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Abstract. Real-time measurements of inorganic (sulfate, nitrate, ammonium, 18 

chloride and black carbon (BC)) and organic submicron aerosols (aerosols with an 19 

aerodynamic diameter less than 1 µm) from a continental background site (Montsec, 20 

MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 21 

months (July 2011 - April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was 22 

co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, 23 

diurnal, and seasonal variations are presented here, for the first time for this region. 24 

Seasonal trends in PM1 components are attributed to variations in: evolution of 25 

the planetary boundary layer (PBL) height, air mass origin, and meteorological 26 

conditions. In summer, the higher temperature and solar radiation increases 27 

convection, enhancing the growth of the PBL and the transport of anthropogenic 28 

pollutants towards high altitude sites. Furthermore, the regional recirculation of air 29 

masses over the WMB creates a continuous increase in the background concentrations 30 

of PM1 components and causes the formation of reservoir layers at relatively high 31 

altitudes. The combination of all these atmospheric processes results in a high 32 

variability of PM1 components, with poorly defined daily patterns, except for the organic 33 

aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol 34 

(OOA), split in two types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), the rest 35 

being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components 36 

regardless of the air mass origin indicates that they are not only associated with 37 

anthropogenic and long-range-transported secondary OA (SOA), but also with recently-38 

produced biogenic SOA. 39 

Very different conditions drive the aerosol phenomenology in winter at MSC. 40 

The thermal inversions and the lower vertical development of the PBL leave MSC in 41 

the free troposphere most of the day, being affected by PBL air masses only after 42 

midday, when the mountain breezes transport emissions from the adjacent valleys and 43 

plains to the top of the mountain. This results in clear diurnal patterns of both organic 44 

and inorganic concentrations. OA was also mainly composed (71%) of OOA, with 45 

contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in 46 

winter sporadic long-range transport from mainland Europe is observed. 47 

The results obtained in the present study highlight the importance of SOA 48 

formation processes at a remote site such as MSC, especially in summer. Additional 49 

research is needed to characterize the sources and processes of SOA formation at 50 

remote sites. 51 

 52 

Keywords: high altitude, mountain, remote, continental background, ACSM. 53 
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1 Introduction 55 

Earth’s climate system is modulated by atmospheric aerosols. Submicron 56 

particles (< 1 µm in aerodynamic diameter) play a dominant role in both cloud 57 

formation and scattering or absorbing solar radiation (IPCC, 2013). The complexity of 58 

aerosol sources and processes results in an uncertainty in the radiative forcing of 59 

climate. Aerosol optical properties are connected to direct and indirect climate forcing 60 

effects, and they are dependent on particle composition. Moreover, aerosol 61 

composition may provide valuable information on aerosol sources and processes. 62 

Consequently, long-term measurements of PM1 chemical composition are needed to 63 

better understand aerosol sources, to quantify their lifetime in the atmosphere and to 64 

constrain the uncertainties of their climatic influence. 65 

Long-term PM1 chemical composition measurements are relatively scarce both 66 

off-line and on-line. In the last decade, on-line PM1 chemical composition 67 

measurements have been performed using aerosol mass spectrometers (AMS) at a 68 

number of locations. Measurements of on-line chemical composition are useful to study 69 

hourly variations and daily patterns. Most of these studies, however, correspond to 70 

short-term measurement campaigns (typically a month) (e.g. Crippa et al., 2014; 71 

Jimenez et al., 2009; Lanz et al., 2010; Ng et al., 2010; Zhang et al., 2007) given the 72 

intensive instrument maintenance required and the need of highly-qualified personnel 73 

for a good quality dataset. 74 

In contrast to the use of the AMS in relatively short campaigns, the more 75 

recently developed Aerodyne Aerosol Chemical Speciation Monitor (ACSM) is 76 

becoming a widely used on-line instrument for long-term measurements of PM1 77 

chemical composition (Budisulistiorini et al., 2014; Canonaco et al., 2013; Petit et al., 78 

2014; Tiitta et al., 2014). The ACSM is built upon the same technology as the AMS, in 79 

which an aerodynamic particle focusing lens is combined with high vacuum thermal 80 

particle vaporization, electron impact ionization, and mass spectrometry. Modifications 81 

in the ACSM design (e.g. lack of particle sizing chamber and components, use of 82 

simple and compact RGA mass spectrometer detector), however, allow it to be smaller, 83 

lower cost, and simpler to operate than the AMS (Ng et al., 2011c). The ACTRIS 84 

(Aerosols, Clouds, and Trace gases Research InfraStructure) European network is 85 

evaluating the use of the ACSM as a reliable instrument, which will provide the 86 

opportunity to study long-term datasets of PM1 chemical composition across the 87 

continent. 88 

Recent publications have investigated most of the existing worldwide AMS 89 

databases (e.g. Crippa et al., 2014; Jimenez et al., 2009; Lanz et al., 2010; Ng et al., 90 

2010; Zhang et al., 2007) and reflected a prevalence of organic aerosols (20 to 90%) in 91 
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the submicron fraction, largely independent of the region and type of environment. 92 

However, our knowledge on organic aerosol (OA) formation, sources, and atmospheric 93 

processing is still very incomplete, especially for secondary organic aerosols (SOA) 94 

formed from chemical reactions of gas-phase species (e. g. Donahue et al., 2014; 95 

Hallquist et al., 2009; Kroll and Seinfeld, 2008; Robinson et al., 2007; Volkamer et al., 96 

2006). Recent progress has been made in identifying primary organic aerosols (POA) 97 

sources (e.g. Elbert et al., 2007; Zhang et al., 2005), but significant gaps still remain in 98 

our understanding on the atmospheric evolution of POA after emission (de Gouw and 99 

Jimenez, 2009). For these reasons, OA measurements and analysis are required to 100 

better understand its chemical evolution in the atmosphere. 101 

The lack of long-term on-line PM1 chemical composition measurements is 102 

especially evident in the Western Mediterranean Basin (WMB), which is characterized 103 

by particular atmospheric dynamics strongly influenced by its topography (Jorba et al., 104 

2013; Millan et al., 1997). Over this region, arrival of natural and anthropogenic 105 

aerosols as a result of long-range transport from Africa and Europe is frequent (e.g. 106 

Pey et al., 2013; Querol et al., 2009; Ripoll et al., 2014; Rodríguez et al., 2001) and 107 

accumulation and recirculation processes are frequently observed (Rodriguez et al., 108 

2002). The sources and meteorological controls of PM in the regional background of 109 

the WMB have been recently investigated during the DAURE study (Pandolfi et al., 110 

2014a) using an AMS and 14C analyses (Crippa et al., 2014; Minguillón et al., 2011). 111 

Furthermore, Ripoll et al. (2015) studied the PM1 and PM10 chemical composition with 112 

daily time resolution in the continental and regional background environments in the 113 

WMB. In that study, a higher mineral contribution was identified in the continental 114 

background due to the preferential transport of African dust at high altitude layers and 115 

to the increased regional dust resuspension enhanced by the drier surface and higher 116 

convection. Nevertheless, aerosol chemical characterization with higher time resolution 117 

is needed to study the origin of specific PM components and the local and/or regional 118 

processes, in particular to exploit the information contained in diurnal cycles that is 119 

typically not accessible with off-line measurements. 120 

In this study we deployed an ACSM at a high altitude site (Montsec, 1570 m 121 

a.s.l.) in the NE of the Iberian Peninsula (42º 03’ N, 0º 44’ E), representative of the 122 

continental background conditions of the Western Mediterranean Basin (WMB) (Ripoll 123 

et al., 2014). This environment is under free tropospheric (FT) influence most of the 124 

time, although it is exposed to regional pollutants during the summer time and/or under 125 

the influence of mountain breezes, and it is affected by trans-boundary incursions of 126 

natural and anthropogenic aerosols from Europe and North Africa (Ripoll et al., 2014, 127 

2015). Co-located on-line and off-line PM1 measurements were also carried out to 128 



 5 

complement the ACSM dataset. Hence, the work presented here interprets the real-129 

time variation of inorganic and organic submicron components during 10 months (July 130 

2011 - April 2012), and the types of OA are also studied. Special emphasis is placed 131 

on the analysis of diurnal pattern and seasonal variations of chemical components and 132 

the main factors influencing these variations. 133 

2 Methodology 134 

2.1 Sampling site 135 

Montsec site (MSC) is located on the highest part of the Montsec d’Ares 136 

mountain, at an altitude of 1570 m a.s.l., in a plain near to the edge of a 1000 m cliff to 137 

the south, with no wind obstructions present around. It is located in the NE of the 138 

Iberian Peninsula (42º03’N, 0º43’E), 50 km S of the Pyrenees and 140 km NW of 139 

Barcelona (Fig.S1). A detailed description of this site can be found in Ripoll et al. 140 

(2014). 141 

The daily classification of atmospheric episodes affecting MSC was made 142 

following the procedure described by Ripoll et al. (2014) using HYSPLIT model from 143 

the NOAA Air Resources Laboratory (ARL). Air masses reaching MSC are mainly from 144 

the Atlantic (62% of the days) all along the year. From March to October, North African 145 

(NAF) episodes are more frequent (17% of the days) and very often are alternated with 146 

the summer regional (SREG) scenarios (12% of the days). The winter regional 147 

(WREG) scenarios are detected from October to March (11% of the days), as well as 148 

the European (EU) episodes (11% of the days). Conversely, the Mediterranean (MED) 149 

episodes are detected sporadically (4% of the days). 150 

The boundary layer height was calculated using the Global Data Assimilation 151 

System (GDAS) model from the NOAA Air Resources Laboratory 152 

(http://www.ready.noaa.gov/READYamet.php) (Fig.S2). 153 

2.2 ACSM sampling and data analysis 154 

The aerosol chemical speciation monitor (ACSM) (Aerodyne Research Inc.) 155 

was measuring continuously from July 2011 to April 2012. The ACSM provides real-156 

time mass concentration of submicron particulate organics, nitrate, sulfate, ammonium 157 

and chloride via thermal vaporization and electron impact ionization, with detection by a 158 

quadrupole mass spectrometer  (Ng et al., 2011c). The mass concentration of a given 159 

species is determined from the sum of the ion signals at each of its mass spectral 160 

fragments and its Ionization Efficiency (IE) (Canagaratna et al., 2007). Since calibration 161 

of IEs for all species is not feasible, the Relative Ionization Efficiency (RIE) (compared 162 

to that of nitrate) is used (Jimenez et al., 2003). The ammonium nitrate calibration 163 

http://www.ready.noaa.gov/READYamet.php
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described by Ng et al. (2011b) was performed using an atomizer (TSI, Constant Output 164 

Atomizer Model 3076) for primary aerosol generation, followed by a silica gel diffusion 165 

dryer, a differential mobility analyzer (DMA) model TSI 3936, and a condensation 166 

particle counter (CPC, TSI 3772). Monodisperse 300 nm ammonium nitrate aerosol 167 

particles were used, covering a range of nitrate concentrations from 2 to 15 µg m-3. 168 

Several calibrations were conducted throughout the sampling period, and average 169 

values of 2.2 x 10-11 for nitrate IE and 5.4 for RIE for ammonium were used for the 170 

whole dataset. The RIE values used in this study for the rest of the species were those 171 

usually applied in AMS ambient concentrations: 1.4 for OA and 1.1, 1.2, and 1.3 for 172 

nitrate, sulfate, and chloride, respectively (Canagaratna et al., 2007). RIE for sulfate 173 

was experimentally determined one year later and was found to be 1.26, although the 174 

default value was used for the current dataset. A time resolution of 62 minutes was 175 

used as a result of 12 scans (1 open and 1 filtered) per data point with a scan speed of 176 

1 s amu-1. 177 

The ACSM data were analyzed with the standard ACSM data analysis software 178 

version 1.5.3.2 (Aerodyne Research Inc.) written in Igor Pro 6 (WaveMetrics, Inc., Lake 179 

Oswego, OR, USA). As the ACSM was measuring continuously for a long time, the 180 

standard correction for instrument sensitivity drifts was applied to the dataset based on 181 

the inlet pressure and N2 signal. Finally, mass concentrations were corrected using a 182 

Collection Efficiency (CE) to account for the particle bounce of aerosols on the 183 

vaporizer. The composition-dependent CE was calculated as described by Middlebrook 184 

et al. (2012) and was close to 0.45 for most of the time. Since for most ambient studies 185 

a 0.5 CE value is found to be representative with data uncertainties generally within 186 

±20% (Canagaratna et al., 2007), and since our ACSM concentrations using CE=0.5 187 

were in good agreement with concentrations from other co-located instruments, a CE 188 

of 0.5 was used. 189 

The organic components were further investigated by applying Multilinear 190 

Engine (ME-2) (Paatero, 1999) to the organic mass spectra. With the ME-2, the user 191 

can introduce a priori information about sources with the so-called a-value approach. 192 

Hence, the user inputs one or more factor profiles and a constraint defined by the a-193 

value, which determines the extent to which the output profile can differ from the profile 194 

fed to the model. The source apportionment of OA was performed applying ME-2 using 195 

the custom software tool of Source Finder (SoFi) version 4.8 developed by Canonaco 196 

et al. (2013). The ME-2 analysis was carried out separately for the summer period (14 197 

Jul 11 – 24 Sep 11) and the winter period (10 Jan 12 – 7 Mar 12). Only m/z<=100 were 198 

used for source apportionment of OA because: a) the signals of m/z>100 account for a 199 

minor fraction of the total organic mass (on average, 2 %), b) the m/z>100 have larger 200 
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uncertainties, and c) the large interference of naphthalene signals (used for m/z 201 

calibration of the ACSM) at these m/z (e.g., m/z 127, 128, and 129) (Sun et al., 2012). 202 

2.3 Co-located measurements used in this study 203 

MSC has been permanently equipped with aerosol monitoring instrumentation 204 

since January 2010 and some of these measurements were used in this study. 24-h 205 

PM1 samples were collected every 4 days on 150 mm quartz micro-fiber filters (Pallflex 206 

QAT) using high volume samplers (30 m3 h-1, MCV CAV-A/MSb) equipped with MCV 207 

PM1 cut-off inlets. Daily PM1 mass concentrations were determined by off-line 208 

gravimetric procedures according to the EN 12341 standard (CEN, 1999), i.e. at 20ºC 209 

temperature and 50% relative humidity. Furthermore, PM1 chemical composition was 210 

obtained as described by Ripoll et al. (2015) using inductively coupled plasma atomic 211 

emission spectroscopy (ICP-AES) and mass spectrometry (ICP-MS) for major and 212 

trace elements, respectively, ion high performance liquid chromatography (HPLC) and 213 

selective electrode for ions concentrations, and thermal-optical method (using the 214 

EUSSAR 2 protocol) for elemental carbon (EC) and organic carbon (OC) 215 

concentrations. Real-time PM1 mass concentrations were continuously measured by an 216 

optical particle counter (OPC, Model GRIMM 1.107 calibrated with different latex PSL 217 

refraction index 1.59). PM1 30-minute data were daily averaged and subsequently 218 

corrected by comparison with 24-h standard gravimetric mass measurements. The 219 

absorption coefficient was measured continuously at 637 nm using a Multi Angle 220 

Absorption Photometer (MAAP, model 5012, Thermo). Equivalent black carbon (BC) 221 

mass concentrations (Petzold et al., 2013) were calculated by the MAAP instrument 222 

software by dividing the measured absorption coefficient σap (λ) by 6.6 m2 g-1, which is 223 

the instrument default mass absorption cross section (MAC) at 637 nm (Müller et al., 224 

2011; Petzold and Schönlinner, 2004). Particle scattering (σsp; 0º-360º) and 225 

hemispheric backscattering (σbsp; 90º-270º) coefficients at three wavelengths (450nm, 226 

525nm, 635nm) were measured with a LED-based integrating nephelometer (model 227 

Aurora 3000, ECOTECH Pty, Ltd, Knoxfield, Australia). 228 

Finally, all meteorological data were measured by the Catalonian 229 

Meteorological Service from the Montsec d’Ares station. Gaseous pollutants (O3, NO, 230 

NO2, CO and SO2) were measured using real-time monitors belonging to the 231 

Department of Environment of the Autonomous Government of Catalonia. NO and NO2 232 

concentrations were measured  using a Thermo Scientific instrument, Model 42i-TL; 233 

CO using a Teledyne 300 EU Gas filter correlation analyzer; O3 using a MCV 48AV UV 234 

photometry analyzer; and SO2 using a Teledyne 100 EU UV fluorescence analyzer. 235 
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In addition to these routine measurements, 2 intensive campaigns were 236 

performed in July - August 2011 and January - February 2012. During these intensive 237 

campaigns PM1 filters were collected daily and a scanning mobility particle sizer 238 

(SMPS) was installed to measure particle number size distribution of mobility diameters 239 

11-350 nm in the summer campaign, and 8-450 nm in the winter campaign. The SMPS 240 

system comprises a classifier unit (Model TSI 3080) and a differential mobility analyzer 241 

(DMA, Model TSI 3081) connected to a condensation particle counter (CPC, Model TSI 242 

3772). The SMPS data for the winter campaign were also used to estimate the mass 243 

concentration to compare with the ACSM data. To this end, the volume size 244 

distributions were calculated from the measured particle number distributions assuming 245 

sphericity. The total volume concentrations were computed by integrating over the 246 

measured particle range and converted to mass concentration using the estimated 247 

composition-dependent density, calculated using the chemical composition given by 248 

the ACSM and the equation of Salcedo et al. (2006). Average concentrations shown in 249 

the whole paper are arithmetical averages unless otherwise specified. 250 

3 Results and discussion 251 

3.1 Submicron aerosol mass concentrations 252 

In order to establish the consistency of the different measurements during this 253 

study, the sum of the ACSM species (= sulfate + nitrate + ammonium + OA + chloride) 254 

and the BC mass concentrations was compared with the co-located PM1 and light 255 

scattering measurements (Fig. 1). The scatter plots of ACSM plus BC concentrations 256 

versus PM1 concentrations from the OPC and SMPS showed strong correlations 257 

(R2=0.72 and R2=0.87, respectively) and slopes close to unity (slope=0.94 and 258 

intercept=0.09 for the ACSM+BC vs. OPC, and slope=1.21 and intercept=0.86 for the 259 

ACSM+BC vs. SMPS) (Fig.S3). The differences in the particle size range measured by 260 

the different instruments needs to be considered when assessing these comparisons. 261 

Moreover, ACSM plus BC concentrations were also highly correlated with light 262 

scattering at 525 nm determined by the nephelometer (R2=0.85, Fig.S3). The high 263 

degree of agreement is also apparent in the time series plots of PM1 shown in Fig. 1. 264 

The average concentration (25th, 50th, 75th percentiles) of the ACSM + BC mass 265 

during this study (July 2011 - April 2012) was 4.9 µg m-3 (0.9, 2.8, 7.9 µg m-3) (Table 266 

S1), which is similar to the 2010-2012 average reported by Ripoll et al. (2014) from 267 

OPC measurements (5.0 µg m-3). For the sake of brevity only summer (14 Jul 11 – 24 268 

Sep 11) and winter (10 Jan 12 – 7 Mar 12) hourly variation will be discussed in the 269 

following sections, given that hourly variation in spring was similar to summer and that 270 
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in fall was similar to winter. The seasonal average PM1 concentrations were higher in 271 

summer (7.5 µg m-3 (3.4, 7.1, 10.5 µg m-3), Table S1) than in winter (4.1 µg m-3 (0.8, 272 

1.7, 5.6 µg m-3), Table S1). A similar seasonal pattern has been described at other high 273 

altitude sites in Europe (e.g. Carbone et al., 2014; Cozic et al., 2008; Freney et al., 274 

2011; Tositti et al., 2013), being associated with differences in the air mass origin from 275 

summer to winter, and also to variations in the planetary boundary layer (PBL) height. 276 

The seasonal variation at MSC has been described in detail in recent works (Pandolfi 277 

et al., 2014b; Ripoll et al., 2014, 2015), and it has been principally attributed to the 278 

seasonal variation of the PBL (Fig.S2). In summer, the stable anticyclonic conditions 279 

over this continental area enhance convection increasing the development of the PBL 280 

and favoring the transport of anthropogenic pollutants towards high altitude sites such 281 

as MSC. The situation in winter is notably different, as the lower vertical development 282 

of the PBL over this area leaves high altitude sites in the FT, isolating MSC from 283 

polluted air masses. The seasonal variation of PM concentrations at MSC has been 284 

also connected to mesoscale and synoptic processes. At MSC, southern flows and 285 

regional recirculation episodes are more frequent in summer, whereas clean Atlantic 286 

advections and northeastern winds from mainland Europe are more common in winter 287 

(Fig.S4 and Table S2) (Pandolfi et al., 2014b; Ripoll et al., 2014, 2015). Moreover, the 288 

summer maximum has been ascribed to the more vigorous photochemistry in the 289 

atmosphere that enhances the formation of secondary inorganic and organic aerosols 290 

(Querol et al., 1999). 291 

3.2 Submicron aerosol chemical composition 292 

Concentrations of ACSM species were daily averaged and compared with off-293 

line measurements from 24-h PM1 samples, and all species showed strong correlations 294 

(R2 between 0.77 and 0.96, Fig.S5). Different slopes (ACSM vs off-line measurements) 295 

were found for each of the species: 1.12 for sulfate, 1.31 for ammonium and 1.35 for 296 

nitrate. The relatively higher slope for nitrate, with respect to sulfate, could be attributed 297 

to a sampling negative artifact due to the volatilization of nitrate on the off-line samples 298 

(Schaap et al., 2004). Ammonium is present as a counterion for sulfate and nitrate, and 299 

thus its slope is in between those of the two species. 300 

For the OA, the slope could be interpreted as the OM-to-OC ratio, since the off-301 

line measurements determined organic carbon. This slope was found to be 3.39, 302 

however values of 2.2 are more common for aged aerosol (e.g. Aiken et al., 2008; 303 

Minguillón et al., 2011; Takahama et al., 2011). This disagreement of a factor of 1.54 304 

may be attributed to different reasons. A negative volatilization artifact may occur in the 305 

filters, hence resulting in an underestimation of OC. Alternatively it is possible that the 306 
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RIE for OA in the ACSM is larger than the value of 1.4 determined for the AMS, a topic 307 

currently being investigated by the ACSM manufacturer, which would result in an 308 

overestimation of OA. Similar series of intercomparisons with a similar discrepancy for 309 

OA has been found for a one-year dataset (June 2012 – July 2013) with the same 310 

instrument at Montseny site (Minguillón et al., 2015) and for a recently reported study in 311 

Atlanta, US by Budisulistiorini et al. (2014). Assuming that the disagreement was due 312 

to the overestimation by the ACSM, the OA concentrations were corrected dividing by 313 

the disagreement factor (1.54) to compare the results with co-located measurements 314 

(Fig.S3). The resulting slopes were very similar and hence OA concentrations reported 315 

in the present paper were not corrected since further research is needed to better 316 

estimate the RIE for OA in the ACSM. 317 

The average of PM1 chemical composition at MSC during this study (July 2011 - 318 

April 2012) is given in Fig. 2. On average, OA was the largest PM1 constituent (50%), 319 

followed by sulfate (20%), nitrate (14%), ammonium (12%), BC (4%) and chloride (1%). 320 

As was the case of PM1 concentrations, all chemical components increased in summer 321 

and decreased in winter, with the exception of nitrate (Fig. 2 and Table S1). The higher 322 

nitrate concentrations in winter than in summer were also observed in other studies in 323 

the Mediterranean region (e.g. Pey et al., 2009; Querol et al., 2009; Ripoll et al., 2015) 324 

and this variation was attributed to the high volatility of ammonium nitrate at low 325 

humidity and high temperature (Zhuang et al., 1999). At MSC, the summer maximum of 326 

the rest of PM components has been mainly ascribed to the higher temperature and 327 

solar radiation in summer (Table S2), which enhances atmospheric photochemistry, 328 

promoting the formation of secondary inorganic and organic aerosols. All these 329 

seasonal characteristics are described in detail in Ripoll et al. (2015). 330 

3.2.1 Summer trends 331 

Time series of PM1 components during summer time (14 Jul – 24 Sep 2011) are 332 

shown in Fig. 3. Wind direction and wind speed, temperature, precipitation and 333 

concentrations of nitrogen oxides, sulfur dioxide, and ozone are also depicted. The 334 

daily classification of atmospheric episodes affecting MSC is also illustrated in different 335 

background colors. On average, during summer the lowest concentrations of all PM1 336 

components and gases were recorded under the Atlantic advection conditions since 337 

these air masses are associated with precipitation, decreased temperature and solar 338 

radiation, and strong winds, leading to cleaner atmospheric conditions. Conversely, 339 

summer regional episodes lasted for 6 to 11 consecutive days and led to sustained 340 

increases of the background concentrations of sulfate, OA and BC at MSC. Despite the 341 

limited ACSM data availability during North African episodes, relatively high 342 
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concentrations of PM1 components were observed under this type of episodes, 343 

especially BC (Fig. 3). 344 

The diurnal cycles of PM1 components, gaseous pollutants and meteorological 345 

variables are shown in Fig. 4. The summer concentrations of PM1 components and 346 

gases showed no clear diurnal patterns, except for ozone and OA. This lack of defined 347 

daily patterns is similar to the findings obtained at the high altitude Puy-de-Dôme 348 

station in central France (Freney et al., 2011, the only similar study found at a remote 349 

site). For a high altitude site as MSC, the lack of diurnal cycles can be explained by a 350 

combination of factors. In summer, the recirculation of air masses over the WMB 351 

induced by an abrupt orography (Fig.S1) causes the formation of reservoir layers at 352 

any time at relatively high altitudes (Millan et al., 1997; Rodríguez et al., 2003). 353 

Moreover, long-range transport from North Africa, which can be more intense at high 354 

altitude layers (Ripoll et al., 2015), could also blur the daily patterns since the 355 

occurrence of this transport does not depend on the time of the day. These factors 356 

result in a lack of well-defined daily patterns but in a high variability of diurnal cycles 357 

even within the same type of episode, which is reflected in the similar average daily 358 

evolutions and the high standard deviations calculated for the average daily patterns 359 

when separated by air mass origin (Fig.S6). 360 

The ozone and OA concentrations had a marked diurnal cycle regardless of the 361 

air mass origin (Fig. 4 and Fig.S6) in summer. These different daily patterns with 362 

respect to the rest of the gases and chemical components points to the fact that ozone 363 

and OA variations are strongly influenced by local/regional processes and not just 364 

dominated by long-range transport. Minimum ozone concentrations were recorded 365 

between 8:00 and 9:00 UTC (Coordinated Universal Time, which is local time - 1:00h 366 

and local summer time - 2:00h), whereas maximum concentrations were measured 367 

between 16:00 and 17:00 UTC. In contrast, the highest OA concentrations were 368 

observed around 12:00 UTC, and the lowest during the night and in the early morning. 369 

The ozone variations may influence those of OA, although the complete understanding 370 

of the ozone diurnal evolution is outside the scope of this study. The average increase 371 

in OA during the day is likely due to the photooxidation of volatile organic compounds 372 

(VOCs). Given that MSC is a remote site, in summer VOCs are most likely dominated 373 

by local biogenic emissions (BVOCs), as it was found in the Mediterranean forested 374 

area of Montseny (Seco et al., 2011). Hence, the midday increase is likely due to 375 

recently-produced biogenic SOA, and to a lesser degree, photooxidation of 376 

anthropogenic VOCs.  377 

Despite the marked diurnal cycle of OA regardless of air mass origin, the 378 

average increase during the day with respect to average concentrations during the 379 
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night was higher under summer regional (2.6 µg m-3) and North African (3.0 µg m-3) 380 

episodes than during Atlantic advections (1.3 µg m-3) (Fig.S6). This difference could be 381 

caused by the higher SOA formation. This is due to the increase in BVOCs emissions 382 

and atmospheric photooxidation caused by the higher temperature and solar radiation 383 

(Paasonen et al., 2013; Seco et al., 2011) under summer regional and North African 384 

episodes. Furthermore, under these episodes higher concentrations of ozone were 385 

measured, which also favors the formation of SOA (via direct oxidation and also by 386 

leading to higher OH concentrations). The SOA formation registered at MSC is 387 

relatively high when compared to other high altitude sites such as Puy-de-Dôme 388 

(Freney et al., 2011). This is in agreement with the modeled SOA emissions over 389 

Europe, which identified higher SOA concentrations in Mediterranean environments 390 

(Bessagnet et al., 2008). This higher SOA formation is probably due to the higher 391 

emissions of BVOCs in the Mediterranean forested areas (up to 3 times higher than 392 

Boreal forested areas) (Bessagnet et al., 2008; Lang-Yona et al., 2010; Steinbrecher et 393 

al., 2009) and the comparable concentrations of tropospheric ozone with other high 394 

altitude European sites (Chevalier et al., 2007). On the other hand, the extra formation 395 

of SOA under summer regional and North African episodes might also have a 396 

contribution from the photooxidation of anthropogenic VOCs, since Atlantic advections 397 

are associated with cleaner atmospheric conditions. 398 

3.2.2 Winter trends 399 

Similar to summer, the lowest concentrations of all PM1 components and gases 400 

in winter (10 Jan 12 – 7 Mar 12) were recorded under the Atlantic advections, whereas 401 

the highest were measured when MSC was affected by air masses from mainland 402 

Europe and sporadically under regional conditions (Fig. 5). Mediterranean air masses 403 

were detected very infrequently and therefore conclusions on their characteristics will 404 

not be drawn in the present paper. The relative contribution of different components 405 

was similar, with OA representing a somewhat smaller fraction than in summer. 406 

In contrast to what was found in summer, in winter concentrations of most PM1 407 

components and gaseous pollutants showed much clearer diurnal patterns, with a 408 

minimum around 7:00 UTC and a maximum between 14:00 and 15:00 UTC (Fig. 4). 409 

Similar patterns have been observed at the Puy-de-Dôme station during a winter 410 

campaign (Freney et al., 2011). These daily cycles are probably caused by the fact that 411 

MSC is located most of the day within the FT in winter, whereas PBL air masses are 412 

only injected upwards after midday (Fig.S2). Moreover, thermal inversions are very 413 

frequent from 20:00 to 07:00 UTC. These situations prevent the transport of pollutants 414 

from the lower populated areas towards higher altitudes, especially at night. During the 415 
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morning, the thermal inversions dissipate due to the radiative warming of the ground 416 

and mountain upslope winds develop (e.g. Henne et al., 2004). These mountain winds 417 

transport anthropogenic emissions from the adjacent valleys and plains to the top of 418 

the mountain, with a maximum upslope transport in the afternoon. Moreover, biogenic 419 

emissions influence cannot be ruled out as average winter temperatures are high 420 

enough for them to occur (Seco et al., 2011; Steinbrecher et al., 2009). Thus, mountain 421 

breezes play an important role in determining the diurnal variation of PM1 components 422 

in winter (Fig. 4), especially under regional conditions. A clear example of the PM1 423 

components diurnal pattern under winter regional episodes was observed from 22 to 25 424 

February 2012 with PM1 concentrations (and NOX) increasing several fold during the 425 

afternoon (Fig. 5). 426 

The study of the daily cycles as a function of air mass origin (Fig.S7) showed 427 

clear diurnal patterns under winter regional episodes, as mentioned above, and less 428 

marked daily patterns when MSC is affected by Atlantic advections and long-range 429 

transport from mainland Europe. Under Atlantic episodes the concentrations of PM1 430 

components were very low and the standard deviations with respect to the average 431 

pattern were quite high, resulting in unclear diurnal patterns compared to those under 432 

winter regional conditions. During European episodes, which can be more intense at 433 

high altitude layers (Ripoll et al., 2015; Sicard et al., 2011), background concentrations 434 

of PM1 components were higher and the midday increment was lower compared to 435 

those under winter regional conditions, resulting in less marked daily patterns. These 436 

less-marked diurnal cycles are probably due to the fact that the increase of PM1 437 

components occurs during these episodes regardless of the time of the day. A good 438 

example of this less-marked diurnal variation during European episodes was observed 439 

from 17 to 19 February 2012 (Fig. 5). 440 

3.3 Characterization of OA components 441 

In order to better characterize the profiles of OA components, the ME-2 analysis 442 

was performed separately for the summer period (14 Jul – 24 Sep 2011) and the winter 443 

period (10 Jan 12 – 7 Mar 12), since OA components are expected to vary throughout 444 

the year. The solution of ME-2 analysis selected for each season was based on several 445 

tests, with different number of factors and different a-values, taking into account the 446 

correlations with external tracers (including nitrate, sulfate, BC and ozone), the daily 447 

patterns of each factor, and the residuals. As a result, a solution of 3 factors was 448 

selected for each season. In summer, a hydrocarbon-like OA (HOA), a semi-volatile 449 

oxygenated OA (SV-OOA) and a low-volatile oxygenated OA (LV-OOA) (Fig.S8) were 450 

resolved. The HOA factor was constrained using an average HOA factor from different 451 
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datasets (Ng et al., 2011b), with an a-value of 0.1. The SV-OOA was characterized by 452 

a high 43-to-44 ratio, and the LV-OOA was defined by having a dominant peak at m/z 453 

44. In winter the 3 factors identified were: hydrocarbon-like OA (HOA), biomass burning 454 

OA (BBOA) and oxygenated OA (OOA) (Fig.S8). The HOA and the BBOA factors were 455 

constrained based on the profiles from different datasets (Ng et al., 2011b), with an a-456 

value of 0.1 in both factors, and including BC as an additional variable to the ME-2 457 

analysis. The OOA was characterized by a 43-to-44 ratio between those found for the 458 

LV-OOA and the SV-OOA in summer, and by having a dominant peak at m/z 44. This 459 

high signal of m/z 44 in the winter OOA indicates a high degree of oxidation, and 460 

therefore a dominant aged character during winter. A solution with 4 factors in winter 461 

was investigated in order to split the OOA into SV-OOA and LV-OOA, but the resulting 462 

profiles did not represent two different OOA types, and the time series showed that one 463 

of the factors was mainly representing noise. The HOA profiles obtained for the 464 

summer and winter periods were similar and showed similar deviations from the Ng et 465 

al. (2011b) spectrum (Fig. S9), since they were constrained with the same anchor HOA 466 

profile. 467 

On average, LV-OOA dominated the OA fraction in summer contributing 64%, 468 

followed by SV-OOA (26%) and HOA (10%) (Fig. 6), whereas in winter OOA accounted 469 

for 71%, BBOA contributed 24%, and HOA contribution decreased to 5% (Fig. 7). The 470 

high contribution of OOA components confirms the initial hypothesis of MSC organic 471 

components being mostly secondary in their origin, and it is in agreement with what 472 

was found in other remote sites (Freney et al., 2011; Raatikainen et al., 2010). 473 

Furthermore, the origin of OA has been recently investigated in the Mediterranean 474 

forested area of Montseny, and it has been found that SOA accounted for 91% 475 

(Minguillón et al., 2011). The low contribution of primary organic components at MSC is 476 

in agreement with the location, since the primary organic emissions are mixed and 477 

oxidized during their transport from industrial and urban areas to the remote site of 478 

MSC. 479 

The diurnal cycles of OA components were studied as a function of air mass 480 

origin (Fig. 6 and Fig. 7). A clear daily pattern of OA components was found regardless 481 

of the air mass origin, except for Atlantic advections in winter. In summer, the 482 

maximum concentrations of LV-OOA and HOA were measured between 12:00 and 483 

13:00 UTC, whereas those of SV-OOA were observed between 11:00 and 12:00 UTC. 484 

The LV-OOA has been generally associated with highly oxidized, aged, and long-485 

range-transported aerosol particles (Lanz et al., 2010). Conversely, the SV-OOA has 486 

been described as the less oxygenated and semi-volatile fraction of OOA (Ng et al., 487 

2011a) and therefore it has been mostly attributed to SOA formation from more local 488 
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emissions (Jimenez et al., 2009). For this reason, the LV-OOA and HOA hourly 489 

variations are more influenced by long-range transport than those of SV-OOA, which 490 

are strongly influenced by local/regional processes. In winter, the maximum 491 

concentrations of the OA components were observed simultaneously around 14:00 492 

UTC. The different daily patterns between seasons can be attributed to the higher 493 

production of SOA in summer as opposed to winter, when the maximum daily 494 

concentrations are reached later driven by the mountain breezes. 495 

4 Conclusions 496 

This work interprets the real-time variation of inorganic and organic submicron 497 

components during 10 months (July 2011 - April 2012) at a high altitude site in 498 

southern Europe (Montsec, 1570 m a.s.l.). The aerosol chemical composition was 499 

obtained with an ACSM, and co-located on-line and off-line PM1 measurements were 500 

also carried out. The average concentration of the ACSM plus BC mass during this 501 

study was 4.9 µg m-3, and on average OA was the foremost PM1 constituent (50%), 502 

followed by sulfate (20%), nitrate (14%), ammonium (12%), BC (4%) and chloride (1%). 503 

Discrepancies of OA determined by ACSM with co-located measurements pointed to 504 

an overestimation by the ACSM probably caused by the use of the default RIE for OA, 505 

which could be lower than the actual one. Further research is needed to better address 506 

this issue. 507 

The seasonal variation of PM1 mass and chemical components concentrations 508 

showed similar patterns, with an increase in summer and a decrease in winter, except 509 

for nitrate which has high volatility in summer. The seasonal variation was attributed to 510 

the evolution of the PBL height throughout the year and to synoptic circulation and 511 

meteorological factors. At MSC the higher temperature and solar radiation in summer 512 

enhances the convection processes, incrementing the development of the PBL, and 513 

augments atmospheric photochemistry, promoting the formation of secondary inorganic 514 

and organic aerosols. 515 

The diurnal variation of PM1 components had no clear diurnal patterns in 516 

summer, except for organics. This lack of defined daily patterns was ascribed to the 517 

recirculation of air masses that causes the formation of reservoir layers at relatively 518 

high altitudes, and to the long-range transport from North Africa. These factors result in 519 

a high variability of diurnal cycles even within the same type of episode. Nevertheless, 520 

organic concentrations had a marked diurnal cycle regardless of the air mass origin, 521 

with maximum concentrations around 12:00 UTC. The OA was dominated by LV-OOA 522 

(64%), followed by SV-OOA (26%), and HOA (10%). Hence, the midday increase with 523 
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respect to average concentrations during the night was attributed to the formation of 524 

SOA. 525 

In winter under regional conditions, concentrations of all PM1 components 526 

showed much clearer diurnal patterns than in summer, with a maximum between 14:00 527 

and 15:00 UTC. These daily cycles were connected to the fact that MSC is located 528 

most of the day within the FT, whereas PBL air masses are only injected upwards after 529 

midday. However, when MSC was affected by long-range transport from mainland 530 

Europe, less marked daily patterns of PM1 components were observed. 531 

The OA in winter was also mainly secondary (71%), with contributions from 532 

BBOA (24%), and HOA (5%). The hourly variation of these factors showed a clear 533 

diurnal pattern regardless of the air mass origin, except for Atlantic advections. 534 

To the authors’ knowledge, this is one of the first times when real-time 535 

submicron aerosol chemical composition is characterized and its variation is interpreted 536 

during almost a year in a continental background environment. The results obtained in 537 

the present study highlight the importance of the SOA formation processes at such 538 

remote site as MSC, which could be the objective of further investigations. 539 
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 891 

Fig. 1 Time series of PM1 total mass from co-located measurements and light scattering 892 

at 525 nm. 893 

 894 

Fig. 2 Average concentrations of PM1 chemical species measured at Montsec during the 895 

whole study, in summer and in winter. 896 

 897 
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 898 

Fig. 3 Time series of wind direction, precipitation, temperature, wind speed, 899 

concentrations of nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O3), and PM1 900 

chemical species (OA, sulfate, nitrate, ammonium, chloride and black carbon (BC)) in 901 

summer (14 Jul 11 – 24 Sep 11). Background colors correspond to daily classification of 902 

atmospheric episodes (summer regional (SREG), North African (NAF), and Atlantic (AT)) 903 

and the pie chart correspond to the average chemical composition for the summer 904 

period. 905 

 906 

53%

25%

7%

12%
1% 3%



 27 

 907 

Fig. 4 Diurnal cycles of PM1 chemical species (black carbon (BC), sulfate, nitrate, 908 

ammonium, chloride and OA), gaseous pollutants (ozone (O3), nitrogen oxides (NOx), and 909 

sulfur dioxide (SO2)), and meteorological parameters (relative humidity, temperature and 910 

solar radiation) averaged for the whole period, summer and winter. Variation bars 911 

indicate ± standard deviation. 912 
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 913 

Fig. 5 Time series of wind direction (WD) and speed (WS), temperature (T), precipitation 914 

(PP), concentrations of nitrogen oxides (NOX), sulfur dioxide (SO2), ozone (O3), and PM1 915 

chemical species (organics, sulfate, nitrate, ammonium, chloride and black carbon (BC)) 916 

in winter (10 Jan 12 – 7 Mar 12). Background colors correspond to daily classification of 917 

atmospheric episodes (European (EU), winter regional (WREG), Mediterranean (MED) and 918 

Atlantic (AT)) and the pie chart correspond to the average chemical composition for the 919 

winter period. 920 
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  922 

Fig. 6 Top: Time series of organic species (hydrocarbon-like organic aerosol (HOA), 923 

semi-volatile oxygenated organic aerosol (SV-OOA) and low-volatility oxygenated 924 

organic aerosol (LV-OOA)) concentrations in summer (14 Jul 11 – 24 Sep 11). 925 

Background colors correspond to daily classification of atmospheric episodes and the 926 

pie chart correspond to the average organic species composition for the summer period. 927 

Bottom: Diurnal cycles of organic species concentrations averaged as a function of 928 

atmospheric episode for the summer period. Variation bars indicate ± standard deviation. 929 

  930 
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 931 

 932 

Fig. 7 Top: Time series of organic species (hydrocarbon-like organic aerosol (HOA), 933 

biomass burning organic aerosol (BBOA) and oxygenated organic aerosol (OOA)) 934 

concentrations in winter (10 Jan 12 – 7 Mar 12). Background colors correspond to daily 935 

classification of atmospheric episodes and the pie chart correspond to the average 936 

organic species composition for the winter period. Bottom: Diurnal cycles of organic 937 

species concentrations averaged as a function of atmospheric episode for the winter 938 

period. Variation bars indicate ± standard deviation. 939 


