255
0.11256

1996 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11257
0.11258

1997 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11259
0.11260

1998 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11261
0.11262

1999 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11263
0.11264

2000 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11265
0.11266

2001 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11267
0.11268

2002 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11269
0.11270

2003 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11271
0.11272

2004 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.11273
0.11274
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2005 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.1121
0.1122

2006 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.1123
0.1124

2007 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.1125
0.1126

2008 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.113 0.1137
0.1138

2009 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.1139
0.11310

2010 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.11311
0.11312

2011 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.11413
0.11414

2012 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.11415
0.11416

2013 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.115 0.11517
0.11518

2014 0.115 0.115 0.115 0.115 0.115 0.116 0.12219
20
21
22

SEASONALLY ADJUSTED SERIES23
24
25
26

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC27
28
29
30
31

1973 328.613 328.937 328.799 328.918 329.451 329.7 330.091 330.656 330.596 330.40832
330.289 329.66233

1974 329.419 330.087 329.976 330.064 330.172 329.75 330.215 330.525 330.503 330.44234
330.471 330.51635

1975 330.741 330.786 330.339 330.699 330.881 331.027 330.969 331.247 331.673 331.59736
331.463 331.637

1976 331.712 332.126 331.939 332.182 331.75 331.682 332.182 332.019 332.076 332.01338
332.315 332.65539

1977 332.734 332.609 333.441 333.428 333.788 333.715 334.025 333.92 334.318 334.45740
334.484 334.46841

1978 335.136 334.64 335.074 335.166 334.977 335.588 335.721 335.77 335.47 335.66142
335.894 335.8243

1979 336.24 336.028 336.59 336.333 335.964 336.803 336.848 336.972 337.081 337.37444
337.393 337.76145

1980 337.827 337.653 338.498 338.25 338.425 338.86 338.596 338.873 339.261 339.30746
339.342 339.26247

1981 339.384 339.877 340.03 339.946 339.955 340.089 339.942 339.924 340.092 340.38248
340.721 340.86249

1982 340.94 341.051 341.325 341.303 341.606 341.378 341.496 341.552 341.501 341.65650
341.611 341.83351

1983 341.656 342.227 342.062 342.632 342.889 343.118 343.421 343.7 343.358 343.56852
343.658 344.01353

1984 344.058 344.122 343.936 344.151 344.474 344.58 344.829 344.661 344.544 344.9554
345.185 345.47455

1985 345.249 345.407 346.139 345.578 345.84 346.002 345.948 346.322 346.397 346.35256
346.522 346.74857

1986 346.53 346.471 346.534 347.144 347.446 347.505 347.406 347.574 348.212 347.74358
347.98 348.07359

1987 348.359 348.031 348.207 348.69 349.054 349.22 349.215 349.337 349.731 349.92460
350.078 350.09761

1988 350.348 350.999 350.725 351.026 351.094 351.296 351.893 352.169 352.251 352.35562
352.265 352.35163

1989 352.847 352.547 352.281 352.951 352.802 352.921 353.303 353.053 353.254 353.56864
353.553 353.74365

1990 353.738 354.177 354.123 353.626 354.199 353.943 354.214 354.426 354.527 354.87366
355.162 355.16767

1991 354.809 354.967 355.526 355.859 355.996 355.723 355.464 355.438 355.558 355.60968
355.902 355.96269

1992 356.098 356.208 356.28 356.345 356.458 356.945 356.201 356.467 356.196 356.60370
356.382 356.41771

1993 356.777 356.537 356.817 356.612 357.103 357.152 356.777 357.025 357.372 357.41772
357.511 357.7273

1994 358.127 358.237 358.364 358.658 358.599 358.44 358.749 358.993 358.906 359.39174
359.67 359.74375
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1995 359.769 360.037 360.222 360.566 360.696 360.868 361.06 360.688 361.39 361.2741
361.508 361.4762

1996 361.931 362.408 362.622 361.845 362.094 362.585 362.892 362.961 362.883 362.8473
362.947 363.0364

1997 362.923 363.323 362.924 363.582 363.63 363.253 363.706 363.785 363.597 364.0195
364.545 365.1786

1998 365.054 365.209 365.585 365.939 366.438 366.619 367.112 367.379 367.296 367.6587
367.623 367.9218

1999 367.983 368.204 368.054 368.287 367.725 368.004 368.66 368.455 368.225 368.6599
368.781 368.87710

2000 369.104 368.72 369.013 369.146 368.467 369.387 369.24 369.802 370.192 370.30111
370.431 370.50512

2001 370.367 370.705 370.981 370.693 370.772 370.857 370.968 371.24 371.441 371.73613
371.794 372.01514

2002 372.291 372.351 372.382 372.32 372.594 373.177 373.404 373.447 373.941 373.83115
374.307 374.54616

2003 374.706 374.827 374.932 375.053 375.432 375.857 376.131 375.933 376.483 376.42717
376.752 376.76918

2004 376.831 377.074 377.181 377.715 377.55 377.238 377.028 377.779 377.396 377.77219
378.048 378.29220

2005 378.296 378.961 379.592 379.5 379.379 379.878 380.202 380.364 379.945 380.31421
380.412 380.76422

2006 381.17 381.361 381.116 382.029 381.879 381.769 381.807 382.091 382.2 382.49423
382.303 382.63424

2007 382.743 383.011 383.02 383.704 383.469 383.731 383.922 383.648 384.174 384.47425
384.542 384.73426

2008 385.246 384.932 384.43 384.47 385.381 385.562 385.857 385.802 386.359 386.32727
386.251 386.40528

2009 386.743 386.623 387.227 386.751 387.061 387.134 387.224 387.576 388.058 387.73129
388.12 388.15630

2010 388.302 389.144 389.545 389.84 389.902 389.835 389.668 389.919 390.098 390.54431
390.768 390.57432

2011 391.049 391.027 390.948 390.652 391.065 391.406 391.871 391.85 392.308 392.30733
392.358 392.67134

2012 392.917 392.81 392.909 393.49 393.627 393.516 393.754 394.071 394.331 394.36135
394.929 395.11836

2013 395.337 396.014 395.769 395.657 396.599 396.263 396.656 396.811 396.783 397.01337
397.229 397.64738

2014 397.598 397.13 398.039 398.594 398.615 398.831 398.45739
40
41
42

STANDARD ERROR OF SEASONALLY ADJUSTED SERIES43
44
45
46

X 10.0D-147
48
49
50
51
52

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV53
DEC54

55
56

1973 0.77 0.766 0.764 0.762 0.761 0.761 0.761 0.761 0.761 0.759 0.75757
0.73758

1974 0.732 0.729 0.727 0.726 0.725 0.725 0.725 0.725 0.724 0.723 0.72259
0.70560

1975 0.701 0.698 0.696 0.695 0.694 0.694 0.694 0.694 0.694 0.693 0.69161
0.67762

1976 0.674 0.671 0.67 0.669 0.668 0.668 0.668 0.668 0.668 0.667 0.66663
0.65464

1977 0.651 0.649 0.648 0.647 0.647 0.647 0.647 0.647 0.646 0.646 0.64565
0.63566

1978 0.633 0.631 0.63 0.629 0.629 0.629 0.629 0.629 0.629 0.628 0.62767
0.61968

1979 0.617 0.616 0.615 0.614 0.614 0.614 0.614 0.614 0.614 0.613 0.61369
0.60670

1980 0.604 0.603 0.603 0.602 0.602 0.602 0.602 0.602 0.602 0.601 0.60171
0.59572

1981 0.594 0.593 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.591 0.59173
0.58674
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1982 0.585 0.585 0.584 0.584 0.584 0.584 0.584 0.584 0.584 0.583 0.5831
0.5792

1983 0.578 0.578 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.5763
0.5734

1984 0.573 0.572 0.572 0.572 0.571 0.571 0.571 0.571 0.571 0.571 0.5715
0.5696

1985 0.568 0.568 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.5677
0.5658

1986 0.564 0.564 0.564 0.564 0.563 0.563 0.563 0.563 0.563 0.563 0.5639
0.56110

1987 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.56 0.56 0.5611
0.55912

1988 0.559 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.55813
0.55714

1989 0.557 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.55615
0.55516

1990 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.55517
0.55418

1991 0.554 0.554 0.554 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.55319
0.55320

1992 0.553 0.553 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.55221
0.55222

1993 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.55223
0.55224

1994 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.55225
0.55226

1995 0.552 0.552 0.552 0.552 0.552 0.553 0.553 0.553 0.553 0.553 0.55327
0.55328

1996 0.553 0.553 0.553 0.553 0.554 0.554 0.554 0.554 0.555 0.555 0.55529
0.55530

1997 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.556 0.556 0.55631
0.55632

1998 0.556 0.556 0.556 0.556 0.556 0.556 0.557 0.557 0.558 0.558 0.55833
0.55834

1999 0.558 0.558 0.558 0.558 0.558 0.558 0.559 0.559 0.56 0.56 0.5635
0.56136

2000 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.563 0.563 0.56337
0.56338

2001 0.563 0.563 0.563 0.564 0.564 0.564 0.564 0.565 0.567 0.567 0.56739
0.56740

2002 0.567 0.567 0.567 0.567 0.567 0.568 0.568 0.569 0.571 0.571 0.57141
0.57142

2003 0.571 0.571 0.571 0.572 0.572 0.572 0.573 0.573 0.576 0.577 0.57743
0.57744

2004 0.577 0.577 0.577 0.577 0.577 0.578 0.578 0.579 0.583 0.583 0.58445
0.58446

2005 0.584 0.584 0.584 0.584 0.584 0.585 0.585 0.586 0.591 0.591 0.59247
0.59248

2006 0.592 0.592 0.592 0.592 0.592 0.593 0.594 0.595 0.601 0.601 0.60249
0.60250

2007 0.602 0.602 0.602 0.602 0.603 0.603 0.604 0.606 0.613 0.613 0.61451
0.61452

2008 0.614 0.614 0.614 0.614 0.615 0.616 0.617 0.619 0.627 0.628 0.62953
0.62954

2009 0.629 0.629 0.629 0.629 0.63 0.631 0.633 0.635 0.645 0.646 0.64655
0.64756

2010 0.647 0.647 0.647 0.647 0.648 0.649 0.651 0.654 0.666 0.667 0.66857
0.66858

2011 0.668 0.668 0.668 0.669 0.67 0.671 0.674 0.677 0.691 0.693 0.69459
0.69460

2012 0.694 0.694 0.694 0.695 0.696 0.698 0.701 0.705 0.722 0.723 0.72461
0.72562

2013 0.725 0.725 0.725 0.726 0.727 0.729 0.732 0.737 0.757 0.759 0.76163
0.76164

2014 0.761 0.761 0.761 0.762 0.764 0.766 0.7765
66
67
68

Mark Leggett comment: These are considered small relative to the seasonally adjusted series itself (above)69
70
71
72
73
74
75
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IRREGULAR COMPONENT1
2
3
4

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV5
DEC6

7
1973 -0.065 0.127 -0.132 -0.203 0.039 -0.039 0.024 0.331 0.191 0.088 0.1628

-0.2369
1974 -0.393 0.19 -0.011 0.029 0.122 -0.324 0.011 0.161 0.06 -0.028 -10
0.033 -0.0511
1975 0.105 0.142 -0.292 -0.014 0.027 0.049 -0.135 -0.034 0.217 0.06 -12
0.109 -0.04913
1976 -0.071 0.215 -0.036 0.218 -0.153 -0.223 0.19 -0.034 -0.018 -0.17 -14
0.039 0.115
1977 0.014 -0.314 0.237 -0.029 0.144 -0.08 0.096 -0.151 0.08 0.067 -16
0.018 -0.17717
1978 0.343 -0.246 0.079 0.056 -0.263 0.154 0.127 0.128 -0.18 -0.055 0.06718

-0.1319
1979 0.162 -0.175 0.28 -0.006 -0.439 0.195 0.031 -0.002 -0.055 0.067 -20
0.087 0.10821
1980 0.035 -0.305 0.323 -0.092 -0.069 0.21 -0.174 -0.056 0.144 0.061 0.02722

-0.12423
1981 -0.149 0.14 0.145 0.002 -0.023 0.086 -0.069 -0.134 -0.102 -0.024 0.09224

0.05425
1982 -0.009 -0.039 0.095 -0.044 0.178 -0.082 0.007 0.025 -0.065 0.035 -26
0.079 0.0627
1983 -0.242 0.148 -0.235 0.065 0.037 0.012 0.091 0.234 -0.161 -0.03 -0.0828

0.1229
1984 0.053 0.065 -0.17 -0.078 0.071 0.018 0.165 -0.042 -0.228 0.009 0.03930

0.17731
1985 -0.15 -0.15 0.419 -0.208 -0.013 0.043 -0.13 0.102 0.062 -0.065 0.01132

0.16833
1986 -0.061 -0.151 -0.244 0.1 0.159 0.077 -0.123 -0.116 0.364 -0.175 -34
0.006 -0.02435
1987 0.177 -0.213 -0.189 0.027 0.122 0.092 -0.06 -0.112 0.062 0.047 0.03236

-0.1237
1988 -0.105 0.306 -0.131 0.021 -0.1 -0.154 0.13 0.144 0.063 0.074 -38
0.082 -0.10339
1989 0.288 -0.027 -0.328 0.211 -0.064 -0.067 0.193 -0.143 -0.06 0.104 -40
0.039 0.03541
1990 -0.101 0.219 0.145 -0.338 0.176 -0.17 -0.028 0.011 -0.08 0.057 0.17942

0.1343
1991 -0.244 -0.219 0.084 0.19 0.244 0.034 -0.123 -0.114 -0.04 -0.092 0.06544

-0.00445
1992 0.016 0.021 0.001 -0.029 -0.027 0.417 -0.258 0.07 -0.204 0.165 -46
0.087 -0.10747
1993 0.171 -0.129 0.091 -0.204 0.167 0.153 -0.238 -0.089 0.091 -0.016 -48
0.076 -0.07149
1994 0.108 0.025 -0.011 0.153 0.03 -0.188 -0.012 0.069 -0.195 0.058 0.11350

0.02651
1995 -0.095 -0.011 -0.042 0.084 0.026 0.046 0.14 -0.331 0.207 -0.068 0.02452

-0.19353
1996 0.004 0.231 0.364 -0.373 -0.203 0.061 0.156 0.113 0.001 -0.057 -54
0.002 0.03755
1997 -0.14 0.182 -0.312 0.201 0.156 -0.266 0.083 0.045 -0.282 -0.133 0.01156

0.29857
1998 -0.059 -0.127 -0.047 -0.042 0.1 -0.055 0.127 0.154 -0.098 0.106 -58
0.079 0.07459
1999 0.005 0.141 -0.045 0.204 -0.335 -0.164 0.315 0.034 -0.244 0.061 0.03960

0.02461
2000 0.197 -0.196 0.061 0.178 -0.54 0.194 -0.213 0.052 0.155 0.062 0.06262

0.05463
2001 -0.166 0.042 0.216 -0.099 -0.054 -0.057 -0.087 -0.004 -0.013 0.08 -64
0.042 -0.00365
2002 0.103 0.042 -0.011 -0.193 -0.151 0.126 0.082 -0.107 0.16 -0.169 0.06566

0.06767
2003 0.039 0.004 -0.049 -0.132 -0.027 0.108 0.164 -0.203 0.161 -0.072 0.10168

-0.01169
2004 -0.076 0.007 -0.073 0.307 0.125 -0.115 -0.344 0.28 -0.233 -0.033 0.00870

0.01871
2005 -0.256 0.038 0.328 0.045 -0.227 0.048 0.15 0.203 -0.264 -0.013 -72
0.117 -0.02273
2006 0.12 0.113 -0.324 0.36 0.077 -0.074 -0.118 0.027 -0.021 0.14 -74
0.163 0.02375
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2007 -0.047 0.036 -0.172 0.292 -0.099 0.033 0.11 -0.285 0.032 0.099 -1
0.026 -0.0212
2008 0.366 0.09 -0.33 -0.409 0.184 0.052 0.114 -0.145 0.215 0.056 -3
0.101 -0.0714
2009 0.116 -0.155 0.326 -0.214 0.013 -0.044 -0.126 -0.006 0.269 -0.195 0.0415

-0.1266
2010 -0.285 0.139 0.152 0.187 0.122 0.02 -0.188 -0.063 -0.095 0.112 0.1567

-0.1678
2011 0.181 0.088 0.014 -0.317 -0.083 -0.025 0.163 -0.092 0.16 -0.001 -9
0.097 0.03710
2012 0.125 -0.104 -0.181 0.162 0.113 -0.131 -0.072 0.014 0.041 -0.178 0.09611

-0.00712
2013 -0.081 0.338 -0.054 -0.334 0.368 -0.158 0.068 0.067 -0.097 -0.035 -13
0.027 0.20714
2014 0.068 -0.53 0.059 0.264 0.068 0.187 -0.24215

16
17
18

Mark Leggett comment: This should be essentially "white noise", and the TRAMO plots above suggests that it is19
20
21
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Abstract12

13

A significant gap now of some 16 years in length has been shown to exist between the14

observed global surface temperature trend and that expected from the majority of15

climate simulations, and this gap is presently continuing to increase. For its own sake,16

and to enable better climate prediction for policy use, the reasons behind this17

mismatch need to be better understood. While an increasing number of possible18

causes have been proposed, the candidate causes have not yet converged.19

20

The standard model which is now displaying the disparity has it that temperature will21

rise roughly linearly with atmospheric CO2. However research also exists showing22

correlation between the interannual variability in the growth rate of atmospheric CO223

and temperature. Rate of change of CO2 had not been considered a causative24

mechanism for temperature because it was concluded that causality ran from25

temperature to rate of change of CO2.26

27

However more recent studies have found little or no evidence for temperature leading28

rate of change of CO2 but instead evidence for simultaneity. With this background,29

this paper reinvestigatesd the relationship between rate of change of CO2 and two of30

http://www.globalriskprogress.com
mailto:mleggett.globalriskprogress@gmail.com
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the major climate variables, atmospheric temperature and the El Niño–Southern1

Oscillation (ENSO).2

3

Using time series analysis in the form of dynamic regression modelling with4

autocorrelation correction, it is demonstrated that first-difference CO2 leads5

temperature and that there is a highly statistically significant correlation between first-6

difference CO2 and temperature. Further, a correlation is found for second-difference7

CO2 with the Southern Oscillation Index, the atmospheric-pressure component of8

ENSO. This paper also demonstrates that both these correlations display Granger9

causality.10

11

It is shown that the first-difference CO2 and temperature model shows no trend12

mismatch in recent years.13

14

These results may contribute to the prediction of future trends for global temperature15

and ENSO.16

17

Interannual variability in the growth rate of atmospheric CO2 is standardly attributed18

to variability in the carbon sink capacity of the terrestrial biosphere. The terrestrial19

biosphere carbon sink is created by the difference between photosynthesis and20

respiration (net primary productivity): a major way of measuring global terrestrial21

photosynthesis is by means of satellite measurements of vegetation reflectance, such22

as the Normalized Difference Vegetation Index (NDVI). In a preliminary analysis,23

this study finds a close correlation between an increasing NDVI and the increasing24

climate model/temperature mismatch (as quantified by the difference between the25

trend in the level of CO2 and the trend in temperature).26

27

It is believed that the results in this paper provide strong evidence that the global28

climate is the result of the combination of two mechanisms – one a physical29

mechanism based on the level of atmospheric CO2, the other a mechanism embodied30

in the terrestrial biosphere and based on the rate of change of CO2.31

32

33
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1

1 Introduction2
3

Understanding current global climate requires an understanding of trends both in4

Earth’s atmospheric temperature and the El Niño–Southern Oscillation (ENSO), a5

characteristic large-scale distribution of warm water in the tropical Pacific Ocean and6

the dominant global mode of year-to-year climate variability (Holbrook et al. 2009).7

However, despite much effort, the average projection of current climate models has8

become statistically significantly different from the 21st century global surface9

temperature trend (Fyfe et al. 2013; Fyfe and Gillett 2014) and has failed to reflect the10

statistically significant evidence that annual-mean global temperature has not risen in11

the 21st century (Fyfe et al. 2013; Kosaka and Shang-Ping 2013).12

temperature trend (Fyfe et al. 2013, 2014) and has failed to reflect the statistically13

significant evidence that annual-mean global temperature has not risen in the 21st14

century (Fyfe 2013; Kosaka 2013).15

16

The situation is illustrated visually in Figure 1 which shows the increasing departure17

over recent years of the global surface temperature trend from that projected by a18

representative mid-range global climate model (GCM) for global surface temperature19

- the CMIP3, SRESA1B scenario model (Meehl et al. 2007)KNMI 2013). It is noted20

that the level of atmospheric CO2 is a good proxy for the International Panel on21

Climate Change (IPCC) models predicting the global surface temperature trend:22

according to IPCC (2014), on decadal to interdecadal time scales and under23

continually increasing effective radiative forcing, the forced component of the global24

surface temperature trend responds to the forcing trend relatively rapidly and almost25

linearly.26

27

Modelling also provides a wide range of predictions for future ENSO variability,28

some showing an increase, others a decrease, and some no change (Guilyardi et al.29

2012; Bellenger 2013). The extremes of this ENSO variability cause extreme weather30

events (such as floods and droughts) in many regions of the world.31

A wide range of physical explanations has now been proposed for the global warming32

slowdown. These involve proposals either for changes in the way the radiative33

mechanism itself is working or for the increased influence of other physical34
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mechanisms. Chen and Tung (2014) place these proposed explanations into two1

categories. The first involves a reduction in radiative forcing: by a decrease in2

stratospheric water vapour, an increase in background stratospheric volcanic aerosols,3

by 17 small volcano eruptions since 1999, increasing coal-burning in China, the4

indirect effect of time-varying anthropogenic aerosols, a low solar minimum, or a5

combination of these. The second category of candidate explanation involves6

planetary sinks for the excess heat. The major focus for the source of this sink has7

been physical and has involved ocean heat sequestration. However, evidence for the8

precise nature of the ocean sinks is not yet converging: according to Chen and Tung9

(2014) their study followed the original proposal of Meehl et al. (2011) that global10

deep-ocean heat sequestration is centred on the Pacific. However, their observational11

results were that such deep-ocean heat sequestration is mainly occurring in the12

Atlantic and the Southern oceans.13

14

Alongside the foregoing possible physical causes, Hansen et al. (2013) have suggested15

that the mechanism for the pause in the global temperature increase since 1998 might16

be the planetary biota, in particular the terrestrial biosphere: that is (IPCC 2007), the17

fabric of soils, vegetation and other biological components, the processes that connect18

them and the carbon, water and energy that they store.19

20

It is widely considered that the interannual variability in the growth rate of21

atmospheric CO2 is a sign of the operation of the influence of the planetary biota.22

Again, IPCC (2007) states: “The atmospheric CO2 growth rate exhibits large23

interannual variations. The change in fossil fuel emissions and the estimated24

variability in net CO2 uptake of the oceans are too small to account for this signal,25

which must be caused by year-to-year fluctuations in land-atmosphere fluxes.”26

In the IPCC Fourth Assessment Report, Denman et al. (2007) state (italics denote27

present author emphasis): “Interannual and inter-decadal variability in the growth rate28

of atmospheric CO2 is dominated by the response of the land biosphere to climate29

variations. …. The terrestrial biosphere interacts strongly with the climate, providing30

both positive and negative feedbacks due to biogeophysical and biogeochemical31

processes. … Surface climate is determined by the balance of fluxes, which can be32

changed by radiative (e.g., albedo) or non-radiative (e.g., water cycle related33
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processes) terms. Both radiative and non-radiative terms are controlled by details of1

vegetation.”2

3

Denman et al. (2007) also note that many studies have confirmed that the variability4

of CO2 fluxes is mostly due to land fluxes, and that tropical lands contribute strongly5

to this signal. A predominantly terrestrial origin of the growth rate variability can be6

inferred from (1) atmospheric inversions assimilating time series of CO27

concentrations from different stations, (2) consistent relationships between δ13C and8

CO2, (3) ocean model simulations, and (4) terrestrial carbon cycle and coupled model9

simulations. For one prominent estimate carried out by the Global Carbon Project, the10

land sink is calculated as the residual of the sum of all sources minus the sum of the11

atmosphere and ocean sinks (Le Quere et al. 2014).12

13

The activity of the land sink can also be estimated directly. The terrestrial biosphere14

carbon sink is created by photosynthesis: a major way of measuring global land15

photosynthesis is by means of satellite measurements of potential photosynthesis from16

greenness estimates. The measure predominantly used such measure is the17

Normalized Difference Vegetation Index (NDVI) (Running et al. 2004; Zhang et al.18

2014). NDVI data are available from the start of satellite observations in 1980 to the19

present. For this period the trend signature in NDVI has been shown to correlate20

closely with that for atmospheric CO2 (Barichivich et al. 2013). This noted, we have21

not been able to find studies which have compared NDVI data with the difference22

between climate models and temperature.23

24

25

2 Methodological issues and objectives of the study26

2.1 Methodological issues27

28

Before considering further material it is helpful now to consider a range of29

methodological issues and concepts. The first concept is to do with the notion of30

causality.31

32

According to Hidalgo and Sekhon (2011) there are four prerequisites to enable an33

assertion of causality. The first is that the cause must be prior to the effect. The34



84

second prerequisite is “constant conjunction” between variables (Hume (1751), cited1

in Hidalgo and Sekhon (2011)) between variables. This relates to the degree of fit2

between variables. The final requirements are those concerning manipulation and3

random placement into experimental and control categories. It is noted that each of4

the four prerequisites is necessary but not sufficient on its own for causality.5

6
Concerning With regard to the last two criteria, the problem for global studies such as7

global climate studies is that manipulation and random placement into experimental8

and control categories cannot be carried out.9

10

One method using correlational data, however, approaches more closely the quality of11

information derived from random placement into experimental and control categories.12

The concept is that of Granger causality (Granger 1969). According to Stern and13

Kaufmann (2014), a time series variable “x” (e.g. atmospheric CO2) is said to14

“Granger-cause” variable “y” (e.g. surface temperature) if past values of x help predict15

the current level of y, better than do just the past values of y, given all other relevant16

information.17

18

Reference to the above four aspects of causality will be made to help structure the19

review of materials in the following sections.20

21

22

2.2 Objectives of the study23

24

What has been considered to influence the biota’s creation of the pattern observed in25

the trend in the growth rate of atmospheric CO2? The candidates for the influences on26

the biota have mainly been considered in prior research to be atmospheric variations,27

primarily temperature and/or ENSO (e.g., Kuo et al. 1990; Wang W. et al. 2013).28

Despite its proposed role in global warming overall, CO2 (in terms of the initial state29

of atmospheric CO2 exploited by plants at time A) has not generally been isolated and30

studied in detail through time series analysis as an influence in the way the biosphere31

influences the CO2 left in the atmosphere at succeeding time B.32

33
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This state of affairslack of attention to the influence of the biosphere on climate1

variables seems to have come about for two reasons, one concerning ENSO, the other,2

temperature. For ENSO, the reason is that the statistical studies are unambiguous that3

ENSO leads rate of change of CO2 (e.g., Lean and Rind 2008). On the face of it,4

therefore, this ruled out CO2 as the first mover of the ecosystem processes. For5

temperature, the reason was that the question of whether atmospheric temperature6

leads rate of change of CO2 or vice versa is less settled.7

In the first published study on this question, Kuo et al. (1990) provided evidence that8

the signature of interannual atmospheric CO2 (measured as its first differencefirst-9

difference) fitted temperature (passing therefore one of the four tests for causality, of10

close conjunction).11

The relative fits of both level of and first differencefirst-difference of atmospheric12

CO2 with global surface temperature up to the present are depicted in Figure 2.13

Attention is drawn to both signature (fine grained data structure) and, by means of14

polynomial smoothing, core trend for each data series.15

Concerning signature, while clearly first-difference CO2 and temperature are not16

identical, each is more alike than either is to the temperature model based on level of17

CO2. As well, the polynomial fits show that the same likeness groupings exist for core18

trend.19

Kuo et al. (1990) also provided evidence concerning another of the causality20

prerequisites – priority. This was that the signature of first-difference CO2 lagged21

temperature (by 5 months). This idea has been influential. More recently, despite22

Adams and Piovesan (2005) noteding that climate variations, acting on ecosystems,23

are believed to be responsible for variation in CO2 increment, but there are major24

uncertainties in identifying processes, including uncertainty concerning instantaneous25

(present authors’ emphasis) versus lagged responses.; and Wang W. et al. (2013)26

observing observed that the strongest coupling is found between the CO2 growth rate27

and the concurrent (present authors’ emphasis) tropical land temperature., Wang et al.28

(2013) nonetheless state in their conclusion that the strong temperature–CO2 coupling29

they observed is best explained by the additive responses of tropical terrestrial30

respiration and primary production to temperature variations, which reinforce each31
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other in enhancing temperature’s control (present author emphasis) on tropical net1

ecosystem exchange.2

Another perspective on the relative effects of rising atmospheric CO2 concentrations3

on the one hand and temperature on the other has been provided by extensive direct4

experimentation on plants. In a large scale meta-analysis of such experiments,5

Dieleman et al. (2012) drew together results on how ecosystem productivity and soil6

processes responded to combined warming and CO2 manipulation, and compared it7

with those obtained from single factor CO2 and temperature manipulation. While the8

meta-analysis found that responses to combined CO2 and temperature treatment9

showed the greatest effect, this was only slightly larger than for the CO2-only10

treatment. By contrast, the effect of the CO2-only treatment was markedly larger than11

for the warming-only treatment.12

13

Concerning In looking at leading and lagging climate series more generally, the first14

finding of correlations between the rate of change (in the form of the first15

differencefirst-difference) of atmospheric CO2 and a climate variable was with the16

foregoing and the Southern Oscillation Index (SOI) component of ENSO (Bacastow17

1976). Here evidence was presented that the SOI led first-difference atmospheric CO2.18

There have been further such studies (see Imbers (2013) for overview) which, taken19

together, consistently show that the highest correlations are achieved with SOI leading20

temperature by some months (3-4 months).21

22

In light of the foregoing, this paper reanalyses by means of time series regression23

analysis the question of which of first-difference CO2 and temperature leads which.24

The joint temporal relationship between interannual atmospheric CO2, global surface25

temperature and ENSO (indicated by the SOI) is also investigated.26

27

The foregoing also shows that a strong case can be made for further investigating the28

planetary biota influenced by atmospheric CO2 as a candidate influence on (cause of)29

climate outcomes. This question is also explored in this paper.30

31

A number of Granger causality studies have been carried out on climate time series32

(see review in Attanasio 2012). Of papers we have found which assessed atmospheric33
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CO2 and global surface temperature – some six (Sun and Wang 1996; Triacca 2005;1

Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann2

2014) –while all but one (Triacca 2005) found Granger causality, it was not with CO23

concentration but with CO2 radiative forcing (lnCO2 (Attanasio and Triacca 2011).4

5

A number of Granger causality studies have been carried out on climate time series6

(see review in Attanasio 2012). We found six papers which assessed atmospheric CO27

and global surface temperature (Sun and Wang 1996; Triacca 2005; Kodra et al. 2011;8

Attanasio and Triacca 2011; Attanasio 2012; Stern and Kaufmann 2014). Of these,9

while all but one (Triacca 2005) found Granger causality, it was not with CO210

concentration as studied in this paper but with CO2 radiative forcing (lnCO211

(Attanasio and Triacca 2011)).12

13

As well, all studies used annual not monthly data. Such annual data for each of14

atmospheric CO2 and temperature is not stationary of itself but must be transformed15

into a new, stationary, series by differencing (Sun and Wang 1996). Further, data at16

this level of aggregation can "mask" correlational effects that only become apparent17

when higher frequency (e.g., monthly) data are used.18

19

Rather than using a formal Granger causality analysis, a number of authors have20

instead used conventional multiple regression models in attempts to quantify the21

relative importance of natural and anthropogenic influencing factors on climate22

outcomes such as global surface temperature. These regression models use23

contemporaneous explanatory variables. For example, see Lean and Rind (2008,24

2009); Foster and Rahmstorf (2011); Kopp and Lean (2011); Zhou and Tung (2013).25

This type of analysis effectively assumes a causal direction between the variables26

being modelled. It is incapable of providing a proper basis for testing for the presence27

or absence of causality. In some cases account has been taken of autocorrelation in the28

model's errors, but this does not overcome the fundamental weakness of standard29

multiple regression in this context. In contrast, Granger causality analysis that we30

adopt in this paper provides a formal testing of both the presence and direction31

of this causality (Granger 1969).32

33

34
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From such studies, a common set of main influencing factors (also called explanatory1

or predictor variables) has emerged. These are (Lockwood (2008); Folland (2013);2

Zhou and Tung (2013)): El Nino–Southern Oscillation (ENSO), or Southern3

Oscillation Index (SOI) alone (SOI); volcano aerosol optical depth; total solar4

irradiance; and the trend in anthropogenic greenhouse gas (the predominant5

anthropogenic greenhouse gas being CO2). In these models, ENSO/SOI is the factor6

embodying interannual variation. Imbers et al. (2013) show that a range of different7

studies using these variables have all produced similar and close fits with the global8

surface temperature.9

10

With this background, this paper first presents an analysis concerning whether the first11

differencefirst-difference of atmospheric CO2 leads or lags global surface temperature.12

That assessedAfter assessing this, questions of autocorrelation, strength of correlation,13

and of causality are then explored. Given this exploration of correlations involving14

first-difference atmospheric CO2, the possibility of the correlation of second-15

difference CO2 with climate variables is also explored.16

17
18

Correlations are assessed at a range of time scales to seek the time extent over which19

relationships are held, and thus whether they are a special case or possibly longer term20

in nature. The time scales involved are, using instrumental data, over two periods21

starting respectively from 1959 and 1877; and, using paleoclimate data, over a period22

commencing from 1515. The correlations are assessed by means of regression models23

explicitly incorporating autocorrelation using dynamic modelling methods. Granger24

causality between CO2 and, respectively, temperature and SOI is also explored.25

Atmospheric CO2 rather than emissions data is used, and where possible at monthly26

rather than annual aggregation. Finally, as noted, we have not been able to find studies27

which have compared the gap between climate models and temperature with NDVI28

data, so an assessment of this question is carried out. All assessments were carried out29

using the time series statistical software packages Gnu Regression, Econometrics and30

Time-series Library (GRETL) (Available from: http://gretl.sourceforge.net/31

([Accessed January 23, 2014)) and IHS Eviews (IHS EViews, 2011).32

33
34

http://gretl.sourceforge.net/
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1
3. Data and methods2

3
4

We present results of time series analyses of climate data. The data assessed are5

global surface temperature, atmospheric carbon dioxide (CO2) and the Southern6

Oscillation Index (SOI). The regressions are presented in several batches based on the7

length of data series for which the highest temporal resolution is available. The first8

batch of studies involves the data series for which the available high resolution series9

is shortest: this is for atmospheric carbon dioxide (CO2) and commences in 1958.10

These studies are set at monthly resolution.11

12

The second batch of studies is for data able to be set at monthly resolution not13

involving CO2. These studies begin with the time point at which the earliest available14

monthly SOI data commences, 1877.15

16

The final batch of analyses utilises annual data. These studies use data starting17

variously in the 16th or 18th centuries.18

19

Data from 1877 and more recently is are from instrumental sources; earlier data is are20

from paleoclimate sources.21

22
For instrumental data sources for global surface temperature, we used the Hadley23

Centre–Climate Research Unit combined land SAT and SST (HadCRUT) version24

4.2.0.0 (Morice et al. 2012), for atmospheric CO2, the U.S. Department of Commerce25

National Oceanic & Atmospheric Administration Earth System Research Laboratory26

Global Monitoring Division Mauna Loa, Hawaii,27

monthly CO2 series (Keeling et al. 2009), and for volcanic aerosols the National28

Aeronautic and Space Administration Goddard Institute for Space Studies29

Stratospheric Aerosol Optical Thickness series (Sato et al. 1993). Southern Oscillation30

Index (SOI) data (Troup 1965) is from the Science Delivery Division of the31

Department of Science, Information Technology, Innovation and the Arts (DSITIA)32

Queensland, Australia. Solar irradiance data is from Lean, J. (personal33

communication 2012).34

35
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Concerning With regard to the El Nino-Southern Oscillation, according to IPCC1

(2014) the term El Niño was initially used to describe a warm-water current that2

periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. It3

has since become identified with a basin-wide warming of the tropical Pacific Ocean4

east of the dateline. This oceanic event is associated with a fluctuation of a global-5

scale tropical and subtropical surface atmospheric pressure pattern called the Southern6

Oscillation. This atmosphere–ocean phenomenon is coupled, with typical time scales7

of two to about seven years, and known as the El Niño-Southern Oscillation (ENSO).8

9

The El Niñno (temperature) component of ENSO is measured by changes in the sea10

surface temperature of the central and eastern equatorial Pacific relative to the average11

temperature. The Southern Oscillation (atmospheric pressure) ENSO component is12

often measured by the surface pressure anomaly difference between Tahiti and13

Darwin.14

15

For the present study we choose the SOI atmospheric pressure component rather than16

the temperature component of ENSO to stand for ENSO as a whole. This is because it17

is considered to be more valid to conduct an analysis in which temperature is an18

outcome (dependent variable) without also having temperature as an input19

(independent variable). The correlation between SOI and the other ENSO indices is20

high, so we believe this assumption is robust.21

22
23

The Southern Oscillation is the atmospheric pressure component of ENSO, and is an24

oscillation in the surface air pressure between the tropical eastern and the western25

Pacific Ocean waters. It is calculated from normalized Tahiti minus Darwin sea level26

pressure. The SOI only takes into account sea level pressure. In contrast, the El Niño27

component of ENSO is specified in terms of changes in the Pacific Ocean sea surface28

temperature relative to the average temperature. It is considered to be more valid to29

conduct an analysis in which the temperature is an outcome (dependent variable)30

without also having (Pacific Ocean) temperature as an input (independent variable).31

The correlation between SOI and the other ENSO indices is high, so we believe this32

assumption is robust.33

34
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Paleoclimate data sources are: Atmospheric CO2, from 1500 – ice cores (Robertson et1

al. (2001)); (NH) temperature, from 1527 – tree ring data (: Moberg, A. et al. 2005;2

SOI, from 1706 – tree ring data ( Stahle et al. (1998)).3

4

Normalized Difference Vegetation Index (NDVI) monthly data from 1980 to 2006 is5

from the GIMMS (Global Inventory Modeling and Mapping Studies) data set (,6

Tucker et al. 2005)accessed via KNMI (2014). NDVI data from 2006 to 2013 was7

provided by the Institute of Surveying, Remote Sensing and Land Information,8

University of Natural Resources and Life Sciences, Vienna.9

10

Statistical methods used are standard (Greene 2012). Categories of methods used are:11

normalisation; differentiation (approximated by differencing); and time series analysis.12

Within time series analysis, methods used are: smoothing; leading or lagging of data13

series relative to one another to achieve best fit; assessing a prerequisite for using data14

series in time series analysis, that of stationarity; including autocorrelation in models15

by use of dynamic regression models; and investigating causality by means of a16

multivariate time series model, known as a vector autoregression (VAR) and its17

associated Granger causality test. These methods will now be described in turn.18

19

To make it easier to visually assess visually the relationship between the key climate20

variables, the data were normalised using statistical Z scores or standardised deviation21

scores (expressed as “Relative level” in the figures). In a Z-scored data series, each22

data point is part of an overall data series that sums to a zero mean and variance of 1,23

enabling comparison of data having different native units. Hence, when several Z-24

scored time series are depicted in a graph, all the time series will closely superimpose,25

enabling visual inspection to clearly discern the degree of similarity or dissimilarity26

between them.27

See the individual figure legends for details on the series lengths.28

29

In the time series analyseis, SOI and global atmospheric surface temperature are the30

dependent variables. For these two variables, wWe tested the relationship between31

each of these variables and (1) the change in atmospheric CO2 and (2) the variability32
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in its rate of change. We express these CO2-related variables as finite differences,1

which is a convenient approximation to differences (Hazewinkel 2001; Kaufmann et2

al. 2006). The finite differences used here are of both the first- and second-order types3

(we label these “first” and “second” differences in the text). Variability is explored4

using both intra-annual (monthly) data and interannual (yearly) data. The period5

covered in the figures is shorter than that used in the data preparation because of the6

loss of some data points due to calculations of differences and of moving averages (in7

monthly terms of up to 13 x 13), which commenced in January 1960.8

9

Smoothing methods are used to the degree needed to produce similar amounts of10

smoothing for each data series in any given comparison. Notably, to achieve this11

outcome, series resulting from higher levels of differences require more smoothing.12

Smoothing is carried out initially by means of a 13-month moving average – this also13

minimises any remaining seasonal effects. If further smoothing is required, then this is14

achieved (Hyndman 2010) by taking a second moving average of the initial moving15

average (to produce a double moving average) (Hyndman 2010). Often, this is16

performed by means of a further 13 month moving average to produce a 13 x 1317

moving average. For descriptive statistics to describe the long-term variation of a18

time series trend, polynomial smoothing is sometimes used.19

It is important to consider what effects this filtering of our data may have on the20

ensuing statistical analysis. In these analyses, only the CO2 series was smoothed and21

therefore requires assessment. To do this, we tested if the smoothed (2 x 13 month22

moving average) first-difference CO2 series used here has different key dynamics to23

that of the original raw (unsmoothed) data from which the smoothed series was24

derived. Lagged correlogram analysis showed that the maximum, and statistically25

significant, correlation of the smoothed series with the unsmoothed series occurs26

when there is no phase shift. This suggests that the particular smoothing used should27

provide no problems in the assessment of which of first differencefirst-difference CO228

and temperature has priority.29

Second, there is extensive evidence that while the effect that seasonal adjustment (via30

smoothing) on the usual tests for unit roots in time-series data is to reduce their power31

in small samples, this distortion is not an issue with samples of the size used in this32
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study. For example, ( see, e.g., Ghysels (1990), Frances (1991), Ghysels and Perron1

(1993), and Diebold (1993)). Moreover, Olekalns (1994) shows that seasonal2

adjustment by using dummy variables also impacts adversely on the finite-sample3

power of these tests, so there is little to be gained by considering this alternative4

approach. Finally, one of the results emerging from the Granger causality literature is5

that while such causality can be “masked” by the smoothing of the data, apparent6

causality cannot be “created” from non-causal data. For example, see Sims (1971),7

Wei (1982), Christiano and Eichenbaum (1987), Marcellino (1999), Breitung and8

Swanson (2002), and Gulasekaran and Abeysinghe (2002).9

Finally, seasonally adjusting the data by a range of alternative approaches did not10

qualitatively change the results discussed in the paper. The results of these11

assessments are given in the Supplement.12

This means that our results relating to the existence of Granger causality should not be13

affected adversely by the smoothing of the data that has been undertaken.14

15

16

17

Variables are led or lagged relative to one another to achieve best fit. These leads or18

lags were determined by means of time-lagged correlations (correlograms). The19

correlograms were calculated by shifting the series back and forth relative to each20

other, 1 month at a time.21

22

With this background, the convention used in this paper for unambiguously labelling23

data series and their treatment after smoothing or leading or lagging is depicted in the24

following example. The atmospheric CO2 series is transformed into its second25

difference and smoothed twice with a 13 month moving average. The resultant series26

is then Z-scored. This is expressed as Z2x13mma2ndDerivCO2.27

28

As well, it is nNoted that, to assist readability in text involving repeated references,29

atmospheric CO2 is sometimes referred to simply as CO2 and global surface30

temperature as temperature.31
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1

The time series methodology used in this paper involves the following procedures.2

First, any two or more time series being assessed by time series regression analysis3

must be what is termed stationary in the first instance, or be capable of being made4

stationary (by differencing). A series is stationary if its properties (mean, variance,5

covariances) do not change with time (Greene 2012). The (augmented) Dickey-Fuller6

test is applied to each variable. For this test, the null hypothesis is that the series has a7

unit root, and hence is non-stationary. The alternative hypothesis is that the series is8

integrated of order zero.9

10
Second, the residuals from any time series regression analysis then conducted must11

not be significantly different from white noise. This is done seeking correct model12

specification for the analysis.13

14

After Greene (2012): the results of standard ordinary least squares (OLS) regression15

analysis assume that the errors in the model are uncorrelated. Autocorrelation of the16

errors violates this assumption. This means that the OLS estimators are no longer the17

Best Linear Unbiased Estimators (BLUE). Notably and importantly this does not bias18

the OLS coefficient estimates. However statistical significance can be overestimated,19

and possibly greatly so, when the autocorrelations of the errors at low lags are positive.20

21

Addressing autocorrelation can take either of two alternative forms: correcting for it22

(for example, for first order autocorrelation by the Cochrane-Orcutt procedure), or23

taking it into account.24

25

In the latter approach, the autocorrelation is taken to be a consequence of an26

inadequate specification of the temporal dynamics of the relationship being27

estimated. The method of dynamic modelling (Pankratz 1991) addresses this by28

seeking to explain the current behavior of the dependent variable in terms of both29

contemporaneous and past values of variables. In this paper the dynamic modelling30

approach is taken.31

32

To assess the extent of autocorrelation in the residuals of the initial non-dynamic OLS33

models run, the Breusch-Godfrey procedure is used. Dynamic models are then used to34
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take account of such autocorrelation. To assess the extent to which the dynamic1

models achieve this, Kiviet’s Lagrange multiplier F-test (LMF) statistic for2

autocorrelation (Kiviet 1986) is used.3

4

Hypotheses related to Granger causality (see Introduction) are tested by estimating a5

multivariate time series model, known as a vector autoregression (VAR), for level of6

and first-difference CO2 and other relevant variables. The VAR models the current7

values of each variable as a linear function of their own past values and those of the8

other variables. Then we test the hypothesis that x does not cause y by evaluating9

restrictions that exclude the past values of x from the equation for y and vice versa.10

Stern and Kander (2011) observe that Granger causality is not identical to causation in11

the classical philosophical sense, but it does demonstrate the likelihood of such12

causation or the lack of such causation more forcefully than does simple13

contemporaneous correlation. However, where a third variable, z, drives both x and y,14

x might still appear to drive y though there is no actual causal mechanism directly15

linking the variables (any such third variable must have some plausibility - see16

Discussion and Cconclusions below).17

18
4 Results19

20
4.1. Relationship between first-difference CO2 and temperature21

22
4.1.1. Priority23

24
Figure 2 showed that, while clearly first-difference CO2 and temperature are not25

identical in signature, each is more alike than either is to the temperature model based26

on level of CO2. As well the figure shows that the same likeness relationships exist for27

the core trend. The purpose of the forthcoming sections is to see the extent to which28

these impressions are statistically significant.29

30
The first question assessed is that of priority: which of first-difference atmospheric31

CO2 and global surface temperature leads the other. The two series are shown for the32

period 1959 to 2012 in Figure 3.33

34
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It is not possible to discern from the above plot which precise relative phasing of the1

two series leads to the best fit, and hence the answer to the question of which series2

leads which. To quantify the degree of difference in phasing between the variables,3

time-lagged correlations (correlograms) were calculated by shifting the series back4

and forth relative to each other, one month at a time.5

6

First, what does the above relationship look like in correlogram form, and what is the7

appearance of the correlograms for the other commonly used global temperature8

categories – tropical, Northern hemisphere and Southern hemisphere? These9

correlograms are given in Figure 4 for global and regional data.10

11
12

It can be seen that, fFor all four relationships shown, first-difference CO2 always leads13

temperature. The leads differ as quantified in Table 1.14

15
It is possible for a lead to exist overall on average but for a lag to occur for one or16

other specific subsets of the data. This question is explored in Figure 5 and Table 2.17

Here the full 1959-2012 period of monthly data – some 640 months – for each of the18

temperature categories is divided into three approximately equal sub-periods, to19

provide 12 correlograms. It can be seen that in all 12 cases, first-difference CO2 leads20

temperature. It is also noted that earlier sub-periods tend to display longer first-21

difference CO2 leads. For the most recent sub-period the highest correlation is when22

the series are neither led nor lagged.23

24
25
26

4.1.2 Correspondence between first-difference CO2 and global surface27
temperature curves28

29
30

Next, the second prerequisite for causality, close correspondence, is also seen between31

first-difference CO2 and global surface temperature in Figure 3.32

33

4.1.3 Time series analysis34

35

Both first-difference CO2 being shown to lead temperature, and the two series36

displaying close correspondence, are considered a firm basis for the time series37
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analysis of the statistical relationship between first-difference CO2 and temperature1

which follows. For this further analysis, we choose global surface temperature as the2

temperature series because, while its maximum correlation is not the highest (Figure3

5), its global coverage by definition is greatest.4

5

The following sections provide the results of the time series analysis. (In this section,6

TEMP stands for global surface temperature ((HadCRUT4), and other block capital7

terms are those variable names used in the modelling).8

9

The order of integration, denoted I(d), is an important characteristic of a time series. It10

reports the minimum number of differences required to obtain a covariance stationary11

series. As stated above, all series used in a time series regression must be series12

which are stationary without further differencing (Greene 2012);, that is, in the13

notation, display an order of integration of I(0). If a series has an order of integration14

greater than zero, it can be transformed by appropriate differencing into a new series15

which is stationary.16

17

By means of the Augmented Dickey–Fuller (ADF) test for unit roots, Table 318

provides the information concerning stationarity for the level of, and first-difference19

of, CO2, as well as for global surface temperature. Test results are provided for both20

monthly and annual data. The test was applied with an allowance for both a drift and21

deterministic trend in the data, and the degree of augmentation in the Dickey-Fuller22

regressions was determined by minimizing the Schwarz Information Criterion.23

24

The results show that for both the monthly and annual series used, the variables25

TEMP and FIRST-DIFFERENCE CO2 are stationary (I(0)); but level of CO2 is not.26

Level of CO2 is shown to be I(1) because (Table 3) its first differencefirst-difference27

is stationary .28

29

In contrast to this result, however, Beenstock et al. (2012), using annual data, report30

that their series for the level of atmospheric CO2 forcing is an I (2) variable and31

therefore is stationary in second differences.32

33
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With regard tTo the reconciliation reconcile of these two varying results, we refer to1

the study of Pretis and Hendry (2013), (2013) which who reviewed Beenstock et al.2

(2012). Pretis and Hendry (2013) (2013) take issue with the finding of I(2) for the3

anthropogenic forcings studied – including CO2 – and find evidence that this finding4

results from the combination of two different data sets measured in different ways5

which make up the 1850-2011 data set which Beenstock et al. test. Regarding this6

composite series Pretis and Hendry (2013) write:7

8

In the presence of these different measurements exhibiting structural changes,9

a unit-root test on the entire sample could easily not reject the null hypothesis10

of I(2) even when the data are in fact I(1). Indeed, once we control for these11

changes, our results contradict the findings in Beenstock et al. (2012).12

13

Pretis and Hendry (2013) give their results for CO2 in their Table 1. Note that, in the14

table, level of CO2 data is transformed into first-difference data (Beenstock et al claim15

the level of CO2 is I(2); if that is the case, the first differencefirst-difference of the16

level of CO2 Pretis and Hendry (2013) should find would be I(1) ).17

18

Pretis and Hendry (2013) state:19

20

Unit-root tests are used to determine the level of integration of time series.21

Rejection of the null hypothesis provides evidence against the presence of a22

unit-root and suggests that the series is I(0) (stationary) rather than I(1)23

(integrated).24

…based on augmented Dickey–Fuller (ADF) tests (see Dickey and Fuller,25

1981), the first differencefirst-difference of annual radiative forcing of CO2 is26

stationary initially around a constant (over 1850–1957), then around a linear27

trend (over 1958–2011). Although these tests are based on sub-samples28

corresponding to the shift in the measurement system, there is sufficient power29

to reject the null hypothesis of a unit root.30

31

Hence for annual data Pretis and Hendry (2013) find first-difference CO2 to be32

stationary – I(0), not I(1) – as is found in this study (Table 3).33

34
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With this question of the order of integration of the time series considered, we now1

turn to the next step of the time series analysis. This concerns the implications for2

time series analysis of, aAs Table 3, above, and Pretis and Hendry (2013) show, and3

Table 3 in this paper shows, the variable of the level of CO2 being is non-stationary4

(specifically, integrated of order one, i.e., I(1)). Here an important methodological5

point arises: aAttempting to assess TEMP in terms of the level of CO2 would result in6

an “unbalanced regression”, as the dependent variable (TEMP) and the explanatory7

variable (CO2) have different orders of integration. It is well known (e.g., Banerjee et8

al. 1993, pp. 190-191, and the references therein) that in unbalanced regressions the t-9

statistics are biased away from zero. That is, one can appear to find statistically10

significant results when in fact they are not present. In fact, that this occuroccurrence11

s of spurious significance is found when we regress TEMP on CO2. This reason is12

strong evidence that any analysis should involve the variables TEMP and FIRST-13

DIFFERENCE CO2, and not TEMP and CO2.14

15

For TEMP and FIRST-DIFFERENCE CO2, then, one must next assess the extent if16

any of to which autocorrelation affectsing the time series model. This is done by17

obtaining diagnostic statistics from an OLS regression. This regression shows, by18

means of the Breusch-Godfrey test for autocorrelation (up to order 12 – that is,19

including all monthly lags up to 12 months), that there is statistically significant20

autocorrelation at lags of one and two months, leading to an overall Breusch-Godfrey21

Test statistic (LMF) = 126.901, with p-value = P(F(12,626) > 126.901) = 1.06e06 x22

10-158.23

24

The aAutocorrelation is taken to be a consequence of an inadequate specification of25

the temporal dynamics of the relationship being estimated. With this in mind, a26

dynamic model (Greene 2012) with two lagged values of the dependent variable as27

additional independent variables has been estimated.28

29

Results are shown in Table 4. There, tThe LMF test shows that there is now no30

statistically significant unaccounted-for autocorrelation, thus supporting the use of31

this dynamic model specification.32

33
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Inspection of Table 4 shows that a highly statistically significant model has been1

established. First it shows that the temperature in a given period is strongly2

influenced by the temperature of closely preceding periods (sSee Discussion for a3

possible mechanism for this). Further, it provides evidence that there is also a clear,4

highly statistically significant role in the model for first-difference CO2.5

6

7

4.1.4 Granger causality analysis8

9

We now can turn to assessing if first-difference atmospheric CO2 may not only10

correlate with, but also contribute causatively to, global surface temperature. This is11

done by means of Granger causality analysis.12

13

Recalling that both TEMP and FIRST-DIFFERENCE CO2 are stationary, it is14

appropriate to test the null hypothesis of no Granger causality from FIRST-15

DIFFERENCE CO2 to TEMP by using a standard Vector Autoregressive (VAR)16

model without any transformations to the data. The Akaike Iinformation Ccriterion17

(AIC) and the Schwartz Iinformation Ccriterion (SIC) were used to select an optimal18

maximum lag length (k) for the variables in the VAR. This lag length was then19

lengthened, if necessary, to ensure that:20

21
(i) The estimated model was dynamically stable (i.e., all of the inverted roots22

of the characteristic equation lie inside the unit circle);23

(ii) The errors of the equations were serially independent.24

25
26

The relevant EViews output from the VAR model is entitled VAR Granger27

Causality/Block Exogeneity Wald Tests and documents the following summary28

results :– Wald Statistic (p-value): Null is there is No Granger Causality from FIRST-29

DIFFERENCE CO2 to TEMP; Number of lags K=4; Chi-Square 26.684 (p-value =30

0.000).31

32

A p-value of this level is highly statistically significant and means the null hypothesis33

of No Granger Causality is very strongly rejected. That is, over the period studied34

there is strong evidence that FIRST-DIFFERENCE CO2 Granger-causes TEMP.35
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1

Despite the lack of stationarity in the level of CO2 time series (meaning it cannot be2

used to model temperature), one can still assess the answer to the question: “Is there3

evidence of Granger causality between level of CO2 and TEMP?”4

5

In answering this question, because the TEMP series is stationary, but the CO2 series6

is non-stationary (it is integrated of order one, I(1)), the testing procedure is modified7

slightly. Once again, the levels of both series are used. For each VAR model, the8

maximum lag length (k) is determined, but then one additional lagged value of both9

TEMP and CO2 is included in each equation of the VAR. However, the Wald test for10

Granger non-causality is applied only to the coefficients of the original k lags of CO2.11

Toda and Yamamoto (1995) show that this modified Wald test statistic will still have12

an asymptotic distribution that is chi-square, even though the level of CO2 is non-13

stationary.14

15

Here the relevant Wald Statistic (p-value): Null is there is No Granger Causality from16

level of CO2 to TEMP; Number of lags K= 4; Chi-Square 2.531 (p-value = 0.470) .17

18

The lack of statistical significance in the p-value is strong evidence that level of CO219

does not Granger-cause TEMP.20

21

With the above two assessments done, it is significant that concerning with regard to22

global surface temperature we are able to discount causality involving the level of23

CO2, but establish causality involving first-difference CO2.24

25

26
4.2 Relationship between second-difference CO2 and temperature and27
Southern Oscillation Index28

29
4.2.1 Priority and correspondence30

31
Given the results of this exploration of correlations involving first-difference32

atmospheric CO2, the possibility of the correlation of second-difference CO2 with33

climate variables is also explored. The climate variables assessed are global surface34

temperature and the Southern Oscillation Index (SOI). In this section, data is from the35
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full period for which monthly instrumental CO2 data is available, 1958 to the present.1

For this period, the series neither led nor lagged appear as follows (Figure 6).:2

3

4

Let us look (Figure 6) at the two key pairs of interannually varying factors. For the5

purpose of this figure, to facilitate depiction of trajectory, second-difference CO2 (left6

axis) and SOI (right axis) are offset so that all four curves display a similar origin in7

1960.8

9

The fFigure 6 shows that, alongside the already demonstrated close similarity between10

first-difference CO2 and temperature already demonstrated, there is a second apparent11

distinctive pairing between second-difference CO2 and SOI.12

13

The figure shows that the overall trend, amplitude and phase –- the signature –- of14

each pair of curves is both matched within each pair and different from the other pair.15

The remarkable sorting of the four curves into two groups is readily apparent. Each16

pair of results provides context for the other –- and highlights the different nature of17

the other pair of results.18

19

20
Recalling that (even uncorrected for any autocorrelation), correlational data still holds21

information concerning regression coefficients, we initially use OLS correlations22

without assessing autocorrelation to provide descriptive statistics. Table 5 includes,23

first without any phase- shifting to seek to maximise fit, the full six pairwise24

correlations arising from all possible combinations of the four variables other than25

with themselves. Here it can be seen that the two highest correlation coefficients (in26

bold in the table) are, firstly, between first-difference CO2 and temperature, and,27

secondly, between second-difference CO2 and SOI.28

29
In Table 6, phase shifting has been carried out to maximise fit (shifts shown in30

variable titles in the table). This results in an even higher correlation coefficient for31

second-difference CO2 and SOI.32

33
34
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The link between all three variable realms – CO2, SOI and temperature – can be1

further observed in Figure 7 and Table 7. Figure 7 shows SOI, second-difference2

atmospheric CO2 and first-difference temperature, each of the latter two series phase-3

shifted for maximum correlation with SOI (as in Table 5). Concerning Looking at4

priority, Table 6 shows that maximum correlation occurs when second-difference CO25

leads SOI. It is also noted that the correlation coefficients for the correlations6

between the curves shown in Table 6 have all converged in value compared to those7

shown in Table 5.8

9

Concerning Looking at the differences between the curves shown in Figure 7, two of10

what the major departures there are between the curves are coincide with volcanic11

aerosols – from the El Chichon volcanic eruption in 1982 and the Pinatubo eruption in12

1992 (Lean and Rind 2009). With tThese volcanism-related factors taken into account,13

it is notable (when expressed in the form of the transformations in Figure 7) that the14

signatures of all three curves are so essentially similar that it is almost as if all three15

curves are different versions of – or responses to – the same initial signal.16

17

So, a case can be made that first- and second-difference CO2 and temperature and SOI18

respectively are all different aspects of the same process.19

20
21
22

4.2.2 Time series analysis23
24

Let usWe now assess more formally assess the relationship between second-25

difference CO2 and SOI. As for first-difference CO2 and temperature above,26

stationarity has been established. Again, similarly to first-difference CO2 and27

temperature, there is statistically significant autocorrelation at lags of one and two28

months, leading to an overall Breusch-Godfrey Test statistic (LMF) of 126.9, with p-29

value = P(F(12,626) > 126.901) = 1.06e06 x 10-158.30

31

Table 8 shows the results of a dynamic model with the dependent variable used at32

each of the two lags as further independent variables.33

34
In Table 8 the results first show (LMF test) that; there is now no statistically35

significant unaccounted-for autocorrelation which has not been accounted for.36
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1

Further inspection ofAs Table 8 shows, that a highly statistically significant model has2

been established. As for temperature, it shows that the SOI in a given period is3

strongly influenced by the SOI of closely preceding periods. Again as for temperature,4

it provides evidence that there is a clear role in the model for second-difference CO2.5

With this established, it is noted that while the length of series in the foregoing6

analysis was limited by the start date of the atmospheric CO2 series (January 1958),7

high temporal resolution (monthly) SOI goes back considerably further, to 1877. This8

long period SOI series (for background see Troup (1965)) is that provided by the9

Australian Bureau of Meteorology, sourced here from the Science Delivery Division10

of the Department of Science, Information Technology, Innovation and the Arts,11

Queensland, Australia. As equivalent temperature data is also available (the global12

surface temperature series already used above (HadADCRUT4) goes back as far as13

1850), these two longer series are now plotted in Figure 8.14

15

What is immediately notedNotable is the continuation over this longer period of the16

striking similarity between the two signatures already shown in Figure 7 over this17

longer period.18

19
Turning to regression analysis, as previously the Breusch-Godfrey procedure shows20

that, for lags up to lag 12, the lion’s sharemajority of autocorrelation is again21

restricted to the first two lags. Table 9 shows the results of a dynamic model with the22

dependent variable used at each of the two lags as further independent variables.23

24

In comparison with Table 8, the extended time series modelled in Table 9 shows a25

remarkably similar R-squared statistic: 0.466 compared with 0.477. By contrast, the26

partial regression coefficient for second-difference CO2 has increased, to 0.1427

compared with 0.077. These points made, tThe main finding is that there is little or no28

difference in the relationship when it is extended back to 1877. (It is beyond the scope29

of this study, but the relationship of SOI and second-difference CO2 means it is now30

possible to produce a proxy for monthly atmospheric CO2 from 1877 –: a date31
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approximately 75 years prior to the start in January 1958 of the CO2 monthly1

instrumental record in January 1958.)2

3

4

4.2.3 Granger causality analysis5

6

This section assesses whether second-difference CO2 can be considered to Granger-7

cause SOI. This assessment is carried out using data for the period 1959 to 2012 data.8

9

Test rResults onf the stationarity or otherwisetests for of each series are given in10

Table 10. Each series is shown to be stationary. These results imply that we can11

approach the issue of possible Granger causality by using a conventional VAR model,12

in the levels of the data, with no need to use a "modified" Wald test (as used in the13

Toda and Yamamoto (1995) methodology).14

15

Simple OLS regressions of SOI against separate lagged values of second-difference16

CO2 (DCO2 (including an intercept) confirm the finding that the highest correlation is17

when a two-period lag is used.18

19

A 2-equation VAR model is needed for reverse-sign SOI and second-difference CO2.20

The first task is to determineUsing SIC, the optimal maximum lag length to be used21

for the variables. Using the SIC, this is found to be 2 lags. When the VAR model is22

estimated with this lag structure however (Table 11), testing the null hypothesis that23

there is no serial correlation at lag order h, shows that there is evidence of24

autocorrelation in the residuals.25

26

This suggests that the maximum lag length for the variables needs to be increased.27

The best results (in terms of lack of autocorrelation) were found when the maximum28

lag length is 3. (Beyond this value, the autocorrelation results deteriorated29

substantially, but the conclusions below, regarding Granger causality, were not30

altered.)31

32

Table 12 shows that the preferred, 3-lag model, still suffers a little from33
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autocorrelation. However, as we have a relatively large sample size, this will not1

impact adversely on the Wald test for Granger causality.2

3

The relevant EViews output from the VAR model is entitled VAR Granger4

Causality/Block Exogeneity Wald Tests and documents the following summary5

results –: Wald Statistic (p-value): Null is there is No Granger Causality from second-6

difference CO2 to sign-reversed SOI; Chi-Square 22.554 (p-value = 0.0001).7

The forgoing Wald statistic shows that the null hypothesis is strongly rejected –: in8

other words, there is very strong evidence of Granger Causality from second-9

difference CO2 to sign-reversed SOI.10

11

12

13

4.3 Paleoclimate data14

15

So far, the time period considered in this study has been pushed back in the16

instrumental data realm to 1877. If non-instrumental paleoclimate proxy sources are17

used, CO2 data now at annual frequency can be taken further back. The following18

example uses CO2 and temperature data. The temperature reconstruction used here19

commences in 1500 and is that of Frisia et al. (2003), derived from annually20

laminated speliothem (stalagmite) records. A second temperature record (Moberg et21

al. 2005) is from tree ring data. The atmospheric CO2 record (Robertson et al. (2001)22

is from fossil air trapped in ice cores and from instrumental measurements. The trends23

for these series are shown in Figure 9.24

25
Visual inspection of the figure shows that there is a strong overall likeness in26

signature between the two temperature series, and between them and first-difference27

CO2. The similarity of signature is notably less with level of CO2. It can be shown28

that level of CO2 is not stationary and, even with the two other series which are29

stationary, the strongly smoothed nature of the temperature data makes removal of the30

autocorrelation present impossible. Nonetheless, noting that data uncorrected for31

autocorrelation still provides valid correlations (Greene 2012) – only the statistical32

significance is uncertain –- it is simply noted that first-difference CO2 displays a33
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better correlation with temperature than level of CO2 for each temperature series1

(Table 13).2

3

4

5
4.4 Normalized Difference Vegetation Index (NDVI)6

7

Using the Normalized Difference Vegetation Index (NDVI) time series as a measure8

of the activity of the land biosphere, this section now investigates the land biosphere9

as a candidate mechanism for the issue, identified in the Introduction, that of the10

increasing difference between the observed global surface temperature trend and that11

suggested by general circulation climate models and that observed.12

13

The level of atmospheric CO2 is a good proxy for the IPCC models predicting the14

global surface temperature trend –: according to IPCC (2013), on decadal to15

interdecadal time scales and under continually increasing effective radiative forcing16

(ERF), the forced component of the global surface temperature trend responds to the17

ERF trend relatively rapidly and almost linearly. This trend can be taken to represent18

that expected from the operation of the standard anthropogenic global warming model,19

its mechanism being a physical one in which (IPCC, 2013, NASA 2015) about half of20

the light reaching Earth's atmosphere passes through the air and clouds to the surface,21

where it is absorbed and then radiated upward in the form of infrared heat. About 9022

percent of this heat is then absorbed by the greenhouse gases and radiated back23

toward the surface, which is warmed. If greenhouse gases have been increasing24

(including because ofthrough increasing anthropogenic emissions), that contributes to25

an increase in the infrared radiation they emit (including that back toward the surface,26

which is warmed further). On this basis, an indicator of the difference between the27

climate model trend and the observed temperature is prepared by subtracting the Z-28

scored actual temperature trend from the Z-scored CO2 trend. In the paper, this29

indicator is sometimes termed the climate model/temperature difference or the30

difference between the level-of-CO2 model for temperature and the observed31

temperature.32

33
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1
2

The trend in the terrestrial CO2 sink is estimated annually as part of the assessment of3

the well- known global carbon budget (Le Quere at al. 2014). It is noted that there is4

a risk of involving a circular argument concerning correlations between the terrestrial5

CO2 sink and interannual (first-difference) CO2 because the terrestrial CO2 sink is6

defined as the residual of the global carbon budget (Le Quere at al. 2014). By contrast,7

the Normalized Difference Vegetation Index (NDVI) involves direct (satellite-derived)8

measurement of terrestrial plant activity. For this reason, and because, of the two9

series, only NDVI is provided in monthly form, we will use only NDVI in what10

follows.11

12
13
14

4.4.1. Issues of method concerning the NDVI-related analyses15
16

Two issues of method arise from the NDVI-related analyses. These are: sensitivity of17

methods for detecting the order of integration of a time series; and, for the Granger18

Causality testing used, the optimal selection of the number of lags of the time series19

variables involved for use in the analysis.20

21

These two matters issues will be dealt with in turn.22

23

24

4.4.1.1. Determination of order of integration of time series25

26

The data series used until now – the shortest monthly series starting in 1959 – have27

meant that, using the most commonly used test of series order of integration (the28

Augmented Dickey-Fuller test (Dickey and Fuller 1981)) it has been unambiguous as29

to the order of integration of each series.30

31

The more recent start date arising from the use of the NDVI series – 1981 – has meant32

that the series used in the NDVI-related analyses have been made up of fewer33

observations, and are centred over a different period of history compared with the data34

commencing in 1959.35

36
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This has meant that one series – first-derivative CO2 – for the data commencing in1

1981 has displayed ADF unit root test results which place it on the cusp between I(0)2

and I(1).3

4

According to Zivot and Wang (2006), the ADF test and another test, the Phillips-5

Perron test (Phillips and Perron (1988)) have in general very low power to6

discriminate between I(0) and I(1) alternatives when the two alternatives are close7

together. Zivot and Wang (2006) recommend that for maximum power in these8

circumstances, the tests of Elliot, Rothenberg, and Stock (1996), and Ng and Perron9

(2001) should be used.10

11

For this reason, the above –- and some further –- unit root tests for the order of12

integration of a time-series are used in this stage of the study. The full list of tests is:13

14

the Augmented Dickey Fuller (ADF) test (Dickey and Fuller 1981); the Phillips-15

Perron test (Phillips and Perron 1988); the Elliott-Rothenberg-Stock Point16

Optimal test (Elliot et al. 1996); the Ng-Perron Modified Unit Root test (Ng17

and Perron 2001). The null hypothesis for the foregoing tests is non-18

stationarity.19

20

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al. 1992)21

is also used. The null hypothesis for this test is stationarity.22

23

Use of both stationarity and non-stationarity hypotheses can add robustness to the24

assessment of the order of integration of a time-series.25

26

For the KPSS and Phillips-Perron tests the bandwidth, b, was selected using the27

Newey-West method, with the Bartlett kernel. In the remaining unit root tests the28

Akaike Iinformation Ccriterion (AIC) and the Schwartz Iinformation Ccriterion (SIC)29

were used to select an optimal maximum lag length (k) for the variables.30

31

4.4.1.2. Lag-length selection for Granger causality testing32
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We turn now to a matter concerning lag-length selection for Granger causality testing.1

Thornton and Batten (1985) assessed the accuracy of Granger tests under a range of2

lag selection techniques ranging from arbitrarily chosen lags, lags chosen by three3

statistical criteria, and an extensive search of the lag space.4

Thornton and Batten (1985) conclude:5

6

As a generalization … there appears to be no substitute for selecting a model7

specification criterion ex ante or for an extensive search of the lag space if one8

is to ensure that the causality test results are not critically dependent on the9

judicious (or perhaps fortuitous) choice of the lag structure.10

11

With this background, in the present study Granger causality testing of NDVI-related12

data series pairs was conducted as follows:13

If hypothesis and the prior dynamic regression modelling used suggested a14

possible Granger link, tests were run based on model lags suggested from the15

results of the prior modelling;16

If a Granger causality test set up as just described was positive at its default lag17

selection settings, that result was reported. If not, an extensive search of the18

lag space was carried out. That result was reported, positive or negative.19

20

21
4.4.2. Results22

23
Results are organised under the following headings:24

25
4.4.2.1. Order of integration of series26

4.4.2.2. Preparation of the pooled global NDVI series used27

4.4.3. Relationship between climate variables and NDVI28

29
30

4.4.2.1. Order of integration of series31
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1
As mentioned in Section 3,. Data and methods, of the ACPD paper, any two or more2

time series being assessed by time series regression analysis must be stationary in the3

first instance, or be capable of being transformed into a new stationary series (by4

differencing). A series is stationary if its properties (mean, variance, covariances) do5

not change with time (Greene 2012).6

7
In the first instance, Augmented Dickey-Fuller (ADF) stationarity tests are calculated8

for each variable. Results and lag lengths chosen are given in Table 14.9

10
The table shows that for this data from 1981, level of CO2 and temperature are I(0), as11

they were for the data from 1959. This is not the case for first-derivative CO2.12

13
As can be seen, the ADF test result for first-derivative CO2 for data from 1981 to14

2012 of 0.0895 shows that first-derivative CO2 approaches the statistical significance15

level of 0.05 required to be I(0), but does not reach it. In other words, for first16

derivative CO2, the two I(0) and I(1) alternatives are close together.17

18

For the reasons given by Zivot and Wang (2006) above, the order of integration of19

first-derivative CO2 is therefore assessed by the wider range of tests for order of20

integration listed above, including the two tests nominated by Zivot and Wang (2006)21

as more sensitive when I(0) and I(1) alternatives are close together.22

23

The results are given in Tables 15 to 17. All tests were run at their automatic setting24

for lags. For all tests, the null hypothesis is that the series is I(1), and the alternative is25

that it is I(0); except for the KPSS test (where the null hypothesis is that the series is26

I(0), and the alternative is that it is I(1)).27

28

The ADF tests have been applied with an allowance for a drift and trend in the data,29

and the SIC was used to select degree of augmentation, k. For the KPSS tests the30

bandwidth, b, was selected using the Newey-West method, with the Bartlett kernel.31

32

The significance level each test meets or surpasses is indicated by an asterisk in each33

column of the table.34

35
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Tables 15 to 17 show that the extra tests are not unanimous for the first-derivative1

CO2 series.2

3

The test using the alternative Schwartz or Akaike Information Criteria agree for two4

tests, DF-GLS and Ng-Perron. Here the I(0) statistical significance was between 0.055

and 0.1. For the other two tests, the Akaike Information Criterion gave lower6

probabilities: Elliott-Rothenberg-Stock Point Optimal between 0.05 and 0.1; ADF7

greater than 0.1. For the Schwartz Information Criterion the figures were p<.01 and8

statistical significance was between 0.05 and 0.1.9

10

Finally, there were two tests – KPSS and Phillips-Perron – which used bandwidth11

criteria for the selection of an optimal lag length. Each of these tests characterised12

first-derivative CO2 as I(0): statistical significance was at 0.05 and 0.01 respectively.13

14

One of the tests recommended by Zivot and Wang (2006) for a series on the cusp of15

I(0) and I(1) – that of Elliot, Rothenberg, and Stock (1996) – gives a result for first16

difference CO2 from 1981 to 2012 of I(0) at better than the 1% level; however, the17

similarly recommended Ng and Perron test gives I(0) at between the 5% and 10%18

level. Overall, three of the ten tests displayed probabilities of 5% or better, a further19

remaining six of between 5% and 10%. One of the 10 tests, the ADF under the Akaike20

Information Criterion, gave a result of greater than 10%.21

22

It can be argued that the foregoing tests overall lean towards CO2 from 1981 being23

I(0). To be conservative, however, in the following analyses first-derivative CO2 is24

assessed separately both as I(0) and I(1).25

26

27

4.4.1. Preparation of the global NDVI series used in this paper28

29

Globally aggregated GIMMS NDVI data from the Global Land Cover Facility site is30

available from 1980 to 2006. This dataset is referred to here as NDVIG. Spatially31

disaggregated GIMMS NDVI data from the GLCF site is available from 1980 to the32

end of 2013. An analogous global aggregation of this spatially disaggregated GIMMS33

NDVI data – from 1985 to end 2013 – was obtained from the Institute of Surveying,34
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Remote Sensing and Land Information, University of Natural Resources and Life1

Sciences, Vienna. This dataset is abbreviated to NDVIV.2

The Normalized Difference Vegetation Index (NDVI) involves direct (satellite-3

derived) measurement of terrestrial plant activity.4

5

To provide the full temporal span of the global NDVI data set used in this study, two6

NDVI series aggregated to global level were pooled. Each of the two series is derived7

from the same underlying spatially disaggregated Global Inventory Modeling and8

Mapping Studies (GIMMS) data set provided by the Global Land Cover Facility9

(GLCF) of the University of Maryland. This data is derived from imagery obtained10

from the Advanced Very High Resolution Radiometer (AVHRR) instrument carried11

by NOAA meteorological satellites. Pooling tThe two series enabled the longest time12

span of data aggregated at global level.13

14

Globally aggregated GIMMS NDVI data from the Global Land Cover Facility (GLCF)15

site is available from 1980 to 2006. This dataset is referred to here as NDVIG.16

Spatially disaggregated GIMMS NDVI data from the Global Land Cover Facility17

(GLCF) site is available from 1980 to end 2013. An analogous global aggregation of18

this spatially disaggregated GIMMS NDVI data – from 1985 to end 2013 – was19

obtained from the Institute of Surveying, Remote Sensing and Land Information,20

University of Natural Resources and Life Sciences, Vienna. This dataset is21

abbreviated to NDVIV.22

23

These two seriedatasets were pooled as follows.24

25
Figure 10 shows the appearance of the two series. Each series is Z-scored by the same26

common period of overlap (1985-2006). The extensive period of overlap can be seen,27

as can the close similarity in trend between the two series.28

29
30

The figure also shows that the seasonal adjustment smoothings vary between the two31

series. Seasonality was removed for the NDVIV series using the 13 month moving32

average smoothing used throughout this paper. This required two passes using the 1333

month moving average, which leads to a smoother result than seen for the NDVIG34

series.35
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1

Pretis and Hendry (2013) (2013) observe that pooling data (i) from very different2

measurement systems and (ii) displaying different behaviour in the sub-samples can3

lead to errors in the estimation of the level of integration of the pooled series.4

5

The first risk of error (from differences in measurement systems) is overcome here as6

both the NDVI series are from the same original disaggregated data set. The risk7

associated with the sub-samples displaying different behaviour and leading to errors8

in levels of integration is considered in the following section by assessing the order of9

each input series separately, and then the order of the pooled series.10

11

Table 14 provides order of integration test results for the three NDVI series. The12

analysis shows all series are stationary (I(0)).13

14

Because of the comparability of the NDVI series specified above, it wasIt is, therefore,15

valid to pool the two sreeisseries. ThisPooling was done the series were pooled by16

adding appending the Z-scored NDVIV data to the Z-scored NDVIG data at the point17

where the Z-scored NDVIG data ended (in the last month of 2006).18

19

of the20

of this question As discussed abovein the Introduction, Figure 1 shows that there21

since around the year 2000 there is an increasing difference between the temperature22

projected by a mid-level IPCPC model and that observed.23

24

Any cause for this increasing difference must itself show an increase in activity over25

this period.26

27

The purpose of this section is, therefore: (i) to derive an initial simple indicative28

quantification of the increasing difference between the temperature model and29

observation observation; and (ii) to assess whether global NDVI is increasing. If30

NDVI is increasing, this is support for NDVI being a candidate for the cause of the31

temperature model-observation difference. If there is a statistically significant32

relationship between the two increases, this is further support for NDVI being a33

candidate for the cause of the model-observation difference, and hence worthy of34
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further detailed research. A full analysis of this question is beyond the scope of the1

present paper.2

3

4

4.4.2 Preparation of the indicative series for the difference between the5

temperature projected from a mid-level IPCPC model and that observed6

7

A simple quantification of the difference between the temperature projected from a8

mid-level IPCPC model and that observed can be derived by subtracting the (Z-scored)9

temperature projected from the IPCC mid-range scenario model (CMIP3, SRESA1B10

scenario) run for the IPCPC fourth assessment report (IPCC, 2007)) shown in Figure11

1, from the observed global surface temperature also shown in Figure 1. This12

quantification is depicted in Figure 13 for monthly data and, to reduce the influence of13

noise and seasonality, in Figure 14 for the same data pooled into three-year bins.14

15

4.4.3. Comparison of the pooled NDVI series with the difference between16

projected and observed global surface temperature17

18

19
Figure 13, displaying monthly data, compares NDVI with the difference between the20

temperature projected from an IPCC mid-range scenario model (CMIP3, SRESA1B21

scenario) run for the IPPC fourth assessment report (IPCC 2007)) and global surface22

temperature (red dotted curve). Both curves rise towardsin more recent years.23

24

To assess the nature of the core trends in each series, in x Figure 14 information on25

short-–term changes in the series is removed by pooling the monthly data shown in26

Figure 14 into 36-month bins.1427

28

The trends for the curves36-month pooled data in Figure 14 show considerable29

commonality. OLS regression analysis of the relationship between the curves in30

Figure 14 shows that the best fit between the curves involves no lead or lag. The31

correlation between the curves displays an adjusted R-squared value of 0.86. This is32

statistically significant (p = 0.00185). As expected with such aggregated multi-year33
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data, the relationship shows little or no autocorrelation (Test statistic: LMF = 1.591

with p-value = P(F(5,3) > 1.59) = 0.37).2

3

The foregoing similarity between the trend in the NDVI and the difference between4

IPCC temperature modelling and observed temperature is evidence supporting the5

possibility that the NDVI may contribute to the observed global surface temperature6

departing from the IPCC modelling.7

8

9

The process we follow in this section is outlined below.:10

11

Relevant correlations involving first-derivative CO2 characterised as I(1) are first12

assessed because of the near-stationarity of first-derivative CO2 for the period 1981 to13

2012.14

15

As a check, we assess whether first-derivative CO2 for the period from 1981 to 201216

has similar relationships to global surface temperature to those seen for the period17

1959 to 2012.18

19

We then explore remaining questions from our hypothesis concerning Granger20

causality and NDVI. These are firstly that there is Granger causality from first-21

derivative CO2 to NDVI, and secondly from temperature to NDVI.22

23

Finally, we ask whether NDVI is Granger-causal for the difference between the level-24

of-CO2 model for temperature and the observed temperature.25

26

Where each series in a series pair is stationary, assessments are done for each of the27

questions above both by OLS dynamic regression modelling, and by Granger28

causality testing. The dynamic modelling is informative in itself, but as outlined29

above also informs correct model specification in terms of optimising model30

independent-variable lag for Granger causality testing (Thornton and Batten 1985).31

32

The following information is relevant to each of the instances of OLS dynamic33

regression modelling which follow. As described in Section 4.1.3, Time series34
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analysis, of the ACPD paper, for OLS dynamic regression modelling, one must assess1

the extent (if any) of autocorrelation affecting the time series model. This is done by2

obtaining diagnostic statistics from an OLS regression. This regression shows, by3

means of the Breusch-Godfrey test for autocorrelation (up to order 20 – that is,4

including all monthly lags up to 20 months), .5

6

If autocorrelation is found, it is taken to be a consequence of an inadequate7

specification of the temporal dynamics of the relationship being estimated. With this8

in mind, a dynamic model (Greene 2012) with sufficient lagged values of the9

dependent variable as additional independent variables is estimated.10

11

If the autocorrelation can be removed, this will be shown by the use of the LMF test,12

supporting the use of this dynamic model specification.13

14

4.4.3.1. First-derivative CO2 as I(1)15

Characterising first-derivative CO2 as I(1) means dynamic regression modelling of the16

type presented above cannot be used. As in Section 4.1.4, Granger causality analysis,17

of the ACPD paper, one can still assess the answer to the question: “Is there evidence18

of Granger causality between first-derivative CO2 characterised as I(1) and relevant19

variables?” In this case the variables are global surface temperature and NDVI.20

21

22

4.4.3.1.1 Does first-derivative CO2 as I(1) display Granger causality of global23

surface temperature ?24

25

In answering this question, because the TEMP series is stationary, but the first-26

difference CO2 series is being treated as non-stationary (as integrated of order one,27

I(1)), the testing procedure is modified slightly. Once again, the levels of both series28

are used. This time a standard Vector Autoregressive (VAR) model is used. For each29

VAR model, the maximum lag length is determined, but then one additional lagged30

value of both TEMP and first-difference CO2 is included in each equation of the VAR.31

However, the Wald test for Granger non-causality is applied only to the coefficients32

of the original k lags of first-difference CO2. Toda and Yamamoto (1995) show that33
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this modified Wald test statistic will still have an asymptotic distribution that is chi-1

square, even though the level of CO2 is non-stationary.2

3

Here the relevant Wald Statistic for the null hypothesis –that is there is no Granger4

causality from first-derivative CO2 as I(0) to temperature – is shown in Table 19 to5

produce a Chi-Square of 32.79 (p=0.0001).6

7

The high statistical significance in the p-value is strong evidence that first-derivative8

CO2, even treated as I(1), still displays Granger causality of temperature.9

10
11
12
13
14
15

4.4.3.1.2 Does first-derivative CO2 as I(1) display Granger causality of NDVI?16
17

The identical steps to those in the previous section are used. Here the relevant Wald18

Statistic (Null hypothesis that is there is No Granger Causality from first-derivative19

CO2 as I(1) to temperature) is shown in Table 20 to produce a Chi-Square of 3.18420

(p=0.9223).21

22

Hence in contrast with temperature, for the I(1) characterisation first-derivative CO223

does not display Granger causality of NDVI.24

25

26
27

4.4.3.2 Characterising first-derivative CO2 as I(0)28
29

4.4.3.2.1. Does first-derivative CO2 as I(0) still display Granger causality of30
temperature for the 1981 to 2012 period?31

32
A key finding earlier in the paper is that for the period 1959 to 2012, first-derivative33

CO2 leads global surface temperature, is significant in an OLS dynamic regression34

model, and is Granger-causal of global surface temperature. This section repeats that35

analysis (characterising first-derivative CO2 as I(0)) for the period used for the NDVI36

data, 1981 to 2012.37

38
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Figure 11 displays the data series, and shows the similarity between the Z-scored1

curves.2
3
4

Inspection of Table 21 shows that a highly statistically significant model has been5

established. First it shows that the temperature in a given period is strongly6

influenced by the temperature of closely preceding periods. Further it provides7

evidence that there is also a clear, highly statistically significant role in the model for8

first-derivative CO2 for the period from 1981 to 2012, just as for the period from 19599

to 2012.10

11

The next section assesses whether first-derivative CO2 can be considered to display12

Granger causality for global surface temperature for the 1981 to 2012 period.13

14

The relevant EViews output is from the Pairwise Granger Causality Test. Table 2215

documents the following summary results: F-statistic 5.02 (p-value = 0.01).16

The forgoing statistic shows that the null hypothesis is rejected –: in other words,17

there is strong evidence of Granger Causality from first-derivative CO2 to global18

surface temperature for the shorter 1981 to 2012 period.19

20
21

The table shows that the same first-derivative CO2 which, characterised as I(1),22

displayed Granger causality for temperature (Table 19), characterised as I(0) also23

displays Granger causality for temperature.24

25

26
4.4.3.3. Granger causality of NDVI27

28
4.4.3.3.1 Does first-derivative CO2 as I(0) display Granger causality of NDVI ?29

30
Figure 12 shows Z-scored values for first-derivative CO2 and NDVI. Considerable31

similarity between the signatures is seen.32

33
An OLS dynamic regression model is set up using the procedure outlined in Section34

3.2 above. Results are given in Table 23.35
36
37
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Inspection of Table 23 shows that a highly statistically significant model has been1

established. First it shows that, as seen for temperature, the NDVI in a given period is2

strongly influenced by the NDVI of closely preceding periods. Further it provides3

evidence that there is also a statistically significant role in the model for first-4

derivative CO2.5

6

The next sections assess whether first-derivative CO2 can be considered to display7

Granger causality of NDVI. Two assessments are made using different criteria for lag8

selection: the first using the Akaike Information Criterion; the second using the9

method of extensive search of the lag space (Thornton and Batten 1985).10

11
The relevant EViews output is from the Pairwise Granger Causality Test and Table 2412

documents the following summary results: F-statistic 3.01 (p-value = 0.05).13

This statistic shows that using the Akaike Information Criterion for lag selection, the14

null hypothesis is very slightly accepted – in other words, for the AIC there is (by a15

very narrow margin) an absence of evidence of Granger Causality from first-16

derivative CO2 to NDVI.17

18
Given the above result, what is the result from the extensive search method? The19

relevant EViews output is again from the Pairwise Granger Causality Test and Table20

25 provides the following results: F-statistic 5.11 (p-value = 0.024).21

This statistic shows that using the extensive search method for lag selection, the null22

hypothesis is rejected by a greater amount than for the AIC method, which reaches23

statistical significance – in other words, there is evidence of Granger Causality from24

first-derivative CO2 to NDVI.25

26

In summary, under the I(0) characterisation, first-derivative CO2 displays Granger27

causality of NDVI, while under I(1), it does not.28

29

30

31
32

4.4.3.3.2 Does TEMP display Granger causality of NDVI?33
34
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Figure 13 shows Z-scored values for first-derivative CO2 and NDVI. With the1

exception of the period 2003-2004, considerable similarity between the signatures is2

seen.3

4
An OLS dynamic regression model is set up using the procedure outlined in Section5

3.2 above. Results are given in Table 26.6
7
8

Inspection of Table 26 shows that a highly statistically significant model has been9

established. First it shows that, as seen for first-derivative CO2, the NDVI in a given10

period is strongly influenced by the NDVI of closely preceding periods. Further it11

provides evidence that there is also a highly statistically significant role in the model12

for temperature.13

14

The next section assesses whether temperature can be considered to display Granger15

causality of NDVI. The relevant EViews output is again from the Pairwise Granger16

Causality Test and is shown in Table 27.17

18
19
20

Table 27 documents the following summary results: F-statistic 11.59 (p-value =1.00E-21

05). This statistic shows that the null hypothesis is rejected, by a highly statistically22

significant amount – in other words, there is strong evidence of Granger causality23

from temperature to NDVI.24

25
26
27

4.4.3.43 Does NDVI display Granger causality of the difference between the28
level-of-CO2 model for temperature and the observed temperature?29

30
31

Figure 14 shows Z-scored values for f NDVI and the difference between the Z-scored32

level of atmospheric CO2 (standing for the level-of-CO2 model for temperature) and33

the Z-scored observed temperature. Considerable similarity between the signatures is34

seen.35
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1
An OLS dynamic regression model is set up using the procedure outlined in Section2

3.2 above. Results are given in Table 28.3

4
Inspection of Table 28 shows that a highly statistically significant model has been5

established. First it shows that the difference between the level-of-CO2 model for6

temperature and the observed temperature in a given period is strongly influenced by7

that of closely preceding periods. Further it provides evidence that there is also a8

clear, highly statistically significant role in the model for NDVI.9

10

With these results, Figure 15 is as for Figure 14 but with the NDVI series led11

indicated by the OLS dynamic regression modelling in Table 25.12

13
14

A marked overall similarity between the two series is seen, both in core trend (as15

illustrated by polynomial curves of best fit) and in details of signature.16

17

The next sections assess whether NDVI can be considered to display Granger18

causality of the difference between the level-of-CO2 model for temperature and the19

observed temperature. As for first-derivative CO2 and NDVI in Section 3.2.2.1 above,20

two assessments are made using different criteria for lag selection: the first using the21

Akaike Information Criterion; the second using the method of extensive search of the22

lag space (Thornton and Batten 1985).23

24

The relevant EViews output is from the Pairwise Granger Causality Test and Table 2925

documents the following summary results: F-statistic 1.03 (p-value = 0.36).26

This statistic shows that using the Akaike Information Criterion for lag selection, the27

null hypothesis is rejected – in other words, for the AIC there is an absence of28

evidence of Granger causality from NDVI to the difference between the level-of-CO229

model for temperature and the temperature observed.30

31

The relevant EViews output from the extensive search method is again from the32

Pairwise Granger Causality Test and Table 30 documents the following summary33

results: F-statistic 1.81 (p-value = 0.03). This statistic shows that using the extensive34
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search method for lag selection, the null hypothesis is rejected – in other words, there1

is evidence of Granger causality from first-derivative CO2 to NDVI.2

The way in which the search reveals the statistically significant lag is depicted3

visually in Figure 16. Note the statistical significance of results of tests based on lags4

14 to 16.5

6

Considering the results of Section 4.4 overall, the following analysis is made.7

8

Even considering first-derivative CO2 as possibly being I(1) for the period 1981 to9

2012, it is believed that there is sufficient redundancy in the range of data series and10

relationships used in the NDVI section to answer the question as to whether11

vegetation at global scale causes the difference between the linear CO2-temperature12

model and observed temperature.13

14

The redundancy comes about as follows. The Granger-causality with Toda-15

Yamamoto procedure results presented in Tables 16 and 17 show that, while first-16

derivative CO2 as I(1) does not display Granger causality of NDVI, first-derivative17

CO2 as I(1) does display Granger causality of temperature. And temperature18

characterised as I(0) – as it is unambiguously is shown to be (Table 11) – is shown to19

display Granger causality of NDVI (Table 14).20

21

So whichever level of integration first-difference CO2 is characterised as, adequate22

dynamic-regression and Granger-causality linkages are in place for the flow of23

causality from first-derivative CO2 and temperature to NDVI.24

25

It is also shown, in this case without ambiguities concerning the I(0) nature of series,26

that NDVI displays Granger causality of the difference between the linear CO2-27

temperature model and observed temperature.28

29

In conclusion, it is considered that the results in this section show a Granger-causal30

chain from first-derivative CO2 and temperature to NDVI, and from NDVI to the31

difference between the linear CO2-temperature model and observed temperature.32
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1
2

5 Discussion3
4
5

Firstly it is noted that tThe results in this paper show that there are clear links –- at the6

highest standard of non-experimental causality: — that of Granger causality – —7

between first- and second-difference CO2 and the major climate variables of global8

surface temperature and the Southern Oscillation Index, respectively.9

10

11

Concerning The results show that rRelationships between first- and second-difference12

CO2 and climate variables are present for all the time scales studied: that is, including13

temporal start points situated as long ago as 1500. In the instances where time series14

analysis accounting for autocorrelation could be successfully conducted, the results15

were always statistically significant. For the further instances (for those studies using16

data series commencing before 1877) the data was not amenable to time series17

analysis –- and therefore also not amenable to testing for Granger causality –- due to18

the strongly smoothed nature of the temperature data available which made removal19

of the autocorrelation impossible (see Section 4.3). Nonetheless, the scale of the non-20

corrected correlations observed wasere of the same order of magnitude as those of the21

instances that were able to be corrected for autocorrelation.22

23

Given the time scales over which these effects are observed, taken as a whole the24

results taken as a whole clearly suggest that the mechanism observed is long term, and25

not, for example, a creation of the period of the steepest increase in anthropogenic26

CO2 emissions, a period which commenced in the 1950s (IPCC 2014).27

Taking autocorrelation fully into account in the time series analyses demonstrates the28

major role of immediate past instances of the dependent variable (temperature, and29

SOI) in influencing its own present state. This was found in all cases where time30

series models could be prepared. This was not to detract from the role of first- and31

second-difference CO2 – in all relevant cases, they were significant in the models as32

well.33

34
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According to Wilks (1995) and Mudelsee (2010), such autocorrelation in the1

atmospheric sciences also called persistence or “memory” is characteristic for many2

types of climatic fluctuations.3

4
In the specific case of the temperature and first-difference CO2 relationship, the5

significant autocorrelation for temperature occurred with present temperature being6

affected by the immediately prior month and the month before that. As mentioned7

above, for atmospheric CO2 and global surface temperature, others (Sun and Wang8

1996; Triacca 2005; Kodra et al. 2011; Attanasio and Triacca 2011; Attanasio 2012;9

Stern and Kaufmann 2014) have conducted Granger causality analyses involving the10

use of lags of both dependent and independent variables. These studies, however, are11

not directly comparable with the present study. Firstly, while reporting the presence or12

absence of Granger causality, the studies did not report lead or lag information.13

Secondly, the studies used annual data, so could not investigate the dynamics of the14

relationships at the interannual (monthly) level where our findings were greatest.15

16
The anthropogenic global warming (AGW) hypothesis has two main dimensions17

(IPCC 2007; Pierrehumbert 2011): (i) that increasing CO2 causes increasing18

atmospheric temperature (via a radiative forcing mechanism) and (ii) that most of the19

increase in atmospheric CO2 in the last hundred years has been due to human causes.20

21

The results presented in this paper are supportive of the AGW hypothesis for two22

reasons: firstly, increasing atmospheric CO2 is shown to drive increasing temperature;23

and secondly, the results deepen the evidence for a CO2 influence on climate in that24

second-difference CO2 is shown to drive the SOI.25

26

The difference between this evidence for the effect of CO2 on climate and that of the27

standard AGW hypothesis is that the standard model proposes that temperature will28

rise roughly linearly with atmospheric CO2, whereas the present results show that the29

climate effects result from persistence of previous effects and from rates of change of30

CO2.31

32

On the face of it, then, this model seems to leave little room for the linear radiative33

forcing aspect of the AGW hypothesis.34
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1

However more research is needed in this area.2

3

Reflection on Figure 1 shows that the radiative mechanism would be supported if a4

second mechanism existed to cause the difference between the temperature projected5

for the radiative mechanism and the temperature observed. The observed temperature6

would then be seen to result from the addition of the effects of these two mechanisms.7

8
As discussed in the Introduction, Hansen et al. (2013) have suggested that the9

mechanism for the pause in the global temperature increase since 1998 may be the10

planetary biota, in particular the terrestrial biosphere. As an initial indicative11

quantified characterisation of this possibility, Section 4.4 derived a simple measure of12

the increasing difference between the global surface temperature trend projected from13

a mid-range scenario climate model and the observed trend. This depiction of the14

difference displayed a rising trend. The time series trend for the globally aggregated15

Normalized Difference Vegetation Index – which represents the changing levels of16

activity of the terrestrial biosphere was also presented. This was shown also to17

display a rising trend.18

19

If by further research, for example by Granger causality analysis, the global20

vegetation can be shown to embody the second mechanism, this would be evidence21

that the observed global temperature does result from the effects of two mechanisms22

in operation together – the radiative, level-of-CO2 mechanism, with the biological23

first-difference of CO2 mechanism.24

25

Hence the biosphere mechanism would supplement, rather than replace, the radiative26

mechanism.27

28

Further comprehensive time series analysis of the NDVI data and relevant climate29

data, beyond the scope of the present paper, could throw light on these questions.30

31

A further notable finding T demonstratesis the major role of immediate past instances32

of the dependent variable in influencing its own present state. This was found in all33

cases where time series models could be prepared, and was true for temperature, and34
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SOI. This was not to detract from the role of first- and second-difference CO2 – in all1

relevant cases, they were significant in the models as well.2

3

Tthe anthropogenic global warming hypothesis states that increased global warming is4

caused in part by increased atmospheric carbon dioxide, and that, especially since the5

1950s, the increased human burning of fossil fuel has been a major contributor to the6

increased atmospheric CO2 content which has come about.7

8

Tthe results presented in this paper are supportive of the anthropogenic global9

warming hypothesis in its aspect of which states that CO2 affects temperature. This is10

simply because (first-difference) atmospheric CO2 is shown to drive global11

temperature. The results also deepen the evidence for a CO2 influence on climate in12

that second-difference CO2 is shown to drive the SOI.13

14

The difference between this evidence for the effect of CO2 on climate and that of the15

standard AGW hypothesis is that the standard model has it that temperature will rise16

roughly linearly with atmospheric CO2, whereas as the present results show the17

climate effects are from autocorrelation and rates of change of CO2 .18

19

However, concerning temperature, as stated at the outset there is now a significant20

gap now of some 16 years in length between the projections from the linear CO221

model and the observed global surface temperature trend, whereas there is no such22

gap between projection and observation from the first-difference CO2 model.23

24

Turning to potential mechanisms for the effect, it was noted above that Hansen et al.25

(2013) have suggested that the mechanism for the pause in the global temperature26

increase since 1998 might be the planetary biota, in particular the terrestrial biosphere.27

28

As an initial indicative quantified characterisation of this possibility, Section 4.429

derives a simple measure of the increasing difference between the global surface30

temperature trend projected from a mid-range scenario climate model and the trend31

observed. This depiction of the difference displays a rising trend. The time series32

trend for the globally aggregated Normalized Difference Vegetation Index – which33

represents the changing levels of activity of the terrestrial biosphere - is also presented.34
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This is shown also to display a rising trend. The relationship between the two trends,1

for pooled data, is substantial and statistically significant.2

3

Further comprehensive time series analysis of this data is beyond the scope of the4

present paper, but the above result provides further evidence that the terrestrial5

biosphere mechanism should be considered a candidate cause of the departure of6

temperature from that predicted by the level-of-CO2 mechanism alone.7

8

9
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Lag in
months of
first-
difference
CO2 relative
to global
surface
temperature
category

Hhadcrut4SH -1
Hhadcrut4Tro
p -1
HHhadCRUTc
rut4_nh -3
Hhadcrut4Glo
b -2

1
2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

Table 2. Lag of FIRST-DIFFERENCE CO2 relative to surface temperature series for17
global, tropical, northern hemisphere and southern hemisphere categories, each for18
three time-series sub-periods19
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Temperature
category

Time
period

Lag of first-
difference
CO2 relative
to global
surface
temperature
series

NH
1959.87 to
1976.46 -6

NH

1976.54 to
1993.21 -6

Global
1959.87 to
1976.46 -4

SH
1959.87 to
1976.46 -3

Global

1976.54 to
1993.21 -2

Tropical
1959.87 to
1976.46 0

Tropical

1976.54 to
1993.21 0

Tropical
1993.29 -
2012.37 0

Global
1993.29 -
2012.37 0

NH
1993.29 -
2012.37 0

SH

1976.54 to
1993.21 0

SH
1993.29 -
2012.37 0

1

2

3

4

5

6

7

8

9

10

11
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Table 3. Augmented Dickey–Fuller (ADF) test for tests for unit roots stationarity in1
both monthly and annual data 1969 to 2012 for, level of atmospheric CO2, first-2
difference CO2 and global surface temperature3

4

Monthly data Annual data

ADF
statistic* p-value

Order of
integration

Test
interpret-
ation

ADF
statistic*

p-
value

Order of
integration

Test
interpret-
ation

Level of
CO2 -0.956 0.9481 I(1)

Non-
stationary -0.309 0.991 I(1)

Non-
stationary

First-
Difference
CO2 -17.103

5.72 E-
54 I(0) Stationary -4.319 0.003 I(0) Stationary

Temp -5.115 0.00011 I(0) Stationary -3.748 0.019 I(0) Stationary
* The Dickey-Fuller regressions allowed for both drift and trend; the augmentation level5
was chosen by minimizing the Schwarz Information Criterion.6

7

8

9

10

11

12

13

Table 4. OLS dynamic regression between first-difference atmospheric CO2 and14
global surface temperature for monthly data for the period 1959 - 2012, with15
autocorrelation taken into account16

17

Independent
variable/s [1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led2mx13mma
1stderiv CO2 TEMP 0.097 <0.00001 0.861

6.70E-
273 0.144

Led1mTEMP 0.565 <0.00001
Led2mTEMP 0.306 <0.00001
[1] Z-scored18
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation19

20

21
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1

2

3

Table 5. Pairwise correlations (correlation coefficients (R)) between selected climate4
variables5

6

2x13mmafirstderiv
CO2 Hadcrut4Global 3x13mma2ndderivCO2

Hadcrut4Global 0.7 1
3x13mma2ndderivCO2 0.06 -0.05 1
13mmaReverseSOI 0.25 0.14 0.37

7
8
9

10
Table 6. Pairwise correlations (correlation coefficients (R)) between selected climate11
variables, phase-shifted as shown in the table12

13
14

Led2m2x13mmafirstderivCO2 Hadcrut4Global Led4m3x13mma2ndderivCO2

Hadcrut4Global 0.71 1
Led4m3x13mma2nddifferiv
CO2 0.23 0.09 1

13mmaReverseSOI 0.16 0.14 0.49
15
16

Table 7. Pairwise correlations (correlation coefficients (R)) between selected climate17
variables, phase-shifted as shown in the table18

19

ZLed2m2x13mma2ndderivCO2

ZReverseLongP
addockSOI

ZReverseLongPaddockSOI
0.28 1.00

ZLed3m13mmafirstdiffderivhadcrut4
global 0.35 0.41

20

21
22
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Table 8. OLS dynamic regression between second-difference atmospheric CO2 and1
reversed Southern Oscillation Index for monthly data for the period 1959 - 2012, with2
autocorrelation taken into account3

4

Independent
variable/s [1]

Dep-
endent
variable [1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led3m2x13mma
1stderivCO2 ReverseSOI 0.07699 <0.011 0.478

1.80E-
89 0.214

Led1mReverseSOI 0.456 <0.00001
Led2mreverseSOI 0.272 <0.00001
[1] Z-scored5
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation6

7

8

9

10

11
Table 9. OLS dynamic regression between first-difference global surface temperature12
and reversed Southern Oscillation Index for monthly data for the period 1877-2012,13
with autocorrelation taken into account14

15

Indep-endent variable/s
[1]

Dep-
endent
variable [1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led3m12mma1stdifferivT
EMP

ReverseSOI 0.140 <0.00001 0.466
3.80E-
221 0.202

Led1mReverseSOI 0.465 <0.00001
Led2mReverseSOI 0.210 <0.00001
[1] Z-scored16
[2] Whole model: LM test for autocorrelation up to order 3 - Null hypothesis: no autocorrelation17

18
19
20

21

22

23

Table 10: Augmented Dickey–Fuller (ADF) test for stationarity for monthly data24
1959 to 2012 for second-difference CO2 and sign-reversed SOI25

26
27
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ADF statistic p-value Test interpretation
Second-
difference
CO2 -10.077 0.000 Stationary
Sign-
reversed SOI -6.681 0.000 Stationary

1

2

Table 11. VAR Residual Serial Correlation LM Tests component of Granger3
causality testing of relationship between second-difference CO2 CO2 and SOI. Initial4
2-lag model5

6
Lag order LM-Stat P-value*

1 10.62829 0.0311
2 9.71675 0.0455
3 2.948737 0.5664
4 9.711391 0.0456
5 10.67019 0.0305
6 37.13915 0
7 1.268093 0.8668

*P-values from chi-square with 4 df.

7

Table 12. VAR Residual Serial Correlation LM Tests component of Granger8
causality testing of relationship between second-difference CO2 CO2 and SOI.9
Preferred 3-lag model10

11
Lag order LM-Stat P-value*

1 1.474929 0.8311
2 4.244414 0.3739
3 2.803332 0.5913
4 13.0369 0.0111
5 8.365221 0.0791
6 40.15417 0
7 1.698265 0.791

*P-values from chi-square with 4 df.
12
13

Table 13. Correlations (R) between paleoclimate CO2 and temperature estimates14
1500-194015

Temperature
(speliothem)

Temperature
(tree ring)

Level of CO2 CO2
CO2 (ice core) 0.369 0.623
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1st differiv. CO2 (ice
core) 0.558 0.721

1

2

Table 14: ADF test results for time series based on automatic Schwarz Information3
Criterion (SIC) lag length selection4

5
6

ADF
Prob.

1stderivCO2
Lag Length: 15
(Automatic - based
on SIC, maxlag=16) 0.0895

Temp

Lag Length: 1
(Automatic - based
on SIC,
maxlag=16) 0.0000

NDVI

Lag Length: 1
(Automatic - based
on SIC, maxlag=16 0.0000

Climate
model/temperature
difference

Lag Length: 1
(Automatic - based
on SIC, maxlag=16) 0.0000

7

8
Table 15. Order of integration test results for first-derivative CO29
for monthly data from 1981-2012. The Akaike iInformation Ccriterion (AIC) was10
used to select an optimal maximum lag length (k) for the variables in the test. The11
null hypothesis for the tests is non-stationarity, except for the KPSS test for which the12
null hypothesis is stationarity.13

14
15

Test
critical
values ADF

DF-
GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -2.75 -2.73 5.77 6.11

1% level -3.98 -3.48 3.97 4.03
5% level -3.42 -2.90 5.63 5.48
10%
level -3.13 -2.58* 6.89* 6.67*

(1) Significant at <1% level16
17

Table 14. Order of integration test results for NDVI series for monthly data from18
1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal19
maximum lag length in the tests.20

21
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NDVI
Series Null Hypothesis: the series has a unit root

Probability
of unit
root

NDVIV
Lag Length: 16 (Automatic - based on SIC,
maxlag=16) 0.0122

NDVIG Lag Length: 1 (Automatic - based on SIC, maxlag=15) 7.23e-14
NDVIGV Lag Length: 1 (Automatic - based on SIC, maxlag=16) 4.18E-16

1
2
3

Table 16. Order of integration test results for first-derivative CO24
for monthly data from 1981-2012. The Schwartz iInformation cCriterion (SIC) was5
used to select an optimal maximum lag length (k) for the variables in the test. The6
null hypothesis for the tests is non-stationarity, except for the KPSS test for which the7
null hypothesis is stationarity.8

9
10

Test
critical
values ADF DF-GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -3.183 -2.73 3.193 6.105

1% level -3.984 -3.476 3.971* 4.03
5% level -3.422 -2.898 5.625 5.48
10%
level -3.134* -2.585* 6.886 6.670*

11
12
13
14
15
16
17
18
19

Table 17. Order of integration test results for first-derivative CO2 for monthly data20
from 1981-2012. Tests use bandwidth criteria for lag selection. The null hypothesis21
for the tests is non-stationarity, except for the KPSS test for which the null hypothesis22
is stationarity.23

24

Test
critical
values

KPSS
does
not use
AIC or
SIC

Phillips-
Perron
does
not use
AIC or
SIC

Test
statistic 0.07 -3.60
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1% level 0.22* -3.98
5% level 0.15 -3.42*
10%
level 0.12 -3.13

1
2
3

Table 18. Order of integration test results for NDVI series for monthly data from4
1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal5
maximum lag length in the tests.6

7

NDVI
Series Null Hypothesis: the series has a unit root

Probability
of unit
root

NDVIV
Lag Length: 16 (Automatic - based on SIC,
maxlag=16) 0.0122

NDVIG Lag Length: 1 (Automatic - based on SIC, maxlag=15) 7.23e-14
NDVIGV Lag Length: 1 (Automatic - based on SIC, maxlag=16) 4.18E-16

8

Table 19. Pairwise Granger causality tests for first-derivative CO2 and temperature9
10

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation

TEMP does
not GC
1stderivCO2

8

Add one
more lag to
allow for fact
that 1stderiv
CO2 CO2 is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

378 369 7.39 8 p=0.4962

TEMP does
not GC
1stderivCO
2

1stderivCO2
does not
GC TEMP 8 378 369 32.79 8 p=0.0001

1stderivCO
2

does GC
TEMP

11
12

Table 20. Pairwise Granger causality tests for first-derivative CO213
characterised as I(1) and NDVI14

15

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation

NDVI does
not GC
1stderivCO2

8

Add one
more lag to
allow for fact
that 1stderiv

378 369 3.184 8 p=0.9223

NDVI does
not GC
1stderivCO
2
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CO2
is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

1stderivCO2
does not
GC NDVI 8 378 369 12.312 8 p=0.1378

1stderivCO
2

does not
GC NDVI

1
2
3

Table 21. OLS dynamic regression between first-derivative atmospheric CO24
and global surface temperature for monthly data for the period 1981-2012, with5
autocorrelation taken into account6

7

Independent variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test
for
autocorr-
elation
[2]

Twox13mma1stderivCO2 TEMP 0.107 0.00077 0.770 4.00E-
118 0.445

Led1mTEMP 0.545 <0.00001
Led2mTEMP 0.293 <0.00001

[1] Z-scored8
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation9

10
11
12
13

Table 22. Pairwise Granger causality tests for first-derivative atmospheric CO214
and global surface temperature15

16
17

Null Hypothesis:

Criterion
for number
of lags
selected

Number of
lags imple-
mented

Observ-
ations

F-
Statistic

Probab-
ility

Interpretation
of
statistically
significant
probabilities

TEMP does not
Granger Cause
1stderivCO2

AIC

2 373 2.88 0.06
1stderivCO2
does not Granger
Cause TEMP 5.02 0.01

1stderivCO2
Granger
Causes TEMP

18
19

Table 23. OLS dynamic regression between first-derivative atmospheric CO2 and20
NDVI for monthly data for the period 1981 - 2012, with autocorrelation taken into21
account22

23

Indep-
endent
variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Twox13mma
1stderivCO2

NDVI 0.094 0.01103 0.549
3.74E-
64 0.092
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Led1mNDVI 0.765 <0.00001
Led2mNDVI −0.075 0.15231
[1] Z-scored1
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation2

3
4
5
6

Table 24. Pairwise Granger causality tests for first-derivative CO27
and NDVI: lag selection by AIC8

9

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause
1stderivCO2

AIC

2 373 1.25 0.29
Not
significant

1stderivCO2
does not Granger
Cause NDVI 3.01 0.0504

Not
significant

10
11
12

Table 25. First-derivative CO2 displays Granger causality of NDVI: lag selection by13
extensive search14

15

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause
1stderivCO2

Result of
extensive
search of
lag
space

1 374 0.87 0.352
1stderivCO2
does not Granger
Cause NDVI 5.11 0.024

1stderivCO2
Granger
Causes NDVI

16
17
18
19
20
21
22
23

Table 26. OLS dynamic regression between global surface temperature and NDVI24
for monthly data for the period 1981 - 2012, with autocorrelation taken into account25

26
27

Indep-
endent
variable/s
[1]

Dependent
variable
[1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

TEMP NDVI 0.215 <0.00001 0.574
1.18E-
68 0.536

Led1mNDVI 0.720 <0.00001



147

Led2mNDVI −0.122 0.01874
[1] Z-scored1
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation2

3
4

Table 27. Pairwise Granger causality tests for temperature and NDVI5
6
7

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause TEMP

AIC

2 373 3.18 0.043
NDVI Granger
Causes TEMP

TEMP does not
Granger Cause NDVI 11.59 1.00E-05

TEMP
Granger
Causes NDVI

8
9

Table 28. OLS dynamic regression between NDVI and the difference between the10
observed level of atmospheric CO2 and global surface temperature for monthly data11
for the period 1981 - 2012, with autocorrelation taken into account12

13

Indep-endent
variable/s [1]

Depen-dent
variable [1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

Led17mNDVI

Climate
model/temperature
difference 0.069 0.00795 0.557

1.36E-
62 0.874

Led1mClimate
model/temperature
difference 0.490 <0.00001
Led2mClimate
model/temperature
difference 0.265 <0.00001
[1] Z-scored14
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation15

16
17
18
19
20
21

Table 29. Pairwise Granger causality tests for NDVI and the difference between the22
observed level of atmospheric CO2 and global surface temperature: Akaike23
Iinformation cCriterion used to select lag24

25

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

Climate
model/temperature
difference does not
Granger Cause
Led17mNDVI

AIC

2 356 2.35 0.10
Not
significant
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Led17mNDVI does not
Granger Cause climate
model/temperature
difference 1.03 0.36

Not
significant

1
2
3
4
5
6

Table 30. Pairwise Granger causality tests for NDVI and the difference between the7
observed level of atmospheric CO2 and global surface temperature: extensive search8
of the lag space9

10

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation of
statistically
significant
probabilities

Climate
model/temperature
difference does not
Granger Cause
Led17mNDVI

Result of
extensive
search of
lag
space 15 343 0.83 0.65

Led17mNDVI does not
Granger Cause climate
model/temperature
difference 1.81 0.03

Led17mNDVI
Granger Causes
climate
model/temperature
difference

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 1. Monthly data: global surface temperature (HadADCRUT4 dataset) (red28
dotted curve) and an IPCC mid-range scenario model (CMIP3, SRESA1B scenario)29
run for the IPPC fourth assessment report (IPCC, 2007) (blue curve), each expressed30
in terms of Z scores to aid visual comparison (see Sect. 1).31

32
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Figure 2. Z scored monthly data: global surface temperature (green dashed curve)19
compared to an IPCC mid-range scenario global climate model (GCM) – the CMIP3,20
SRESA1B scenario run for the IPCC fourth assessment report (IPCC, 2007) (blue21
curve) and also showing the trend in first-difference atmospheric CO2 (smoothed by22
two 13 month moving averages) (red dotted curve). To show their core trends for23
illustrative purposes the three series are fitted with 5th order polynomials.24

25
26

27
28
29
30
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 3. Z scored monthly data: global surface temperature (red curve) compared to18
first-difference atmospheric CO2 smoothed by two 13 month moving averages (black19
dotted curve).20

21

22
23
24
25
26

Figure 4. Correlograms of first-difference CO2 with surface temperature for global27
(turquoise curve with crosses), tropical (blue curve with triangles), Northern28
Hemisphere (purple curve with boxes) and Southern Hemisphere (black curve with29
diamonds) categories30

31
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1
2
3

Figure 5. Correlograms of first-difference CO2 with surface temperature for global,4
tropical, Northern Hemisphere and Southern Hemisphere categories, each for three5
time-series sub-periods.6

7

8
9

Figure 6. Z scored monthly data: global surface temperature (red curve) and first-10
difference atmospheric CO2 smoothed by two 13 month moving averages (black11
dotted curve ) (left-hand scale); sign-reversed SOI smoothed by a 13 month moving12
average (blue dashed curve) and second-difference atmospheric CO2 smoothed by13
three 13 month moving averages (green barred curve) (right-hand scale)14

15
16



153

1
2
3

Figure 7. Z scored monthly data from 1960 to 2012: sign-reversed SOI (unsmoothed4
and neither led nor lagged) (dotted black curve); second-difference CO2 smoothed by5
a 13 month × 13 month moving average and led relative to SOI by 2 months (green6
dashed curve ); and first-difference global surface temperature smoothed by a 137
month moving average and led by 3 months (red curve).8

9
10

11
12
13
14
15

Figure 8. Z scored monthly data from 1877 to 2012: sign-reversed SOI (unsmoothed16
and neither led nor lagged) (red curve); and first-difference global surface temperature17
smoothed by a 13 month moving average and led relative to SOI by 3 months (black18
dotted curve)19
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1

2
3
4
5
6
7
8
9

10
Figure 9. Z scored annual data: paleoclimate time series from 1500: ice core level of11
CO2 (blue curve), level of CO2 transformed into first-difference form (green barred12
curve); and temperature from speliothem (red dashed curve) and tree ring data (black13
boxed curve).14
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Figure 10: Z scored monthly data: NDVIG (black dotted curve) compared to NDVIV1
(red curve).2

3

4
5

Figure 11. Z scored monthly data: global surface temperature (red curve) compared6
to first-derivative atmospheric CO2 smoothed by two 13 month moving averages7
(black dotted curve).8

9

10
11
12
13

Figure 12. Z scored monthly data: NDVI (red curve) compared to first-derivative14
atmospheric CO2 smoothed by two 13 month moving averages (black dotted curve).15

16
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Figure 13. Z scored monthly data: NDVI (red curve) compared to first-derivative4
atmospheric CO2 smoothed by two 13 month moving averages (black dotted curve).5

6

7
8
9

10
Figure 14. Z scored monthly data: NDVI (black curve) compared to the difference11
between the observed level of atmospheric CO2 and global surface temperature (red12
dotted curve).13

14
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Figure 15. Z scored monthly data: NDVI (black curve) led by 17 months compared6
to the difference between the observed level of atmospheric CO2 and global surface7
temperature (red dotted curve). Months of lead of the NDVI series indicated by OLS8
dynamic regression modelling9

10

11
12
13
14

Figure 16. Reverse log probability values (red dotted curve) for lags generated by15
extensive search of the lag space from lag 2 to lag 40 for the null hypothesis that16
NDVI does not Granger-cause the difference between the observed level of17
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atmospheric CO2 and global surface temperature. Green dashed line represents 0.051
level of statistical significance.2

3

4
5
6

Figure 13. Z scored monthly data: NDVI (black curve) compared to the difference7
between the temperature projected from an IPCC mid-range scenario model (CMIP3,8
SRESA1B scenario) run for the IPPC fourth assessment report (IPCC 2007) and9
global surface temperature (red dotted curve).10

11

12
13
14
15
16

Figure 14. Z scored data for periods each of 36 months, averaged: NDVI (black17
curve) compared to the difference between the temperature projected from an IPCC18
mid-range scenario model (CMIP3, SRESA1B scenario) run for the IPPC fourth19
assessment report (IPCC 2007) and global surface temperature (red dotted curve).20
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