
1

Response to Referee Report1

L. M. W. Leggett and D. A. Ball*2
*Global Risk Policy Group Pty Ltd, Townsville, Queensland, Australia3

4
5

6
Abstract7

8
Response to Referee Report on “First and second derivative atmospheric CO2, global9
surface temperature and ENSO”.10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

--------------------------------28



2

1 Overall Response1

2
We would like to thank the anonymous referee for providing comments on our3
submission. In overall response to the comments we note that we found all the points4
most useful and leading to the running of further checks or to important clarifications5
or additions.6

In particular this led us to revisit the analysis we presented using the global-level7
Normalized Difference Vegetation Index (NDVI).8

When we revisited the analysis we discovered we had made an error in the9
preparation of the pooled NDVI series we use. Correcting this error improved the10
correlation with other climate variables. This led to the existing analysis being11
reviewed and opportunities being seen for it to be markedly extended. This new12
analysis is presented here and is proposed to replace the section in the present ACPD13
paper 4.4 Normalized Difference Vegetation Index (NDVI) data.14

15
We acknowledge that this content has made the paper longer but we hope that the16
extra length can be entertained as we believe the extra material is closely integrated17
with and augments the present content.18

19

20

We now address the referee’s individual comments in turn.21

2 Responses to Individual Comments22

Comment 123

The issue that the series for temperature and CO2 since 1850 exhibit different degrees24
of integration, and hence cannot modelled conventionally, was the subject of an25
important paper by Beenstock et al. (Earth System Dynamics 3 (2012), pp 173-188).26
These authors studied annual data, and concluded that the series over the 1850-200727
period were best described as integrated of order 1 (I(1)) in the case of temperature28
and I(2) in the case of CO2. They therefore conducted a cointegration analysis29
between temperature and ï ˛ADCO2 (ï ˛Aˇ D denoting first-differencing), rather than a30
correlationˇ analysis, as appears here. Both studies therefore focus on dealing with31
the fact that a statistical model linking the levels of CO2 and temperature cannot be32
constructed. However, differences of timespan, and data frequency, lead them to33
different interpretations of this fact, which is an issue that deserves careful34
consideration, in itself. It is clear, in any case, that the present authors must reference35
the Beenstock et al. study, and reconcile their findings with the previous reported ones.36

First, we agree that reference should be made to Beenstock et al.37
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Second, the essential point for the present study is that Beenstock et al. (2012) show1
in their work that the order of integration for temperature is I(1) while that for first-2
difference (equivalent to first-derivative) atmospheric CO2 is I(2). In our paper we3
provide evidence that first-derivative atmospheric CO2 is I(1).4

Concerning the reconciliation of these two varying results, Pretis and Hendry (2013)5
have reviewed Beenstock et al. (2012). They take issue with the finding of I(2), and6
find evidence that it results from the combination of two different data sets measured7
in different ways to make up the tested 1850-2011 data set which Beenstock et al. use.8
Concerning this composite series they write:9

10
In the presence of these different measurements exhibiting structural changes,11
a unit-root test on the entire sample could easily not reject the null hypothesis12
of (2) even when the data are in fact I(1). Indeed, once we control for these13
changes, our results contradict the findings in Beenstock et al. (2012).14

15

To focus on the first-derivative CO2 data, which is relevant to our paper, we note that16
Pretis and Hendry (2013) show that, when the series are broken up into their two17
underlying series each measured in its own way and assessed using the ADF18
procedure (Response Table 1) the null hypothesis (that the first-derivative CO2 series19
is non-stationary) is rejected.20

21
22

Response Table 1: Table 1 from Pretis and Hendry (2013)23
24

25
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Our results for CO2 use instrumental data from the period 1958, matching one of the1
two time periods covered in Pretis and Hendry (2013) Table 1 above.2

For this period in the paper we used monthly data. Here we provide that again (in3
Response Table 2) and also repeat the analysis for annual data (Response Table 3):4

5
6
7
8

Response Table 2 - monthly data9
10

Augmented Dickey-Fuller test for N2x13mma_1stderivCO2 including 8 lags of (1-11
L)N2x13mma_1stderivCO212

13
(max was 10, criterion modified AIC)14
sample size 63515
unit-root null hypothesis: a = 116

17
test without constant18
model: (1-L)y = (a-1)*y(-1) + ... + e19
1st-order autocorrelation coeff. for e: 0.00520
lagged differences: F(8, 626) = 87.259 [0.0000]21
estimated value of (a - 1): -0.013102722
test statistic: tau_nc(1) = -3.0387323
asymptotic p-value 0.00231924

25
test with constant26
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e27
1st-order autocorrelation coeff. for e: 0.00528
lagged differences: F(8, 625) = 87.229 [0.0000]29
estimated value of (a - 1): -0.014345630
test statistic: tau_c(1) = -3.0629431
asymptotic p-value 0.0294432

33
with constant and trend34
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e35
1st-order autocorrelation coeff. for e: 0.00536
lagged differences: F(2, 636) = 292.044 [0.0000]37
estimated value of (a - 1): -0.031911938
test statistic: tau_ct(1) = -5.0246539
asymptotic p-value 0.000140

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



5

1
Response Table 3 - annual data2

Augmented Dickey-Fuller test for Atmos_CO2 including 6 lags of (1-L)Atmos_CO(max was 10,3
criterion modified AIC)4

sample size 485
unit-root null hypothesis: a = 16

7
test without constant8
model: (1-L)y = (a-1)*y(-1) + ... + e9
1st-order autocorrelation coeff. for e: -0.03510
lagged differences: F(6, 41) = 7.726 [0.0000]11
estimated value of (a - 1): 0.062062212
test statistic: tau_nc(1) = 1.3767313
asymptotic p-value 0.958314

15
test with constant16
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e17
1st-order autocorrelation coeff. for e: 0.00818
lagged differences: F(9, 34) = 2.467 [0.0276]19
estimated value of (a - 1): -0.16490220
test statistic: tau_c(1) = -0.78908721
asymptotic p-value 0.821722

23
with constant and trend24
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e25
1st-order autocorrelation coeff. for e: -0.00126
lagged differences: F(3, 45) = 0.695 [0.5601]27
estimated value of (a - 1): -1.0998828
test statistic: tau_ct(1) = -3.4243329
asymptotic p-value 0.0481430

31
32

Comparison of the relevant sections of Response Tables 1, 2 and 3 shows that (i) our33
results for annual data replicate those of Pretis and Hendry (2013) closely, and that (ii)34
the use of monthly data increases the statistical significance of the (already35
statistically significant) result substantially, by some two orders of magnitude.36

It is hoped that the above reconciles our findings with those in the literature and37
shows that it is appropriate to treat first-difference CO2 as I(1) for the period 195938
onward.39

40

(For suggested changes to text from Comment 1 see response to Comment 2 next.)41

42
Comment 243

In fact, there is a considerable degree of controversy (see for example the comments44
on the Beenstock paper in ESD) about the order of integration of these series, and as45
to whether they are stochastic trend processes (I(1) or I(2)) or “trend stationary”46
over sub-periods, with periodic breaks in trend. The essential problem here, I think, is47
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that the time series models invoked in the literature on nonstationarity are rather1
simple, and cannot play the role of what econometricians call the “data generation2
process”. At best, they are simplified descriptions that apply only over limited spans3
of time. This fact throws conventional inference procedures (which have a large-4
sample justification) into some doubt.5

T he answer provided under Comment 1 addresses most of the points related to6
Beenstock et al. (2012), However we would also suggest adding the following.7

“The frequency of the data is unlikely to account for this difference in the8
results. This is because the (true) order of integration of a time-series is9
invariant to temporal aggregation; and the ability of the ADF test to detect this10
order is also unaffected by the sampling frequency, especially with relatively11
large sample sizes (e.g., Pierce and Snell, 1995)."12

13

Specifically addressing the comment “…..conventional inference procedures (which14
have a large-sample justification)…”, it is noted that most of the inferential15
procedures we use are valid in finite samples, as well as asymptotically. For example,16
in the case of ADF testing, exact critical values are used.17

Suggested changes to the paper18

To deal with Comments 1 and 2 overall we suggest the addition of the following19
paragraph on page 29117, before the paragraph that starts on line 11 with the words20
“In contrast…”:21

In carrying this out, one must first note that while we find, as is required for22
time series analysis, that the variables TEMP and FIRSTDERIVATIVE CO 223
are both stationary, (that is, both display order of integration of I (1)),24
Beenstock et al. (2012) report in their work that temperature is I(1) while first-25
difference (equivalent to first-derivative) atmospheric CO2 is I(2).26

27
With regard to the reconciliation of these two varying results, Pretis and28
Hendry (2013) have reviewed Beenstock et al. (2012). They take issue with29
the finding of I(2), and find evidence that it results from the combination of30
two different data sets measured in different ways to make up the tested 1850-31
2011 data set which Beenstock et al. use. Regarding this composite series they32
write:33

34
In the presence of these different measurements exhibiting structural35
changes, a unit-root test on the entire sample could easily not reject the36
null hypothesis of I(2) even when the data are in fact I(1). Indeed, once37
we control for these changes, our results contradict the findings in38
Beenstock et al. (2012).39

40

41
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1

To focus on the first-derivative CO2 data, which is relevant to our paper, we note that2
Pretis and Hendry (2013) show that, when the series are broken up into their two3
underlying series each measured in its own way and assessed using the ADF4
procedure, the null hypothesis (that the first-derivative CO2 series is non-stationary) is5
rejected. In other words, Pretis and Hendry (2013) find first-derivative atmospheric6
CO2 to be stationary (I (1)) as we do.7

8

Comment 39

The present authors report ADF tests which reject unit roots (e.g. Table 3) yet it10
is clear from Figure 3 that the series exhibit an upward drift – clearly not stationary,11
although possibly “trend stationary”. This would need to be allowed for by including12
a trend term in the statistic and using the appropriate Dickey-Fuller table. Otherwise,13
these ADF results are not valid. This issue of the treatment of drift has not been14
discussed anywhere that I can see, but it definitely needs to be.15

16

Our ADF tests included an allowance for drift and trend in the underlying regressions,17
and we should have stated this explicitly. We suggest the following changes to the18
text:19

20

1. Table 3 - Amend the Table heading: Augmented Dickey–Fuller (ADF) tests for21
unit roots in monthly data ........................etc.22

Put an asterisk on the column heading ADF statistic*23

Then add a footnote to the table: * The Dickey-Fuller regressions24
allowed for both drift and trend; the augmentation level was chosen by minimizing25
the Schwarz Information Criterion.26

27

2. Page 29117, starting at line 7: .........Dickey–Fuller (ADF) test for unit28
roots Table 3 provides the information concerning the stationarity for the level of, and29
first-derivative of, CO2, as well as global surface temperature. The test was applied30
with an allowance for both a drift and deterministic trend in the data, and the degree31
of augmentation in the Dickey-Fuller regressions was determined by minimizing the32
Schwarz Information Criterion.33

34

35
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1

Comment 42

In page 29109 line 11 the authors say “temperature is not stationary of itself but3
must be made stationary by differencing . . .” (my emphasis). It is important to make4
clear, something on which the authors are at best equivocal , that a time series cannot5
be made stationary. It either is stationary, or it isn’t. The differences of a series are a6
different series! It is not difficult to construct examples where the sign of the7
relationship between two series is reversed in their differences, or where two series8
are correlated in differences by exhibit independent stochastic trends. Since the AGW9
hypothesis is that more CO2 in the atmosphere translates into higher surface10
temperatures (not that temperatures respond to changes, but not to levels), this fact is11
crucial in understanding the results of this study. They really don’t receive sufficient12
discussion here. Are these results viewed as supportive of the AGW hypothesis, or not?13
We would appear to need continuously accelerating growth in CO2 to produce14
warming on an alarming scale. Is this hypothesis proposed, and what mechanism is15
envisaged? These questions badly need answering, or at least posing, if the reported16
results are to be understood.17

-------------------------------18

We will deal with the elements of this Comment in the following order:19

…what mechanism is envisaged?20

Referring to “mechanism” in the sense widely used in science (for example,21
Machamer et al. (2000): an entity and activity productive of regular changes in a22
separate entity), we nominated as the candidate entity the terrestrial biosphere. This23
has already been widely proposed in climate science. For example, from page 29104:24

25

“It is widely considered that the interannual variability in the growth rate of26
atmospheric CO2 is a sign of the operation of the influence of the planetary27
biota. Again, IPCC (2007) states: “The atmospheric CO2 growth rate exhibits28
large interannual variations. The change in fossil fuel emissions and the29
estimated variability in net CO2 uptake of the oceans are too small to account30
for this signal, which must be caused by year-to-year fluctuations in land–31
atmosphere fluxes.” In the IPCC Fourth Assessment Report, Denman et al.32
(2007) state (italics denote present author emphasis): “Interannual and inter-33
decadal variability in the growth rate of atmospheric CO2 is dominated by the34
response of the land biosphere to climate variations. . . . The terrestrial35
biosphere interacts strongly with the climate, providing both positive and36
negative feedbacks due to biogeophysical and biogeochemical processes. . . .37
Surface climate is determined by the balance of fluxes, which can be changed38
by radiative (e.g., albedo) or non-radiative (e.g., water cycle related processes)39
terms. Both radiative and non-radiative terms are controlled by details of40
vegetation.”41

42
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1
In Machamer et al. 2000 terms, we have provided evidence that the terrestrial2
biosphere is a candidate mechanism for the climate effects as follows: the evidence3
(by correlation) is that the entity of the terrestrial biosphere contains activities –4
depicted by the NDVI time series – which are productive of regular changes, as5
seen in the separate entity of the atmosphere.6

7
The point being raised, we have attempted to utilise the concept of mechanism more8
widely to sharpen our description of the other climate influences discussed in the9
paper.10

We suggest therefore the following series of amendments or additions to the text11
(shown in italics) to more clearly utilise the concept of mechanism:12

13

Page 29103, Line 19:14
15

The situation is illustrated visually in Fig. 1 which shows the increasing16
departure over recent years of the global surface temperature trend from that17
projected by a representative climate model (the CMIP3, SRESA1B scenario18
model for global surface temperature, KNMI 2013). It is noted that the level of19
atmospheric CO2 is a good proxy for the IPCC models predicting the global20
surface temperature trend: according to IPCC AR5 (2013), on decadal to21
interdecadal time scales and under continually increasing effective radiative22
forcing, the forced component of the global surface temperature trend23
responds to the forcing trend relatively rapidly and almost linearly. This trend24
can be taken to represent that expected from the operation of the standard25
anthropogenic global warming model, its mechanism being a physical one in26
which (IPCC, 2013, NASA 2015) about half the light reaching Earth's27
atmosphere passes through the air and clouds to the surface, where it is28
absorbed and then radiated upward in the form of infrared heat. About 9029
percent of this heat is then absorbed by the greenhouse gases and radiated30
back toward the surface, which is warmed. If greenhouse gases have been31
increasing (including because of increasing anthropogenic emissions), that32
contributes to an increase in the infrared radiation they emit (including that33
back toward the surface, which is warmed further).34

35
36

Page 29104, Line 5:37
38

A wide range of physical explanations has now been proposed for the global39
warming slowdown. These involve proposals either for changes in the way the40
radiative mechanism itself is working or for the increased influence of other41
physical mechanisms. Chen and Tang (2014) place these proposed42
explanations into two categories. The first involves a reduction in radiative43
forcing: by a decrease in stratospheric water vapour, an increase in44
background stratospheric volcanic aerosols, by 17 small volcano eruptions45
since 1999, increasing coal-burning in China, the indirect effect of time-46
varying anthropogenic aerosols, a low solar minimum, or a combination of47
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these. The second category of candidate explanation involves planetary sinks1
for the excess heat. The major focus for the source of this sink has been2
physical and has involved ocean heat sequestration. However, evidence for the3
precise nature of the ocean sinks is not yet converging: according to Chen and4
Tang (2014) their study followed the original proposal of Meehl et al. (2011)5
that global deep-ocean heat sequestration is centred on the Pacific. However,6
their observational results were that such deep-ocean heat sequestration is7
mainly occurring in the Atlantic and the Southern oceans.8

9
Alongside the foregoing possible physical causes, Hansen et al. (2013) have10
suggested that the mechanism for the pause in the global temperature increase11
since 1998 might be the planetary biota, in particular the terrestrial biosphere.12

13
14

Page 29124, Line 23:15
16

4.4 Normalized Difference Vegetation Index (NDVI) data17
18

This section now investigates the land biosphere as a candidate mechanism for19
the foregoing effects, in particular the increasing difference between the global20
surface temperature trend suggested by general circulation climate models and21
that observed.22

23
24

Page 29127, Line 3:25
26

A second notable finding highlighted by the bringing together of results in27
Table 12 is the major role of immediate past instances of the dependent28
variable in its own present state. This was found to be the case in all the29
instances where time series models could be prepared. This was true for both30
temperature and SOI. This was not to take away from first and second-31
derivative CO2 – in all the cases just mentioned, they were significant in the32
models as well. Further, and perhaps equally notably, each was shown to be33
Granger-causal to its relevant climate outcome.34

35
Turning to the Normalized Difference Vegetation Index analysis, this shows36
that the NDVI signature closely fits – at Granger causality level - the37
difference between the global surface temperature trend suggested by general38
circulation climate models and that observed. This fit provides evidence that39
the terrestrial biosphere mechanism is the cause of the departure of40
temperature from that predicted by the radiative forcing mechanism alone. In41
other words, the NDVI analysis provides evidence of the two mechanisms in42
operation together. (It is notable that CO2 is having two different influences on43
climate through two quite different mechanisms – the first, a radiative one,44
with CO2 as a greenhouse gas, the second as a result of plants requiring CO245
as a resource.)46

47
48
49
50
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Are these results viewed as supportive of the AGW hypothesis, or not?1

The results are supportive of the anthropogenic global warming hypothesis that2
variations in atmospheric carbon dioxide influence surface temperature. First-3
derivative atmospheric CO2 is shown to drive global temperature and the results4
deepen the support for CO2 affecting climate in that second-derivative CO2 is shown5
to drive the SOI.6

Lastly, the results show that the NDVI signature fits the difference between the global7
surface temperature observed trend and that suggested by the standard AGW8
hypothesis / radiative forcing mechanism. This fit provides evidence that the9
terrestrial biosphere mechanism is the cause of this departure of temperature from that10
predicted by the standard AGW hypothesis / radiative forcing mechanism alone.11

The results, then, are supportive of the anthropogenic global warming hypothesis. The12
proviso is that the results provide evidence that the final warming achieved is the13
result not of one mechanism – the physical greenhouse gas radiative mechanism14
embodied in the standard anthropogenic global warming hypothesis - but of the15
interaction of that mechanism with a second, residing in the terrestrial biosphere.16

We suggest therefore the following additions to the text:17

Page 29127, after Line 10:18
19

The results are supportive of the anthropogenic global warming hypothesis20
that variations in atmospheric carbon dioxide influence surface temperature.21
First-derivative atmospheric CO2 is shown to drive global temperature and the22
results deepen the support for CO2 affecting climate in that second-derivative23
CO2 is shown to drive the SOI. Lastly, the results show that the NDVI24
signature fits the difference between the global surface temperature observed25
trend and that suggested by the standard AGW hypothesis / radiative forcing26
mechanism. This fit provides evidence that the terrestrial biosphere27
mechanism is the cause of this departure of temperature from that predicted by28
the standard AGW hypothesis / radiative forcing mechanism alone. In other29
words, the results provide evidence for the case that the final warming30
achieved is the result not of one mechanism – the physical greenhouse gas31
radiative mechanism embodied in the standard anthropogenic global warming32
hypothesis - but of the interaction of that mechanism with a second, residing33
in the terrestrial biosphere.34

35

We would appear to need continuously accelerating growth in CO2 to produce36
warming on an alarming scale. Is this hypothesis proposed… These questions badly37
need answering, or at least posing…38

As mentioned in the Introduction, the standard notion of the greenhouse effect (IPCC,39
2013) has it that global temperature will rise almost linearly with an increasing level40
of global atmospheric CO2. We certainly note here that from the NDVI section of the41
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present paper that there has been an increasing NDVI over recent years and that that1
correlates with global temperature trending below that predicted by the standard2
AGW hypothesis / radiative forcing mechanism.3

Questions which can be posed from these results include those of (i) under what4
conditions can the current increase in plant biomass be expected to continue, and (ii)5
what is the range of alternative expected future trajectories for human greenhouse gas6
emissions? Obviously the combinations of the extremes of these ranges produce quite7
different climate trend outcomes.8

9

A further point made in Comment 4 is that our hypothesis and the mechanisms10
proposed for it do not receive sufficient discussion.11

This point has led to the greatest amount of our suggested changes to the paper so12
these are described as follows in the following sections labelled with sub-haedings.13

1.Introduction14

In taking the point that our hypothesis and the mechanisms proposed for it do not15
receive sufficient discussion on board and preparing our response to it, as noted above,16
we introduced a mechanism-focus to the paper. This led us to revisit the analysis we17
presented using the global-level Normalized Difference Vegetation Index (NDVI).18

When we revisited the analysis we discovered we had made an error in the19
preparation of the pooled NDVI series we use. Correcting this error improved the20
correlation with other climate variables. This led to the existing analysis being21
reviewed and opportunities being seen for it to be markedly extended. This new22
analysis is presented here and is proposed to replace the section in the present ACPD23
paper 4.4 Normalized Difference Vegetation Index (NDVI) data.24

The hypothesis explored in this section is that there are links from the climate25
variables of first-difference CO2 and global surface temperature to NDVI, and from26
NDVI to the difference between the level-of-CO2 model for temperature and the27
temperature observed (abbreviated on occasion to the gap).28

We note that in the new treatment, the SOI correlations in the previous version are29
now left out for simplicity.30

31
Our findings reveal Granger causality from first-difference CO2 and TEMP to NDVI,32
and from NDVI to the difference between the level-of-CO2 model for temperature33
and the temperature observed.34

35
This strong Granger causality evidence that vegetation is the mechanism for the gap is36
further supported when other lines of evidence already outlined in the paper are37
recalled.38

39



13

This in turn leads to a discussion of the degree to which evidence for Granger1
causality matches the “gold standard” of evidence for causality, that of evidence from2
the experiment.3

4
5

With the strengthening of the NDVI content, we propose new full and running titles6
for the paper.7

8
Full title:9

Granger causality from the first and second derivatives of atmospheric10
CO2 to global surface temperature, ENSO and NDVI11

12
Running title:13

First and second derivative atmospheric CO2, global surface temperature,14
ENSO and NDVI15

16
In what follows we use standard Excel figures. The full Discussion for the paper is17
included in this section because changes from the new NDVI analysis occur18
throughout.19

20
2. Issues of method concerning the NDVI-related analyses21

22
Two issues of method arise from the NDVI-related analyses. These are: sensitivity of23
methods for detecting the order of integration of a time series; and, for the Granger24
Causality testing, the optimal selection of the number of lags of the time series25
variables involved for use in the analysis.26

27
These two matters will be dealt with in turn.28

29
30

2.1 Determination of order of integration of time series.31
32

The data series used until now – the shortest monthly series starting in 1959 – have33
meant that, using the most commonly used test of series order of integration (the34
Augmented Dickey-Fuller test (Dickey and Fuller, 1981)) it has been unambiguous as35
to the order of integration of each series.36

37
The more recent start date arising from the use of the NDVI series – 1981 – has meant38
that the series used in the NDVI-related analyses have been made up of fewer39
observations, and are centred over a different period of history compared with the data40
commencing in 1959.41

42
This has meant that one series – first-derivative CO2 – for the data commencing in43
1981 has displayed ADF unit root test results which place it on the cusp between I(0)44
and I(1).45

46
According to Zivot and Wang (2006), the ADF test and another test, the Phillips-47
Perron test (Phillips and Perron (1988)) have in general very low power to48
discriminate between I(0) and I(1) alternatives when the two alternatives are close49
together. Zivot and Wang (2006) recommend that for maximum power in these50
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circumstances the tests of Elliot, Rothenberg, and Stock (1996), and Ng and Perron1
(2001) should be used.2

3
For this reason, the above and further unit root tests for the order of integration of a4
time-series are used in this stage of the study. The full list of tests is:5

6
 the Augmented Dickey Fuller (ADF) test (Dickey and Fuller ,1981); the7

Phillips-Perron test (Phillips and Perron, 1988); the Elliott-Rothenberg-Stock8
Point Optimal test (Elliot et al., 1996); the Ng-Perron Modified Unit Root test9
(Ng and Perron, 2001). The null hypothesis for the foregoing tests is non-10
stationarity.11

12
 The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al.,13

1992) is also used. The null hypothesis for this test is stationarity.14
15

Use of both stationarity and non-stationarity hypotheses can add robustness to the16
assessment of the order of integration of a time-series.17

18
For the KPSS and Phillips-Perron tests the bandwidth, b, was selected using the19
Newey-West method, with the Bartlett kernel. In the remaining unit root tests the20
Akaike information criterion (AIC) and the Schwartz information criterion (SIC) were21
used to select an optimal maximum lag length (k) for the variables.22

23
24
25
26

2.2 Lag-length selection for Granger causality testing27

We turn now to a matter concerning lag-length selection for Granger causality testing.28

Thornton and Batten (1985) assessed the accuracy of Granger tests under a range of29
lag selection techniques ranging from arbitrarily chosen lags, lags chosen by three30
statistical criteria, and an extensive search of the lag space.31

Thornton and Batten (1985) conclude:32

33
As a generalization … there appears to be no substitute for selecting a model34
specification criterion ex ante or for an extensive search of the lag space if one35
is to ensure that the causality test results are not critically dependent on the36
judicious (or perhaps fortuitous) choice of the lag structure.37

With this background, in the present study Granger causality testing of NDVI-related38
data series pairs was conducted as follows:39

 If hypothesis and the prior dynamic regression modelling used suggested a40
possible Granger link, tests were run based on model lags suggested from the41
results of the prior modelling42
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 If a Granger causality test set up as just described was positive at its default1
lag selection settings, that result was reported. If not, an extensive search of2
the lag space was carried out. That result was reported, positive or negative.3

4

5
3. Results6

7
Results are organised under the following headings:8

9
3.1. Order of integration of series10

3.2. Preparation of the pooled global NDVI series used11

3.3. Relationship between climate variables and NDVI12

13
14

3.1. Order of integration of series15
16

As mentioned in Section 3. Data and methods of the ACPD paper, any two or more17

time series being assessed by time series regression analysis must be stationary in the18

first instance, or be capable of being transformed into a new stationary series (by19

differencing). A series is stationary if its properties (mean, variance, covariances) do20

not change with time (Greene 2012).21

22
In the first instance, Augmented Dickey-Fuller (ADF) stationarity tests are calculated23

for each variable. Results and lag lengths chosen are given in Table 1.24

25
26

Table 1: ADF results for time series based on automatic Schwarz Information27
Criterion (SIC) lag length selection28

29
30

ADF
Prob.

1stderivCO2

Lag Length: 15
(Automatic - based
on SIC, maxlag=16) 0.0895

Temp

Lag Length: 1
(Automatic - based
on SIC,
maxlag=16) 0.0000

NDVI

Lag Length: 1
(Automatic - based
on SIC, maxlag=16 0.0000

Gap

Lag Length: 1
(Automatic - based
on SIC, maxlag=16) 0.0000
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1
2

The table shows that for this data from 1981, level of CO2 and temperature are I(0),3
as they were for the data from 1959. This is not the case for first-derivative CO2.4

5
As can be seen, the ADF test result for first-derivative CO2 for data from 1981 to6
2012 of 0.0895 shows that first-derivative CO2 approaches the statistical significance7
level of 0.05 required to be I(0), but does not reach it. In other words, for first8
derivative CO2, the two I(0) and I(1) alternatives are close together.9

10
For the reasons given by Zivot and Wang (2006) above, the order of integration of11
first-derivative CO2 is therefore assessed by the wider range of tests for order of12
integration listed above, including the two tests nominated by Zivot and Wang (2006)13
as more sensitive when I(0) and I(1) alternatives are close together .14

15
The results are given in Tables 3 to 5. All tests were run at their automatic setting for16
lags. For all tests, the null hypothesis is that the series is I(1), and the alternative is17
that it is I(0); except for the KPSS test (where the null hypothesis is that the series is18
I(0), and the alternative is that it is I(1)).19

20
The ADF tests have been applied with an allowance for a drift and trend in the data,21
and the SIC was used to select degree of augmentation, k. For the KPSS tests the22
bandwidth, b, was selected using the Newey-West method, with the Bartlett kernel.23

24
The significance level each test meets or surpasses is indicated by an asterisk in each25
column of the table.26

27
28
29

Table 2. Order of integration test results for first-derivative CO2 for monthly data30
from 1981-2012. The Akaike information criterion (AIC) was used to select an31
optimal maximum lag length (k) for the variables in the test. The null hypothesis for32
the tests is non-stationarity, except for the KPSS test for which the null hypothesis is33
stationarity.34

35
36

Test
critical
values ADF

DF-
GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -2.75 -2.73 5.77 6.11

1% level -3.98 -3.48 3.97 4.03
5% level -3.42 -2.90 5.63 5.48

10%
level -3.13 -2.58* 6.89* 6.67*

(1) Significant at <1% level37
38
39
40
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Table 3. Order of integration test results for first-derivative CO2 for monthly data1
from 1981-2012. The Schwartz information criterion (SIC) was used to select an2
optimal maximum lag length (k) for the variables in the test. The null hypothesis for3
the tests is non-stationarity, except for the KPSS test for which the null hypothesis is4
stationarity.5

6
7

Test
critical
values ADF DF-GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -3.183 -2.73 3.193 6.105

1% level -3.984 -3.476 3.971* 4.03
5% level -3.422 -2.898 5.625 5.48

10%
level -3.134* -2.585* 6.886 6.670*

8
9

10
11
12

Table 4. Order of integration test results for first-derivative CO2 for monthly data13
from 1981-2012. Tests use bandwidth criteria for lag selection. The null hypothesis14
for the tests is non-stationarity, except for the KPSS test for which the null hypothesis15
is stationarity.16

17

Test
critical
values

KPSS
does
not use
AIC or
SIC

Phillips-
Perron
does
not use
AIC or
SIC

Test
statistic 0.07 -3.60

1% level 0.22* -3.98
5% level 0.15 -3.42*

10%
level 0.12 -3.13

18
19
20

Tables 2 to 4 show that the extra tests are not unanimous for the first-derivative CO221
series.22

23
The test using the alternative Schwartz or Akaike Information Criteria agree for two24
tests, DF-GLS and Ng-Perron. Here the I(0) statistical significance was between 0.0525
and 0.1. For the other two tests, the Akaike Information Criterion gave lower26
probabilities: Elliott-Rothenberg-Stock Point Optimal between 0.05 and 0.1; ADF27
greater than 0.1. For the Schwartz Information Criterion the figures were p<.01 and28
statistical significance was between 0.05 and 0.1.29
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1
Finally, there were two tests – KPSS and Phillips-Perron –which used bandwidth2
criteria for the selection of an optimal lag length. Each of these tests characterised3
first-derivative CO2 as I(0): statistical significance was at 0.05 and 0.01 respectively.4

5
One of the tests recommended by Zivot and Wang (2006) for a series on the cusp of6
I(0) and I(1) – that of Elliot, Rothenberg, and Stock (1996) – gives a result for first7
difference CO2 from 1981 to 2012 of I(0) at better than the 1% level; however, the8
similarly recommended Ng and Perron test gives I(0) at between the 5% and 10%9
level. Overall, three of the ten tests displayed probabilities of 5% or better, a further10
remaining six of between 5% and 10%. One of the 10 tests, the ADF under the Akaike11
Information Criterion, gave a result of greater than 10%.12

It can be argued that the foregoing tests overall lean towards CO2 from 1981 being13
I(0). To be conservative, however, in the following analyses first-derivative CO2 is14
assessed separately both as I(0) and I(1).15

16
3.2 Preparation of the pooled global NDVI series17

18
The Normalized Difference Vegetation Index (NDVI) involves direct (satellite-19
derived) measurement of terrestrial plant activity.20

21
To provide the full temporal span of the global NDVI data set used in this study, two22
NDVI series aggregated to global level were pooled. Each of the two series is derived23
from the same underlying spatially disaggregated Global Inventory Modeling and24
Mapping Studies (GIMMS) data set provided by the Global Land Cover Facility25
(GLCF) of the University of Maryland. This data is derived from imagery obtained26
from the Advanced Very High Resolution Radiometer (AVHRR) instrument carried27
by NOAA meteorological satellites. The two series enabled the longest time span of28
data aggregated at global level.29

30
Globally aggregated GIMMS NDVI data from the Global Land Cover Facility (GLCF)31
site is available from 1980 to 2006. This dataset is referred to here as NDVIG.32
Spatially disaggregated GIMMS NDVI data from the Global Land Cover Facility33
(GLCF) site is available from 1980 to end 2013. An analogous global aggregation of34
this spatially disaggregated GIMMS NDVI data – from 1985 to end 2013 – was35
obtained from the Institute of Surveying, Remote Sensing and Land Information,36
University of Natural Resources and Life Sciences, Vienna. This dataset is37
abbreviated to NDVIV.38

39
These two datasets were pooled as follows.40

41
Figure 1 shows the appearance of the two series. Each series is Z-scored by the same42
common period of overlap (1985-2006). The extensive period of overlap can be seen,43
as can the close similarity in trend between the two series.44

45
46
47
48
49
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1
2

Figure 1: : Z scored monthly data: NDVIG compared to NDVIV.3
4
5

6
7
8
9

The figure also shows that the seasonal adjustment smoothings vary between the two10
series. Seasonality was removed for the NDVIV series using the 13 month moving11
average smoothing used throughout this paper. This required two passes using the1312
month moving average, which leads to a smoother result than seen for the NDVIG13
series.14

15
Pretis and Hendry (2013) observe that pooling data (i) from very different16
measurement systems and (ii) displaying different behaviour in the sub-samples can17
lead to errors in the estimation of the level of integration of the pooled series.18

19
The first risk of error (from differences in measurement systems) is overcome as both20
the NDVI series are from the same original disaggregated data set. The risk associated21
with the sub-samples displaying different behaviour and leading to errors in levels of22
integration is considered in the following section by assessing the order of each input23
series separately, and then the order of the pooled series.24

25

26

27

28

29

30

31

32
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Table 5. Order of integration test results for NDVI series for monthly data from 1981-1
2012. The Schwartz Information Criterion (SIC) was used to select an optimal2
maximum lag length in the tests.3

4

NDVI
Series Null Hypothesis: the series has a unit root

Probability
of unit
root

NDVIV
Lag Length: 16 (Automatic - based on SIC,
maxlag=16) 0.0122

NDVIG Lag Length: 1 (Automatic - based on SIC, maxlag=15) 7.23e-14
NDVIGV Lag Length: 1 (Automatic - based on SIC, maxlag=16) 4.18E-16

5

The analysis above shows all series are stationary (I(0)).6

Because of the comparability of the NDVI series specified above, the series were7
pooled by adding Z-scored NDVIV data to the Z-scored NDVIG data at the point8
where the Z-scored NDVIG data ended in the last month of 2006.9

10
11

3.2 Comparison of the pooled NDVI series with climate variables12
13

The process we follow in this section is outlined below:14
15

Relevant correlations involving first-derivative CO2 characterised as I(1) are first16
assessed because of the near-stationarity of first-derivative CO2 for the period 1981 to17
2012.18

19
As a check, we assess whether first-derivative CO2 for the period from 1981 to 201220
has similar relationships to global surface temperature to those seen for the period21
1959 to 2012.22

23
We then explore remaining questions from our hypothesis concerning Granger24
causality and NDVI. These are firstly that there is Granger causality from first-25
derivative CO2 to NDVI, and secondly from temperature to NDVI. Finally, we ask26
whether NDVI is Granger-causal for the difference between the level-of-CO2 model27
for temperature and the observed temperature.28

29
Where each series in a series pair is stationary, assessments are done for each of the30
questions above both by OLS dynamic regression modelling, and by Granger31
causality testing. The dynamic modelling is informative in itself, but as outlined32
above also informs correct model specification in terms of optimising model33
independent-variable lag for Granger causality testing (Thornton and Batten 1985).34

35
The following information is relevant to each of the instances of OLS dynamic36
regression modelling which follow. As described in Section 4.1.3 Time series analysis37
of the ACPD paper, for OLS dynamic regression modelling, one must assess the38
extent (if any) of autocorrelation affecting the time series model. This is done by39
obtaining diagnostic statistics from an OLS regression. This regression shows, by40
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means of the Breusch-Godfrey test for autocorrelation (up to order 20 – that is,1
including all monthly lags up to 20 months), .2

3
If autocorrelation is found, it is taken to be a consequence of an inadequate4
specification of the temporal dynamics of the relationship being estimated. With this5
in mind, a dynamic model (Greene 2012) with sufficient lagged values of the6
dependent variable as additional independent variables is estimated.7

8
9

If the autocorrelation can be removed, this will be shown by the use of the LMF test,10
supporting the use of this dynamic model specification.11

12
13
14
15

3.2.1. First-derivative CO2 as I(1)16

17
Characterising first-derivative CO2 as I(1) means dynamic regression modelling of18
the type presented above cannot be used. As in Section 4.1.4 Granger causality19
analysis of the ACPD paper, one can still assess the answer to the question: “Is there20
evidence of Granger causality between first-derivative CO2 characterised as I(1) and21
relevant variables?” In this case the variables are global surface temperature and22
NDVI.23

24

3.2.1.1 Does first-derivative CO2 as I(1) display Granger causality of global25
surface temperature ?26

27

In answering this question, because the TEMP series is stationary, but the first-28
difference CO2 series is being treated as non-stationary (as integrated of order one,29
I(1)), the testing procedure is modified slightly. Once again, the levels of both series30
are used. This time a standard Vector Autoregressive (VAR) model is used. For each31
VAR model, the maximum lag length is determined, but then one additional lagged32
value of both TEMP and first-difference CO2 is included in each equation of the VAR.33
However, the Wald test for Granger non-causality is applied only to the coefficients34
of the original k lags of first-difference CO2. Toda and Yamamoto (1995) show that35
this modified Wald test statistic will still have an asymptotic distribution that is chi-36
square, even though the level of CO2 is non-stationary.37

38
Here the relevant Wald Statistic for the null hypothesis that is there is no Granger39
causality from first-derivative CO2 as I(0) to temperature is shown in Table 6 to40
produce a Chi-Square of 32.79 (p=0.0001).41

42
The high statistical significance in the p-value is strong evidence that first-derivative43
CO2, even treated as I(1), still displays Granger causality of temperature.44

45
46
47
48
49



22

Table 6. Pairwise Granger causality tests for1
2

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation

TEMP does
not GC
1stderivCO2 8

Add one
more lag to
allow for fact
that 1stderiv
CO2 is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

378 369 7.39 8 p=0.4962

TEMP does
not GC
1stderivCO2

1stderivCO2
does not GC
TEMP 8 378 369 32.79 8 p=0.0001

1stderivCO2
does GC
TEMP

3
4
5

3.2.1.2 Does first-derivative CO2 as I(1) display Granger causality of NDVI?6
7

The identical steps to those in the previous section are used. Here the relevant Wald8
Statistic (Null hypothesis that is there is No Granger Causality from first-derivative9
CO2 as I(1) to temperature) is shown in Table 7 to produce a Chi-Square of 3.18410
(p=0.9223).11

12
13

Table 7 Pairwise Granger causality tests for14
15

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation

NDVI does
not GC
1stderivCO2 8

Add one
more lag to
allow for fact
that 1stderiv
CO2 is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

378 369 3.184 8 p=0.9223

NDVI does
not GC
1stderivCO2

1stderivCO2
does not GC
NDVI 8 378 369 12.312 8 p=0.1378

1stderivCO2
does not
GC NDVI

16
Hence in contrast with temperature, for the I(1) characterisation first-derivative CO217
does not display Granger causality of NDVI.18

19
20
21
22
23
24
25
26
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3.2 Characterising first-derivative CO2 as I(0)1
2

3.2.1. Does first-derivative CO2 still display Granger causality of temperature3
for the 1981 to 2012 period?4

5
A key finding earlier in the paper is that for the period 1959 to 2012, first-derivative6
CO2 leads global surface temperature, is significant in an OLS dynamic regression7
model and is Granger-causal of global surface temperature. This section repeats that8
analysis for the period used for the NDVI data, 1981 to 2012.9

10
Figure 2 shows the data series, and displays the similarity between the Z-scored11
curves.12

13
14

Figure 2. Z scored monthly data: global surface temperature compared to first-15
derivative atmospheric CO2 smoothed by two 13 month moving averages16

17

18
19
20
21
22

Table 8: OLS dynamic regression between first-derivative atmospheric CO2 and23
global surface temperature for monthly data for the period 1981-2012, with24
autocorrelation taken into account25

26

Independent variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test
for
autocorr-
elation
[2]

Twox13mma1stderivCO2
Had4Gl

0.107 0.00077 0.770 4.00E-
118 0.445

Led1mTEMP 0.545 <0.00001
Led2mTEMP 0.293 <0.00001

[1] Z-scored27
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation28

29
30
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Inspection of Table 8 shows that a highly statistically significant model has been1
established. First it shows that the temperature in a given period is strongly2
influenced by the temperature of closely preceding periods. Further it provides3
evidence that there is also a clear, highly statistically significant role in the model for4
first-derivative CO2 for the period from 1981 to 2012 just as for the period from 19595
to 2012.6

7
The next section assesses whether first-derivative CO2 can be considered to display8
Granger causality for global surface temperature for the 1981 to 2012 period.9

10
The relevant EViews output is from the Pairwise Granger Causality Test and11
documents the following summary results: F-statistic 5.02 (p-value = 0.01).12
The forgoing statistic shows that the null hypothesis is rejected: in other words, there13
is strong evidence of Granger Causality from first-derivative CO2 to global surface14
temperature for the shorter 1981 to 2012 period.15

16
Table 9: Pairwise Granger causality tests for first-derivative atmospheric CO2 and17
global surface temperature18

19
20

Null Hypothesis:

Criterion
for number
of lags
selected

Number of
lags imple-
mented

Observ-
ations

F-
Statistic

Probab-
ility

Interpretation
of
statistically
significant
probabilities

TEMP does not
Granger Cause
1stderivCO2

AIC

2 373 2.88 0.06

1stderivCO2 does not
Granger Cause TEMP 5.02 0.01

1stderivCO2
Granger
Causes TEMP

21
22

The table shows that the same first-derivative CO2 which, characterised as I(1),23
displayed Granger causality for temperature (Table 6), characterised as I(0) also24
displays Granger causality for temperature.25

26
27
28
29

3.2.2. Granger causality of NDVI30
31

3.2.2.1 Does first-derivative CO2 as I(0) display Granger causality of NDVI ?32
33

Figure 3 shows Z-scored values for first-derivative CO2 and NDVI. Considerable34
similarity between the signatures is seen.35

36
37
38
39
40
41
42
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Figure 3. . Z scored monthly data: NDVI compared to first-derivative atmospheric1
CO2 smoothed by two 13 month moving averages2

3

4
5
6

An OLS dynamic regression model is set up using the procedure outlined in Section7
3.2 above. Results are given in Table 10.8

9
Table 10: OLS dynamic regression between first-derivative atmospheric CO2 and10
NDVI for monthly data for the period 1981 - 2012, with autocorrelation taken into11
account12

13

Indep-
endent
variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Twox13mma
1stderivCO2 NDVI 0.094 0.01103 0.549

3.74E-
64 0.092

Led1mNDVI 0.765 <0.00001
Led2mNDVI −0.075 0.15231

[1] Z-scored14
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation15

16
17

Inspection of Table 10 shows that a highly statistically significant model has been18
established. First it shows that as seen for temperature, the NDVI in a given period is19
strongly influenced by the NDVI of closely preceding periods. Further it provides20
evidence that there is also a statistically significant role in the model for first-21
derivative CO2.22

23
The next sections assess whether first-derivative CO2 can be considered to display24
Granger causality of NDVI. Two assessments are made using different criteria for lag25
selection: the first using the Akaike Information Criterion; the second using the26
method of extensive search of the lag space (Thornton and Batten, 1985).27

28

29
30
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Table 11. Pairwise Granger causality tests for first-derivative CO2 and NDVI: lag1
selection by AIC2

3

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause
1stderivCO2

AIC

2 373 1.25 0.29
Not
significant

1stderivCO2 does not
Granger Cause NDVI 3.01 0.0504

Not
significant

4
5

The relevant EViews output is from the Pairwise Granger Causality Test and Table 116
documents the following summary results: F-statistic 3.01 (p-value = 0.05).7
This statistic shows that using the Akaike Information Criterion for lag selection the8
null hypothesis is very slightly accepted: in other words, for the AIC there is (by a9
very narrow margin) an absence of evidence of Granger Causality from first-10
derivative CO2 to NDVI.11

12
13
14
15

Table 12. First-derivative CO2 displays Granger causality of NDVI: lag selection by16
extensive search17

18

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause
1stderivCO2

Result of
extensive
search of
lag
space

1 374 0.87 0.352

1stderivCO2 does not
Granger Cause NDVI 5.11 0.024

1stderivCO2
Granger
Causes NDVI

19
Given the above result, what is the result from the extensive search method? The20
relevant EViews output is again from the Pairwise Granger Causality Test and Table21
12 documents the following summary results: F-statistic 5.11 (p-value = 0.024).22
This statistic shows that using the extensive search method for lag selection, the null23
hypothesis is rejected by a greater amount than for the AIC method, which reaches24
statistical significance: in other words, there is evidence of Granger Causality from25
first-derivative CO2 to NDVI.26

27
28

In summary, under the I(0) characterisation, first-derivative CO2 displays Granger29
causality of NDVI, while under I(1), it does not.30

31
3.2.2.2 Does TEMP display Granger causality of NDVI?32

33
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Figure 4 shows Z-scored values for first-derivative CO2 and NDVI. With the1
exception of the period 2003-2004, considerable similarity between the signatures is2
seen.3

4
5

Figure 4. Z scored monthly data: NDVI compared to first-derivative atmospheric CO26
smoothed by two 13 month moving averages7

8

9
10

An OLS dynamic regression model is set up using the procedure outlined in Section11
3.2 above. Results are given in Table 13.12

13
14
15

Table 13: OLS dynamic regression between global surface temperature and NDVI for16
monthly data for the period 1981 - 2012, with autocorrelation taken into account17

18
19

Indep-
endent
variable/s
[1]

Dependent
variable
[1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

TEMP NDVI 0.215 <0.00001 0.574
1.18E-
68 0.536

Led1mNDVI 0.720 <0.00001
Led2mNDVI −0.122 0.01874

[1] Z-scored20
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation21

22
23

Inspection of Table 13 shows that a highly statistically significant model has been24
established. First it shows that, as seen for first-derivative CO2, the NDVI in a given25
period is strongly influenced by the NDVI of closely preceding periods. Further it26
provides evidence that there is also a highly statistically significant role in the model27
for temperature.28

29
The next section assesses whether temperature can be considered to display Granger30
causality of NDVI. The relevant EViews output is again from the Pairwise Granger31
Causality Test and is shown in Table 14.32
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1
Table 14. Pairwise Granger causality tests for2

3
4

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause TEMP

AIC

2 373 3.18 0.043
NDVI Granger
Causes TEMP

TEMP does not
Granger Cause NDVI 11.59 1.00E-05

TEMP
Granger
Causes NDVI

5
6

Table 14 documents the following summary results: F-statistic 11.59 (p-value =1.00E-7
05 ). This statistic shows that the null hypothesis is rejected, by a highly statistically8
significant amount: in other words, there is strong evidence of Granger causality from9
temperature to NDVI.10

11
12
13
14

3.3 Does NDVI display Granger causality of the difference between the level-of-15
CO2 model for temperature and the observed temperature?16

17
Figure 5 shows Z-scored values for NDVI and the difference between the Z-scored18
level of atmospheric CO2 (standing for the level-of-CO2 model for temperature) and19
the Z-scored observed temperature. Considerable similarity between the signatures is20
seen.21

22
23
24

Figure 5. Z scored monthly data: NDVI compared to the difference between the25
observed level of atmospheric CO2 and global surface temperature.26

27
28

29



29

1
An OLS dynamic regression model is set up using the procedure outlined in Section2
3.2 above. Results are given in Table 15.3

4
5

Table 15: OLS dynamic regression between NDVI and Gap for monthly data for the6
period 1981 - 2012, with autocorrelation taken into account7

8

Indep-
endent
variable/s
[1]

Depen-
dent
variable
[1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

Led17mNDVI Gap 0.069 0.00795 0.557
1.36E-
62 0.874

Led1mGap 0.490 <0.00001

Led2mGap 0.265 <0.00001
[1] Z-scored9
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation10

11
Inspection of Table 15 shows that a highly statistically significant model has been12
established. First it shows that the difference between the level-of-CO2 model for13
temperature and the observed temperature in a given period is strongly influenced by14
that of closely preceding periods. Further it provides evidence that there is also a15
clear, highly statistically significant role in the model for NDVI.16

17
With these results, Figure 6 is as for Figure 5 but with the NDVI series led indicated18
by the OLS dynamic regression modelling in Table 15.19

20
21

Figure 6. Z scored monthly data: NDVI led by 17 months compared to the difference22
between the observed level of atmospheric CO2 and global surface temperature.23
Months of lead of the NDVI series indicated by OLS dynamic regression modelling24

25
26

27
28
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A marked overall similarity between the two series is seen, both in core trend (as1
illustrated by polynomial curves of best fit) and in details of signature.2

3
4

The next sections assess whether first-derivative CO2 can be considered to display5
Granger causality of NDVI. As for first-derivative CO2 and NDVI in Section 3.2.2.16
above, two assessments are made using different criteria for lag selection: the first7
using the Akaike Information Criterion; the second using the method of extensive8
search of the lag space (Thornton and Batten, 1985).9

10
11

Table 16. Pairwise Granger causality tests for NDVI and GAP: AIC12
13

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

GAP does not Granger
Cause Led17mNDVI

AIC
2 356 2.35 0.10

Led17mNDVI does not
Granger Cause GAP 1.03 0.36

14
The relevant EViews output is from the Pairwise Granger Causality Test and Table 1615
documents the following summary results: F-statistic 1.03 (p-value = 0.36).16
This statistic shows that using the Akaike Information Criterion for lag selection, the17
null hypothesis is rejected: in other words, for the AIC there is an absence of evidence18
of Granger Causality from NDVI to the difference between the level-of-CO2 model19
for temperature and the temperature observed.20

21
22

Table 17. Pairwise Granger causality tests for NDVI and GAP: Extensive search23
24

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

GAP does not Granger
Cause Led17mNDVI

Result of
extensive
search of
lag
space

15 343 0.83 0.65

Led17mNDVI does not
Granger Cause GAP 1.81 0.03

Led17mNDVI
Granger
Causes GAP

25
The relevant EViews output from the extensive search method is again from the26
Pairwise Granger Causality Test and Table 17 documents the following summary27
results: F-statistic 1.81 (p-value = 0.03). This statistic shows that using the extensive28
search method for lag selection, the null hypothesis is rejected: in other words, there is29
evidence of Granger Causality from first-derivative CO2 to NDVI.30

31
The way in which the search reveals the statistically significant lag is depicted32
visually in Figure 7.33

34
35
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Figure 7: Visual depiction of results of extensive search process for statistical1
significance of Granger causality results based on lags 2 to 40. Green dashed line2
represents 0.05 level of statistical significance. Note the statistical significance of3
models based on lags 14 to 16.4

5

6
7
8

Even considering first-derivative CO2 as possibly having become I(1), it is believed9
that there is sufficient redundancy in the data series and relationships used in the10
NDVI section to answer the question as to whether vegetation at global scale causes11
the difference between the linear CO2-temperature model and observed temperature.12

13
The redundancy comes about as follows. The Granger-causality Toda-Yamamoto14
result shows that, while first-derivative CO2 as I(1) does not display Granger15
causality of NDVI, first-derivative CO2 as I(1) does display Granger causality of16
temperature. And temperature characterised as I(0) – as it unambiguously is – is17
shown to display Granger causality of NDVI.18

19
So either way, adequate dynamic-regression and Granger-causality linkages are in20
place for the flow of causality from first-derivative CO2 and temperature to NDVI.21

22
It is also shown, without ambiguities concerning the I(0) nature of series, that NDVI23
displays Granger causality of the difference between the linear CO2-temperature24
model and observed temperature.25

26
In other words, we are now able to show a Granger-causal chain from first-derivative27
CO2 and temperature to NDVI, and from NDVI to the difference between the linear28
CO2-temperature model and observed temperature.29

30
31
32
33
34
35
36
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5 Discussion1
2
3

Firstly it is noted that these results show that there are clear links - at the highest4
standard of non-experimental causality: that of Granger causality – between all of5
first- and second-derivative CO2, global surface temperature,SOI and NDVI.6

7
Put differently, first-derivative CO2, second-derivative CO2 and NDVI were each8
shown to display Granger causality of its relevant climate outcome.9

10
Given the above, it is worth revisiting the question of the plausibility of causality11
evidence which arises from Granger causality analysis.12

13
As discussed in Section 3. Data and Methods of the ACPD paper, Stern and Kander14
(2011) observe that Granger causality is not identical to causation in the classical15
philosophical sense, but it does demonstrate the likelihood of such causation or the16
lack of such causation more forcefully than does simple contemporaneous correlation.17
However, where a third variable, z, drives both x and y, x might still appear to drive y18
though there is no actual causal mechanism directly linking the variables. Any such19
third variable must have some plausibility.20

21
Turning to the plausibility of any (currently missing) third variable driving both22
climate and vegetation, it is noted that this third variable must have energetics on a23
scale of an order analogous to those of global vegetation and climate.24

25
The ocean is one such candidate in terms of energetics, but it is noted that its26
dynamics are of far lower frequency – are more damped – than those of observed for27
global vegetation and climate.28

29
It is noted that until a plausible third candidate is found, Granger causality evidence30
for causality is effectively equivalent to experimental evidence for causality31

32
Furthermore, there is support for the present Granger causality findings from evidence33
at the level of the causality “gold standard”, the experiment – direct manipulation of34
variables in terms of subject and control group categories. This evidence comes from35
the results of direct experimentation on plants outlined above. This experimental36
evidence for separate CO2 and temperature effects on plant growth is consistent with37
that for the effects of CO2 and temperature on NDVI from the present Granger38
causality analysis.39

40
The results from the foregoing are summarised and compared in Table 12.41

Turning to the time scales over which these effects are observed, the results show that42
relationships between first- and second-derivative CO2 and climate variables are43
present for all the time scales studied: that is, including temporal start points situated44
as long ago as 1500. In the five instances where time series analysis accounting for45
autocorrelation could be successfully conducted, the results were statistically46
significant (two tailed test) in four of the five cases, and near significance in the fifth.47
For the further instances (commencing in 1500) the data was not amenable to time48
series analysis due to the strongly smoothed nature of the temperature data making49
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removal of the autocorrelation impossible (see Section 4.3). Nonetheless the scale of1
the non-corrected correlations observed (see Table 10) were of the same order of2
magnitude as those of the other instances listed in Table 12 that were able to be3
corrected for autocorrelation. Taken as a whole the results clearly suggest that the4
mechanism observed is long term, and not, for example, a creation of the period of the5
steepest increase in anthropogenic CO2 emissions which commenced in the 1950s6
(IPCC, 2013).7

A further notable finding is the major role of immediate past instances of the8
dependent variable in its own present state. This was found in all cases where time9
series models could be prepared, and was true for temperature, SOI and NDVI. This10
was not to detract from the role of first- and second-derivative CO2 – in all relevant11
cases, they were significant in the models as well.12

13
A number of points arise from the NDVI results. First, as mentioned in the14
Introduction, the standard notion of the greenhouse effect suggested by general15
circulation climate models (GCMs) (IPCC, 2013) has it that global temperature will16
rise almost linearly with an increasing level of global atmospheric CO2. As also17
mentioned in the Introduction, in recent years global surface temperature has trended18
below that predicted by these models.19

20
The results in Section 4.4 show that the NDVI signature closely fits this difference21
between GCM models and the observed temperature, and displays Granger causality22
of it. As the NDVI time series represents the changing levels of activity of the23
terrestrial biosphere, this result provides strong evidence that the terrestrial biosphere24
mechanism is the cause of the departure of temperature from that predicted by the25
level-of-CO2 mechanism alone.26

The above said, these results are supportive of the anthropogenic global warming27
hypothesis, as follows. Firstly, the results show that variations in atmospheric carbon28
dioxide influence surface temperature. First-derivative atmospheric CO2 is shown to29
drive global temperature and the results deepen the support for CO2 affecting climate,30
in that second-derivative CO2 is shown to drive the SOI. Lastly, the results show that31
the NDVI signature fits the difference between the global surface temperature32
observed trend and that suggested by the standard AGW hypothesis / radiative forcing33
mechanism. This fit provides evidence that the terrestrial biosphere mechanism is the34
cause of this departure of temperature from that predicted by the standard AGW35
hypothesis / level-of-CO2 forcing mechanism alone. In other words, the results36
provide evidence for the case that the final warming achieved is the result not of one37
mechanism – the physical greenhouse gas radiative mechanism embodied in the38
standard anthropogenic global warming hypothesis – but of the interaction of that39
mechanism with a second, residing in the terrestrial biosphere.40

(If so, it is notable that CO2 is having two different influences on climate through two41
quite different mechanisms – the first, a radiative one, with CO2 as a greenhouse gas,42
the second as a result of plants utilising CO2 as a resource!)43

Research questions arising from these results include those of (i) the conditions under44
which the current increase in plant biomass can be expected to continue, and (ii) the45
range of alternative expected future trajectories for human greenhouse gas emissions.46
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Obviously the combinations of the extremes of these ranges may produce quite1
different future climate trend outcomes.2

This is evidence at the global scale that plants are the mechanism causing the3
difference between the linear CO2-temperature model and observed temperature.4

5
This evidence is only supported when other lines of evidence already outlined in the6
paper are recalled – in particular, that from direct experimentation on plants. As7
mentioned in Section 2.2 above, in a large scale meta-analysis of such experiments,8
Dieleman et al. (2012) drew together results on how ecosystem productivity and soil9
processes responded to combined warming and CO2 manipulation, and compared it10
with those obtained from single factor CO2 and temperature manipulation. The meta-11
analysis found that plant responses to combined CO2 and temperature treatment12
showed the greatest effect, but there were also clear CO2-only and warming-only13
effects.14

15
If plants are the agents of these phenomena, then plants would require mechanisms to:16
(i) detect rate of change of relevant environmental cues, including CO2; and (ii)17
provide a capacity for “memory”, for periods not only of months but of years.18

19
This section reviews evidence from plant research relevant to both of these points.20

21
First we consider the mechanism of plant responsiveness to atmospheric CO2. With22
regard to responsiveness in general (for review see Volkov and Markin 2012), it has23
been shown that plants can sense mechanical, electrical and electromagnetic stimuli,24
gravity, temperature, direction of light, insect attack, chemicals and pollutants,25
pathogens, water balance, etc. Looking more closely at responsiveness to CO2, for the26
stomata of plants – the plant components which regulate gas exchange including CO227
and oxygen at the plant surface – extensive research (for example, Maser et al., 2003)28
has shown that a network of signal transduction mechanisms integrates water status,29
hormone responses, light, CO2 and other environmental conditions to regulate30
stomatal movements in leaves for optimization of plant growth and survival under31
diverse conditions.32

33
While we have not been able to find studies measuring such sensitivity to stimuli in34
rate of change and acceleration terms – that is, in terms of first- and second-35
derivatives – such sensitivity is widely present in animal systems (for example in the36
form of acceleration detectors for limb control (Vidal-Gadea et al. 2010)). Indeed37
Spitzer and Sejnowski (1997) argue that rather than occurring rarely, such38
differentiation and other computational processes are present and potentially39
ubiquitous in living systems, including at the single-celled level where a variety of40
biological processes – concatenations of chemical amplifiers and switches – can41
perform computations such as exponentiation, differentiation, and integration.42

43
Plants with the ability to detect the rate of change of resources – especially scarce44
resources – would have a clear selective advantage. First and second derivatives, for45
example, are each leading indicators of change in the availability of a given resource.46
Leading indicators of change in CO2would enable a plant’s photosynthetic apparatus47
to be ready in advance to harvest CO2when, for seasonal or other reasons, increasing48
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amounts of it become available. In this connection, it is noteworthy that second-1
derivative capacity would provide greater advance warning than first.2

3
Has CO2 ever been such a scarce resource? According to Ziska (2008) plants evolved4
at a time of high atmospheric carbon dioxide (4-5 times present values), but5
concentrations appear to have declined to relatively low values during the last 25-306
million years. Therefore, it has been argued that for the last c. 20 million years,7
terrestrial plant evolution has been driven by the optimisation of the use of its scarce8
‘staple food’, CO2.9

10
In this connection, a review by Franks et al. (2013) points out that plants have been11
equipped with most, if not all, of the fundamental physiological characteristics12
governing net CO2 assimilation rate (e.g. stomata, chloroplasts, leaves, roots,13
hydraulic systems) for at least 370 million years. Given that atmospheric CO2 has14
fluctuated at least five to ten times its current ambient concentration over the same15
period, it is possible, even likely, that a generalised long-term net CO2 assimilation16
rate versus atmospheric CO2 relationship evolved early in the history of vascular17
plants.18

19
What mechanism in plants might provide memory capacity? Studies of vernalization –20
the capacity of some plants to flower in the spring only after exposure to prolonged21
cold – show that some plants must not only have the capacity to sense cold exposure22
but also have a mechanism to measure the duration of cold exposure and then store23
that information (Amasino 2004). In some species this “memory” of vernalization can24
be maintained for up to 330 days (Lang 1965).25

26
With the foregoing points, the plant model seems worthy of further consideration.27
Many of the questions of mechanism seem ideal for laboratory experiments.28

29

6. Conclusion30
31

Before the present paper, both global-level observational and laboratory-level32
experimental studies provided evidence that plants might be a factor in explaining the33
difference between the level-of-CO2 model for temperature and the observed34
temperature.35

36
At global scale, this evidence was only correlational. Questions of cause and effect37
were not settled, and the potential scale of any effect had not been quantified.38

39
At laboratory scale, the evidence was at “gold standard” level – that of the experiment40
(involving the direct manipulation of experimental variables by use of subject and41
control groups). These experiments showed that functionality – a responsiveness of42
plants to temperature and CO2 – was present to fully enable plants to be a factor in43
explaining the gap. What could not be known from laboratory experiments was44
whether or not these attributes of individual plants could sum coherently to produce45
discernable results at a global level.46

47
The present results at Granger causality level throw light on the above questions.48
They show that the responsiveness of plants to temperature and CO2 seen at49
laboratory level is clearly discernable at global level.50
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1
The results are in two forms. The first is the coherent presence of a CO2 signature in2
the aggregate of global terrestrial photosynthetic activity. The second is the similarly3
coherent presence of the NDVI signature in the gap – the difference between the4
level-of-CO2 model for temperature and the observed temperature.5

6
The results provide strong evidence that the global climate is the result of the7
combination of two mechanisms – one, a physical mechanism based on the level of8
atmospheric CO2, the other a mechanism within the terrestrial biosphere based on the9
rate of change of CO2.10

11
12

13

14

Reviewer Comment 515

In their analysis of the monthly data, the authors explain how they have smoothed16
the CO2 series by a moving average (Page 29113, line 10). This is evident in any case,17
because the raw CO2 series is highly seasonal, and no seasonality is apparent here.18
The problem is that smoothing and seasonal adjustment filters are notorious for19
changing the dynamics of relationships. I do not see how the lag-correlograms of20
Figures 4 and 5 are to be interpreted if they are computed for smoothed and21
deseasonalised data. They really prove nothing – and the same criticism has to be22
made of the various Granger causality tests reported, if these are conducted on23
smoothed data. The only legitimate way to conduct these kind of tests, where timing24
shifts of one or two months is critical, is on the raw observations, where extraneous25
data features such as seasonality have been accounted for by effective modelling. This26
may be tricky, but in the case of a seasonal pattern it might, for example, be effective27
to employ polynomial dummy variables to explain seasonal changes,28

We turn first to “The problem is that smoothing and seasonal adjustment filters are29
notorious for changing the dynamics of relationships.”30

We address this point in two ways. The first is to assess empirically with our data sets31
the extent to which the filters used did cause changes in dynamics. Secondly, we32
make observations on the literature on this topic.33

Assessment 1. Does the smoothed first-derivative CO2 series used in the paper have34
different key dynamics compared with the original raw (unsmoothed) data from which35
the smoothed series was derived?36

First we reproduce here Figure 4 and Table 1 from the paper. These illustrate the37
prime aspects of our assessment of which of first-derivative atmospheric CO2 and38
global surface temperature leads which (has priority).39

40
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Response Figure 11

2

3

Response table 44

5

The key point from the above (and the next figure and table in the paper) is that in all6
cases assessed, first-derivative atmospheric CO2 led global surface temperature.7

8

In these analyses, only the CO2 series was smoothed and therefore requires9
assessment. To do this, let us see if the smoothed first-derivative CO2 series used in10
the paper has different key dynamics to that of the original raw (unsmoothed) data11
from which the smoothed series was derived. Lagged correlogram analysis is used to12
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assess this question. In the tables presented, degree of statistical significance is1
indicated by stars: one star is p<0.05, two stars is p<0.01 and three stars is p<0.001. In2
the tables and figures, the notation is the same as described in the paper. The3
exception is to do with the letter “Z” (for Z score). Here Z is sometimes replaced by4
“N”. This stands for Normalised, and has the same meaning.5

6

Response Figure 27

-1

-0.5

 0

 0.5

 1

-20 -15 -10 -5  0  5  10  15  20

lag

Co rrelati o n s of N0mma 1s td er iv CO 2 an d l agged N2x13mma_1s t der i vCO2

+- 1.96/T ^ 0 .5

8

9

10

11

12

13

14

15

16



39

Response Table 51

1stderivCO2 and
2x13mma1stderivCO2

Statistical
significance

-20 -0.0515
-19 -0.0605
-18 -0.0572
-17 -0.0593
-16 -0.0532
-15 -0.0191
-14 0.0451
-13 0.1113 ***
-12 0.1516 ***
-11 0.1267 ***
-10 0.0611
-9 -0.0029
-8 -0.0383
-7 -0.0413
-6 -0.0357
-5 -0.037
-4 -0.0293
-3 0.0083
-2 0.0753 *
-1 0.1494 ***
0 0.1946 ***
1 0.1535 ***
2 0.0788 **
3 0.0079
4 -0.0367
5 -0.05
6 -0.0518
7 -0.0563
8 -0.0461
9 -0.0078

10 0.0576
11 0.1255 ***
12 0.1532 ***
13 0.1167 ***
14 0.051
15 -0.0167
16 -0.0583
17 -0.0707 *
18 -0.0724 *
19 -0.074 *
20 -0.0609

In the figure and the table it can be seen that the maximum, and statistically2
significant, correlation of the smoothed series with the unsmoothed series is when3
there is no phase shift. This suggests the particular smoothing used in the paper should4
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provide no problems in the assessment of which of first-derivative CO2 and1
temperature has priority. A similar lack of phase problems can be shown between2
smoothed (2 x 13 month moving average) and unsmoothed second-derivative CO23
used later in the paper.4

That said, we can also carry out a further robustness check by repeating the analysis5
shown in Figure 4 and Table 1 in the paper (Page 8 above), now using data for the6
original unsmoothed (raw) first-derivative CO2 data.7

8

Response Table 69

Lag

0mma1std
erivCO2
and
NHad4Glo
b

Stat
istic
al
sign
ifica
nce

0mma1st
derivCO2
and
NHad4NH

Statist
ical
signifi
cance

0mma1st
derivCO2
and
NHad4SH

Statist
ical
signifi
cance

0mma1st
derivCO2
and
NHad4Tr
op

Statist
ical
signifi
cance

-11 0.016 0.026 -0.004 0.014
-10 0.022 0.030 0.006 0.014
-9 0.022 0.035 -0.003 0.005
-8 0.012 0.021 -0.005 0.007
-7 0.002 0.001 0.003 0.024
-6 0.007 -0.002 0.020 0.034
-5 0.034 0.014 0.062 0.043
-4 0.052 0.028 0.082 ** 0.041
-3 0.067 * 0.050 0.083 ** 0.038
-2 0.052 0.040 0.063 0.039
-1 0.032 0.032 0.026 0.036
0 0.020 0.022 0.015 0.043
1 0.017 0.024 0.004 0.030
2 0.028 0.034 0.012 0.024
3 0.023 0.030 0.009 0.012
4 0.013 0.019 0.001 0.014

10

11

12

13

14

15

16

17
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Response Figure 31

2

3

4

Response Table 75

2x13mma
(L&B 2015)

0mma1stderivCO2

NHad4SH -1 -3
NHad4Trop -1 -3
NHad4NH -3 -3
NHad4Glob -2 -3

It is noted that due to the effect of the seasonality also being present, the correlations6
in Response Figure 3 are much lower than those from the deseasonalised series used7
in the paper (Response Figure 1). Nonetheless, the point of the assessment in the8
paper – to see which of first-difference CO2 and temperature has priority, and the9
finding for first-difference CO2 – is completely confirmed by use of data with no10
smoothing.11

The literature is extensive on the effect that seasonal adjustment has on a number of12
the assessments carried out in the paper. With regard to the tests for unit roots in time-13
series data, for example Ghysels (1990), Frances (1991), Ghysels and Perron (1993),14
Diebold (1993), and Maddala and Kim (1998, pp. 364-365) discuss the fact that in15
finite samples the ADF test is biased towards non-rejection of the unit root null16
hypothesis if the data are smoothed or filtered to eliminate deterministic seasonality.17
That is, their power is reduced. However, this distortion is not an issue with large18
sample sizes. Moreover, Olekalns (1994) shows that seasonal adjustment using19
frequency domain (rather than time domain) filters, or by using seasonal dummy20
variables, also impacts adversely on the finite-sample power of the ADF test.21
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Next we turn to the point that the modelling itself and the Granger causality testing1
should have been undertaken with raw (rather than smoothed) data.2

How does temporal aggregation, or smoothing, of the data affect tests for Granger3
causality?4

A number of authors have addressed this question, including Sims (1971), Wei (1982),5
Christiano and Eichenbaum (1987), Marcellino (1999), Breitung and Swanson (2002),6
and Gulasekaran and Abeysinghe (2002).7

One of the results emerging from this literature is that while Granger causality can be8
“masked” by the smoothing of the data, apparent causality cannot be “created” from9
non-causal data.10

We believe that this means that our results relating to the existence of Granger11
causality should not be affected by the smoothing of the data.12

Suggested changes to the paper13

On page 29113, add two new paragraphs between lines 17 and 18:14

“It is important to consider what effects this filtering of our data may have on15
the ensuing statistical analysis. In these analyses, only the CO2 series was16
smoothed and therefore requires assessment. To do this we tested if the17
smoothed (2 x 13 month moving average) first-derivative CO2 series used here18
has different key dynamics to that of the original raw (unsmoothed) data from19
which the smoothed series was derived. Lagged correlogram analysis showed20
that the maximum, and statistically significant, correlation of the smoothed21
series with the unsmoothed series occurs when there is no phase shift. This22
suggests that the particular smoothing used should provide no problems in the23
assessment of which of first difference CO2 and temperature has priority.24

Second, there is extensive evidence that while the effect that seasonal25
adjustment (via smoothing) on the usual tests for unit roots in time-series data26
is to reduce their power in small samples, this distortion is not an issue with27
samples of the size used in this study. For example, see Ghysels (1990),28
Frances (1991), Ghysels and Perron (1993), and Diebold (1993). Moreover,29
Olekalns (1994) shows that seasonal adjustment by using dummy variables30
also impacts adversely on the finite-sample power of these tests, so there is31
little to be gained by considering this alternative approach. Finally, one of the32
results emerging from the Granger causality literature is that while such33
causality can be “masked” by the smoothing of the data, apparent causality34
cannot be “created” from non-causal data. For example, see Sims (1971), Wei35
(1982), Christiano and Eichenbaum (1987), Marcellino (1999), Breitung and36
Swanson (2002), and Gulasekaran and Abeysinghe (2002). This means that37
our results relating to the existence of Granger causality should not be affected38
adversely by the smoothing of the data that has been undertaken.”39

40
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Comment 61
2

(Page 29019, line 20) The authors are right to avoid autocorrelation corrections in3
regression. In econometric practice such corrections, sometimes called “Cochrane-4
Orcutt” methods, are nowadays discredited since they have the potential to distort the5
relationships of interest. The authors are correct that dynamic modelling is the right6
technique. They are also correct (but could emphasize this more explicitly) that7
regression analysis (which I assume is taken to include contemporaneous drivers)8
cannot test causality, but can at best calibrate an (untestable) assumption of causality.9
The Granger-style test is the only legitimate means to explore causality in time series.10
I think the authors appreciate this fact, but their defence of their approach could be11
more clearly articulated.12

13

To address this, we suggest re-phrasing the paragraph on page 29109, beginning at14
line 19, as follows:15

16

Rather than using a formal Granger causality analysis, a number of authors17
have instead used conventional multiple regression models in attempts to18
quantify the relative importance of natural and anthropogenic influencing19
factors on climate outcomes such as global surface temperature. These20
regression models use contemporaneous explanatory variables. For example,21
see Lean and Rind (2008, 2009); Foster and Rahmstorf (2011); Kopp and Lean22
(2011); Zhou and Tung (2013). This type of analysis effectively assumes a23
causal direction between the variables being modelled. It is incapable of24
providing a proper basis for testing for the presence or absence of causality. In25
some cases account has been taken of autocorrelation in the model's errors, but26
this does not overcome the fundamental weakness of standard multiple27
regression in this context. In contrast, Granger causality analysis that we adopt28
in this paper provides a formal testing of both the presence and direction29
of this causality (Granger, 1969).30

31
32

Comment 733
34
35

(Page 29110, line 2) How can an “anthropogenic warming trend” be an explanatory36
variable or influencing factor? This seems to seriously beg the question. There are37
anthropogenic trends (e.g. level of industrial output) and warming trends (rising38
temperature?) but if we already know that these are one and the same, we need not39
bother with studies such as this one! I know the authors are commenting on previous40
studies here, but elucidation would nonetheless be most desirable.41

42
The use of “warming” was an accidental misstatement. We suggest replacing43
“warming” with “greenhouse gas (the predominant anthropogenic greenhouse gas44
being CO2 ).”45

46
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Comment 81

(Page 29114, line 5) A Dickey-Fuller test is not a test of stationarity. It is a test of2
a unit root, and there are nonstationary cases of the alternative hypothesis. A test of3
stationarity (as the null hypothesis) might be the KPSS test (Kwiatkowski et al. (1992),4
Journal of Econometrics 54, 159-178). However, the KPSS test is not strictly a test of5
stationarity either. It is a test of weak dependence (i.e., summability of the6
autocovariance sequence) which is not a necessary condition for stationarity, as such,7
although it is a condition for conventional inference based on correlations to be valid8
in large samples, via the central limit theorem. Care needs to be taken to distinguish9
these different time series properties, and the statistical techniques appropriate to10
them.11

To address this we suggest replacing the last sentence in the first paragraph on page12
29114 with:13

14

The (augmented) Dickey-Fuller test is applied to each variable. For this test,15
the null hypothesis is that the series has a unit root, and hence is non-stationary.16
The alternative hypothesis is that the series is integrated of order zero.17

18

Comment 919

(Page 29114, line 21) Pankraz (1991). Reference missing.20
21

Reference will be added.22
23

Comment 1024

25
26

(Page 29118, line 6) Where is Supplementary Table S1? I don’t think that results27
should be discussed unless they are included in the paper being submitted for28
publication.29

30
All Supplementary tables currently in the Supplement accessed by the “Discussion31
Paper” box at the top right of the ACPD main page for the article http://www.atmos-32
chem-phys-discuss.net/14/29101/2014/acpd-14-29101-2014.html will be brought into33
the main paper.34

35
We propose to address this issue by creating new table formats for the paper which36
take the required data from the full statistical package output. This provides the37
information which is currently absent from the main paper, and with more38
comprehensive information than was previously in the paper. As a result, we consider39
that the Supplement is no longer needed.40

41

http://www.atmos-chem-phys-discuss.net/14/29101/2014/acpd-14-29101-2014.html
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Comment 111

2
(Page 29126, line 24) “data not amenable to time series analysis . . .”? This is an3
odd statement that needs explaining. How correlations can be “visually observed”, if4
they cannot be tested conventionally, is even odder. I suggest this paragraph needs5
rethinking, and I will also mention that Figure 9 is puzzling, especially the green plot6
described as “first derivatives”. What are the vertical scales here? Have the curves7
been shifted and units of measurement changed so as to superimpose them. What’s8
the implication of this? (The same query may be asked about other graphs too).9

10
The components of this Comment will be dealt with in turn.11

(Page 29126, line 24) “data not amenable to time series analysis . . .”? This is an12
odd statement that needs explaining. How correlations can be “visually observed”, if13
they cannot be tested conventionally, is even odder. I suggest this paragraph needs14
rethinking…15

We suggest rewriting the paragraph as follows:16

17

Table 12 and reference to the relevant figures and their associated text show18
that relationships between first and second-derivative CO2 and climate19
variables are present for all the time scales studied, that is, including temporal20
start points situated as long ago as 1500. In the five instances where time21
series analysis accounting for autocorrelation could be successfully conducted,22
the results were statistically significant (two tailed test) in four of the five23
cases, and near significance in the fifth. For the further instances (commencing24
in 1500) the data was not amenable to time series analysis due to the strongly25
smoothed nature of the temperature data making removal of the26
autocorrelation impossible (See Section 4.3). Nonetheless the scale of the non-27
-corrected correlations observed (see Table 10) were of the same order of28
magnitude as those of the other instances listed in Table 12 that were able to29
be corrected for autocorrelation. Taken as a whole the results clearly suggest30
that the mechanism observed is long term, and not, for example, a creation of31
the period of steepest anthropogenic CO2 emissions increase which32
commenced in the 1950s (IPCC, 2013).33

34

…I will also mention that Figure 9 is puzzling, especially the green plot described as35
“first derivatives”.36

37
38
39

The green plot is first-derivative ice core CO2: the caption will be re-written to add40
this text.41

42
43
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What are the vertical scales here? Have the curves been shifted and units of1
measurement changed so as to superimpose them. What’s the implication of this?2
(The same query may be asked about other graphs too).3

4
In Section 3 Data and methods (page 29110) we wrote:5

To make it easier to visually assess the relationship between the key climate6
variables, the data were normalised using statistical Z scores or standardised7
deviation scores (expressed as “Relative level” in the figures). In a Z scored8
data series, each data point is part of an overall data series that sums to a zero9
mean and variance of 1, enabling comparison of data having different native10
units.11

To address this aspect of comment 11 we suggest adding the following, after “units”:12

Hence, when several Z-scored time series are depicted in a graph, all the time13
series will closely superimpose, enabling visual inspection to clearly discern14
the degree of similarity or dissimilarity between them.15

Comment 1216

17
Final comment. Many readers will have the paper as a monochrome print-out, and18
for such readers the colour-coded graphs cannot be deciphered. BW versions, with19
patterns instead of colours to distinguish the curves, are a must!20

21
Graphs will be redone including patterns.22

23
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Abstract14

A significant gap now of some 16 years in length has been shown to exist between the15

observed global surface temperature trend and that expected from the majority of16

climate simulations, and this gap is presently continuing to increase. For its own sake,17

and to enable better climate prediction for policy use, the reasons behind this18

mismatch need to be better understood. While an increasing number of possible19

causes have been proposed, the candidate causes have not yet converged.20

21

The standard model which is now displaying the disparity has it that temperature will22

rise roughly linearly with atmospheric CO2. However research also exists showing23

correlation between the interannual variability in the growth rate of atmospheric CO224

and temperature. Rate of change of CO2 had not been considered a causative25

mechanism for temperature because it was concluded that causality ran from26

temperature to rate of change of CO2 .27

28

However more recent studies have found little or no evidence for temperature leading29

rate of change of CO2 but instead evidence for simultaneity. With this background,30

this paper reinvestigated the relationship between rate of change of CO2 and two of31

http://www.globalriskprogress.com
mailto:mleggett.globalriskprogress@gmail.com
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the major climate variables, atmospheric temperature and the El Niño–Southern1

Oscillation (ENSO).2

3

Using time series analysis in the form of dynamic regression modelling with4

autocorrelation correction, it is demonstrated that first-derivative CO2 leads5

temperature and that there is a highly statistically significant correlation between first-6

derivative CO2 and temperature. Further, a correlation is found for second-derivative7

CO2 , with the Southern Oscillation Index, the atmospheric-pressure component of8

ENSO. This paper also demonstrates that both these correlations display Granger9

causality.10

11

It is shown that the first-derivative CO2 and temperature climate model shows no12

trend mismatch in recent years.13

14

These results may contribute to the prediction of future trends for global temperature15

and ENSO.16

17

Interannual variability in the growth rate of atmospheric CO2 is standardly attributed18

to variability in the carbon sink capacity of the terrestrial biosphere. The terrestrial19

biosphere carbon sink is created by photosynthesis: a major way of measuring global20

terrestrial photosynthesis is by means of satellite measurements of vegetation21

reflectance, such as the Normalized Difference Vegetation Index (NDVI). This study22

finds Granger causality between an increasing NDVI and the increasing climate23

model/temperature difference (as quantified by the difference between the trend in the24

level of CO2 and the trend in temperature).25

26

It is believed that the results in this paper provide strong evidence that the global27

climate is the result of the combination of two mechanisms – one, a physical28

mechanism based on the level of atmospheric CO2, the other a mechanism embodied29

in the terrestrial biosphere and based on the rate of change of CO230

This study finds a close correlation between an increasing NDVI and the increasing31

climate model/temperature mismatch (as quantified by the difference between the32

trend in the level of CO2 and the trend in temperature).33
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1

2

1 Introduction3
4

Understanding current global climate requires an understanding of trends both in5

Earth’s atmospheric temperature and the El Niño–Southern Oscillation (ENSO), a6

characteristic large-scale distribution of warm water in the tropical Pacific Ocean and7

the dominant global mode of year-to-year climate variability (Holbrook et al. 2009).8

However, despite much effort, the average projection of current climate models has9

become statistically significantly different from the 21st century global surface10

temperature trend (Fyfe et al., 2013, 2014) and has failed to reflect the statistically11

significant evidence that annual-mean global temperature has not risen in the 21st12

century (Fyfe 2013; Kosaka 2013).13

14

The situation is illustrated visually in Figure 1 which shows the increasing departure15

over recent years of the global surface temperature trend from that projected by a16

representative climate model (the CMIP3, SRESA1B scenario model for global17

surface temperature (KNMI 2013)). It is noted that the level of atmospheric CO2 is a18

good proxy for the IPCC models predicting the global surface temperature trend:19

according to IPCC AR5 (2014), on decadal to interdecadal time scales and under20

continually increasing effective radiative forcing, the forced component of the global21

surface temperature trend responds to the forcing trend relatively rapidly and almost22

linearly.23

24

Modelling also provides a wide range of predictions for future ENSO variability,25

some showing an increase, others a decrease and some no change (Guilyardi et al26

2012; Bellenger 2013). The extremes of this ENSO variability cause extreme weather27

(such as floods and droughts) in many regions of the world.28

A wide range of physical explanations has now been proposed for the global warming29

slowdown. These involve proposals either for changes in the way the radiative30

mechanism itself is working or for the increased influence of other physical31

mechanisms. Chen and Tung (2014) place these proposed explanations into two32

categories. The first involves a reduction in radiative forcing: by a decrease in33

stratospheric water vapour, an increase in background stratospheric volcanic aerosols,34
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by 17 small volcano eruptions since 1999, increasing coal-burning in China, the1

indirect effect of time-varying anthropogenic aerosols, a low solar minimum, or a2

combination of these. The second category of candidate explanation involves3

planetary sinks for the excess heat. The major focus for the source of this sink has4

been physical and has involved ocean heat sequestration. However, evidence for the5

precise nature of the ocean sinks is not yet converging: according to Chen and Tung6

(2014) their study followed the original proposal of Meehl et al. (2011) that global7

deep-ocean heat sequestration is centred on the Pacific. However, their observational8

results were that such deep-ocean heat sequestration is mainly occurring in the9

Atlantic and the Southern oceans.10

11
Alongside the foregoing possible physical causes, Hansen et al. (2013) have12
suggested that the mechanism for the pause in the global temperature increase13
since 1998 might be the planetary biota, in particular the terrestrial biosphere14

15
A wide range of physical explanations has now been proposed for the global16

warming slowdown. Chen and Tung (2014) place the explanations into two categories.17

The first involves a reduction in radiative forcing: by a decrease in stratospheric water18

vapour, an increase in background stratospheric volcanic aerosols, by 17 small19

volcano eruptions since 1999, increasing coal-burning in China, the indirect effect of20

time-varying anthropogenic aerosols, a low solar minimum, or a combination of these.21

The second category of candidate explanation involves planetary sinks for the excess22

heat. The major focus for the source of this sink has involved ocean heat23

sequestration. However, evidence for the precise nature of the ocean sinks is not yet24

converging. According to Chen and Tung (2014) their study followed the original25

proposal of Meehl et al. (2011) that global deep-ocean heat sequestration is centred on26

the Pacific. However, their observational results were that such deep-ocean heat27

sequestration is mainly occurring in the Atlantic and the Southern oceans.28

29

Alongside the foregoing possible physical causes, Hansen et al. (2013) have suggested30

that the pause in the global temperature increase since 1998 might be caused by the31

planetary biota, in particular the terrestrial biosphere: that is (IPCC 2007), the fabric32

of soils, vegetation and other biological components, the processes that connect them33

and the carbon, water and energy they store.34

35
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It is widely considered that the interannual variability in the growth rate of1

atmospheric CO2 is a sign of the operation of the influence of the planetary biota.2

Again, IPCC (2007) states: “The atmospheric CO2 growth rate exhibits large3

interannual variations. The change in fossil fuel emissions and the estimated4

variability in net CO2 uptake of the oceans are too small to account for this signal,5

which must be caused by year-to-year fluctuations in land-atmosphere fluxes.”6

In the IPCC Fourth Assessment Report, Denman et al. (2007) state (italics denote7

present author emphasis): “Interannual and inter-decadal variability in the growth rate8

of atmospheric CO2 is dominated by the response of the land biosphere to climate9

variations. …. The terrestrial biosphere interacts strongly with the climate, providing10

both positive and negative feedbacks due to biogeophysical and biogeochemical11

processes. … Surface climate is determined by the balance of fluxes, which can be12

changed by radiative (e.g., albedo) or non-radiative (e.g., water cycle related13

processes) terms. Both radiative and non-radiative terms are controlled by details of14

vegetation.”15

16

Denman et al. (2007) also note that many studies have confirmed that the variability17

of CO2 fluxes is mostly due to land fluxes, and that tropical lands contribute strongly18

to this signal. A predominantly terrestrial origin of the growth rate variability can be19

inferred from (1) atmospheric inversions assimilating time series of CO220

concentrations from different stations (2) consistent relationships between δ13C and21

CO2 (3) ocean model simulations and (4) terrestrial carbon cycle and coupled model22

simulations. For one prominent estimate carried out by the Global Carbon Project, the23

land sink is calculated as the residual of the sum of all sources minus the sum of the24

atmosphere and ocean sinks (Le Quere et al. 2014).25

26

The activity of the land sink can also be estimated directly. The terrestrial biosphere27

carbon sink is created by photosynthesis: a major way of measuring global land28

photosynthesis is by means of satellite measurements of potential photosynthesis from29

greenness estimates. The predominantly used such measure is the Normalized30

Difference Vegetation Index (NDVI) (Running et al., 2004; Zhang et al. 2014). NDVI31

data are available from the start of satellite observations in 1980 to the present. For32

this period the trend signature in NDVI has been shown to correlate closely with that33

for atmospheric CO2 (Barichivich et al., 2013). This noted, we have not been able to34
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find studies which have compared NDVI data with the difference between climate1

models and temperature.2

3

4

2 Methodological issues and objectives of the study5

2.1 Methodological issues6

7

Before considering further material it is helpful now to consider a range of8

methodological issues and concepts. The first concept is to do with the notion of9

causality.10

11

According to Hidalgo and Sekhon (2011) there are four prerequisites to enable an12

assertion of causality. The first is that the cause must be prior to the effect. The13

second prerequisite is “constant conjunction” (Hume (1751) cited in Hidalgo and14

Sekhon (2011)) between variables. This relates to the degree of fit between variables.15

The final requirements are those concerning manipulation; and random placement into16

experimental and control categories. It is noted that each of the four prerequisites is17

necessary but not sufficient for causality.18

19
Concerning the last two criteria, the problem for global studies such as global climate20

studies is that manipulation and random placement into experimental and control21

categories cannot be carried out.22

23

One method using correlational data, however, approaches more closely the quality of24

information derived from random placement into experimental and control categories.25

The concept is that of Granger causality (Granger 1969). According to Stern and26

Kaufmann (2014) a time series variable “x” (e.g. atmospheric CO2) is said to27

“Granger-cause” variable “y” (e.g. surface temperature) if past values of x help predict28

the current level of y, better than do just the past values of y, given all other relevant29

information.30

31

Reference to the above four aspects of causality will be made to help structure the32

review of materials in the following sections.33

34
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1

2.2 Objectives of the study2

3

What has been considered to influence the biota’s creation of the pattern observed in4

the trend in the growth rate of atmospheric CO2? The candidates for the influences on5

the biota have mainly been considered in prior research to be atmospheric variations,6

primarily temperature and/or ENSO (e.g., Kuo et al., 1990; Wang W. et al., 2013).7

Despite its proposed role in global warming overall, CO2 (in terms of the initial state8

of atmospheric CO2 exploited by plants at time A) has not generally been isolated and9

studied in detail through time series analysis as an influence in the way the biosphere10

influences the CO2 left in the atmosphere at succeeding time B.11

12

This state of affairs seems to have come about for two reasons, one concerning ENSO,13

the other, temperature. For ENSO, the reason is that the statistical studies are14

unambiguous that ENSO leads rate of change of CO2 (e.g., Lean and Rind, 2008). On15

the face of it, therefore, this ruled out CO2 as the first mover of the ecosystem16

processes. For temperature, the reason was that the question of whether atmospheric17

temperature leads rate of change of CO2 or vice versa is less settled.18

In the first published study on this question, Kuo et al. (1990) provided evidence that19

the signature of interannual atmospheric CO2 (measured as its first derivative) fitted20

temperature (passing therefore one of the four tests for causality, of close conjunction).21

The relative fits of both level of and first derivative of atmospheric CO2 with global22

surface temperature up to the present are depicted in Figure 2. Attention is drawn to23

both signature (fine grained data structure) and, by means of polynomial smoothing,24

core trend for each data series.25

Concerning signature, while clearly first-derivative CO2 and temperature are not26

identical, each is more alike than either is to the temperature model based on level of27

CO2. As well, the polynomial fits show that the same likeness groupings exist for core28

trend.29
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Kuo et al. (1990) also provided evidence concerning another of the causality1

prerequisites – priority. This was that the signature of first-derivative CO2 lagged2

temperature (by 5 months). This idea has been influential. More recently, despite3

Adams and Piovesan (2005) noting that climate variations, acting on ecosystems, are4

believed to be responsible for variation in CO2 increment, but there are major5

uncertainties in identifying processes including uncertainty concerning instantaneous6

(present authors’ emphasis) versus lagged responses; and Wang W. et al (2013)7

observing that the strongest coupling is found between the CO2 growth rate and the8

concurrent (present authors’ emphasis) tropical land temperature, Wang et al 20139

nonetheless state in their conclusion that the strong temperature–CO2 coupling they10

observed is best explained by the additive responses of tropical terrestrial respiration11

and primary production to temperature variations, which reinforce each other in12

enhancing temperature’s control (present author emphasis) on tropical net ecosystem13

exchange.14

Another perspective on the relative effects of rising atmospheric CO2 concentrations15

on the one hand and temperature on the other has been provided by extensive direct16

experimentation on plants. In a large scale meta-analysis of such experiments,17

Dieleman et al. (2012) drew together results on how ecosystem productivity and soil18

processes responded to combined warming and CO2 manipulation, and compared it19

with those obtained from single factor CO2 and temperature manipulation. While the20

meta-analysis found that responses to combined CO2 and temperature treatment21

showed the greatest effect, this was only slightly larger than for the CO2-only22

treatment. By contrast the effect of the CO2-only treatment was markedly larger than23

for the warming-only treatment.24

25

Concerning leading and lagging climate series more generally, the first finding of26

correlations between the rate of change (in the form of the first derivative) of27

atmospheric CO2 and a climate variable was with the foregoing and the Southern28

Oscillation Index (SOI) component of ENSO (Bacastow 1976). Here evidence was29

presented that the SOI led first-derivative atmospheric CO2. There have been further30

such studies (see Imbers (2013) for overview) which, taken together, consistently31

show that the highest correlations are achieved with SOI leading temperature, by32

some months (3-4 months).33
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1

In light of the foregoing this paper reanalyses by means of time series regression2

analysis the question of which of first-derivative CO2 and temperature leads which,3

The joint temporal relationship between interannual atmospheric CO2, global surface4

temperature and ENSO (indicated by the SOI) is also investigated.5

6

The foregoing also shows that a strong case can be made for further investigating the7

planetary biota influenced by atmospheric CO2 as a candidate influence on (cause of)8

climate outcomes. This question is also explored in this paper.9

A number of Granger causality studies have been carried out on climate time series10

(see review in Attanasio 2012). Of papers we have found which assessed atmospheric11

CO2 and global surface temperature – some six (Sun and Wang 1996; Triacca 2005;12

Kodra et al., 2011; Attanasio and Triacca, 2011; Attanasio (2012); Stern and13

Kaufmann 2014) –while all but one (Triacca 2005) found Granger causality, it was14

not with CO2 concentration but with CO2 radiative forcing (lnCO2 (Attanasio and15

Triacca, 2011).16

17

As well, all studies used annual not monthly data. Such annual data for each of18

atmospheric CO2 and temperature is not stationary of itself but must be made19

stationary by differencing (Sun and Wang 1996). Further, data at this level of20

aggregation can "mask" correlational effects that only become apparent when higher21

frequency (e.g., monthly) data are used.22

23

Rather than using a formal Granger causality analysis, a number of authors have24

instead used conventional multiple regression models in attempts to quantify the25

relative importance of natural and anthropogenic influencing factors on climate26

outcomes such as global surface temperature. These regression models use27

contemporaneous explanatory variables. For example, see Lean and Rind (2008,28

2009); Foster and Rahmstorf (2011); Kopp and Lean (2011); Zhou and Tung (2013).29

This type of analysis effectively assumes a causal direction between the variables30

being modelled. It is incapable of providing a proper basis for testing for the presence31

or absence of causality. In some cases account has been taken of autocorrelation in the32

model's errors, but this does not overcome the fundamental weakness of standard33

multiple regression in this context. In contrast, Granger causality analysis that we34
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adopt in this paper provides a formal testing of both the presence and direction1

of this causality (Granger, 1969).2

To our knowledge the question of stationarity and other time series questions3

concerning the relationship between atmospheric CO2 and temperature have not been4

attempted using CO2 concentration rather than CO2 radiative forcing and monthly5

rather than annual data.6

7

Short of Granger causality analysis, another method of assessment used has been8

multiple linear regression, either corrected or uncorrected for autocorrelation. This9

method has frequently been used to quantify the relative importance of natural and10

anthropogenic influencing factors on climate outcomes such as global surface11

temperature – for example, Lean and Rind, (2008), Lean and Rind (2009); Foster and12

Rahmstorf, (2011); Kopp and Lean, (2011); Zhou and Tung (2013)). It is noted that13

while multiple regression analysis can at best assume a causal direction between the14

variables being modelled, Granger causality analysis provides a formal testing of this15

assumption (Granger 1969).16

17

From such studies, a common set of main influencing factors (also called explanatory18

or predictor variables) has emerged. These are (Lockwood (2008); Folland (2013);19

Zhou and Tung (2013): El Nino–Southern Oscillation (ENSO), or Southern20

Oscillation alone (SOI); volcano aerosol optical depth; total solar irradiance; and the21

trend in anthropogenic greenhouse gas (the predominant anthropogenic greenhouse22

gas being CO2).warming trend. In these models, ENSO/SOI is the factor embodying23

interannual variation. Imbers et al. (2013) show that a range of different studies using24

these variables have all produced similar and close fits with the global surface25

temperature.26

27

With this background this paper first presents an analysis concerning whether the first28

derivative of atmospheric CO2 leads or lags global surface temperature. That assessed,29

questions of autocorrelation, strength of correlation, and of causality are then explored.30

Given this exploration of correlations involving first-derivative atmospheric CO2, the31

possibility of the correlation of second difference CO2 with climate variables is also32

explored.33

34
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1

Correlations are assessed at a range of time scales to seek the time extent over which2

relationships are held, and thus whether they are a special case or possibly longer term3

in nature. The time scales involved are, using instrumental data, over two periods4

starting respectively from 1959 and 1877; and, using paleoclimate data, over a period5

commencing from 1515. The correlations are assessed by means of regression models6

explicitly incorporating autocorrelation using dynamic modelling methods. Granger7

causality between CO2 and, respectively, temperature and SOI is also explored.8

Atmospheric CO2 rather than emissions data is used, and where possible at monthly9

rather than annual aggregation. Finally, as noted, we have not been able to find10

studies which have compared the gap between climate models and temperature with11

NDVI data so an assessment of this question is carried out. All assessments were12

carried out using the time series statistical software packages Gnu Regression,13

Econometrics and Time-series Library (GRETL) and IHS Eviews.14

15
16
17

3. Data and methods18

19
20

We present results of time series analyses of climate data. The data assessed are21

global surface temperature, atmospheric carbon dioxide (CO2) and the Southern22

Oscillation Index (SOI). The regressions are presented in several batches based on the23

length of data series for which the highest temporal resolution is available. The first24

batch of studies involves the data series for which the available high resolution series25

is shortest: this is for atmospheric carbon dioxide (CO2) and commences in 1958.26

These studies are set at monthly resolution.27

28

The second batch of studies is for data able to be set at monthly resolution not29

involving CO2. These studies begin with the time point at which the earliest available30

monthly SOI data commences, 1877.31

32

The final batch of analyses utilises annual data. These studies use data starting33

variously in the 16th or 18th centuries.34

35
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Data from 1877 and more recently is from instrumental sources; earlier data is from1

paleoclimate sources.2

3
For instrumental data sources for global surface temperature we used the Hadley4

Centre–Climate Research Unit combined land SAT and SST (HadCRUT) version5

4.2.0.0 (Morice et al., 2012), for atmospheric CO2 the U.S. Department of Commerce6

National Oceanic & Atmospheric Administration Earth System Research Laboratory7

Global Monitoring Division Mauna Loa, Hawaii8

monthly CO2 series (Keeling et al., 2009), and for volcanic aerosols the National9

Aeronautic and Space Administration Goddard Institute for Space Studies10

Stratospheric Aerosol Optical Thickness series (Sato et al., 1993). Southern11

Oscillation Index (SOI) data (Troup 1965) is from the Science Delivery Division of12

the Department of Science, Information Technology, Innovation and the Arts13

(DSITIA) Queensland Australia. Solar irradiance data is from Lean, J. (personal14

communication 2012).15

16

The Southern Oscillation is the atmospheric-pressure component of ENSO, and is an17

oscillation in the surface air pressure between the tropical eastern and the western18

Pacific Ocean waters. It is calculated from normalized Tahiti minus Darwin sea level19

pressure. The SOI only takes into account sea-level pressure. In contrast, the El Niño20

component of ENSO is specified in terms of changes in the Pacific Ocean sea surface21

temperature relative to the average temperature. It is considered to be simpler to22

conduct an analysis in which the temperature is an outcome (dependent variable)23

without also having (Pacific Ocean) temperature as an input (independent variable).24

The correlation between SOI and the other ENSO indices is high, so we believe this25

assumption is robust.26

27

Paleoclimate data sources are: Atmospheric CO2, from 1500: ice cores (Robertson et28

al. (2001).; (NH) temperature, from 1527: tree ring data: Moberg, A., et al. 2005; SOI,29

from 1706: tree ring data: Stahle et al. (1998).30

31

Normalized Difference Vegetation Index (NDVI) monthly data from 1980 to 2006 is32

from the GIMMS (Global Inventory Modeling and Mapping Studies) data set,33

accessed via KNMI (2014). NDVI data from 2006 to 2013 was provided by the34
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Institute of Surveying, Remote Sensing and Land Information, University of Natural1

Resources and Life Sciences, Vienna.2

3

Statistical methods used are standard (Greene 2012). Categories of methods used are:4

normalisation; differentiation (approximated by differencing); and time series analysis.5

Within time series analysis, methods used are: smoothing; leading or lagging of data6

series relative to one another to achieve best fit; assessing a prerequisite for using data7

series in time series analysis, that of stationarity; including autocorrelation in models8

by use of dynamic regression models; and investigating causality by means of a9

multivariate time series model, known as a vector autoregression (VAR) and its10

associated Granger causality test. These methods will now be described in turn.11

12

To make it easier to visually assess the relationship between the key climate variables,13

the data were normalised using statistical Z scores or standardised deviation scores14

(expressed as “Relative level” in the figures). In a Z-scored data series, each data15

point is part of an overall data series that sums to a zero mean and variance of 1,16

enabling comparison of data having different native units. Hence, when several Z-17

scored time series are depicted in a graph, all the time series will closely superimpose,18

enabling visual inspection to clearly discern the degree of similarity or dissimilarity19

between them.20

See the individual figure legends for details on the series lengths.21

22

In the time series analysis SOI and global atmospheric surface temperature are the23

dependent variables. For these two variables, we tested the relationship between (1)24

the change in atmospheric CO2 and (2) the variability in its rate of change. We25

express these CO2-related variables as finite differences, which is a convenient26

approximation to derivatives (Hazewinkel, 2001; Kaufmann et al., 2006). The finite27

differences used here are of both the first- and second-order types (we label these28

“first” and “second” differences in the text). Variability is explored using both intra-29

annual (monthly) data and interannual (yearly) data. The period covered in the figures30

is shorter than that used in the data preparation because of the loss of some data points31
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due to calculations of differences and of moving averages (in monthly terms of up to1

13 x 13), which commenced in January 1960.2

3

Smoothing methods are used to the degree needed to produce similar amounts of4

smoothing for each data series in any given comparison. Notably, to achieve this5

outcome, series resulting from higher levels of differences require more smoothing.6

Smoothing is carried out initially by means of a 13-month moving average – this also7

minimises any remaining seasonal effects. If further smoothing is required, then this is8

achieved (Hyndman 2010) by taking a second moving average of the initial moving9

average (to produce a double moving average). Often, this is performed by means of a10

further 13 month moving average to produce a 13 x 13 moving average. For11

descriptive statistics to describe the long-term variation of a time series trend,12

polynomial smoothing is sometimes used.13

It is important to consider what effects this filtering of our data may have on the14

ensuing statistical analysis. In these analyses, only the CO2 series was smoothed and15

therefore requires assessment. To do this we tested if the smoothed (2 x 13 month16

moving average) first-derivative CO2 series used here has different key dynamics to17

that of the original raw (unsmoothed) data from which the smoothed series was18

derived. Lagged correlogram analysis showed that the maximum, and statistically19

significant, correlation of the smoothed series with the unsmoothed series occurs20

when there is no phase shift. This suggests that the particular smoothing used should21

provide no problems in the assessment of which of first difference CO2 and22

temperature has priority.23

Second, there is extensive evidence that while the effect that seasonal adjustment (via24

smoothing) on the usual tests for unit roots in time-series data is to reduce their power25

in small samples, this distortion is not an issue with samples of the size used in this26

study. For example, see Ghysels (1990), Frances (1991), Ghysels and Perron (1993),27

and Diebold (1993). Moreover, Olekalns (1994) shows that seasonal adjustment by28

using dummy variables also impacts adversely on the finite-sample power of these29

tests, so there is little to be gained by considering this alternative approach. Finally,30

one of the results emerging from the Granger causality literature is that while such31

causality can be “masked” by the smoothing of the data, apparent causality cannot be32
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“created” from non-causal data. For example, see Sims (1971), Wei (1982),1

Christiano and Eichenbaum (1987), Marcellino (1999), Breitung and Swanson (2002),2

and Gulasekaran and Abeysinghe (2002). This means that our results relating to the3

existence of Granger causality should not be affected adversely by the smoothing of4

the data that has been undertaken.5

6

7

Variables are led or lagged relative to one another to achieve best fit. These leads or8

lags were determined by means of time-lagged correlations (correlograms). The9

correlograms were calculated by shifting the series back and forth relative to each10

other, 1 month at a time.11

12

With this background, the convention used in this paper for unambiguously labelling13

data series and their treatment after smoothing or leading or lagging is depicted in the14

following example. The atmospheric CO2 series is transformed into its second15

derivative and smoothed twice with a 13 month moving average. The resultant series16

is then Z-scored. This is expressed as Z2x13mma2ndDerivCO2.17

18

As well, it is noted that, to assist readability in text involving repeated references,19

atmospheric CO2 is sometimes referred to simply as CO2 and global surface20

temperature as temperature.21

22

The time series methodology used in this paper involves the following procedures.23

First, any two or more time series being assessed by time series regression analysis24

must be what is termed stationary in the first instance, or be capable of being made25

stationary (by differencing). A series is stationary if its properties (mean, variance,26

covariances) do not change with time (Greene 2012). The (augmented) Dickey-Fuller27

test is applied to each variable. For this test, the null hypothesis is that the series has a28

unit root, and hence is non-stationary. The alternative hypothesis is that the series is29

integrated of order zero.30

31
Dickey-Fuller stationarity tests are calculated for each variable.32

33
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Second, the residuals from any time series regression analysis then conducted must1

not be significantly different from white noise. This is done seeking correct model2

specification for the analysis.3

4

After Greene (2012): the results of standard ordinary least squares (OLS) regression5

analysis assume that the errors in the model are uncorrelated. Autocorrelation of the6

errors violates this assumption. This means that the OLS estimators are no longer the7

Best Linear Unbiased Estimators (BLUE). Notably and importantly this does not bias8

the OLS coefficient estimates. However statistical significance can be overestimated,9

and possibly greatly so, when the autocorrelations of the errors at low lags are positive.10

11

Addressing autocorrelation can take either of two alternative forms: correcting for it12

(for example, for first order autocorrelation by the Cochrane-Orcutt procedure), or13

taking it into account.14

15

In the latter approach, the autocorrelation is taken to be a consequence of an16

inadequate specification of the temporal dynamics of the relationship being17

estimated. The method of dynamic modelling (Pankratz, 1991) addresses this by18

seeking to explain the current behavior of the dependent variable in terms of both19

contemporaneous and past values of variables. In this paper the dynamic modelling20

approach is taken.21

22

To assess the extent of autocorrelation in the residuals of the initial non-dynamic OLS23

models run, the Breusch-Godfrey procedure is used. Dynamic models are then used to24

take account of such autocorrelation. To assess the extent to which the dynamic25

models achieve this, Kiviet’s Lagrange multiplier F-test (LMF) statistic for26

autocorrelation (Kiviet, 1986) is used.27

28

Hypotheses related to Granger causality (see Introduction) are tested by estimating a29

multivariate time series model, known as a vector autoregression (VAR), for level of,30

and first-derivative CO2 and other relevant variables. The VAR models the current31

values of each variable as a linear function of their own past values and those of the32

other variables. Then we test the hypothesis that x does not cause y by evaluating33

restrictions that exclude the past values of x from the equation for y and vice versa.34
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Stern and Kander (2011) observe that Granger causality is not identical to causation in1

the classical philosophical sense, but it does demonstrate the likelihood of such2

causation or the lack of such causation more forcefully than does simple3

contemporaneous correlation. However, where a third variable, z, drives both x and y,4

x might still appear to drive y though there is no actual causal mechanism directly5

linking the variables (any such third variable must have some plausibility - see6

Discussion and conclusions below).7

8
4 Results9

10
4.1. Relationship between first-derivative CO2 and temperature11

12
4.1.1. Priority13

14
Figure 2 showed that while clearly first-derivative CO2 and temperature are not15

identical in signature, each is more alike than either is to the temperature model based16

on level of CO2. As well the figure shows that the same likeness relationships exist for17

the core trend. The purpose of the forthcoming sections is to see the extent to which18

these impressions are statistically significant.19

20
The first question assessed is that of priority: which of first-derivative atmospheric21

CO2 and global surface temperature leads the other. The two series are shown for the22

period 1959 to 2012 in Figure 3.23

24
It is not possible to discern from the above plot which precise relative phasing of the25

two series leads to the best fit and hence the answer to the question of which series26

leads which. To quantify the degree of difference in phasing between the variables,27

time-lagged correlations (correlograms) were calculated by shifting the series back28

and forth relative to each other, one month at a time.29

30

First, what does the above relationship look like in correlogram form, and what is the31

appearance of the correlograms for the other commonly used global temperature32

categories – tropical, Northern hemisphere and Southern hemisphere? These33

correlograms are given in Figure 4.34

35
36
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It can be seen that, for all four relationships shown, first-derivative CO2 always leads1

temperature. The leads differ as quantified in Table 1.2

3
It is possible for a lead to exist overall on average but for a lag to occur for one or4

other specific subsets of the data. This question is explored in Figure 5 and Table 2.5

Here the full 1959-2012 period of monthly data– some 640 months – for each of the6

temperature categories is divided into three approximately equal sub-periods, to7

provide 12 correlograms. It can be seen that in all 12 cases, first-derivative CO2 leads8

temperature. It is also noted that earlier sub-periods tend to display longer first-9

derivative CO2 leads. For the most recent sub-period the highest correlation is when10

the series are neither led nor lagged.11

12
13
14

4.1.2 Correspondence between first-derivative CO2 and global surface15
temperature curves16

17
18

Next, the second prerequisite for causality, close correspondence, is also seen between19

first-derivative CO2 and global surface temperature in Figure 3.20

21

22

4.1.3 Time series analysis23

24

The robustness of both first-derivative CO2 leading temperature and the two series25

displaying close correspondence is a firm basis for the time series analysis to follow26

of the statistical relationship between first-derivative CO2 and temperature. For this27

further analysis we choose global surface temperature as the temperature series28

because, while its maximum correlation is not the highest (Figure 5), its global29

coverage by definition is greatest.30

31

The following sections provide the results of the time series analysis. (In this section,32

TEMP stands for global surface temperature ((Hadcrut4), and other block capital33

terms are those used in the modelling.) First, as stated above, all series used in a time34

series regression must be stationary (Greene 2012). By means of the Augmented35

Dickey–Fuller (ADF) test for unit roots Table 3 provides the information concerning36
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the stationarity for the level of, and first-derivative of, CO2, as well as global surface1

temperature. The test was applied with an allowance for both a drift and deterministic2

trend in the data, and the degree of augmentation in the Dickey-Fuller regressions was3

determined by minimizing the Schwarz Information Criterion.4

5

Dickey–Fuller (ADF) test for stationarity Table 3 provides the information concerning6

stationarity for level of and first-derivative CO2 and global surface temperature.7

8
The table shows that, for the monthly series used, the variables TEMP and9

FIRSTDERIVATIVE CO2 are both stationary.10

In carrying this out, one must first note that while we find, as is required for time11

series analysis, that the variables TEMP and FIRSTDERIVATIVE CO 2 are both12

stationary, (that is, both display order of integration of I (1)), Beenstock et al. (2012)13

report in their work that temperature is I(1) while first-difference (equivalent to first-14

derivative) atmospheric CO2 is I(2).15

16

With regard to the reconciliation of these two varying results, Pretis and Hendry17

(2013) have reviewed Beenstock et al. (2012). They take issue with the finding of I(2),18

and find evidence that it results from the combination of two different data sets19

measured in different ways to make up the tested 1850-2011 data set which Beenstock20

et al. use. Regarding this composite series they write:21

22

In the presence of these different measurements exhibiting structural changes,23

a unit-root test on the entire sample could easily not reject the null hypothesis24

of I(2) even when the data are in fact I(1). Indeed, once we control for these25

changes, our results contradict the findings in Beenstock et al. (2012).26

27
28

In contrast, the variable CO2 is non-stationary (specifically, it is integrated of order29

one, i.e., I(1)). Here an important result arises: attempting to assess TEMP in terms of30

the level of CO2 would result in an “unbalanced regression”, as the dependent variable31

(TEMP) and the explanatory variable (CO2) have different orders of integration. It is32

well known (e.g., Banerjee et al., 1993, pp. 190-191, and the references therein) that33

in unbalanced regressions the t-statistics are biased away from zero. That is, one can34



68

appear to find statistically significant results when in fact they are not present. In fact,1

that occurs when we regress TEMP on CO2. This reason alone is strong evidence that2

any analysis should involve the variables TEMP and FIRST-DERIVATIVE CO2, and3

not TEMP and CO2.4

5

Nonetheless one can explore the extent to which first-derivative CO2 and climate6

variable correlations are statistically significant and so might make first-derivative7

CO2 a candidate in its own right as a cause of climate trends.8

9

For the variables for which stationarity is established, one must next assess the extent10

if any of autocorrelation affecting the time series model. This is done by obtaining11

diagnostic statistics from an OLS regression. This regression shows, by means of the12

Breusch-Godfrey test for autocorrelation (up to order 12 - that is, including all13

monthly lags up to 12 months), that there is statistically significant autocorrelation at14

lags of one and two months, leading to an overall Breusch-Godfrey Test statistic15

(LMF) = 126.901238, with p-value = P(F(12,626) > 126.901) = 1.06e-158.16

17

The autocorrelation is taken to be a consequence of an inadequate specification of the18

temporal dynamics of the relationship being estimated. With this in mind, a dynamic19

model (Greene 2012) with two lagged values of the dependent variable as additional20

independent variables has been estimated.21

22

Results are shown in Table 4. There, the LMF test shows that there is now no23

statistically significant unaccounted-for autocorrelation, thus supporting the use of24

this dynamic model specification.25

26

Inspection of Table 4 shows that a highly statistically significant model has been27

established. First it shows that the temperature in a given period is strongly28

influenced by the temperature of closely preceding periods. (See Discussion for a29

possible mechanism for this). Further it provides evidence that there is also a clear,30

highly statistically significant role in the model for first-derivative CO2.31

32

33

4.1.4 Granger causality analysis34
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1

We now can turn to assessing if first-derivative atmospheric CO2 may not only2

correlate with, but also contribute causatively to, global surface temperature. This is3

done by means of Granger causality analysis.4

5

Recalling that both TEMP and FIRST-DERIVATIVE CO2 are stationary, it is6

appropriate to test the null hypothesis of no Granger causality from FIRST-7

DERIVATIVE CO2 to TEMP by using a standard Vector Autoregressive (VAR)8

model without any transformations to the data. The Akaike information criterion (AIC)9

and the Schwartz iInformation criterion (SIC) were) were used to select an optimal10

maximum lag length (k) for the variables in the VAR. This lag length was then11

lengthened, if necessary, to ensure that:12

13
(i) The estimated model was dynamically stable (i.e., all of the inverted roots14

of the characteristic equation lie inside the unit circle);15

(ii) The errors of the equations were serially independent.16

17
18

The relevant EViews output from the VAR model is entitled VAR Granger19

Causality/Block Exogeneity Wald Tests and documents the following summary20

results: Wald Statistic (p-value): Null is there is No Granger Causality from first-21

derivative CO2 to TEMP Number of lags K=4; Chi-Square 26.684 (p-value = 0.000).22

23

A p-value of this level is highly statistically significant and means the null hypothesis24

of No Granger Causality is very strongly rejected. That is, over the period studied25

there is strong evidence that first-derivative CO2 Granger-causes TEMP.26

27

Despite the lack of stationarity in the level of CO2 time series meaning it cannot be28

used to model temperature, one can still assess the answer to the question: “Is there29

evidence of Granger causality between level of CO2 and TEMP?”30

31

In answering this question, because the TEMP series is stationary, but the CO2 series32

is non-stationary (it is integrated of order one, I(1)), the testing procedure is modified33

slightly. Once again, the levels of both series are used. For each VAR model, the34

maximum lag length (k) is determined, but then one additional lagged value of both35
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TEMP and CO2 is included in each equation of the VAR. However, the Wald test for1

Granger non-causality is applied only to the coefficients of the original k lags of CO2.2

Toda and Yamamoto (1995) show that this modified Wald test statistic will still have3

an asymptotic distribution that is chi-square, even though the level of CO2 is non-4

stationary.5

6

Here the relevant Wald Statistic (p-value): Null is there is No Granger Causality from7

level of CO2 to TEMP Number of lags K= 4; Chi-Square 2.531 (p-value = 0.470)8

9

The lack of statistical significance in the p-value is strong evidence that level of CO210

does not Granger-cause TEMP.11

12

With the above two assessments done, it is significant that concerning global surface13

temperature we are able to discount causality involving the level of CO2, but establish14

causality involving first-derivative CO2.15

16

17
4.2 Relationship between second-derivative CO2 and temperature and18
Southern Oscillation Index19

20
4.2.1 Priority and correspondence21

22
Given the results of this exploration of correlations involving first-derivative23

atmospheric CO2, the possibility of the correlation of second-derivative CO2 with24

climate variables is also explored. The climate variables assessed are global surface25

temperature and the Southern Oscillation Index (SOI). In this section, data is from the26

full period for which monthly instrumental CO2 data is available, 1958 to the present.27

For this period, the series neither led nor lagged appear as follows (Figure 6):28

29
30

Let us look (Figure 6) at the two key pairs of interannually varying factors. For the31

purpose of this figure, to facilitate depiction of trajectory, second-derivative CO2 and32

SOI (right axis) are offset so that all four curves display a similar origin in 1960.33

34
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The figure shows that, alongside the already demonstrated close similarity between1

first-derivative CO2 and temperature, there is a second apparent distinctive pairing2

between second-derivative CO2 and SOI.3

4

The figure shows that the overall trend, amplitude and phase - the signature - of each5

pair of curves is both matched within each pair and different from the other pair. The6

remarkable sorting of the four curves into two groups is readily apparent. Each pair of7

results provides context for the other - and highlights the different nature of the other8

pair of results.9

10

11
Recalling that even uncorrected for any autocorrelation, correlational data still holds12

information concerning regression coefficients, we initially use OLS correlations13

without assessing autocorrelation to provide descriptive statistics. Table 5 includes,14

first without any phase shifting to seek to maximise fit, the full six pairwise15

correlations arising from all possible combinations of the four variables other than16

with themselves. Here it can be seen that the two highest correlation coefficients (in17

bold in the table) are, first, between first-derivative CO2 and temperature, and, second,18

between second-derivative CO2 and SOI.19

20
In Table 6 phase shifting has been carried out to maximise fit (shifts shown in variable21

titles in the table). This results in an even higher correlation coefficient for second-22

derivative CO2 and SOI.23

24
25

The link between all three variable realms — CO2, SOI and temperature — can be26

further observed in Figure 7 and Table 7. Figure 7 shows SOI, second-derivative27

atmospheric CO2 and first-derivative temperature, each of the latter two series phase-28

shifted for maximum correlation with SOI (as in Table 5). Concerning priority,29

Table 6 shows that maximum correlation occurs when second-difference CO2 leads30

SOI. It is also noted that the correlation coefficients for the correlations between the31

curves shown in Table 6 have all converged in value compared to those shown in32

Table 5.33

34
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Concerning differences between the curves shown in Figure 7, two of what major1

departures there are between the curves are coincide with volcanic aerosols – from the2

El Chichon volcanic eruption in 1982 and the Pinatubo eruption in 1992 ( Lean and3

Rind 2009). These factors taken into account, it is notable when expressed in the form4

of the transformations in Figure 7 that the signatures of all three curves are so5

essentially similar that it is almost as if all three curves are different versions of - or6

responses to - the same initial signal.7

8
So, a case can be made that first and second-derivative CO2 and temperature and SOI9

respectively are all different aspects of the same process.10

11
12
13

4.2.2 Time series analysis14
15

Let us more formally assess the relationship between second-derivative CO2 and SOI.16

As for first-derivative CO2 and temperature above, stationarity has been established.17

Again, similarly to first-derivative CO2 and temperature, there is statistically18

significant autocorrelation at lags of one and two months, leading to an overall19

Breusch-Godfrey Test statistic (LMF) of 126.9, with p-value = P(F(12,626) > 126.901)20

= 1.06e-158.21

22

Table 8 shows the results of a dynamic model with the dependent variable used at23

each of the two lags as further independent variables.24

25
In Table 8 the results first show (LMF test) that there is now no statistically26

significant unaccounted-for autocorrelation.27

28

Further inspection of Table 8 shows that a highly statistically significant model has29

been established. As for temperature, it shows that the SOI in a given period is30

strongly influenced by the SOI of closely preceding periods. Again as for temperature31

it provides evidence that there is a clear role in the model for second-derivative CO2.32

With this established, it is noted that while the length of series in the foregoing33

analysis was limited by the start date of the atmospheric CO2 series (January 1958),34

high temporal resolution (monthly) SOI goes back considerably further, to 1877. This35



73

long period SOI series (for background see Troup (1965)) is that provided by the1

Australian Bureau of Meteorology, sourced here from the Science Delivery Division2

of the Department of Science, Information Technology, Innovation and the Arts,3

Queensland, Australia. As equivalent temperature data is also available (the global4

surface temperature series already used above (HADCRUT4) goes back as far as5

1850), these two longer series are now plotted in Figure 8.6

7
What is immediately noted is the continuation over this longer period of the striking8

similarity between the two signatures already shown in Figure 7.9
10

Turning to regression analysis, as previously the Breusch-Godfrey procedure shows11

that, for lags up to lag 12, the lion’s share of autocorrelation is again restricted to the12

first two lags. Table 9 shows the results of a dynamic model with the dependent13

variable used at each of the two lags as further independent variables14

15

In comparison with Table 8, the extended time series modelled in Table 9 shows a16

remarkably similar R-squared statistic: 0.466 compared with 0.477. By contrast, the17

partial regression coefficient for second-derivative CO2 has increased, to 0.1418

compared with 0.077. These points made, the main finding is that there is little or no19

difference in the relationship when it is extended back to 1877. (It is beyond the scope20

of this study, but the relationship of SOI and second-derivative CO2 means it is now21

possible to produce a proxy for monthly atmospheric CO2 from 1877: a date22

approximately 75 years prior to the start in January 1958 of the CO2 monthly23

instrumental record.)24

25

26

4.2.3 Granger causality analysis27

28

This section assesses whether second-derivative CO2 can be considered to Granger-29

cause SOI. This assessment is carried out using 1959 to 2012 data.30

31

Test results on the stationarity or otherwise of each series are given in Table 10. Each32

series is shown to be stationary. These results imply that we can approach the issue of33

possible Granger causality by using a conventional VAR model, in the levels of the34
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data, with no need to use a "modified" Wald test (as used in the Toda and Yamamoto1

(1995) methodology).2

3

Simple OLS regressions of SOI against separate lagged values of DCO2 (including an4

intercept) confirm the finding that the highest correlation is when a two-period lag is5

used.6

7

A 2-equation VAR model is needed for reverse-sign SOI and second-derivative CO2.8

The first task is to determine the optimal maximum lag length to be used for the9

variables. Using the SIC, this is found to be 2 lags. When the VAR model is estimated10

with this lag structure however, Table 11, testing the null hypothesis that there is no11

serial correlation at lag order h, shows that there is evidence of autocorrelation in the12

residuals.13

14

This suggests that the maximum lag length for the variables needs to be increased.15

The best results (in terms of lack of autocorrelation) were found when the maximum16

lag length is 3. (Beyond this value, the autocorrelation results deteriorated17

substantially, but the conclusions below, regarding Granger causality, were not18

altered.)19

Table 12 shows that the preferred, 3-lag model, still suffers a little from20

autocorrelation.21

However, as we have a relatively large sample size, this will not impact adversely on22

the Wald test for Granger causality.23

The relevant EViews output from the VAR model is entitled VAR Granger24

Causality/Block Exogeneity Wald Tests and documents the following summary25

results: Wald Statistic (p-value): Null is there is No Granger Causality from second-26

derivative CO2 to sign-reversed SOI Chi-Square 22.554 (p-value = 0.0001).27

The forgoing Wald statistic shows that the null hypothesis is strongly rejected: in28

other words, there is very strong evidence of Granger Causality from second-29

derivative CO2 to sign-reversed SOI.30

31

32

33

4.3 Paleoclimate data34
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1

So far, the time period considered in this study has been pushed back in the2

instrumental data realm to 1877. If non-instrumental paleoclimate proxy sources are3

used, CO2 data now at annual frequency can be taken further back. The following4

example uses CO2 and temperature data. The temperature reconstruction used here5

commences in 1500 and is that of Frisia et al. (2003), derived from annually6

laminated speliothem (stalagmite) records. A second temperature record (Moberg et7

al., 2005) is from tree ring data. The atmospheric CO2 record (Robertson et al. (2001)8

is from fossil air trapped in ice cores and from instrumental measurements. The trends9

for these series are shown in Figure 9.10

11
Visual inspection of the figure shows that there is a strong overall likeness in12

signature between the two temperature series, and between them and first-derivative13

CO2. The similarity of signature is notably less with level of CO2. It can be shown14

that level of CO2 is not stationary and even with the two other series which are15

stationary the strongly smoothed nature of the temperature data makes removal of the16

autocorrelation present impossible. Nonetheless, noting that data uncorrected for17

autocorrelation still provides valid correlations (Greene 2012) – only the statistical18

significance is uncertain - it is simply noted that first-derivative CO2 displays a better19

correlation with temperature than level of CO2 , for each temperature series (Table 13).20

21

22

23
4.4 Normalized Difference Vegetation Index (NDVI)24

25

Using the Normalized Difference Vegetation Index (NDVI) time series as a measure26

of the activity of the land biosphere, this section now investigates the land biosphere27

as a candidate mechanism for the issue identified in the Introduction, that of the28

increasing difference between the global surface temperature trend suggested by29

general circulation climate models and that observed.30

31

The level of atmospheric CO2 is a good proxy for the IPCC models predicting the32

global surface temperature trend: according to IPCC (2013), on decadal to33

interdecadal time scales and under continually increasing effective radiative forcing34
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(ERF), the forced component of the global surface temperature trend responds to the1

ERF trend relatively rapidly and almost linearly. This trend can be taken to represent2

that expected from the operation of the standard anthropogenic global warming model,3

its mechanism being a physical one in which (IPCC, 2013, NASA 2015) about half4

the light reaching Earth's atmosphere passes through the air and clouds to the surface,5

where it is absorbed and then radiated upward in the form of infrared heat. About 906

percent of this heat is then absorbed by the greenhouse gases and radiated back7

toward the surface, which is warmed. If greenhouse gases have been increasing8

(including because of increasing anthropogenic emissions), that contributes to an9

increase in the infrared radiation they emit (including that back toward the surface,10

which is warmed further).On this basis an indicator of the difference between the11

climate model trend and the observed temperature is prepared by subtracting the Z-12

scored actual temperature trend from the Z-scored CO2 trend. In the paper, this13

indicator is sometimes termed the climate model/temperature difference or the14

difference between the level-of-CO2 model for temperature and the observed15

temperature16

17

18
19

The trend in the terrestrial CO2 sink is estimated annually as part of assessment of the20

well known global carbon budget (Le Quere at al., 2014). It is noted that there is a21

risk of involving a circular argument concerning correlations between the terrestrial22

CO2 sink and interannual (first derivative) CO2 because the terrestrial CO2 sink is23

defined as the residual of the global carbon budget (Le Quere at al., 2014). By24

contrast, the Normalized Difference Vegetation Index (NDVI) involves direct25

(satellite-derived) measurement of terrestrial plant activity. For this reason, and26

because of the two series only NDVI is provided in monthly form, we will use only27

NDVI in what follows.28

29
30
31

4.4.1. Issues of method concerning the NDVI-related analyses32
33

Two issues of method arise from the NDVI-related analyses. These are: sensitivity of34

methods for detecting the order of integration of a time series; and, for the Granger35



77

Causality testing used, the optimal selection of the number of lags of the time series1

variables involved for use in the analysis.2

3

These two matters will be dealt with in turn.4

5

6

4.4.1.1. Determination of order of integration of time series.7

8

The data series used until now – the shortest monthly series starting in 1959 – have9

meant that, using the most commonly used test of series order of integration (the10

Augmented Dickey-Fuller test (Dickey and Fuller, 1981)) it has been unambiguous as11

to the order of integration of each series.12

13

The more recent start date arising from the use of the NDVI series – 1981 – has meant14

that the series used in the NDVI-related analyses have been made up of fewer15

observations, and are centred over a different period of history compared with the data16

commencing in 1959.17

18

This has meant that one series – first-derivative CO2 – for the data commencing in19

1981 has displayed ADF unit root test results which place it on the cusp between I(0)20

and I(1).21

22

According to Zivot and Wang (2006), the ADF test and another test, the Phillips-23

Perron test (Phillips and Perron (1988)) have in general very low power to24

discriminate between I(0) and I(1) alternatives when the two alternatives are close25

together. Zivot and Wang (2006) recommend that for maximum power in these26

circumstances the tests of Elliot, Rothenberg, and Stock (1996), and Ng and Perron27

(2001) should be used.28

29

For this reason, the above - and some further - unit root tests for the order of30

integration of a time-series are used in this stage of the study. The full list of tests is:31

32

 the Augmented Dickey Fuller (ADF) test (Dickey and Fuller ,1981); the33

Phillips-Perron test (Phillips and Perron, 1988); the Elliott-Rothenberg-Stock34
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Point Optimal test (Elliot et al., 1996); the Ng-Perron Modified Unit Root test1

(Ng and Perron, 2001). The null hypothesis for the foregoing tests is non-2

stationarity.3

4

 The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al.,5

1992) is also used. The null hypothesis for this test is stationarity.6

7

Use of both stationarity and non-stationarity hypotheses can add robustness to the8

assessment of the order of integration of a time-series.9

10

For the KPSS and Phillips-Perron tests the bandwidth, b, was selected using the11

Newey-West method, with the Bartlett kernel. In the remaining unit root tests the12

Akaike information criterion (AIC) and the Schwartz information criterion (SIC) were13

used to select an optimal maximum lag length (k) for the variables.14

15

4.4.1.2. Lag-length selection for Granger causality testing16

We turn now to a matter concerning lag-length selection for Granger causality testing.17

Thornton and Batten (1985) assessed the accuracy of Granger tests under a range of18

lag selection techniques ranging from arbitrarily chosen lags, lags chosen by three19

statistical criteria, and an extensive search of the lag space.20

Thornton and Batten (1985) conclude:21

22

As a generalization … there appears to be no substitute for selecting a model23

specification criterion ex ante or for an extensive search of the lag space if one24

is to ensure that the causality test results are not critically dependent on the25

judicious (or perhaps fortuitous) choice of the lag structure.26

27

With this background, in the present study Granger causality testing of NDVI-related28

data series pairs was conducted as follows:29
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 If hypothesis and the prior dynamic regression modelling used suggested a1

possible Granger link, tests were run based on model lags suggested from the2

results of the prior modelling3

 If a Granger causality test set up as just described was positive at its default4

lag selection settings, that result was reported. If not, an extensive search of5

the lag space was carried out. That result was reported, positive or negative.6

7

8
4.4.2. Results9

10
Results are organised under the following headings:11

12
4.4.2.1. Order of integration of series13

4.4.2.2. Preparation of the pooled global NDVI series used14

4.4.3. Relationship between climate variables and NDVI15

16
17

4.4.2.1. Order of integration of series18
19

As mentioned in Section 3. Data and methods of the ACPD paper, any two or more20

time series being assessed by time series regression analysis must be stationary in the21

first instance, or be capable of being transformed into a new stationary series (by22

differencing). A series is stationary if its properties (mean, variance, covariances) do23

not change with time (Greene 2012).24

25
In the first instance, Augmented Dickey-Fuller (ADF) stationarity tests are calculated26

for each variable. Results and lag lengths chosen are given in Table 14.27

28
The table shows that for this data from 1981, level of CO2 and temperature are I(0), as29

they were for the data from 1959. This is not the case for first-derivative CO2.30

31
As can be seen, the ADF test result for first-derivative CO2 for data from 1981 to32

2012 of 0.0895 shows that first-derivative CO2 approaches the statistical significance33

level of 0.05 required to be I(0), but does not reach it. In other words, for first34

derivative CO2, the two I(0) and I(1) alternatives are close together.35

36
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For the reasons given by Zivot and Wang (2006) above, the order of integration of1

first-derivative CO2 is therefore assessed by the wider range of tests for order of2

integration listed above, including the two tests nominated by Zivot and Wang (2006)3

as more sensitive when I(0) and I(1) alternatives are close together .4

5

The results are given in Tables 15 to 17. All tests were run at their automatic setting6

for lags. For all tests, the null hypothesis is that the series is I(1), and the alternative is7

that it is I(0); except for the KPSS test (where the null hypothesis is that the series is8

I(0), and the alternative is that it is I(1)).9

10

The ADF tests have been applied with an allowance for a drift and trend in the data,11

and the SIC was used to select degree of augmentation, k. For the KPSS tests the12

bandwidth, b, was selected using the Newey-West method, with the Bartlett kernel.13

14

The significance level each test meets or surpasses is indicated by an asterisk in each15

column of the table.16

17
Tables 15 to 17 show that the extra tests are not unanimous for the first-derivative18

CO2 series.19

20

The test using the alternative Schwartz or Akaike Information Criteria agree for two21

tests, DF-GLS and Ng-Perron. Here the I(0) statistical significance was between 0.0522

and 0.1. For the other two tests, the Akaike Information Criterion gave lower23

probabilities: Elliott-Rothenberg-Stock Point Optimal between 0.05 and 0.1; ADF24

greater than 0.1. For the Schwartz Information Criterion the figures were p<.01 and25

statistical significance was between 0.05 and 0.1.26

27

Finally, there were two tests – KPSS and Phillips-Perron –which used bandwidth28

criteria for the selection of an optimal lag length. Each of these tests characterised29

first-derivative CO2 as I(0): statistical significance was at 0.05 and 0.01 respectively.30

31

One of the tests recommended by Zivot and Wang (2006) for a series on the cusp of32

I(0) and I(1) – that of Elliot, Rothenberg, and Stock (1996) – gives a result for first33

difference CO2 from 1981 to 2012 of I(0) at better than the 1% level; however, the34
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similarly recommended Ng and Perron test gives I(0) at between the 5% and 10%1

level. Overall, three of the ten tests displayed probabilities of 5% or better, a further2

remaining six of between 5% and 10%. One of the 10 tests, the ADF under the Akaike3

Information Criterion, gave a result of greater than 10%.4

5

It can be argued that the foregoing tests overall lean towards CO2 from 1981 being6

I(0). To be conservative, however, in the following analyses first-derivative CO2 is7

assessed separately both as I(0) and I(1).8

9

10

4.4.2.2 Preparation of the pooled global NDVI series11

12

The Normalized Difference Vegetation Index (NDVI) involves direct (satellite-13

derived) measurement of terrestrial plant activity.14

15

To provide the full temporal span of the global NDVI data set used in this study, two16

NDVI series aggregated to global level were pooled. Each of the two series is derived17

from the same underlying spatially disaggregated Global Inventory Modeling and18

Mapping Studies (GIMMS) data set provided by the Global Land Cover Facility19

(GLCF) of the University of Maryland. This data is derived from imagery obtained20

from the Advanced Very High Resolution Radiometer (AVHRR) instrument carried21

by NOAA meteorological satellites. The two series enabled the longest time span of22

data aggregated at global level.23

24

Globally aggregated GIMMS NDVI data from the Global Land Cover Facility (GLCF)25

site is available from 1980 to 2006. This dataset is referred to here as NDVIG.26

Spatially disaggregated GIMMS NDVI data from the Global Land Cover Facility27

(GLCF) site is available from 1980 to end 2013. An analogous global aggregation of28

this spatially disaggregated GIMMS NDVI data – from 1985 to end 2013 – was29

obtained from the Institute of Surveying, Remote Sensing and Land Information,30

University of Natural Resources and Life Sciences, Vienna. This dataset is31

abbreviated to NDVIV.32

33

These two datasets were pooled as follows.34
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1
Figure 10 shows the appearance of the two series. Each series is Z-scored by the same2

common period of overlap (1985-2006). The extensive period of overlap can be seen,3

as can the close similarity in trend between the two series.4

5
6

The figure also shows that the seasonal adjustment smoothings vary between the two7

series. Seasonality was removed for the NDVIV series using the 13 month moving8

average smoothing used throughout this paper. This required two passes using the 139

month moving average, which leads to a smoother result than seen for the NDVIG10

series.11

12

Pretis and Hendry (2013) observe that pooling data (i) from very different13

measurement systems and (ii) displaying different behaviour in the sub-samples can14

lead to errors in the estimation of the level of integration of the pooled series.15

16

The first risk of error (from differences in measurement systems) is overcome as both17

the NDVI series are from the same original disaggregated data set. The risk associated18

with the sub-samples displaying different behaviour and leading to errors in levels of19

integration is considered in the following section by assessing the order of each input20

series separately, and then the order of the pooled series.21

22

Table 18 provides order of integration test results for the three NDVI series. The23

analysis shows all series are stationary (I(0)).24

25

Because of the comparability of the NDVI series specified above, the series were26

pooled by adding Z-scored NDVIV data to the Z-scored NDVIG data at the point27

where the Z-scored NDVIG data ended in the last month of 2006.28

29

30

4.4.3. Comparison of the pooled NDVI series with climate variables31

32

The process we follow in this section is outlined below:33

34
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Relevant correlations involving first-derivative CO2 characterised as I(1) are first1

assessed because of the near-stationarity of first-derivative CO2 for the period 1981 to2

2012.3

4

As a check, we assess whether first-derivative CO2 for the period from 1981 to 20125

has similar relationships to global surface temperature to those seen for the period6

1959 to 2012.7

8

We then explore remaining questions from our hypothesis concerning Granger9

causality and NDVI. These are firstly that there is Granger causality from first-10

derivative CO2 to NDVI, and secondly from temperature to NDVI. Finally, we ask11

whether NDVI is Granger-causal for the difference between the level-of-CO2 model12

for temperature and the observed temperature.13

14

Where each series in a series pair is stationary, assessments are done for each of the15

questions above both by OLS dynamic regression modelling, and by Granger16

causality testing. The dynamic modelling is informative in itself, but as outlined17

above also informs correct model specification in terms of optimising model18

independent-variable lag for Granger causality testing (Thornton and Batten 1985).19

20

The following information is relevant to each of the instances of OLS dynamic21

regression modelling which follow. As described in Section 4.1.3 Time series analysis22

of the ACPD paper, for OLS dynamic regression modelling, one must assess the23

extent (if any) of autocorrelation affecting the time series model. This is done by24

obtaining diagnostic statistics from an OLS regression. This regression shows, by25

means of the Breusch-Godfrey test for autocorrelation (up to order 20 – that is,26

including all monthly lags up to 20 months), .27

28

If autocorrelation is found, it is taken to be a consequence of an inadequate29

specification of the temporal dynamics of the relationship being estimated. With this30

in mind, a dynamic model (Greene 2012) with sufficient lagged values of the31

dependent variable as additional independent variables is estimated.32

33
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If the autocorrelation can be removed, this will be shown by the use of the LMF test,1

supporting the use of this dynamic model specification.2

3

4.4.3.1. First-derivative CO2 as I(1)4

Characterising first-derivative CO2 as I(1) means dynamic regression modelling of the5

type presented above cannot be used. As in Section 4.1.4 Granger causality analysis6

of the ACPD paper, one can still assess the answer to the question: “Is there evidence7

of Granger causality between first-derivative CO2 characterised as I(1) and relevant8

variables?” In this case the variables are global surface temperature and NDVI.9

10

11

4.4.3.1.1 Does first-derivative CO2 as I(1) display Granger causality of global12

surface temperature ?13

14

In answering this question, because the TEMP series is stationary, but the first-15

difference CO2 series is being treated as non-stationary (as integrated of order one,16

I(1)), the testing procedure is modified slightly. Once again, the levels of both series17

are used. This time a standard Vector Autoregressive (VAR) model is used. For each18

VAR model, the maximum lag length is determined, but then one additional lagged19

value of both TEMP and first-difference CO2 is included in each equation of the VAR.20

However, the Wald test for Granger non-causality is applied only to the coefficients21

of the original k lags of first-difference CO2. Toda and Yamamoto (1995) show that22

this modified Wald test statistic will still have an asymptotic distribution that is chi-23

square, even though the level of CO2 is non-stationary.24

25

Here the relevant Wald Statistic for the null hypothesis that is there is no Granger26

causality from first-derivative CO2 as I(0) to temperature is shown in Table 19 to27

produce a Chi-Square of 32.79 (p=0.0001).28

29

The high statistical significance in the p-value is strong evidence that first-derivative30

CO2, even treated as I(1), still displays Granger causality of temperature.31

32
33
34
35
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1
2

4.4.3.1.2 Does first-derivative CO2 as I(1) display Granger causality of NDVI?3
4

The identical steps to those in the previous section are used. Here the relevant Wald5

Statistic (Null hypothesis that is there is No Granger Causality from first-derivative6

CO2 as I(1) to temperature) is shown in Table 20 to produce a Chi-Square of 3.1847

(p=0.9223).8

9

Hence in contrast with temperature, for the I(1) characterisation first-derivative CO210

does not display Granger causality of NDVI.11

12

13
14

4.4.3.2 Characterising first-derivative CO2 as I(0)15
16

4.4.3.2.1. Does first-derivative CO2 as I(0) still display Granger causality of17
temperature for the 1981 to 2012 period?18

19
A key finding earlier in the paper is that for the period 1959 to 2012, first-derivative20

CO2 leads global surface temperature, is significant in an OLS dynamic regression21

model and is Granger-causal of global surface temperature. This section repeats that22

analysis (characterising first-derivative CO2 as I(0)) for the period used for the NDVI23

data, 1981 to 2012.24

25

Figure 11 displays the data series, and shows the similarity between the Z-scored26

curves.27
28
29

Inspection of Table 21 shows that a highly statistically significant model has been30

established. First it shows that the temperature in a given period is strongly31

influenced by the temperature of closely preceding periods. Further it provides32

evidence that there is also a clear, highly statistically significant role in the model for33

first-derivative CO2 for the period from 1981 to 2012 just as for the period from 195934

to 2012.35

36

The next section assesses whether first-derivative CO2 can be considered to display37

Granger causality for global surface temperature for the 1981 to 2012 period.38

39
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The relevant EViews output is from the Pairwise Granger Causality Test. Table 221

documents the following summary results: F-statistic 5.02 (p-value = 0.01).2

The forgoing statistic shows that the null hypothesis is rejected: in other words, there3

is strong evidence of Granger Causality from first-derivative CO2 to global surface4

temperature for the shorter 1981 to 2012 period.5

6
7

The table shows that the same first-derivative CO2 which, characterised as I(1),8

displayed Granger causality for temperature (Table 19), characterised as I(0) also9

displays Granger causality for temperature.10

11

12
4.4.3.3. Granger causality of NDVI13

14
4.4.3.3.1 Does first-derivative CO2 as I(0) display Granger causality of NDVI ?15

16
Figure 12 shows Z-scored values for first-derivative CO2 and NDVI. Considerable17

similarity between the signatures is seen.18

19
An OLS dynamic regression model is set up using the procedure outlined in Section20

3.2 above. Results are given in Table 23.21
22
23

Inspection of Table 23 shows that a highly statistically significant model has been24

established. First it shows that as seen for temperature, the NDVI in a given period is25

strongly influenced by the NDVI of closely preceding periods. Further it provides26

evidence that there is also a statistically significant role in the model for first-27

derivative CO2..28

29

The next sections assess whether first-derivative CO2 can be considered to display30

Granger causality of NDVI. Two assessments are made using different criteria for lag31

selection: the first using the Akaike Information Criterion; the second using the32

method of extensive search of the lag space (Thornton and Batten, 1985).33

34
The relevant EViews output is from the Pairwise Granger Causality Test and Table 2435

documents the following summary results: F-statistic 3.01 (p-value = 0.05).36

This statistic shows that using the Akaike Information Criterion for lag selection the37

null hypothesis is very slightly accepted: in other words, for the AIC there is (by a38
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very narrow margin) an absence of evidence of Granger Causality from first-1

derivative CO2 to NDVI.2

3
Given the above result, what is the result from the extensive search method? The4

relevant EViews output is again from the Pairwise Granger Causality Test and Table5

25 provides the following results: F-statistic 5.11 (p-value = 0.024).6

This statistic shows that using the extensive search method for lag selection, the null7

hypothesis is rejected by a greater amount than for the AIC method, which reaches8

statistical significance: in other words, there is evidence of Granger Causality from9

first-derivative CO2 to NDVI.10

11

In summary, under the I(0) characterisation, first-derivative CO2 displays Granger12

causality of NDVI, while under I(1), it does not.13

14
15

16
17

4.4.3.3.2 Does TEMP display Granger causality of NDVI?18
19

Figure 13 shows Z-scored values for first-derivative CO2 and NDVI. With the20

exception of the period 2003-2004, considerable similarity between the signatures is21

seen.22

23
An OLS dynamic regression model is set up using the procedure outlined in Section24

3.2 above. Results are given in Table 26.25
26
27

Inspection of Table 26 shows that a highly statistically significant model has been28

established. First it shows that, as seen for first-derivative CO2, the NDVI in a given29

period is strongly influenced by the NDVI of closely preceding periods. Further it30

provides evidence that there is also a highly statistically significant role in the model31

for temperature.32

33
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The next section assesses whether temperature can be considered to display Granger1

causality of NDVI. The relevant EViews output is again from the Pairwise Granger2

Causality Test and is shown in Table 27.3

4
5
6

Table 27 documents the following summary results: F-statistic 11.59 (p-value =1.00E-7

05). This statistic shows that the null hypothesis is rejected, by a highly statistically8

significant amount: in other words, there is strong evidence of Granger causality from9

temperature to NDVI.10

11
12
13

4.4.3.3 Does NDVI display Granger causality of the difference between the level-14
of-CO2model for temperature and the observed temperature?15

16
17

Figure 14 shows Z-scored values for f NDVI and the difference between the Z-scored18

level of atmospheric CO2 (standing for the level-of-CO2 model for temperature) and19

the Z-scored observed temperature. Considerable similarity between the signatures is20

seen.21

22
An OLS dynamic regression model is set up using the procedure outlined in Section23

3.2 above. Results are given in Table 28.24

25
Inspection of Table 28 shows that a highly statistically significant model has been26

established. First it shows that the difference between the level-of-CO2 model for27

temperature and the observed temperature in a given period is strongly influenced by28

that of closely preceding periods. Further it provides evidence that there is also a29

clear, highly statistically significant role in the model for NDVI.30

31

With these results, Figure 15 is as for Figure 14 but with the NDVI series led32

indicated by the OLS dynamic regression modelling in Table 25.33

34
35

A marked overall similarity between the two series is seen, both in core trend (as36

illustrated by polynomial curves of best fit) and in details of signature.37
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1

The next sections assess whether NDVI can be considered to display Granger2

causality of the difference between the level-of-CO2 model for temperature and the3

observed temperature . As for first-derivative CO2 and NDVI in Section 3.2.2.1 above,4

two assessments are made using different criteria for lag selection: the first using the5

Akaike Information Criterion; the second using the method of extensive search of the6

lag space (Thornton and Batten, 1985).7

8

The relevant EViews output is from the Pairwise Granger Causality Test and Table 299

documents the following summary results: F-statistic 1.03 (p-value = 0.36).10

This statistic shows that using the Akaike Information Criterion for lag selection, the11

null hypothesis is rejected: in other words, for the AIC there is an absence of evidence12

of Granger causality from NDVI to the difference between the level-of-CO2 model for13

temperature and the temperature observed.14

15

The relevant EViews output from the extensive search method is again from the16

Pairwise Granger Causality Test and Table 30 documents the following summary17

results: F-statistic 1.81 (p-value = 0.03). This statistic shows that using the extensive18

search method for lag selection, the null hypothesis is rejected: in other words, there is19

evidence of Granger causality from first-derivative CO2 to NDVI.20

The way in which the search reveals the statistically significant lag is depicted21

visually in Figure 16. Note the statistical significance of results of tests based on lags22

14 to 16.23

24

Considering the results of Section 4.4 overall, the following analysis is made.25

26

Even considering first-derivative CO2 as possibly being I(1) for the period 1981 to27

2012, it is believed that there is sufficient redundancy in the range of data series and28

relationships used in the NDVI section to answer the question as to whether29



90

vegetation at global scale causes the difference between the linear CO2-temperature1

model and observed temperature.2

3

The redundancy comes about as follows. The Granger-causality with Toda-4

Yamamoto procedure results in Tables 16 and 17 show that, while first-derivative5

CO2 as I(1) does not display Granger causality of NDVI, first-derivative CO2 as I(1)6

does display Granger causality of temperature. And temperature characterised as7

I(0) – as it unambiguously is shown to be (Table 11) – is shown to display Granger8

causality of NDVI (Table 14).9

10

So whichever level of integration first-difference CO2 is characterised as, adequate11

dynamic-regression and Granger-causality linkages are in place for the flow of12

causality from first-derivative CO2 and temperature to NDVI.13

14

It is also shown, in this case without ambiguities concerning the I(0) nature of series,15

that NDVI displays Granger causality of the difference between the linear CO2-16

temperature model and observed temperature.17

18

In conclusion, it is considered that the results in this section show a Granger-causal19

chain from first-derivative CO2 and temperature to NDVI, and from NDVI to the20

difference between the linear CO2-temperature model and observed temperature.21

22
23

5 Discussion24
25
26

Firstly it is noted that the results in this paper show that there are clear links - at the27

highest standard of non-experimental causality: that of Granger causality – between28

all of first- and second-derivative CO2, global surface temperature,SOI and NDVI.29

30

Given the extensiveness of these Granger causality results, it is worth at the outset31

revisiting the question of the strength of the causality evidence which arises from32

Granger causality analysis.33

34
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As discussed in Section 3. Data and Methods of the ACPD paper, Stern and Kander1

(2011) observe that Granger causality is not identical to causation in the classical2

philosophical sense, but it does demonstrate the likelihood of such causation or the3

lack of such causation more forcefully than does simple contemporaneous correlation.4

However, where a third variable, z, drives both x and y, x might still appear to drive y5

though there is no actual causal mechanism directly linking the variables. Any such6

third variable must have some plausibility.7

8

Turning to the plausibility of any (currently missing) third variable driving both9

climate and vegetation, it is noted that this third variable must have energetics on a10

scale of an order analogous to those of global vegetation and climate.11

12

The ocean is one such candidate in terms of energetics, but it is noted that its13

dynamics are of far lower frequency – are more damped – than those of observed for14

global vegetation and climate.15

16

It is noted that until a plausible third candidate is found, Granger causality evidence17

for causality is effectively equivalent to experimental evidence for causality.18

19

Furthermore, there is support for the present Granger causality findings from evidence20

at the level of the causality “gold standard”, the experiment – direct manipulation of21

variables in terms of subject and control group categories. This evidence comes from22

the results of direct experimentation on plants Dieleman et al. (2012) outlined in23

Section 2.2 above. This experimental evidence for separate CO2 and temperature24

effects on plant growth is consistent with that for the effects of CO2 and temperature25

on NDVI from the present Granger causality analysis.26

27

Concerning statistical significance, the results show that relationships between first-28

and second-derivative CO2 and climate variables are present for all the time scales29

studied: that is, including temporal start points situated as long ago as 1500. In the30

instances where time series analysis accounting for autocorrelation could be31

successfully conducted, the results were always statistically significant. For the32

further instances (commencing in 1500) the data was not amenable to time series33

analysis due to the strongly smoothed nature of the temperature data making removal34
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of the autocorrelation impossible (see Section 4.3). Nonetheless the scale of the non-1

corrected correlations observed were of the same order of magnitude as those of the2

instances that were able to be corrected for autocorrelation.3

4

Turning to the time scales over which these effects are observed, taken as a whole the5

results clearly suggest that the mechanism observed is long term, and not, for example,6

a creation of the period of the steepest increase in anthropogenic CO2 emissions which7

commenced in the 1950s (IPCC, 2013).8

9

A further notable finding is the major role of immediate past instances of the10

dependent variable in its own present state. This was found in all cases where time11

series models could be prepared, and was true for temperature, SOI and NDVI. This12

was not to detract from the role of first- and second-derivative CO2 – in all relevant13

cases, they were significant in the models as well.14

15

A number of points arise from the NDVI results. First, as mentioned in the16

Introduction, the standard notion of the greenhouse effect suggested by general17

circulation climate models (GCMs) (IPCC, 2013) has it that global temperature will18

rise almost linearly with an increasing level of global atmospheric CO2. As also19

mentioned in the Introduction, in recent years global surface temperature has trended20

below that predicted by these models.21

22

The results in Section 4.4 show that the NDVI signature closely fits this difference23

between GCM models and the observed temperature, and displays Granger causality24

of it. As the NDVI time series represents the changing levels of activity of the25

terrestrial biosphere, this result provides strong evidence that the terrestrial biosphere26

mechanism is the cause of the departure of temperature from that predicted by the27

level-of-CO2 mechanism alone.28

29

The above said, these results are supportive of the anthropogenic global warming30

hypothesis. Firstly, the results show that variations in atmospheric carbon dioxide31

influence surface temperature. First-derivative atmospheric CO2 is shown to drive32

global temperature and the results deepen the support for CO2 affecting climate, in33

that second-derivative CO2 is shown to drive the SOI. Lastly, the results show that the34
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NDVI signature fits the difference between the global surface temperature observed1

trend and that suggested by the standard AGW hypothesis / radiative forcing2

mechanism. This fit provides evidence that the terrestrial biosphere mechanism is the3

cause of this departure of temperature from that predicted by the standard AGW4

hypothesis / level-of-CO2 forcing mechanism alone. In other words, the results5

provide evidence for the case that the final warming achieved is the result not of one6

mechanism – the physical greenhouse gas radiative mechanism embodied in the7

standard anthropogenic global warming hypothesis – but of the interaction of that8

mechanism with a second, residing in the terrestrial biosphere.9

10

(If so, it is notable that CO2 is having two different influences on climate through two11

quite different mechanisms – the first, a radiative one, with CO2 as a greenhouse gas,12

the second as a result of plants utilising CO2 as a resource!)13

Research questions arising from these results include those of (i) the conditions under14

which the current increase in plant biomass can be expected to continue, and (ii) the15

range of alternative expected future trajectories for human greenhouse gas emissions.16

Obviously the combinations of the extremes of these ranges may produce quite17

different future climate trend outcomes.18

If plants are the agents of these phenomena, then plants would require mechanisms to:19

(i) detect rate of change of relevant environmental cues, including CO2; and (ii)20

because of the evidence provided in this paper for the major role of immediate past21

instances of the dependent variable in its own present state, provide a capacity for22

“memory”, for periods not only of months but of years.23

24

This section reviews evidence from plant research relevant to both of these points.25

26

First we consider the mechanism of plant responsiveness to atmospheric CO2. With27

regard to responsiveness in general (for review see Volkov and Markin 2012), it has28

been shown that plants can sense mechanical, electrical and electromagnetic stimuli,29

gravity, temperature, direction of light, insect attack, chemicals and pollutants,30

pathogens, water balance, etc. Looking more closely at responsiveness to CO2, for the31

stomata of plants – the plant components which regulate gas exchange including CO232
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and oxygen at the plant surface – extensive research (for example, Maser et al., 2003)1

has shown that a network of signal transduction mechanisms integrates water status,2

hormone responses, light, CO2 and other environmental conditions to regulate3

stomatal movements in leaves for optimization of plant growth and survival under4

diverse conditions.5

6

While we have not been able to find studies measuring such sensitivity to stimuli in7

rate of change and acceleration terms – that is, in terms of first- and second-8

derivatives – such sensitivity is widely present in animal systems (for example in the9

form of acceleration detectors for limb control (Vidal-Gadea et al. 2010)). Indeed10

Spitzer and Sejnowski (1997) argue that rather than occurring rarely, such11

differentiation and other computational processes are present and potentially12

ubiquitous in living systems, including at the single-celled level where a variety of13

biological processes – concatenations of chemical amplifiers and switches – can14

perform computations such as exponentiation, differentiation, and integration.15

16

Plants with the ability to detect the rate of change of resources – especially scarce17

resources – would have a clear selective advantage. First and second derivatives, for18

example, are each leading indicators of change in the availability of a given resource.19

Leading indicators of change in CO2 would enable a plant’s photosynthetic apparatus20

to be ready in advance to harvest CO2 when, for seasonal or other reasons, increasing21

amounts of it become available. In this connection, it is noteworthy that second-22

derivative capacity would provide greater advance warning than first.23

24

Has CO2 ever been such a scarce resource? According to Ziska (2008) plants evolved25

at a time of high atmospheric carbon dioxide (4-5 times present values), but26

concentrations appear to have declined to relatively low values during the last 25-3027

million years. Therefore, it has been argued that for the last c. 20 million years,28

terrestrial plant evolution has been driven by the optimisation of the use of its scarce29

‘staple food’, CO2.30

.31

In this connection, a review by Franks et al. (2013) points out that plants have been32

equipped with most, if not all, of the fundamental physiological characteristics33
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governing net CO2 assimilation rate (e.g. stomata, chloroplasts, leaves, roots,1

hydraulic systems) for at least 370 million years. Given that atmospheric CO22

has fluctuated at least five to ten times its current ambient concentration over the3

same period, it is possible, even likely, that a generalised long-term net CO24

assimilation rate versus atmospheric CO2 relationship evolved early in the history of5

vascular plants.6

7

What mechanism in plants might provide memory capacity? Studies of vernalization –8

the capacity of some plants to flower in the spring only after exposure to prolonged9

cold – show that some plants must not only have the capacity to sense cold exposure10

but also have a mechanism to measure the duration of cold exposure and then store11

that information (Amasino 2004). In some species this “memory” of vernalization can12

be maintained for up to 330 days (Lang 1965).13

14

With the foregoing points, the plant model seems worthy of further consideration.15

Many of the questions of mechanism seem ideal for laboratory experiments.16

17

6. Conclusion18

19

Prior to the present paper, observational studies at global level and experimental20

studies at laboratory level had provided evidence that plants might be a factor in21

explaining the difference between the level-of-CO2model for temperature and the22

observed temperature.23

24

At global level, this evidence was only correlational. Questions of cause and effect25

were not settled, and the potential scale of any effect had not been quantified.26

27

Concerning quality of evidence, the laboratory evidence was considered to be at “gold28

standard” – that of the experiment (involving the direct manipulation of variables in29

terms of subject and control groups). The laboratory experiments showed that30

responsiveness of plants to temperature and CO2 was present which could fully enable31

plants to be a factor in explaining the climate model/temperature difference. What32

could not be known from laboratory experiments was whether or not these attributes33
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of individual plants could sum coherently to produce discernable results at global1

scale.2

3

The present results using Granger causality throw light on the above questions. They4

show that the responsiveness of plants to temperature and CO2 seen at laboratory level5

is clearly discernable at global level.6

7

The results showing this are two-fold. The first is the coherent presence of a CO28

signature in a measure of the aggregate of global terrestrial photosynthetic activity,9

the NDVI. The second is the similarly coherent presence of the NDVI signature in the10

difference between the level-of-CO2 model for temperature and the observed11

temperature.12

13

It is believed that the results in this paper provide strong evidence that the global14

climate is the result of the combination of two mechanisms – one, a physical15

mechanism based on the level of atmospheric CO2, the other a mechanism embodied16

in the terrestrial biosphere and based on the rate of change of CO2.17

4.4 Normalized Difference Vegetation Index (NDVI) data18

19

This section now investigates the land biosphere as a candidate for the foregoing20

effects, in particular the increasing difference between the global surface temperature21

trend suggested by general circulation climate models and that observed.22

23

The level of atmospheric CO2 is a good proxy for the IPCC models predicting the24
global surface temperature trend: according to IPCC (2013), on decadal to25
interdecadal time scales and under continually increasing effective radiative forcing26
(ERF), the forced component of the global surface temperature trend responds to the27
ERF trend relatively rapidly and almost linearly. On this basis an indicator of the28
difference between the climate model trend and the observed temperature is prepared29
by subtracting the Z-scored actual temperature trend from the Z-scored CO2 trend.30

31
32

The trend in the terrestrial CO2 sink is estimated annually as part of assessment of the33

well known global carbon budget (Le Quere at al., 2014). It is noted that there is a34

risk of involving a circular argument concerning correlations between the terrestrial35

CO2 sink and interannual (first derivative) CO2 because the terrestrial CO2 sink is36
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defined as the residual of the global carbon budget (Le Quere at al., 2014). By1

contrast, the Normalized Difference Vegetation Index (NDVI) involves direct2

(satellite-derived) measurement of terrestrial plant activity. For this reason, and3

because of the two series only NDVI is provided in monthly form, we will use only4

NDVI in what follows.5

6
Figure 10 plots the trends since the start of the NDVI record in 1981 for the difference7

between the observed trends in level of atmospheric CO2 and in global surface8

temperature; the Southern oscillation index; and global NDVI.9

10
Figure 10 shows: the signature of the increasing difference between CO2 trend and11

temperature trend in recent years; close apparent correlation of the difference with12

NDVI; and also with SOI. Perhaps the major variation between the curves coincides13

with volcanic aerosols from the Pinatubo eruption in 1992 (Lean and Rind 2009).14

15

The following section assesses the strength of the correlations depicted in Figure 10.16

To start with, it is noted that all three series used meet the time-series analysis17

criterion of stationarity (Dickey-Fuller test, Table 11).18

19
20

The next two analyses (for full model outputs see tables S4 and S5) provide dynamic21

models set up based on Breusch-Godfrey test results indicating the number of lags22

displaying autocorrelation. The models are for the relationship between the NDVI and,23

first, the difference between level of CO2 and temperature, and second, with SOI.24

25
26
27

The models show that the partial regression coefficient of NDVI with the difference28

between level of CO2 and temperature is statistically significant, and that that with29

SOI approaches statistical significance.30

31

It is noted from Table S4 and Figure 10 that the climate variable SOI leads the32

observed behaviour of the putative causal variable NDVI. Does this remain consistent33

with the hypothesis put forward in this paper that the first mover in the observed34

climate cycles might be the detection by plants of the second-derivative CO2 trend? It35

is argued that it does remain consistent because, while SOI is shown in Table S5 to36
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lead NDVI, second-derivative CO2 has earlier (Figures 7 and 8, and Tables S1 and S2)1

been shown to lead SOI. (This lead is by two months or three months depending on2

the period assessed.)3

4

The observation was made above concerning Figure 7 that the signatures of all three5

curves in the figure were so essentially similar that it was almost as if all three were6

different versions of - or responses to - the same initial signal. This set of signatures7

can now have added to it the further similar signature of the NDVI. It may be that the8

NDVI embodies the initial signal.9

10
11

12
5 Discussion and conclusions13

14
The results from the foregoing are summarised and compared in Table 12.15

16

Table 12 and reference to the relevant figures show that relationships between first17

and second-derivative CO2 and climate variables are present at all the time scales18

studied, that is, including temporal start points situated as long ago as 1500. In the19

five instances where time series analysis accounting for autocorrelation could be20

successfully conducted, the results were statistically significant (two tailed test) in21

four of the five cases, and significant at one-tailed test level in the fifth. While for the22

two further instances (commencing in 1500) the data was not amenable to time series23

analysis, the correlations visually observed were consistent with the instances that24

were. Taken as a whole the results clearly suggest that the mechanism observed is25

long term, and not, for example, a creation of the period of steepest anthropogenic26

CO2 emissions increase commencing in the 1950s (IPCC 2013).27

28
A second notable finding highlighted by the bringing together of results in Table 1229

is the major role of immediate past instances of the dependent variable in its own30

present state. This was found to be the case in all instances where time series models31

could be prepared. This was true for both temperature and SOI. This was not to take32

away from first and second-derivative CO2 – in all the cases just mentioned, they were33

significant in the models as well. Further, and perhaps equally notably, each was34

shown to be Granger-causal to its relevant climate outcome.35
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1

A driver of the research for this paper has been the substantial pre-existing body of2

knowledge suggesting that the land biosphere is linked to the interannual (first-3

derivative) CO2 signature. The new phenomenology characterised in this paper is4

consistent with the first-derivative results and adds the further phenomenology of the5

autocorrelation results. If plants are the agents of these phenomena it is required that6

plants contain mechanisms to: (i) detect rate of change of relevant environmental7

cues, including CO2; and (ii) provide a capacity for “memory”, for periods not only of8

months but years.9

10

This section reviews evidence from plant research relevant to both these points.11
12

We consider first the mechanism of plant responsiveness to atmospheric CO2.13

Concerning responsiveness in general (for review see Volkov and Markin 2012) it has14

been shown that plants can sense mechanical, electrical and electromagnetic stimuli,15

gravity, temperature, direction of light, insect attack, chemicals and pollutants,16

pathogens, water balance, etc. Concerning responsiveness to CO2, for the stomata of17

plants – the plant components which regulate gas exchange including CO2 and oxygen18

at the plant surface – extensive research (for example, see Maser et al., 2003) has19

shown that a network of signal transduction mechanisms integrates water status,20

hormone responses, light, CO2 and other environmental conditions to regulate21

stomatal movements in leaves for optimization of plant growth and survival under22

diverse conditions.23

24

While we have not been able to find studies measuring such sensitivity to stimuli in25

rate of change and acceleration terms – that is, in terms of first- and second-26

derivatives – nonetheless such sensitivity is widely present in animal systems, for27

example, in the form of acceleration detectors for limb control (Vidal-Gadea et al.28

2010). Indeed Spitzer and Sejnowski (1997) argue that rather than occurring rarely,29

such differentiation and other computational processes are present and potentially30

ubiquitous in living systems, including at the single-celled level where a variety of31

biological processes — concatenations of chemical amplifiers and switches — can32

perform computations such as exponentiation, differentiation, and integration.33
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1

Plants with the ability to detect the rate of change of resources – especially scarce2

resources - would have a clear selective advantage. First and second derivatives, for3

example, are each leading indicators of change in the availability of a given resource.4

Leading indicators of change in CO2would enable a plant’s photosynthetic apparatus5

to be ready in advance to harvest CO2when, for seasonal or other reasons, increasing6

amounts of it become available. In this connection, it is noteworthy that second-7

derivative capacity would provide greater advance warning than first.8

9

Has CO2 ever been such a scarce resource? According to Ziska (2008) plants evolved10

at a time of high atmospheric carbon dioxide (4-5 times present values), but11

concentrations appear to have declined to relatively low values during the last 25-3012

million years. Therefore, it has been argued that for the last c. 20 million years,13

terrestrial plant evolution has been driven by the optimisation of the use of its scarce14

‘staple food’, CO2.15

16

In this connection, a review by Franks et al. (2013) points out that plants have been17

equipped with most, if not all, of the fundamental physiological characteristics18

governing net CO2 assimilation rate (e.g. stomata, chloroplasts, leaves, roots,19

hydraulic systems) for at least 370 million years. Given that atmospheric CO2 has20

fluctuated at least five- to ten-fold its current ambient concentration over the same21

period, it is possible, even likely, that a generalised long-term net CO2 assimilation22

rate vs atmospheric CO2 relationship evolved early in the history of vascular plants.23

24

Turning to memory capacity, what mechanism in plants might provide it? Studies of25

vernalization - the capacity of some plants to flower in the spring only after exposure26

to prolonged cold – show (Amasino 2004) that some plants must not only have the27

capacity to sense cold exposure but also have a mechanism to measure the duration of28

cold exposure and then store that information. In some species this “memory” of29

vernalization can be maintained for up to 330 days (Lang 1965).30

31
With the foregoing points, the plant model seems worthy of further consideration.32

Many of the questions of mechanism seem ideal for laboratory experiments.33

34
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2

3

4

5

Table 1. Lag of first-derivative CO2 relative to surface temperature series for global,6
tropical, northern hemisphere and southern hemisphere categories7

8
9

Lag in
months of
first-
derivative
CO2 relative
to global
surface
temperature
category

hadcrut4SH -1

hadcrut4Trop -1

HadCRUT4_nh -3

hadcrut4Glob -2
10
11
12
13

14

15

16

17

18

19

20

21
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Table 2. Lag of FIRST-DERIVATIVE CO2 relative to surface temperature series for5
global, tropical, northern hemisphere and southern hemisphere categories, each for6
three time-series sub-periods7

Temperature
category

Time
period

Lag of first-
derivative
CO2 relative
to global
surface
temperature
series

NH
1959.87 to
1976.46 -6

NH

1976.54 to
1993.21 -6

Global
1959.87 to
1976.46 -4

SH
1959.87 to
1976.46 -3

Global

1976.54 to
1993.21 -2

Tropical
1959.87 to
1976.46 0

Tropical

1976.54 to
1993.21 0

Tropical
1993.29 -
2012.37 0

Global
1993.29 -
2012.37 0

NH
1993.29 -
2012.37 0

SH

1976.54 to
1993.21 0

SH
1993.29 -
2012.37 0

8

9

10
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1

2

3
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Table 3: Augmented Dickey–Fuller (ADF) test for tests for unit roots stationarity in5

monthly data 1969 to 2012 for global surface temperature, level of atmospheric CO26

and first-derivative CO27

8
9

ADF statistic* p-value Test interpretation
TEMP -6.942 0.000 Stationary
FIRST-
DERIVATIVE
CO2 -4.646 0.001 Stationary
CO2 -1.222 0.904 Non-stationary
* The Dickey-Fuller regressions allowed for both drift and trend; the augmentation level10

was chosen by minimizing the Schwarz Information Criterion.11

12

Table 4. OLS dynamic regression between first-derivative atmospheric CO2 and13
global surface temperature for monthly data for the period 1959 - 2012, with14
autocorrelation taken into account15

16

Independent
variable/s [1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led2mx13mma
1stderiv CO2 TEMP 0.097 <0.00001 0.861

6.70E-
273 0.144

Led1mTEMP 0.565 <0.00001
Led2mTEMP 0.306 <0.00001

[1] Z-scored17
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation18

19

20

Table 5. Pairwise correlations (correlation coefficients (R)) between selected climate21
variables22

23

2x13mmafirstderiv
CO2 Hadcrut4Global 3x13mma2ndderivCO2

Hadcrut4Global 0.7 1
3x13mma2ndderivCO2 0.06 -0.05 1



111

13mmaReverseSOI 0.25 0.14 0.37
1
2
3
4

Table 6. Pairwise correlations (correlation coefficients (R)) between selected climate5
variables, phase-shifted as shown in the table6

7
8

Led2m2x13mmafirstder
ivCO2

Hadcrut4Gl
obal

Led4m3x13mma2ndderi
vCO2

Hadcrut4Global 0.71 1
Led4m3x13mma2ndderi
vCO2 0.23 0.09 1

13mmaReverseSOI 0.16 0.14 0.49
9

10
Table 7. Pairwise correlations (correlation coefficients (R)) between selected climate11
variables, phase-shifted as shown in the table12

13

ZLed2m2x13mma2ndderiv
CO2

ZReverseLongPaddock
SOI

ZReverseLongPaddockSOI
0.28 1.00

ZLed3m13mmafirstderivhadcrut4
global 0.35 0.41

14

Table 8. OLS dynamic regression between second-derivative atmospheric CO2 and15
reversed Southern Oscillation Index for monthly data for the period 1959 - 2012, with16
autocorrelation taken into account17

18

Independent
variable/s [1]

Dep-
endent
variable [1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led3m2x13mma
1stderivCO2 ReverseSOI 0.07699 <0.011 0.478

1.80E-
89 0.214

Led1mReverseSOI 0.456 <0.00001
Led2mreverseSOI 0.272 <0.00001

[1] Z-scored19
[2] Whole model: LM test for autocorrelation up to order 12 - Null hypothesis: no autocorrelation20

21

22

23
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1

2

Table 9. OLS dynamic regression between first-derivative global surface temperature3
and reversed Southern Oscillation Index for monthly data for the period 1877-2012,4
with autocorrelation taken into account5

6

Indep-endent variable/s
[1]

Dep-
endent
variable [1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Led3m12mma1stderivTEMP
ReverseSOI 0.140 <0.00001 0.466

3.80E-
221 0.202

Led1mReverseSOI 0.465 <0.00001
Led2mReverseSOI 0.210 <0.00001

[1] Z-scored7
[2] Whole model: LM test for autocorrelation up to order 3 - Null hypothesis: no autocorrelation8

9
10
11

12

Table 10: Augmented Dickey–Fuller (ADF) test for stationarity for monthly data13

1959 to 2012 for second-derivative CO2 and sign-reversed SOI14

15
16

ADF statistic p-value Test interpretation
Second-
derivative
CO2 -10.077 0.000 Stationary
Sign-
reversed SOI -6.681 0.000 Stationary

17

18

Table 11. VAR Residual Serial Correlation LM Tests component of Granger-19

causality testing of relationship between second-derivative CO2 and SOI. Initial 2-lag20

model21

22

Lag order LM-Stat P-value*
1 10.62829 0.0311
2 9.71675 0.0455
3 2.948737 0.5664
4 9.711391 0.0456
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5 10.67019 0.0305
6 37.13915 0
7 1.268093 0.8668

*P-values from chi-square with 4 df.

1

Table 12. VAR Residual Serial Correlation LM Tests component of Granger-2

causality testing of relationship between second-derivative CO2 and SOI. Preferred 3-3

lag model4

5

Lag order LM-Stat P-value*
1 1.474929 0.8311
2 4.244414 0.3739
3 2.803332 0.5913
4 13.0369 0.0111
5 8.365221 0.0791
6 40.15417 0
7 1.698265 0.791

*P-values from chi-square with 4 df.
6
7

Table 13. Correlations (R) between paleoclimate CO2 and temperature estimates8

1500-19409

Temperature
(speliothem)

Temperature
(tree ring)

Level of CO2 (ice
core) 0.369 0.623
1st deriv. CO2 (ice
core) 0.558 0.721

10

11

Table 14: ADF test results for time series based on automatic Schwarz Information12
Criterion (SIC) lag length selection13

14
15

ADF
Prob.

1stderivCO2
Lag Length: 15
(Automatic - based
on SIC, maxlag=16) 0.0895

Temp

Lag Length: 1
(Automatic - based
on SIC,
maxlag=16) 0.0000
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NDVI

Lag Length: 1
(Automatic - based
on SIC, maxlag=16 0.0000

Climate
model/temperature
difference

Lag Length: 1
(Automatic - based
on SIC, maxlag=16) 0.0000

1

2
Table 15. Order of integration test results for first-derivative CO23
for monthly data from 1981-2012. The Akaike information criterion (AIC) was used4
to select an optimal maximum lag length (k) for the variables in the test. The null5
hypothesis for the tests is non-stationarity, except for the KPSS test for which the null6
hypothesis is stationarity.7

8
9

Test
critical
values ADF

DF-
GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -2.75 -2.73 5.77 6.11

1% level -3.98 -3.48 3.97 4.03
5% level -3.42 -2.90 5.63 5.48

10%
level -3.13 -2.58* 6.89* 6.67*

(1) Significant at <1% level10
11
12
13
14

Table 16. Order of integration test results for first-derivative CO215
for monthly data from 1981-2012. The Schwartz information criterion (SIC) was16
used to select an optimal maximum lag length (k) for the variables in the test. The17
null hypothesis for the tests is non-stationarity, except for the KPSS test for which the18
null hypothesis is stationarity.19

20
21

Test
critical
values ADF DF-GLS

Elliott-
Rothenberg-
Stock Point
Optimal

Ng-
Perron -
Modified
ERS
Point
Optimal
statistic

Test
statistic -3.183 -2.73 3.193 6.105

1% level -3.984 -3.476 3.971* 4.03
5% level -3.422 -2.898 5.625 5.48

10%
level -3.134* -2.585* 6.886 6.670*
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1
2
3
4
5
6
7
8
9

Table 17. Order of integration test results for first-derivative CO2 for monthly data10
from 1981-2012. Tests use bandwidth criteria for lag selection. The null hypothesis11
for the tests is non-stationarity, except for the KPSS test for which the null hypothesis12
is stationarity.13

14

Test
critical
values

KPSS
does
not use
AIC or
SIC

Phillips-
Perron
does
not use
AIC or
SIC

Test
statistic 0.07 -3.60

1% level 0.22* -3.98
5% level 0.15 -3.42*

10%
level 0.12 -3.13

15
16
17

Table 18. Order of integration test results for NDVI series for monthly data from18
1981-2012. The Schwartz Information Criterion (SIC) was used to select an optimal19
maximum lag length in the tests.20

21

NDVI
Series Null Hypothesis: the series has a unit root

Probability
of unit
root

NDVIV
Lag Length: 16 (Automatic - based on SIC,
maxlag=16) 0.0122

NDVIG Lag Length: 1 (Automatic - based on SIC, maxlag=15) 7.23e-14
NDVIGV Lag Length: 1 (Automatic - based on SIC, maxlag=16) 4.18E-16

22

Table 19. Pairwise Granger causality tests for first-derivative CO2 and temperature23
24

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation
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TEMP does
not GC
1stderivCO2

8

Add one
more lag to
allow for fact
that 1stderiv
CO2 is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

378 369 7.39 8 p=0.4962

TEMP does
not GC
1stderivCO
2

1stderivCO2
does not
GC TEMP 8 378 369 32.79 8 p=0.0001

1stderivCO
2
does GC
TEMP

1
2

Table 20. Pairwise Granger causality tests for first-derivative CO23
characterised as I(1) and NDVI4

5

Null
Hypothesis:

Lags
suggest-
ed by
AIC

Number of
lags imple-
mented

Total
observ-
ations

Included
observ-
ations Chi-sq df Prob.

Interpret-
ation

NDVI does
not GC
1stderivCO2

8

Add one
more lag to
allow for fact
that 1stderiv
CO2

is
characterised
I(1), but don't
include extra
lag in GC
test (Toda
and
Yamamoto ,1
995)

378 369 3.184 8 p=0.9223

NDVI does
not GC
1stderivCO
2

1stderivCO2
does not
GC NDVI 8 378 369 12.312 8 p=0.1378

1stderivCO
2

does not
GC NDVI

6
7
8

Table 21. OLS dynamic regression between first-derivative atmospheric CO29
and global surface temperature for monthly data for the period 1981-2012, with10
autocorrelation taken into account11

12

Independent variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test
for
autocorr-
elation
[2]

Twox13mma1stderivCO2 TEMP 0.107 0.00077 0.770 4.00E-
118 0.445

Led1mTEMP 0.545 <0.00001
Led2mTEMP 0.293 <0.00001

[1] Z-scored13
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation14

15
16
17
18

Table 22. Pairwise Granger causality tests for first-derivative atmospheric CO219
and global surface temperature20

21
22
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Null Hypothesis:

Criterion
for number
of lags
selected

Number of
lags imple-
mented

Observ-
ations

F-
Statistic

Probab-
ility

Interpretation
of
statistically
significant
probabilities

TEMP does not
Granger Cause
1stderivCO2

AIC

2 373 2.88 0.06
1stderivCO2
does not Granger
Cause TEMP 5.02 0.01

1stderivCO2
Granger
Causes TEMP

1
2

Table 23. OLS dynamic regression between first-derivative atmospheric CO2 and3
NDVI for monthly data for the period 1981 - 2012, with autocorrelation taken into4
account5

6

Indep-
endent
variable/s
[1]

Dep-
endent
variable
[1]

Independent
variable
regression
coefficients

Indep-
endent
variable
P-value

Whole
model
adjusted
R-
squared

Whole
model
P-value

LM test
for
autocorr-
elation [2]

Twox13mma
1stderivCO2

NDVI 0.094 0.01103 0.549
3.74E-
64 0.092

Led1mNDVI 0.765 <0.00001
Led2mNDVI −0.075 0.15231

[1] Z-scored7
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation8

9
10
11
12

Table 24. Pairwise Granger causality tests for first-derivative CO213
and NDVI: lag selection by AIC14

15

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause
1stderivCO2

AIC

2 373 1.25 0.29
Not
significant

1stderivCO2
does not Granger
Cause NDVI 3.01 0.0504

Not
significant

16
17
18

Table 25. First-derivative CO2 displays Granger causality of NDVI: lag selection by19
extensive search20

21

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities
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NDVI does not
Granger Cause
1stderivCO2

Result of
extensive
search of
lag
space

1 374 0.87 0.352
1stderivCO2
does not Granger
Cause NDVI 5.11 0.024

1stderivCO2
Granger

Causes NDVI

1
2
3
4
5
6
7
8

Table 26. OLS dynamic regression between global surface temperature and NDVI9
for monthly data for the period 1981 - 2012, with autocorrelation taken into account10

11
12

Indep-
endent
variable/s
[1]

Dependent
variable
[1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

TEMP NDVI 0.215 <0.00001 0.574
1.18E-
68 0.536

Led1mNDVI 0.720 <0.00001
Led2mNDVI −0.122 0.01874

[1] Z-scored13
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation14

15
16

Table 27. Pairwise Granger causality tests for temperature and NDVI17
18
19

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

NDVI does not
Granger Cause TEMP

AIC

2 373 3.18 0.043
NDVI Granger
Causes TEMP

TEMP does not
Granger Cause NDVI 11.59 1.00E-05

TEMP
Granger
Causes NDVI

20
21

Table 28. OLS dynamic regression between NDVI and the difference between the22
observed level of atmospheric CO2 and global surface temperature for monthly data23
for the period 1981 - 2012, with autocorrelation taken into account24

25

Indep-endent
variable/s [1]

Depen-dent
variable [1]

Independent
variable
regression
coefficients

Independent
variable P-
value

Whole
model
adjusted
R-
squared

Whole
model
P-
value

LM test for
autocorrelation
[2]

Led17mNDVI

Climate
model/temperature
difference 0.069 0.00795 0.557

1.36E-
62 0.874
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Led1mClimate
model/temperature
difference 0.490 <0.00001
Led2mClimate
model/temperature
difference 0.265 <0.00001

[1] Z-scored1
[2] Whole model: LM test for autocorrelation up to order 20 - Null hypothesis: no autocorrelation2

3
4
5
6
7
8

Table 29. Pairwise Granger causality tests for NDVI and the difference between the9
observed level of atmospheric CO2 and global surface temperature: Akaike10
information criterion used to select lag11

12

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented Observations

F-
Statistic Probability

Interpretation
of
statistically
significant
probabilities

Climate
model/temperature
difference does not
Granger Cause
Led17mNDVI

AIC

2 356 2.35 0.10
Not
significant

Led17mNDVI does not
Granger Cause climate
model/temperature
difference 1.03 0.36

Not
significant

13
14
15
16
17
18

Table 30. Pairwise Granger causality tests for NDVI and the difference between the19
observed level of atmospheric CO2 and global surface temperature: extensive search20
of the lag space21

22

Null Hypothesis:

Criterion
for
number
of lags
selected

Number of
lags
imple-
mented

Observation
s

F-
Statistic

Probabilit
y

Interpretation of
statistically
significant
probabilities

Climate
model/temperature
difference does not
Granger Cause
Led17mNDVI

Result of
extensiv
e search
of lag
space 15 343 0.83 0.65

Led17mNDVI does not
Granger Cause climate
model/temperature
difference 1.81 0.03

Led17mNDVI
Granger Causes
climate
model/temperatur
e difference

23
24
25
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1
2
3
4
5
6
7
8
9

10
11
12

Figure 1.Monthly data: global surface temperature (HADCRUT4 dataset) (red dotted13
curve) and an IPCC mid-range scenario model (CMIP3, SRESA1B scenario) run for14
the IPPC fourth assessment report (IPCC, 2007) (blue curve), each expressed in terms15
of Z scores to aid visual comparison (see Sect. 1).16

17

18
19
20
21
22
23
24
25
26
27
28
29
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1
2
3
4
5
6
7
8
9

10
11
12

Figure 2. Z scored monthly data: global surface temperature (green dashed curve)13
compared to an IPCC mid-range scenario model (CMIP3, SRESA1B scenario) run for14
the IPCC fourth assessment report (IPCC, 2007) (blue curve) and also showing the15
trend in first-derivative atmospheric CO2 (smoothed by two 13 month moving16
averages) (red dotted curve). To show their core trends for illustrative purposes the17
three series are fitted with 5th order polynomials.18

19
20

21
22
23
24
25
26
27
28
29
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1
2
3
4
5
6
7
8
9

10
11
12

Figure 3. Z scored monthly data: global surface temperature (red curve) compared to13
first-derivative atmospheric CO2 smoothed by two 13 month moving averages (black14
dotted curve).15

16

17
18
19
20
21

Figure 4. Correlograms of first-derivative CO2 with surface temperature for global22
(turquoise curve with crosses), tropical (blue curve with triangles), Northern23
Hemisphere (purple curve with boxes) and Southern Hemisphere (black curve with24
diamonds) categories25

26
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1
2
3

Figure 5. Correlograms of first-derivative CO2 with surface temperature for global,4
tropical, Northern Hemisphere and Southern Hemisphere categories, each for three5
time-series sub-periods.6

7

8
9

Figure 6. Z scored monthly data: global surface temperature (red curve) and first-10
derivative atmospheric CO2 smoothed by two 13 month moving averages (black11
dotted curve ) (left-hand scale); sign-reversed SOI smoothed by a 13 month moving12
average (blue dashed curve) and second-derivative atmospheric CO2 smoothed by13
three 13 month moving averages (green barred curve) (right-hand scale)14

15
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1

2
Figure 7. Z scored monthly data from 1960 to 2012: sign-reversed SOI (unsmoothed3
and neither led nor lagged) (dotted black curve); second-derivative CO2 smoothed by4
a 13 month × 13 month moving average and led relative to SOI by 2 months (green5
dashed curve ); and first-derivative global surface temperature smoothed by a 136
month moving average and led by 3 months (red curve).7

8
9

10
11
12
13
14

Figure 8. Z scored monthly data from 1877 to 2012: sign-reversed SOI (unsmoothed15
and neither led nor lagged) (red curve); and first-derivative global surface temperature16
smoothed by a 13 month moving average and led relative to SOI by 3 months (black17
dotted curve)18

19
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1
2
3
4
5
6
7
8
9

Figure 9. Z scored annual data: paleoclimate time series from 1500: ice core level of10
CO2 (blue curve), level of CO2 transformed into first-derivative form (green barred11
curve); and temperature from speliothem (red dashed curve) and tree ring data (black12
boxed curve).13

14
15

16
17
18
19
20
21
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Figure 10: Z scored monthly data: NDVIG (black dotted curve) compared to NDVIV1
(red curve).2

3

4
5

Figure 11. Z scored monthly data: global surface temperature (red curve) compared6
to first-derivative atmospheric CO2 smoothed by two 13 month moving averages7
(black dotted curve).8

9

10
11
12
13

Figure 12. Z scored monthly data: NDVI (red curve) compared to first-derivative14
atmospheric CO2 smoothed by two 13 month moving averages (black dotted curve).15
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1

2
3
4

Figure 13. Z scored monthly data: NDVI (red curve) compared to first-derivative5
atmospheric CO2 smoothed by two 13 month moving averages (black dotted curve).6

7

8
9

10
11

Figure 14. Z scored monthly data: NDVI (black curve) compared to the difference12
between the observed level of atmospheric CO2 and global surface temperature (red13
dotted curve).14

15
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1
2
3
4
5

Figure 15. Z scored monthly data: NDVI (black curve) led by 17 months compared6
to the difference between the observed level of atmospheric CO2 and global surface7
temperature (red dotted curve). Months of lead of the NDVI series indicated by OLS8
dynamic regression modelling9

10

11
12
13
14

Figure 16. Reverse log probability values (red dotted curve) for lags generated by15
extensive search of the lag space from lag 2 to lag 40 for the null hypothesis that16
NDVI does not Granger-cause the difference between the observed level of17
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atmospheric CO2 and global surface temperature. Green dashed line represents 0.051
level of statistical significance.2
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