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Abstract 1 

Accurate estimates of the emissions and distribution of black carbon (BC) in the 2 

region referred to here as Southeastern Asia (70°E–150°E, 11°S–55°N) are critical to 3 

studies of the atmospheric environment and climate change. Analysis of modeled BC 4 

concentrations compared to in situ observations indicates levels are underestimated 5 

over most of Southeast Asia when using any of four different emission inventories. 6 

We thus attempt to reduce uncertainties in BC emissions and improve BC model 7 

simulations by developing top-down, spatially resolved, estimates of BC emissions 8 

through assimilation of OMI observations of aerosol absorption optical depth 9 

(AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. 10 

Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown 11 

after optimization over broad areas of Southeast Asia in April. In October, the 12 

optimization of anthropogenic emissions yields a slight reduction (1~5%) over India 13 

and parts of southern China, while emissions increase by 10~50% over eastern China. 14 

Observational data from in situ measurements and AERONET observations are used 15 

to evaluate the BC inversions and assess the bias between OMI and AERONET 16 

AAOD. Low biases in BC concentrations are improved or corrected in most eastern 17 

and central sites over China after optimization, while the constrained model still 18 

underestimates concentrations in Indian sites in both April and October, possibly as a 19 

consequence of low prior emissions. Model resolution errors may contribute up to a 20 

factor of 2.5 to the underestimate of surface BC concentrations over northern India. 21 

We also compare the optimized results using different anthropogenic emission 22 

inventories and discuss the sensitivity of top-down constraints on anthropogenic 23 

emissions with respect to biomass burning emissions. In addition, the impacts of 24 

brown carbon, the formulation of the observation operator, and different a priori 25 

constraints on the optimization are investigated. Overall, despite these limitations and 26 

uncertainties, using OMI AAOD to constrain BC sources improves model 27 

representation of BC distributions, particularly over China. 28 

 29 
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1. Introduction 1 

Black carbon (BC) is a product of incomplete combustion of carbonaceous fuels, 2 

enhanced concentrations of which have led to a present-day overall positive radiative 3 

forcing and climate warming [Charlson and Pilat, 1969; Satheesh and Ramanathan, 4 

2000; Bond et al., 2013].  More than ten years ago, Jacobson [2000] and Hansen et al. 5 

[2000] recognized that preindustrial to present increases in BC might warm the 6 

atmosphere about one third as much as CO2. Recently, an assessment by Bond et al. 7 

[2013] indicates that the global average preindustrial to present radiative forcing from 8 

BC is +1.1 W/m2 with 90% uncertainty bounds of +0.17 to +2.1 W/m2, which is more 9 

than two thirds that of CO2 (+1.56 W/m2). Additionally, BC aerosols constitute up to 10 

10-15% of the mass concentration of fine particulate matter (PM2.5) over continental 11 

regions, exposure to which is known to adversely effect human health [e.g., Janssen et 12 

al., 2005; Schwartz et al., 2008; Janssen et al., 2011]. Given the magnitude of BC 13 

climate effects and health impacts, a number of studies have investigated its direct 14 

effect [Forster 2007; Ramanathan and Carmichael, 2008], semi-direct effect 15 

[Ackeman et al., 2000; Johnson et al., 2004], indirect effect [Cozic et al., 2007; Liu et 16 

al., 2009; Oshima et al., 2009], and the albedo effect when deposited on snow 17 

[Hansen and Nazarenko, 2004; Hansen et al., 2005; Flanner et al., 2007; Qian et al., 18 

2009] using various numerical models and observations.  19 

Central estimates of global annual emissions of BC are 8.0 Tg, of which 38% comes 20 

from fossil fuel, 20% from biofuel and 42% from open burning [Bond et al., 2004]. 21 

At the same time, estimates of BC emissions are recognized as having large 22 

uncertainties -- 50% at global scales and a factor of two to five at regional scales 23 
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[Bond et al., 2004; Ramanathan and Carmichael, 2008]. The Asian region referred to 1 

here as Southeast Asia (70°E–150°E, 11°S–55°N) is the major anthropogenic BC 2 

source region in the world, with growth in BC emissions of 21% over China and 41% 3 

over India from 1996 to 2010 associated with rapid economic and industrial 4 

development [Lu et al., 2011]. BC emissions from both energy-related combustion 5 

and biomass burning that occur largely in Asia and Africa currently appear 6 

underestimated [Bond et al., 2013]. A global top-down estimate of BC emission using 7 

AERONET observation by Cohen and Wang [2014] indicated that commonly used 8 

global BC emissions datasets may be underestimated by a factor of two or more. 9 

Sixteen models from the AeroCom aerosol model intercomparison study 10 

underestimated the Southeast Asian BC surface concentrations by a factor of 2~3 11 

[Koch et al., 2009]. The GEOS-Chem model also underestimated monthly BC 12 

concentrations at almost all rural sites in China, particularly in January 2006, which 13 

indicated a regional underprediction of carbonaceous aerosol sources associated with 14 

anthropogenic activities [Fu et al., 2012; Wang et al., 2013]. In addition, the global 15 

atmospheric absorption attributable to BC is too low in many global aerosol models 16 

by a factor of almost three on a global mean basis, which can be attributed to the 17 

models lacking treatment of enhanced absorption caused by mixing of BC with other 18 

constituents and the amount of BC in the atmosphere [Koch et al., 2009; Bond et al., 19 

2013]. On the other hand, a typical fresh particle mass absorption cross section 20 

(MABS, essentially the column BC absorption divided by the load) of about 7.5 m2 21 

g−1, a value recommended by Bond and Bergstrom [2006], is not represented in most 22 
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models [Koch et al., 2009]. This bias would also impact simulated AAOD, and 1 

inferences about emissions based on such comparisons would likewise be biased. 2 

To reduce uncertainties in BC emissions and improve poor representation of BC in 3 

model simulations, different top-down approaches have been used to constrain 4 

bottom-up BC emissions, such as the linear constraints between concentrations and 5 

emissions [Park et al., 2003; Kondo et al., 2011; Fu et al., 2012; Wang et al., 2013], 6 

inverse modeling using the decoupled direct method [Hu et al., 2009a; Hu et al., 7 

2009b], the Kalman filter technique [Cohen and Wang 2014], and the adjoint based 8 

4D variational approach [Hakami et al., 2005]. These studies have exclusively used in 9 

situ measurements or airborne observations, which can provide accurate observations 10 

of aerosol properties. However, they are often incomplete in their spatial or temporal 11 

coverage. Satellite measurements of aerosol optical depth (AOD) have much broader 12 

temporal and spatial coverage, and have also been used to constrain BC sources 13 

[Huneeus et al., 2003; Xu et al., 2013]. However, AOD reflects the contribution from 14 

all aerosol components, making it difficult to distinguish and quantify different 15 

aerosol species, especially their relative fractions.  16 

The OMI aerosol absorption optical depth (AAOD), the non-scattering part of the 17 

AOD, is an atmospheric column measurement of absorbing aerosol particles, i.e., 18 

absorbing carbon and mineral dust, which provides a different perspective to 19 

constrain BC sources [Torres et al., 1998; Koch et al., 2009].  In this study, the 20 

GEOS-Chem adjoint model and satellite observations of OMI AAOD are used to 21 

constrain spatially resolved BC emissions. Our study focuses on April and October to 22 



 6

compare seasons when the dust loading over Southeast Asia is relatively large and 1 

small. Section 2 describes the observations, emissions, and forward and inverse model 2 

used in this study. Then we quantify discrepancies between observations and model 3 

estimates based on different BC anthropogenic emissions in Section 3. Section 4 4 

describes how formulation of the inverse problem affects the results; evaluation of the 5 

inversion results with different prior emission inventories and independent 6 

observations are presented in Section 5, and we end with discussion and conclusions 7 

in Section 6. 8 

 9 

2. Data and Models 10 

2.1 Observations 11 

2.1.1 OMI AAOD 12 

The Ozone Monitoring Instrument (OMI) aboard Aura is a nadir-viewing, wide-swath 13 

hyper-spectral imaging spectrometer that provides daily global coverage with high 14 

spectral resolutions and spatial resolution of 13 × 24 km2 at nadir [Levelt et al., 15 

2006a]. It detects backscattered solar radiance in the ultraviolet-visible wavelengths 16 

(0.27 to 0.5 µm) to measure aerosols, clouds, surface UV irradiance, and trace gases 17 

[Levelt et al., 2006b]. OMI takes advantage of the greater sensitivity of radiances 18 

measured at the top-of-atmosphere in the near-UV region to the varying load and type 19 

of aerosols to derive extinction AOD, single scattering albedo (SSA), and AAOD 20 

using an inversion procedure at 354, 388 and 500 nm generated by the near-UV 21 

(OMAERUV) algorithm [Torres et al., 2007]. The optical depths at 388 nm are 22 
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inverted from radiance observations while the 354 and 500 nm results are obtained by 1 

conversion of the 388 nm retrievals. The OMAERUV retrieval algorithm is 2 

particularly sensitive to carbonaceous and mineral aerosols. It assumes that the 3 

column aerosol load can be represented by one of three types of aerosols and uses a 4 

set of aerosol models to account for the presence of these aerosols: carbonaceous 5 

aerosol from biomass burning, desert dust, and weakly absorbing sulfate-based 6 

aerosols. Each aerosol type is represented by seven aerosol models of varying single 7 

scattering albedo, for a total of twenty-one models.  The twenty-one aerosol models 8 

used by OMAERUV are based on long-term statistics of ground-based observations 9 

by the AERONET. The major factor affecting the quality of aerosol products is sub-10 

pixel could contamination, while AAOD is probably less affected by cloud 11 

contamination due a to a partial cancellation of cloud effects on the retrieved AOD 12 

and SSA co-albedo. Due to the large sensitivity of OMI near UV observations to 13 

particle absorption, AAOD is the most reliable quantitative OMAERUV aerosol 14 

parameter, especially over land. The root-mean-square error for AAOD is estimated to 15 

be ~0.011. In this study, we used the OMAERUV Level-2 aerosol data product, which 16 

includes the quality assurance flag, thus only the most reliable retrievals minimally 17 

affected by sub-pixel cloud contamination are used [Ahn et al., 2014]. Important 18 

algorithm improvements have been implemented in the current OMAERUV 19 

algorithm. The carbonaceous aerosol model was replaced with a new model that 20 

accounts for the presence of OC while the previous aerosol model only assumed black 21 

                                                        
1daac.gsfc.nasa.gov/Aura/data-

holdings/OMI/documents/v003/OMAERUV_README_V003.doc 
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carbon as the absorbing component [Jethva and Torres, 2011]. In the revised 1 

algorithm, the identification of aerosol type has been improved by taking advantage 2 

of the Atmospheric Infrared Sounder (AIRS) carbon monoxide (CO) observations in 3 

conjunction with OMI UV-AI. The aerosol layer height (ALH) value is taken from a 4 

climatology derived from CALIOP (Cloud-Aerosol Lidar with Orthogonal 5 

Polarization) observations specifically produced for this purpose [Torres et al., 2013]. 6 

The Level 2 OMI AAOD data reports a set of retrieved parameters for different 7 

assumptions of the altitude of the aerosol center of mass: at the surface, and at 1.5, 8 

3.0, 6.0 and 10.0 km above the surface [Torres et al., 2005]. A best-guess set of 9 

retrieved values of AOD, AAOD and SSA associated with the climatological ALH 10 

value from the CALIOP-based climatology is reported as the standard OMAERUV 11 

aerosol product. When the aerosol layer height is not available from CALIOP 12 

climatology, the height is obtained as in the previous version of the algorithm based 13 

on a climatology of GOCART model simulated aerosol heights. For carbonaceous and 14 

desert dust particles, the aerosol load is assumed to be vertically distributed following 15 

a Gaussian function characterized by peak (aerosol layer height) and half-width 16 

(aerosol layer geometric thickness) values [Torres et al., 2005; Torres et al., 2013]. 17 

The retrieval values of AAOD are much larger if using the aerosol layer altitude 18 

where more absorbing aerosols are loaded. In general, when comparing satellite 19 

retrievals of trace gases with other measurements or model simulations, it is essential 20 

to take into account the different sensitivities of the instruments by applying 21 

averaging kernels [Luo et al., 2007; Worden et al., 2007]. However, there is no 22 
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averaging kernel for OMI AOD/AAOD retrievals. It is thus important to consider 1 

differences in aerosol properties and distributions used in the retrieval algorithm with 2 

those in the assimilation model (e.g., GEOS-Chem). The retrieval “Final AAOD” 3 

products (OMI_Final) are interpolated values using the aerosol layer height value 4 

given by the CALIOP climatology [Torres et al., 2013].  5 

OMAERUV retrievals of AOD and SSA have been evaluated by comparison to 6 

independent ground-based observations provided by the world-wide Aerosol Robotic 7 

Network (AERONET). OMAERUV AOD retrievals at 380 nm were compared to 8 

AERONET observations [Ahn et al., 2014]. Over 10,000 matched OMAERUV-9 

AERONET AOD pairs at 44 globally distributed land-locations were analyzed. The 10 

AERONET-OMAERUV analysis reported a high level of agreement between the two 11 

datasets, yielding a correlation coefficient of 0.81, y-intercept of 0.1, and slope of 12 

0.79.  Sixty five percent of the analyzed OMAERUV AOD data agreed with 13 

AERONET measurements within OMAERUV’s stated uncertainty (largest of 0.1 or 14 

30%). The OMAERUV SSA product has also been evaluated using AERONET 15 

retrievals. Jethva et al [2014] compared OMAERUV and AERONET SSA retrievals 16 

using all available AERONET data at 269 sites for the 2005-2013 period. After 17 

accounting for the wavelength difference (AERONET’s 440 nm versus OMAERUV’s 18 

388 nm), it was shown that 50% of the satellite SSA retrievals agree with 19 

AERONET’s values within 0.03, whereas 75% of the matched pairs agree within 0.05 20 

for all aerosol types. The most important source of uncertainty is the effect of sub-21 

pixel cloud contamination, related to the sensor’s coarse spatial resolution, which 22 
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causes AOD and SSA overestimates for cases of low aerosol load, and severely limits 1 

the overall retrieval yield of the algorithm.     2 

 In order to obtain a consistent vertical profile between the OMI retrieval and GEOS-3 

Chem, we use the GEOS-Chem simulated aerosol layer height instead of the 4 

CALIOP-based aerosol layer height climatology to calculate a GEOS-Chem-based 5 

observed AAOD (referred as OMI_GC AAOD) as a linear interpolation of the OMI 6 

observed AAOD values corresponding to different assumed peak heights. Figure 1 7 

shows the differences between OMI_Final and OMI_GC AAOD over Southeast Asia 8 

for April and October 2006. In April, the enhancements from applying the GEOS-9 

Chem aerosol layer height are quite significant, with 30-50% increases over eastern 10 

China and downwind areas while 20-30% increases over India and southeastern Asia, 11 

since the simulated aerosol layer heights are much lower than those based on 12 

CALIOP. The increases even exceed 60% across broad areas over the tropical ocean. 13 

Some reductions are shown over parts of western China and northern Asia in the 14 

OMI_GC AAOD. In October, the patterns of enhancement and reduction are similar 15 

to those in April, with smaller changes (less than 20%) over broad continental areas. 16 

The most significant differences occur near the major aerosol source regions, such as 17 

eastern China and South Asia. We also evaluate the linearity of the relationship 18 

between aerosol layer height and AAOD from OMI retrievals. We find (not shown) 19 

that there is less than 30% error in linearly interpolating AAOD corresponding to a 20 

specific aerosol layer height from the AAODs corresponding to two other aerosol 21 

layer heights. 22 
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2.1.2 AERONET AAOD 1 

The Aerosol Robotic Network (AERONET) is a ground-based instrument network 2 

providing a long-term, continuous and readily accessible public domain database of 3 

aerosol optical, microphysical and radiative properties [Holben et al., 1998]. 4 

AERONET inversion code provides aerosol optical properties (including size 5 

distribution, refractive index, and single scattering albedo) in the total atmospheric 6 

column derived from the direct and diffuse radiation measured by Cimel sun/sky-7 

radiometers [Dubovik and King, 2000; Dubovik et al., 2000, 2002a, 2002b; Dubovik 8 

et al., 2006; Sinyuk et al., 2007].  9 

We use Level 2.0 quality-assured AERONET aerosol inversions data of AAOD at 440 10 

nm. The prefield and postfield calibrations have been applied in these measurements 11 

and they were cloud cleared and manually inspected [Omar et al., 2013]. The total 12 

uncertainty in the AERONET AOD for field instruments is ±0.1 to ±0.2 and is 13 

spectrally dependent with the higher errors (±0.2) in the UV spectral range [Eck et al., 14 

1999]. The retrieved single scattering albedo uncertainties are within 0.03, estimated 15 

by Dubovik et al., [2000], with the exception of the 0.44 µm retrievals for the desert 16 

dust case when they increase by ∼0.09 and 0.07 for low and high aerosol loadings, 17 

respectively [Sinyuk et al., 2007]. In this study, only the AAOD data corresponding to 18 

AOD values greater than 0.4 are include. 19 

2.1.3 In situ measurements 20 

For the monthly surface BC observation over Southeast Asia, we combine the in situ 21 

measurements of BC concentration based on several published studies [Zhang et al., 22 
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2008; Beegum et al., 2009; Moorthy et al., 2013]. Over China, the monthly surface 1 

BC concentrations are from 12 sites, including urban sites and rural sites for April and 2 

October, 2006, which were based on results of Zhang et al. [2008]. The locations of 3 

these 12 sites are shown in Fig. 2. The BC concentrations are analyzed using thermo-4 

chemical analysis from PM10 aerosols, which were collected by air sample [Zhang et 5 

al., 2008]. The daily BC measurements are only available at the site of Xi’an (XIA). 6 

The PM2.5 BC concentrations were measured continuously as 5-min averages by 7 

quartzfiber filter tape transmission at an 880 nm wavelength with an aethalometer 8 

[Hansen et al., 1984]. More details about the measurement methods are described in 9 

Cao et al. [2007; 2009]. 10 

The measurements of monthly surface BC concentrations for 2006 using 11 

aethalometers over India were based on Beegum et al. [2009] and Moorthy et al. 12 

[2013], which were carried out in eight sites covering India and adjacent oceanic 13 

regions. Locations of these sites are indicated in Fig. 2. More details about the 14 

measurements and sites are described by Beegum et al. [2009]. DEL and KGP 15 

represent urban and semi-urban sites in the Indo-Gangetic Plain (IGP).  HYD and 16 

PUN represent urban locations. TVM is a semi-urban coastal station in the south 17 

India; NTL is a high altitude location in the central Himalayas, and MCY and PBR 18 

are two island locations representing the Arabian Sea and Bay of Bengal, respectively. 19 

2.2 GEOS-Chem  20 

GEOS-Chem is a global three-dimension chemical transport model driven by 21 

assimilated meteorological observations from the Goddard Earth Observing System 22 
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(GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) [Bey et al., 1 

2001]. We use the nested-grid GEOS-Chem model [Wang et al., 2004; Chen et al., 2 

2009] driven by GEOS-5 meteorological fields with 6-hour temporal resolution (3-3 

hour for surface variables and mixing depths), 0.5° (latitude) × 0.667° (longitude) 4 

horizontal resolution over the window of Southeast Asia (70°E–150°E, 11°S–55°N), 5 

and 47 vertical layers between the surface and 0.01 hPa. A global simulation with 6 

lower resolution of 4° (latitude) × 5° (longitude) provides the lateral boundary 7 

conditions to the higher resolution nested-grid simulation every 3 hours. 8 

The original carbonaceous aerosol simulation in GEOS–Chem was developed by Park 9 

et al. [2003]. It assumes that 80% of BC and 50% of OC emitted from primary 10 

sources are hydrophobic and that hydrophobic aerosols become hydrophilic with an e-11 

folding time of 1.15 days [Park et al., 2003; Chin et al., 2002; Cooke et al., 1999].  12 

Dust in GEOS-Chem is distributed across four size bins (radii 0.1– 1.0, 1.0–1.8, 1.8–13 

3.0, and 3.0–6.0 µm) following Ginoux et al. [2004]. The smallest size bin is further 14 

divided equally into four sub-micron size bins (with effective radii centered at 0.15, 15 

0.25, 0.4 and 0.8µm) for calculation of optical properties and heterogeneous 16 

chemistry [Fairlie et al., 2010; Ridley et al., 2012]. Due to the significant positive 17 

biases identified in GEOS-Chem dust simulations both in surface concentration and 18 

dust AOD [Fairlie et al., 2010, Ku and Park, 2011; Ridley et al., 2012; Wang et al., 19 

2012], a new emitted dust particle size distribution (PSD) based upon scale-invariant 20 

fragmentation theory [Kok, 2011] with constraints from in situ measurements [Zhao 21 

et al., 2010] is implemented in GEOS-Chem to improve the dust simulation [Zhang et 22 
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al., 2013]. Large discrepancies are reduced between the simulated surface-level fine 1 

dust concentration and measurements from the IMPROVE network in the western US 2 

during March to May of 2006 [Zhang et al., 2013]. The new PSD also improves the 3 

positive biases of AOD over the Asian and African dust source region in April 2006 4 

(See Fig. S1 in supplemental). The wet deposition scheme [Liu et al., 2001] includes 5 

scavenging in convective updrafts as well as in-cloud and below-cloud scavenging 6 

from convective and large-scale precipitation. Dry deposition is based on the 7 

resistance-in-series scheme of Wesely [1989] as implemented by Wang et al. [1998]. 8 

The aerosol optical depth at 400 nm is calculated online assuming log-normal size 9 

distributions of externally mixed aerosols and is a function of the local relative 10 

humidity to account for hygroscopic growth [Martin et al., 2003]. The AAOD of each 11 

aerosol species is calculated as [Ma et al., 2012; Cohen and Wang, 2014; Cohen, 12 

2014] 13 

                                         AAOD=AOD* (1-SSA)                                                   (1), 14 

where SSA is the single scattering albedo. 15 

2.3 BC Emission Inventories  16 

Emissions of BC from biomass burning sources are taken from version 2 of the GFED 17 

8-day inventory [van der Werf et al., 2006; Randerson et al., 2006]. GFED v2 is 18 

derived using satellite observations of active fire counts and burned areas in 19 

conjunction with the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical 20 

model. Carbon emissions are calculated as the product of burned area, fuel load and 21 

combustion completeness. Burned area is derived using the active fire and 500-meter 22 
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burned area datasets from the Moderate Resolution Imaging Spectroradiometer 1 

(MODIS) as described by Giglio et al. [2006]. We also use a newer version of GFED 2 

v3 daily emissions for sensitivity analysis [van derWerf et al., 2010]. Compared to 3 

GFED v2, the main update in GFED v3 is the spatial resolution of the global grid is 4 

quadrupled from 1° to 0.5°, the native 500-m MODIS daily burned area maps are 5 

applied [Giglio et al., 2010], the regional regression trees of GFEDv2 are replaced by 6 

a local regression approach in producing the indirect, active-fire based estimates of 7 

burned area, and a revised version of Carnegie-Ames Stanford Approach (CASA) 8 

biogeochemical model is used.  9 

Global anthropogenic emissions for carbonaceous aerosols (BC/OC) in GEOS-Chem 10 

are originally from Bond et al. [2004, 2007], which contain both biofuel and fossil 11 

fuel emissions. The estimated BC emissions uncertainties are −36% to 149% over 12 

China and 38% to −119% for India [Bond et al., 2004; Lu et al., 2011].  In this study, 13 

we evaluate three additional carbonaceous anthropogenic emission inventories over 14 

Southeast Asia and China: the Streets regional inventory for Intercontinental 15 

Chemical Transport Experiment - Phase B (INTEX-B), the Southeast Asia 16 

Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emission 17 

inventory, and the Multi-resolution Emission Inventory for China (MEIC, 18 

http://www.meicmodel.org/). Anthropogenic emissions are all classified into four 19 

major sectors: power generation, industry, residential and transport. The INTEX-B 20 

inventory is based on 2006 and contains monthly variations with 0.5° × 0.5° 21 

horizontal resolution over Southeast Asia (Zhang et al., 2009). The SEAC4RS 22 
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inventory is an annual, finer resolution inventory based on 2012, with 0.1°× 0.1° 1 

horizontal resolution over Southeast Asia [Lu et al., 2011]. The average uncertainties 2 

of BC are estimated to be −43% to 90% over China, which are much lower than those 3 

of the INTEX-B between −68% to 308% [Zhang et al., 2009; Lu et al., 2011]. The 4 

MEIC emission inventory over China also includes monthly variations and is 5 

provided at the 0.5° × 0.5° horizontal resolution. These four anthropogenic emission 6 

inventories are regridded to the GEOS-Chem resolution of 0.5° × 0.667°, and their 7 

annual emissions are shown in Fig. 3. The differences in these inventories exceed 8 

100% across broad areas, especially over India and eastern China. The anthropogenic 9 

emission inventory of INTEX-B is comparable to that of MEIC over eastern China 10 

while lower than that of Bond and SEAC4RS over western China and India. Both 11 

Bond and SEAC4RS inventories are lower over central and eastern China compared to 12 

those of INTEX-B and MEIC inventories. With much finer resolution, the SEAC4RS 13 

emission inventory indicates more hot spots spread across eastern and central China 14 

and the IGP and eastern India where rural population densities are high and residential 15 

coal and biofuel combustion are prevalent [Lu et al., 2011].  16 

2.4 GEOS-Chem Adjoint and Inverse Modeling 17 

An adjoint model is a set of equations auxiliary to a forward model that are used to 18 

efficiently calculate the gradient of a scalar model response function with respect to 19 

all model parameters simultaneously [Lions, 1971]. The adjoint of GEOS-Chem was 20 

developed specifically for inverse modeling including explicit treatment of gas-phase 21 

chemistry, heterogeneous chemistry, black and organic primary aerosol, as well as the 22 
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treatment of the thermodynamic couplings of the sulfate-ammonium-nitrate-formation 1 

chemistry [Henze et al., 2007; 2009], with code updates following the relevant parts 2 

of the GEOS-Chem forward model up through version v9. The GEOS-Chem adjoint 3 

model has been developed and widely used to constrain sources of emission such as 4 

dust [Wang et al., 2012], ammonia [Zhu et al., 2013], CO [Kopacz et al., 2009; 5 

Kopacz et al., 2010; Jiang et al., 2011], CH4 [Wecht et al., 2012; Wecht et al., 2014], 6 

and to investigate pollution transport [e.g., Zhang et al., 2009, Kopacz et al., 2011]. 7 

     The 4D variational data assimilation technique is used with the GEOS-Chem 8 

adjoint model to combine observations and models to calculate an optimal estimate of 9 

emissions. A range of emissions are constructed using control variables, σ, to adjust 10 

the vector of model emissions via application as scaling factors with elements � = �
��, 11 

where E and Ea are posterior and prior BC emission vectors, respectively. This 12 

method of inverse modeling seeks σσσσ that minimizes the cost function, �, presented 13 

by: 14 

� = 1
2�	
� − �
�����
���� 	
� − �
���
�∈�

+ 12 ��	� − ��������	� − ���													2�,	22 

where � is the vector of species concentrations mapped to the observation space by H, 15 

the observation operator, �
��  is the vector of species observations, σa is the prior 16 

estimate of the scaling factors, �
��  and ��  are error covariance estimates of the 17 

observations and scaling factors, respectively, and Ω  is the domain over which 18 

observations are available. The first term of the cost function in Eq. (2) is the 19 

observation term, which is the total prediction error incurred for departure of model 20 

predictions from the observations. The second term, the a priori term or penalty 21 
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(background) term, is the penalty incurred for departure from the prior emissions. 1 

Here �� is assumed to be diagonal, and the significance of the prior information is 2 

more of a smoothness constraint than a rigorous estimate of prior uncertainty 3 

[Rodgers, 2000]. �� 	is a regularization parameter, which used to balance the two terms 4 

[Hansen 1998; Henze et al., 2009]. We will discuss the contributions of the penalty 5 

term in Section 4.2. 6 

Overall, the minimum value of the cost function balances the objectives of improving 7 

model performance while ensuring the model itself remains within a reasonable range 8 

(as dictated by ����) of the initial model. The minimum of the cost function is sought 9 

iteratively using the quasi-Newton L-BFGS-B algorithm [Zhu et al., 1994; Byrd et al., 10 

1995].  This approach requires the gradients of the cost function with respect to the 11 

emission scaling factors at each iteration, which are calculated with the GEOS-Chem 12 

adjoint model. 13 

2.5 Cost function and adjoint forcing 14 

OMI_GC AAOD column observations represent the combined absorption of all 15 

aerosols species (dominated by BC, dust, and to a lesser extent OC). Similarly, 16 

modeled total column AAOD,  !", is the sum of modeled column absorption from 17 

BC ( !"_$"�, OC ( !"_%"� and dust ( !"_&'()�:  18 

 !" =	 !"_$" +  !"_%" +  !"_&'()						3�. 19 

In order to use AAOD observations to develop constraints on BC alone, we must 20 

formulate the observation term of the cost function to isolate the impacts of BC on the 21 

difference between simulated and observed AAOD. Here we consider four 22 
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approaches: methods (a) – (d).  The first two methods use modeled ratios of BC to 1 

total absorption (either in each layer (a), or the total column (b)) to derive an 2 

“observed” BC AAOD. Method (c) makes a direct comparison between total AAOD 3 

in the model and measurements.  Lastly, in method (d), we also consider using a 4 

subset of the OMI data that has been flagged in the retrieval process as being 5 

impacted by carbonaceous aerosol. These different approaches to constructing a cost 6 

function, and the gradient of these cost functions with respect to the vertically 7 

resolved modeled BC concentration (i.e., the adjoint forcing) are presented below. 8 

Here we do not consider the penalty term in the cost function in order most clearly 9 

assess how formulation of the observation term impacts the inversion. The 10 

consequences of the different cost function formulations are described in Section 4.1. 11 

(a): In this method, the observation term of the cost function can be written as: 12 

� = 1
2	��	τ!"_$",-,. − τ%/0_$",-,.�1

2

-3�
∗ �%/0,.�1

5

6
						4�, 13 

where L is the top of atmosphere, N is the total number of observations, and τ!"_$",-,. 14 

and τ%/0_$",-,.  are the modeled and observed BC AAODs at layer 8  for the ith 15 

observation, respectively.  The latter is calculated for any i from the OMI column 16 

AAOD ( %/0,.� using the ratio of vertically resolved BC AAOD to column AAOD in 17 

the prior model,  18 

τ%/0_$",-,. =  %/0,. τ
�!"_$",-,. �!",. 										5�, 19 

where superscript : indicates the prior model estimates. Since the ratio 
@�AB_CB,D,E
 �AB,E  is a 20 

constant throughout the inversion, the ith adjoint forcing is 21 
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∂�
∂BC	- =

∂τ	!"_$",-,.∂BC- ∗ 	Iτ!"_$",-,. −  %/0,. τ
�!"_$",-,. �!",. J	∗ �%/0,.�1 							6�. 1 

(b) In this method, the cost function is based on BC AAOD column differences: 2 

� = 1
2	�	 !"_$",. −  %/0_$",.�1

5

6
∗ �%/0,.�1 					7�. 3 

The observed BC AAOD column is calculated from the OMI_GC AAOD column and 4 

the ratio of modeled column BC AAOD to total column AAOD from the prior 5 

simulation: 6 

 %/0_$",. =  %/0,.  �AB_CB,E �AB,E 								8�. 7 

The ith adjoint forcing is thus  8 

N�
N$"	D =

N@	AB_CB,D,E
N$"D ∗ O !"_$",. �  %/0,. P

�AB_CB,E
 �AB,E Q ∗ �%/0,.

�1 							9�. 9 

 (c) The observation term of the cost function can be written in terms of total column 10 

absorption as: 11 

� � 1
2	�	 !",. �  %/0,.�1

5

6
∗ �%/0,.�1 							10�. 12 

In this case, the adjoint forcing is 13 

N�
N$"	D �

N@	AB_CB,D,E
N$"D 	* 	 !"_$",. �  !"_%",. �  !"_&'(),. �  %/0,.� ∗ �%/0,.�1 					11�. 14 

(d) The OMI OMAERUV retrievals algorithm also flags instances for which the 15 

retrieval algorithm relied upon the presence of carbonaceous aerosols. Using only 16 

these retrievals, the observation term of the cost function can be written in terms of 17 

the direct difference between simulated columns BC AAOD and BC flagged OMI 18 

AAOD observations: 19 

� � 1
2	�	 !"_$",. �  %/0_$"_T-�U,.�1 ∗ �%/0_$",.�1

5

6
						12�. 20 
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where  %/0_$"_T-�U  is the OMI AAOD flagged for the presence of carbonaceous 1 

aerosols (OMI_GC AAOD_BC, which is different than Eq. 5 or 8 which depend upon 2 

prior model ratios). In this case, the gradient of the cost function with respect to BC 3 

concentration at the layer 8 will be 4 

N�
N$"	D �

N@AB_CB,D,E
N$"D  * V !"_$",. �  %/0_$"_T-�U,.W ∗ �%/0_$",.�1 					13�. 5 

The implications of the different cost function formulations will be described in 6 

Section 4.1. 7 

3 Impacts of BC anthropogenic emission uncertainties  8 

In this section, we quantify the extent to which differences in anthropogenic emission 9 

inventories contribute to uncertainties in simulated surface BC and AAOD. Here, the 10 

SEAC4RS emission inventory is appended to the MEIC emission inventory outside of 11 

China for the Southeast Asian nested simulation (MEIC_SEAC4RS). Figure 4 shows 12 

the impact of different BC anthropogenic emission inventories on simulated surface 13 

BC concentrations and comparisons to in situ measurements over China [Zhang et al., 14 

2008, Cao et al., 2009]. The monthly and daily ground-based measurements at sites 15 

representative of four different regions are shown: northern China (Gucheng, GUC), 16 

northeastern China (Longfengshan, LFS), southern China (Nanning, NAN), and 17 

midwestern China (XiAn, XIA). Generally, the modeled and observed BC 18 

concentrations are higher in winter than in summer. In addition to enhanced 19 

anthropogenic emissions during the winter [Fu et al., 2012], the Asian summer 20 

monsoon plays an important role in this seasonal cycle by reducing aerosol 21 

concentrations in the summer over China [Zhang et al., 2010]. Though the model 22 
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simulation is able to capture the seasonal variability, it underestimates surface BC 1 

concentration at the urban sites, such as GUC, NAN, and XIA, with all of these 2 

anthropogenic emission inventories, except at NAN, where the SEAC4RS inventory 3 

leads to values as high or higher than observed, but the seasonal variation has not yet 4 

been reproduced. With the INTEX-B and MEICS inventory, though the surface BC 5 

concentrations are underestimated at some background and rural sites [Fu et al., 2012; 6 

Wang et al., 2013], the simulated BC surface concentrations at the rural site of LFS 7 

are quite comparable to the observation, especially the seasonal variations. The 8 

INTEX-B and MEIC inventories improve the BC concentrations in winter with the 9 

inclusion of monthly variability over China compared to the inventories of Bond and 10 

SEAC4RS.  11 

The spatial distributions of simulated surface BC concentrations using 12 

MEIC_SEAC4RS and INTEX-B inventories are compared to the in situ observation at 13 

20 sites over Southeast Asia for April and October 2006 in Fig. 5. The east to west 14 

gradient in China and the north to south gradient in India are not well reproduced by 15 

the model, where the simulated BC concentrations are much lower over eastern China 16 

and the IGP for both April and October, especially for the urban areas since the model 17 

is unable to resolve individual urban hot spots [Fu et al., 2012]. 18 

Figure 6a shows the differences in monthly average AAOD between the model using 19 

the MEIC_SEAC4RS inventory and OMI (former minus latter) for April and October 20 

2006. GEOS-Chem underestimates AAOD compared to OMI across broad areas of 21 

Southeast Asia in April, especially eastern China and the IGP. In October, AAOD is 22 
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underpredicted over northern China while it is over predicted over eastern China and 1 

most of South Asia. Corresponding OMI data counts towards the monthly average at 2 

each grid cell are shown in Fig. 6b. In general, more data are available over northern 3 

China and India. We note that the data counts are much lower in October compared to 4 

April over southern China and the Indo China Peninsular, where the observations are 5 

overestimated. Sparse OMI observations over these areas may result in apparent high 6 

or low biases. If we only take into account the OMI_GC AAOD_BC retrievals, the 7 

differences and corresponding OMI data counts for April and October are shown in 8 

Fig. 7. The spatial distributions are quite similar to those using all AAOD 9 

observations shown in Fig. 6, but with much larger negative differences over Asia in 10 

April and over northern China and IGP in October. The data counts are also smaller 11 

when only considering the OMI_GC AAOD_BC observations, especially over the 12 

dust source regions and downwind areas in April and broad areas over South Asia in 13 

October.  14 

We also compared the observed to simulated AAOD using different emission 15 

inventories (figures not shown here). The simulated AAOD is comparable using 16 

INTEX-B and MEIC emission inventories over eastern China, while it is much lower 17 

than the OMI column retrieval using the inventories of Bond and SEAC4RS. With the 18 

SEAC4RS inventories, the simulated AAOD over the IGP shows enhancements 19 

compared to that using Bond and INTEX-B inventories.  20 

4. Uncertainties of observation and penalty terms 21 

4.1 Adjoint forcing 22 
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As described in Section 2.5, there are four methods to formulate the observation term 1 

of the cost function owning to different approaches of deriving an “observed” BC 2 

AAOD. We perform sensitivity experiments to quantify the impact of using these 3 

different formulations. For these tests, only the observation term is considered in the 4 

cost function (i.e., the penalty term is not included), and we use the same 5 

anthropogenic emission inventory (MEIC_SEAC4RS) as the prior emissions for each 6 

test. Figure 8 shows the results of the differences between optimized and prior 7 

anthropogenic BC emissions based on the four approaches.  8 

Qualitatively, there are many noticeable differences between the optimization results 9 

using the different formulations of the observation operator.  In April, enhanced 10 

anthropogenic BC emissions are shown over broad areas using all four methods. 11 

However, slight reductions appear over eastern China and southern India when using 12 

method (b), (c) and (d). In particular, method (c) results in lower posterior emissions 13 

over China. The results of methods (c) and (d) are quite consistent except the 14 

enhancements of posterior emissions over southern India occur using method (d). 15 

Similarly, although the four optimized patterns are quite consistent in October, much 16 

larger areas of BC emissions reduction result from using method (c). The reductions 17 

of method (d) are similar to that of method (c) over eastern China, while quite 18 

different over India with significantly enhanced posterior emissions.  19 

The differences in results are related to different assumptions implicit in the various 20 

forms of the cost function considered.  Both method (a) and method (b) depend on the 21 

relative ratio of BC to other absorbing aerosol (e.g. dust, OC) in the model. Further, 22 
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method (a) introduces a stronger dependency on the GEOS-Chem prior vertical 1 

distribution, since the observation operator includes three dimensions with all vertical 2 

layers, compared to the column based method (b). Since there are more observations 3 

over IGP and northeastern China in April, this stronger constraint may enhance the 4 

negative forcing due to the model underestimation, which leads to increasing 5 

emissions. Since, through the adjustment of the OMI data to generate the OMI_GC 6 

product, we have already used the GEOS-Chem prior information on the aerosol 7 

vertical distribution, it seems preferable to adopt a column-based approach for the 8 

assimilation. Though both method (b) and method (c) are based on the column 9 

AAOD, the former assumes that the relative contributions of BC to total AAOD in the 10 

model is correct, while the latter assumes that absolute contributions of OC and dust 11 

are correct. The simulated total AAOD might not be equivalent to the observed 12 

AAOD after optimization in both method (a) and method (b) since the adjoint forcing 13 

only accounts for the BC AAOD. In addition, the results would highly depend on the 14 

model performance in simulating the ratio between BC and other absorbing aerosol. 15 

There are no significant biases for the GEOS-Chem simulated faction of coarse model 16 

dust mass [Wang et al., 2012, Philip et al., 2014], which suggests that the simulated 17 

dust AAOD fraction is likely unbiased. However the simulated mass of both BC and 18 

OC in GEOS-Chem are biased low [Heald et al., 2005; Fu et al., 2012].  We thus 19 

adopt method (c), since the strength of the adjoint forcing with respect to BC sources 20 

depends upon the BC absolute contribution in AAOD rather than the relative 21 

contribution of method (b), which may have less model dependency in simulating the 22 
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distribution of other aerosols. The major differences between method (c) and method 1 

(d) are the available observation data counts, as the data counts of the latter are much 2 

fewer than the former.  In April, the pattern of optimized emissions using method (c) 3 

and method (d) are quite consistent, suggesting that BC AAOD play a dominant role 4 

in contributing to the total AAOD. We will adopt method (c) for the following 5 

experiments and also discuss method (d) in section 5.4 for comparison. 6 

4.2 Penalty Term 7 

The inclusion of a penalty, or background term, in the cost function is a key factor for 8 

inverse modeling. It is specified through the prior (background) error covariance 9 

matrix, ��, and a regularization parameter �� . In the absence of rigorous statistical 10 

information on the error covariance of the emissions, we assume the errors are 11 

uncorrelated and use an L-curve selection criterion to identify an optimal value of ��  12 

[Hansen, 1998; Henze et al., 2009]. The uncertainties of BC are assumed to be 100% 13 

of the maximum BC emissions over the simulation domain. Thus, the optimal values 14 

of ��  are selected to be 0.5 for April and 1.0 for October based on the 15 

MEIC_SEAC4RS emission and the cost function in Eq. (10). The contribution of the 16 

penalty term results in smaller adjustments to emissions, as the regularized results 17 

prefer smoother solutions than those of the unconstrained inversion tests in Fig. 8. 18 

Here we assume a single constant value for �� along the diagonal and no off-diagonal 19 

terms.  20 

 21 

5. Analysis of Optimizations 22 
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We next proceed to constrain Southeast Asian BC sources using OMI_GC AAOD. 1 

The OMI_GC AAOD observations are compared to model estimates from GEOS-2 

Chem nested simulation for April and October 2006 using the difference between 3 

simulated total AAOD and observed OMI_GC AAOD (i.e., Eq. (10)). Tens of 4 

thousands of OMI retrievals per month are available for the assimilation, but not all of 5 

the retrievals are usable. In the presence of cirrus clouds, retrievals errors are 6 

significant. The effect of optically thin cirrus is similar to that of subpixel cloud 7 

contamination. As plumes of dust or smoke aerosol drift away from their source 8 

regions, they become mixed with clouds. This problem is particularly evident over the 9 

oceans, which are frequently covered with thin cirrus and fair-weather cumulus 10 

clouds. Generally, the retrieved AAOD shows a reduced coverage especially over the 11 

oceans due to cloud contamination and the effects of sun glint [Torres et al., 2007]. 12 

Thus, quality and diagnostic flags are defined to classify and filter the retrievals.  In 13 

October, only observations north of 5°N are included for data assimilation to 14 

minimize contributions of biomass burning from Indonesian fires. 15 

5.1 Optimized emissions 16 

Considering the performances of the four emission inventories discussed in Section 17 

2.3, the following optimized results will mainly focus on using the MEIC_SEAC4RS 18 

and INTEX-B inventories. The prior and posterior (optimized) BC emissions from 19 

anthropogenic sources are shown in Fig. 9. Overall, the results show an enhancement 20 

in BC emissions over broad areas of Southeast Asia, with adjustments that are 21 

seasonally and spatially heterogeneous. This is consistent with the top-down 22 
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constraints on BC emissions based on ground-base measurements by Fu et al., [2012], 1 

which also show that the BC emissions are greatly enhanced across broad areas of 2 

China, in particular northern and central China and the megacity clusters. In April, 3 

either using MEIC_SEAC4RS or INTEX-B inventories, large increases of up to a 4 

factor of 3-5 are shown after optimization. The largest enhancements occur sharply in 5 

eastern China and the IGP in April by up to a factor of five (Fig. 9). Other large 6 

increases are located in South Asia, northeastern and northwestern China. There is a 7 

small decrease in anthropogenic BC in part of southwestern China. That is quite 8 

different from the inversion results based on AOD by Xu et al. [2013], wherein the 9 

optimized anthropogenic BC emissions are reduced by 9.1% over China, even though 10 

the prior BC anthropogenic emissions that they used are from Bond et al., [2004, 11 

2007], which much lower than what we used. The dust scheme had not yet been 12 

updated and modified in Xu et al., [2013] following the revised particle size 13 

distribution suggested in Zhang et al. [2013]. Thus it is possible that overestimated 14 

dust and AOD projected a model bias onto adjustments of emissions of all type of 15 

aerosols over dust regions and downwind areas, such as eastern China. Considering 16 

the dust season in April, we also perform a sensitivity experiment to quantify the 17 

uncertainty of dust impacts on the inversion results by doubling the dust emission in 18 

April. The general pattern of the optimized anthropogenic BC emissions are 19 

consistent with that of the standard inversion, with a maximum differences less than 20 

20%.   21 

However, the adjustments of anthropogenic BC emissions before and after 22 
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optimization in October are different than those in April (Fig. 10). The optimization of 1 

anthropogenic emissions yields a slight reduction (1~5%) over central India and part 2 

of southern China and an increase by 10~50% over eastern and northern China, as 3 

well as northwestern India.  4 

Though the adjusted patterns of optimized BC emission are basically comparable by 5 

using MEIC_SEAC4RS and INTEX-B inventories, significant differences are located 6 

over India and eastern China (Fig. 11). We also note that the differences in the 7 

optimized results are almost the same as those of the prior emissions between 8 

MEIC_SEAC4RS and INTEX-B inventories. The ratio between their posterior 9 

differences and prior differences (see Fig. 11, right column) shows that the 10 

optimization increases their differences, relative to the prior, over broad areas over 11 

China and India up to a factor of three in April, with only slight decreases over south 12 

India. In October, optimization decreases the posterior differences between 13 

MEIC_SEAC4RS and INTEX-B emission inventories relative to the prior by 10-20% 14 

over southern and most of India. Areas where prior differences are increased/reduced 15 

are consistent with the areas where the emissions increase/decrease after optimization 16 

(see Fig. 10). This suggests that absolute errors in the prior emissions may be larger 17 

than the relative prior uncertainty percentages considered here. 18 

In addition to reducing the bias of the emissions, it is important to consider how much 19 

the inversion has reduced uncertainty in the emissions. A new method based on the 20 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to estimate the 21 

posterior uncertainty [Bousserez et al., 2014]. The posterior error reductions are up to 22 
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30% and 15% in April and October over the IGP and eastern China, where the 1 

anthropogenic emission enhancements were the largest (Figure 9 and 10). The prior 2 

errors do not change across broad areas, where the changes of optimized emissions 3 

are relatively smaller. 4 

While the most substantial adjustments are made to anthropogenic emissions, biomass 5 

burning emission are also adjusted. The most significant increases are over South 6 

Asia and Eastern Europe in April, especially, the indo-China peninsula and eastern 7 

Russia (figures not shown). The optimized biomass burning emissions in October 8 

have the largest enhancements are over south Borneo and Sumatra. Similar to the 9 

optimized anthropogenic emission, there is also not much change for the optimazed  10 

biomass burning emission throughout India and and indo-China peninsula in October.  11 

To examine the impacts of different prior anthropogenic inventories on optimized 12 

biomass burning emissions, we consider the following ratios: 13 

∆Y�Z[_\�][^_\`abcd�∆Y�Z[_\�][^_\`abce
fg�hi�fg�h1      (14). 14 

Eq. 14 shows how changes in anthropogenic emissions during the optimization 15 

compare when using two different biomass burning inventories, relative to the 16 

difference in these biomass burning inventories themselves. Large values of this ratio 17 

indicate regions where our top-down constrains on anthropogenic emissions are more 18 

sensitive to errors in the prior biomass burning inventories, such as over eastern China 19 

and the southern IGP (Fig. 12).  20 

5.2 Optimized BC AAOD 21 

The largest uncertainty reductions are obtained over eastern China and the IGP, so 22 
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here we consider AAOD in these regions alone. Fig. 13 shows the observed and 1 

simulated BC AAOD over eastern China (105°-125°E, 20°-45°N) before and after 2 

optimization in green along with linear line slope equation and correlation R2. Here 3 

the observed BC AAOD is derived from the OMI_GC AAOD and the prior ratio of 4 

simulated BC AAOD versus total AAOD. The prior BC AAOD is misrepresented and 5 

underestimated compared to observation over eastern China, especially in April. The 6 

low biases of the prior slopes are improved after optimization in April and October by 7 

132% and 11%, respectively. Similar to the optimized BC concentrations, the 8 

improvements in October after optimization are less significant than in April. There 9 

are only slight changes in correlation coefficients, which may due to the large number 10 

of samples in both spatial and temporal dimensions across which variations are not in 11 

the same directions. In the IGP area, which we define as (70°-90°E, 23°-32°N), the 12 

low biases of prior BC AAOD are much larger than those in eastern China (Fig. 14). 13 

The values of most observed BC AAOD are lower than 0.3 and the slopes are 0.22 14 

and 0.28 in April and October. After optimization, the slope increase by 155% and the 15 

correlation coefficients change from 0.2 to 0.25 in April. In October, there is a 32% 16 

increase in slope and the correlation coefficient doubles but still remains small (from 17 

0.06 to 0.12).  18 

Though slopes improve after optimization for both eastern China and India, they still 19 

show considerable lower biases. This results, in part, from constraints of the penalty 20 

term. Additionally, we note that many prior AAOD values are very small and close to 21 

zero. These are hard for the optimization routine to adjust significantly in the areas 22 
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where the values of prior emission are very small or close to zero. Since the 1 

optimization scheme is based on the use of emissions scaling factors, large gradients 2 

with respect to BC concentrations will result in small gradients with respect to 3 

emissions scaling factors in locations with small emissions.  To test how much this 4 

formulation restricts the inversion, a sensitivity experiment was performed assuming 5 

uniform prior emissions in all grid boxes.  This facilitates adjustments to prior 6 

emissions throughout the domain, resulting in larger posterior AAOD after 7 

optimization. However, the resulting spatial distributions and gradients of 8 

anthropogenic emissions are not realistic (e.g., large emissions are not placed in 9 

known source areas). Alternatively, instead of adjusting emissions through application 10 

of scaling factors, �, to the a priori emissions, the BC emissions themselves could be 11 

treated as the control variables in the cost function (Eq. 15). Another sensitivity 12 

experiment is performed for April 2006, inverting for the emissions themselves rather 13 

than the emissions scaling factors.  Figure S2 in supplemental shows the total 14 

emissions (summed across sectors) after optimization using different inversion 15 

approaches. Fig. S2a is result based on the scaling factor as describe by Eq. 2 in 16 

Section 2.4 that the range of emissions are constructed using scaling factors as control 17 

variables to adjust the vector of model emissions. Fig. S2b shows the results when 18 

emissions are constrained directly as the control variables in the penalty term as: 19 

� � 1
2�	
� � �
�����
���� 	
� � �
���
�∈�

� 12 ��	j � j��
�����	j � j��													15�. 20 

This formulation allows the inversion to place significant emissions in areas where 21 

the prior emissions are very small or close to zero. The optimized emissions over the 22 
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larger prior source areas, such as northeastern China and the middle IGP, are smaller 1 

than when optimizing scaling factors. These sensitivity tests demonstrate the value of 2 

using the prior emissions inventories, either explicitly or implicitly through scaling 3 

factors, in terms of constraining the magnitude of known sources, and the downside in 4 

terms of the difficulty in introducing new sources through the inversion.  5 

We also evaluate (Fig. 15) the prior and posterior simulated AAOD against the OMI 6 

and AERONET daily average AAOD at 4 sites where there are available 7 

measurements during the periods of April and October, 2006 (see the red sites in Fig. 8 

2): Beijing (BJ) in China, Kanpur (KP) and Gandhi_College (GH) in India, and 9 

Mukdahan (MD) in Thailand. The daily average GEOS-Chem model results and 10 

OMI_GC AAOD are sampled according to the AERONET observations at the 11 

locations of the 4 sites. At the Beijing site, the prior model AAOD estimates driven 12 

either by MEIC_SEAC4RS or INTEX-B inventories are underestimated by a factor of 13 

~2, while the posterior AAOD are more comparable to the observations in April. In 14 

terms of temporal variability, the model is able to capture some features of peaks after 15 

optimization. At the two sites in India, only a few measurements are available in late 16 

April, but the magnitudes are close to OMI observation. The optimized results using 17 

the MEIC_SEAC4RS inventory shows great improvements compared to the prior 18 

AAOD. However, the optimized AAOD using the INTEX-B inventory still shows 19 

negative biases. The differences in optimized AAOD between using INTEX-B and 20 

MEIC_SEAC4RS come from their prior differences in AAOD. This again 21 

demonstrates that the posterior optimization results are not independent of the prior 22 
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emission inventories, consistent with the estimated reduction in posterior error shown 1 

in Fig 10. At the site of Gandhi_College (GH) and Mukdahan (MK) there are large 2 

differences between the OMI and AERONET AAODs; the magnitudes of the 3 

OMI_GC AAODs are much lower than those from AERONET, even close to zero on 4 

some days. Koch et al. [2009] compared the AERONET and OMI retrievals of AAOD 5 

at AERONET sites. The results showed that the two retrievals broadly agree with 6 

each other, but that the OMI_GC AAOD is much smaller over Asia. In our study, only 7 

a few OMI observed AAOD pixels are available in Thailand site (MK) (Fig. 6); these 8 

limited and sparse observations do not provide enough information to robustly 9 

constrain emissions in this region.  10 

5.3 Optimized surface BC concentrations 11 

As mentioned before, the prior surface BC concentrations are underestimated in most 12 

of the urban and rural sites over China.  Figure 16 shows the spatial distribution of 13 

optimized surface BC concentrations compared to in situ measurements at 20 sites in 14 

Southeast Asia.  The largest in situ BC concentrations observed over eastern China 15 

and the IGP, which are densely populated, industrialized areas, are now reproduced 16 

well by the optimized simulation. After optimization, the spatial gradients of the 17 

observed BC concentrations are captured by the model: high in the east and low in the 18 

west for China, and high in the north and low in the south for India. Using the 19 

MEIC_SEAC4RS inventory for the prior emissions, the optimized spatial distributions 20 

are better simulated than when than using the INTEX-B inventory. In particular, the 21 

simulated BC concentrations are much closer to the observations over the IGP after 22 
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optimization. The performance of simulated surface BC concentrations in the WRF-1 

Chem (Weather Research and Forecasting model coupled with Chemistry) model with 2 

GOCART aerosol scheme using our optimized INTEX-B inventory has also been 3 

tested for April 2006 (see supplemental Fig. S3). A low bias using the prior INTEX-B 4 

inventory have been significantly reduced, and the simulated surface BC 5 

concentrations have increased by a factor of 1.5-2 in April 2006. The scatter plots in 6 

Fig. 17 show the correlations of BC concentrations from surface observations and 7 

GEOS-Chem before (blue) and after (red) optimization. Initial negative biases are 8 

shown in both April and October. The linear regression slope increases by more than 9 

a factor of four in April. However, the modeled BC concentrations at most of the sites 10 

only change slightly after the optimization in October, which results in a much 11 

smaller improvement in the regression slope (21%). The correlation coefficients 12 

increase by 0.04 to 0.08 after optimization; such small improvement may be owing to 13 

the sparse spatial distributions of the observational sites.  14 

More specific site-by-site comparisons between model and observations are shown in 15 

Fig. 18. Although the optimized BC surface concentrations are enhanced in April, 16 

overestimation occurs in some eastern sites in China. The overestimates of optimized 17 

surface BC concentrations at XIA, GUC and TYS (Fig. 18a) are possibly attributed to 18 

the underestimate of absorbing OC and associated brown carbon, the latter which is 19 

not included in the model. In October, the low biases are corrected both in the urban 20 

sites and rural sites, especially the eastern rural sites in China. However, there is a 21 

persistent negative bias in most sites after optimization in October. Due to the very 22 
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low prior emissions, the optimization has less impact on the western sites in China. 1 

The GEOS-Chem prior simulation underestimates surface BC concentrations in all 2 

the urban sites and coastal sites over India in April (Fig. 5). While the optimization 3 

enhances the BC sources and surface concentration, it still shows a negative bias in 4 

most of sites over India, especially the urban sites. The smaller improvement in 5 

coastal sites is not only due to the low prior emissions but also the large uncertainties 6 

of AAOD retrieval for low aerosol amounts over the ocean.   7 

Given the stark contrast between the inversion results in April and October, we also 8 

conducted the optimization for two additional months in winter (January) and summer 9 

(July) season using MEIC_SEAC4RS as the prior inventory. In January, the 10 

anthropogenic emissions show enhancements over the IGP and parts of western and 11 

northern China and slight decreases over southern India and eastern and southern 12 

China (figures not shown here), which results in increasing the surface BC 13 

concentrations in XIA and LFS sites while decreasing concentrations in the sites of 14 

GUC and NAN (see Fig. 4). In July, there is no significantly change for the surface 15 

BC concentrations after optimization owing to very sparse observation in July over 16 

eastern China. From this seasonal comparison, it appears that the BC anthropogenic 17 

emissions are not always underestimated during the year. The largest 18 

underestimations across the whole region of Southeast Asia occur in April. The 19 

underestimated regions are mainly over IGP and northern China in both January and 20 

October. The slight overestimates are indicated over southern India and part of 21 

eastern China in January as well as northern China in July. 22 
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Discrepancies versus surface observations might also relate to model representational 1 

error incurred by comparing ~50 km gridded estimates to in situ BC measurements, 2 

which likely have finer length-scales of variability [Wang et al., 2013; Cohen and 3 

Prinn, 2011; Cohen et al., 2011].  Considering the coarse resolution of the model 4 

when comprising with the ground-based measurements, we investigate the impacts of 5 

model resolution by considering approaches for downscaling the model simulations. 6 

One approach is to use high-resolution population datasets to redistribute primary 7 

aerosol concentrations [e.g., Krol et al., 2005; UNEP, 2011; Silva et al., 2013]. Based 8 

on a finer resolution population density dataset, a parameterization of the urban 9 

increment for non-reactive primary emitted anthropogenic BC and organic matter has 10 

been developed and tested for coarse resolution air quality model. This method does 11 

not alter concentrations at rural sites since it assumes that results at coarse resolution 12 

only represent the rural (background) sites. According to this method, we used a high-13 

resolution (1/24° x 1/24°) population dataset of Gridded Population of the World, 14 

Version 3 (GPWv3, http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-15 

density-future-estimates) to downscale and adjust the simulated BC concentration at 16 

urban sites (defined locations where population density exceeding 600/km2). The 17 

scatter plots (Fig. 17b) show that, on average, the application of population 18 

downscaling improves the performance of the modeled results compared to the non-19 

adjusted BC concentrations in April for both the prior and posterior simulations, 20 

although low biases remain in each. It does not make any change in the slope in 21 

October after applying the population parameterization, and correlation is degraded. 22 
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Downscaled estimates at only two sites (LIA and NAN) show enhancements, and the 1 

rest are not impacted.  2 

To more directly investigate the impact of model resolution, it would be ideal to 3 

compare the results of the present simulations to higher resolution simulations with 4 

the same model [e.g., Punger and West, 2013]. While this is not currently an option 5 

for this model version, we can conduct GEOS-Chem simulations at a coarser 6 

resolution (2° latitude × 2.5° longitude) and make inferences about the role of 7 

resolution errors. Fig. 19 shows the resolution errors in estimated surface BC 8 

concentrations in the coarse resolution results (2°× 2.5°) with respect to fine 9 

resolution simulations (0.5°x0.667°). The resolution error exceeds 20% across broad 10 

areas, and even up to 300% over the IGP and part of Southeastern Asia. The surface 11 

BC concentrations are much lower using coarse resolution over the major source 12 

regions, in particular the IGP, where the resolution error is more than 3. This is likely 13 

owing to coarse grid boxes not describing the sharp gradient between high 14 

concentrations in the valley and low concentrations in the mountain. The optimized 15 

surface BC concentrations from our 0.5°x0.667° simulations are underestimated by a 16 

factor of 2-3 at the IGP sites compared to in situ measurements. Punger and West 17 

[2013] show that the percent difference between all-cause mortality estimates at 12 18 

km resolution and at coarser resolutions of 36 km and 96 km for BC is ~9% and 19 

~23%, respectively. Assuming that model skill at estimating variations in 20 

concentrations at the scales of the in situ measurements is similar to that for 21 

estimating exposure based on highly resolved populations distribution, we can 22 
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extrapolate from the results of Punger and West [2013] that the resolution errors in the 1 

0.5°x0.667° simulation, relative to the scale of the measurements, is a bit less than the 2 

resolution error in the 2°x2.5° simulation relative to the 0.5°x0.667° simulation   3 

Thus, the former may be as large as a factor of ~2.5 in individual grid cells. 4 

5.4. Comparisons using OMI_GC AAOD_BC 5 

A subset of the OMI retrievals (OMI_GC AAOD_BC) are flagged during the retrieval 6 

process as being indicative of the presence of carbonaceous aerosols. Using only 7 

these retrievals for the inversion, the differences between prior and posterior (later 8 

minus former) BC anthropogenic emissions using MEIC_SEAC4RS inventory are 9 

shown in Fig. 20. Compared to Fig. 9 and Fig. 10, there are similar signs of emissions 10 

adjustments over most of Southeast Asia, except in October over India where 11 

reductions are not shown in the posterior emissions due to fewer available 12 

observations in the OMI_AADO_BC data subset. Moreover, the magnitudes of 13 

enhanced emissions in April are much larger if we use only the OMI_GC AAOD_BC 14 

retrievals. This also results in larger posterior surface BC concentrations (figures not 15 

shown) in some area and AAOD that improve the underestimates in a few sites when 16 

compared to the ground-base measurements and AERONET observation. However, 17 

the differences are not obvious in October and the improvements in April are neither 18 

significant nor widespread. Considering there are fewer observations available using 19 

OMI_GC AAOD_BC, especially in October and other summer month (e.g. July), and 20 

that it does not change the major conclusions compared to using OMI_GC AAOD, 21 

using OMI_GC AAOD is recommended. 22 
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 1 

6. Summary and Discussions 2 

In this study, we used space-based observations of absorbing aerosol optical depth 3 

(AAOD) from the OMI instrument to constrain BC monthly average emissions for 4 

April and October, 2006, with the GEOS-Chem model and its adjoint. First, we 5 

evaluated the model simulated BC concentrations using four different anthropogenic 6 

emission inventories. The differences in these inventories exceeded 100% across 7 

broad areas of Southeast Asia. For each of the four emission inventories, the 8 

simulated surface BC concentrations had low biases compared to the available surface 9 

observations in most urban sites in Southeast Asia.  10 

The adjoint model was used to perform 4D-Var inverse modeling to constrain BC 11 

emissions.  After optimization, both anthropogenic and biomass burning emissions 12 

were adjusted. Either using the MEIC_SEAC4RS or INTEX-B inventory, the 13 

optimized anthropogenic emissions for BC were significantly enhanced over broad 14 

areas of Southeast Asia in April compared to the prior emission, with the largest 15 

enhancements in eastern China and India IGP of up to a factor of five. From analysis 16 

of inversions using different prior biomass burning inventories it was shown that 17 

optimized anthropogenic emissions were most sensitive to the prior biomass burning 18 

over eastern China and southern IGP.  The adjustments in October were smaller than 19 

those in April. Inverse modeling in additional months indicated that BC 20 

anthropogenic emissions were not always underestimated throughout the year. The 21 

largest underestimates occurred in April throughout Southeast Asia. Only slight 22 
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overestimates were indicated over southern India and eastern China for both January 1 

in July. Inversion results were in general similar using either all OMI observed 2 

AAOD or just the OMI_GC AAOD_BC. In October, the posterior anthropogenic 3 

emissions yielded a slight reduction (1~5%) over central India and part of southern 4 

China while they increased by 10~50% over eastern and northern China, as well as 5 

northwestern India.  The uncertainty of the posterior emissions over the IGP and 6 

eastern China were estimated to have reduced by up to 30% and 15% in April and 7 

October. Although April is the dust season in Asia, the impact of doubling dust 8 

emissions on the posterior anthropogenic emissions is less than 20%.  9 

After optimization, the model’s low biases for BC AAOD improved by 132% and 10 

11% over Southeast Asia in April and October, respectively. In eastern China, these 11 

improvements were more significant (143% and 30% in April and October). The 12 

remaining residual error in the simulated AAOD, which was significant in October, 13 

particularly in India, may be a consequence of the inverse modeling framework, 14 

which had difficulty introducing emissions in locations where the prior emissions 15 

were close to zero. This downside may be overcome by performing inversions 16 

directly for the emissions, rather than emissions scaling factors. 17 

Results of the inversion were also compared to remote and in situ measurements that 18 

were not assimilated. The posterior modeled AAOD were quite comparable to 19 

AERONET AAOD observations in April in China; however, large discrepancies 20 

persisted at the sites over India and Thailand after data assimilation.  These residual 21 

errors may be associated with the limited and sparse observations of OMI AAOD in 22 



 42

these regions, which themselves were not very consistent with AERONET AAOD. 1 

Jethva et al., [2014] also pointed out that much of the inconsistency of SSA between 2 

OMI and AERONET is observed at moderate to lower aerosol loading (AOD 3 

440nm<0.7) for which both inversion techniques might have errors related to small 4 

signal-to-noise and algorithmic assumptions. Low biases of surface BC 5 

concentrations were improved or corrected at urban sites and eastern rural sites over 6 

China in April, with the linear regression slope between model and observed values 7 

increasing by more than a factor of four. However, the adjustments were not strong 8 

enough in most sites over India in April and October nor over China in October. 9 

Moreover, the optimization had less impact on the western sites in China and costal 10 

sites in India due to the very low prior emissions and the large uncertainties in AAOD 11 

retrieval for low aerosol amounts over the ocean. Model resolution error was also an 12 

important factor contributing to discrepancies of BC concentrations compared to in 13 

situ measurements. Comparison to coarser model simulations and the results of 14 

Punger and West [2013] indicates that resolution errors may be up to a factor of 2.5 in 15 

grid cells in regions such as the IGP and part of southeastern Asia. Nevertheless, the 16 

results found here are not exclusively germane to GEOS-Chem, as we find that 17 

implementing the optimized INTEX-B inventory in WRF-Chem improved simulated 18 

surface BC concentrations by a factor of 1.5-2 relative to simulations with the prior 19 

INTEX-B inventory.  20 

Overall, this work was the first attempt to formally use the absorbing aerosol products 21 

from satellite observation for a BC emissions inversion. Both the simulated AAOD 22 
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and surface BC concentration showed significant improvements spatially and 1 

temporally after data assimilation, especially in April. However, there were still 2 

several sources of uncertainty and limitations of this work worth considering. Aspects 3 

such as model error and assumptions made regarding the observations and 4 

uncertainties in the observations and prior emissions inventories contributed greatly to 5 

uncertainties in the optimization results.  6 

Our assumption that errors in the prior emissions were only 100% restricted the 7 

magnitude of the emissions adjustments allowed by the inversion. One might 8 

conclude that such restrictions were too strict; however, uncertainties in emissions 9 

were also not likely the only source of the discrepancy between observed and 10 

predicted BC concentrations and AAOD. Textor et al. [2007] noted that inter-model 11 

differences were only partially explained by differences in emission inventories; 12 

removal processes also play an important role in affecting the lifetime and 13 

concentrations of BC in the free troposphere. Although the 1 day aging from 14 

hydrophobic BC to hydrophilic BC in GEOS-Chem is typical for this type of model 15 

[Koch et al., 2009], aerosol internal mixing that includes effects of various physical, 16 

chemical, and meteorological processing can also significantly impact BC 17 

concentrations and aerosol absorptions [Stier et al., 2006; Cohen and Prinn 2011; 18 

Cohen et al., 2011; Buchard et al., 2014], in some cases even more so than 19 

uncertainties in emissions [Shen et al., 2014]. The scheme used in our study for 20 

aerosol scavenging was based on Liu et al., [2001], which did not distinguish between 21 

rain and snow. The recent updates by Wang et al. [2011] included corrections to 22 
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below-cloud and in-cloud scavenging that improved the overestimation of integrated 1 

scavenging [Dana and Hales, 1976]. Corresponding updates to the wet scavenging in 2 

the GEOS-Chem adjoint might also be helpful for improving the optimized results. 3 

The optimizations were sensitive to how model information was used to calculate the 4 

BC component of the measured AAOD, which alone provided only a constraint on the 5 

column concentrations of all absorbing aerosol (i.e., including dust and OC).  We 6 

have adjusted the OMI observed AAOD by applying the GEOS-Chem simulated 7 

aerosol layer height to reduce the differences in the vertical profiles between the 8 

model and observation, referred to as OMI_GC AAOD. However, there could be 9 

inconsistent treatment of microphysical and optical properties used in the AAOD 10 

calculation between the model and OMI retrievals.  The results of the optimization 11 

may be biased by error in the model’s vertical distribution of BC, which has been 12 

adjusted in other studies [van Donkelaar et al., 2013].  To evaluate the magnitude of 13 

this potential source of error, we also repeated the inversions using the OMI retrieval 14 

based on the CALIOP and GOCART aerosol layer height. The difference in the 15 

optimized anthropogenic BC emissions are less than 30% in April and 10% in 16 

October compared to inversions using OMI_GC AAOD. 17 

It is important to realize that BC from most emission sources contains not only 18 

elemental and organic fractions [Chow et al., 2009], but also non-soot OC, i.e., brown 19 

carbon, that has a significant absorbing component at short wavelengths comparable 20 

to elemental carbon absorption [Jacobson, 1999; Kirchstetter et al., 2004; Andreae 21 

and Gelencser, 2006; Hoffer et al., 2006; Magi et al., 2009]. However, absorbing 22 
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aerosols in GEOS-Chem only include BC, OC and dust, while the brown carbon has 1 

not yet been taken into account. Therefore, in this study, the simulated BC is 2 

effectively a proxy of all absorbing carbonaceous aerosols, and the resulting 3 

constraints on emissions are thus best interpreted as constraints on absorbing 4 

carbonaceous emissions. While the attribution of ambient aerosol absorption to BC may 5 

be a reasonable approximation in areas dominated by fresh soot emissions, it may lead to 6 

misleading estimates of the AAOD when other light absorbing particles were present 7 

since the so-called brown carbon contributes 28% on average of the total absorption at  8 

440 nm [Bahadur et al., 2012]. This undoubtedly resulted in overestimation of BC 9 

emissions after optimization in areas where brown carbon was a component of the 10 

observed AAOD. We performed a sensitivity experiment by removing 30% of the 11 

total absorption from the OMI AAOD observation, since GEOS-Chem does not 12 

include brown carbon. The optimized anthropogenic emissions are lower by up to 13 

30% over the major source regions compared to the standard results. Given that the 14 

model has large low biases of surface OC concentrations over eastern China [Fu et al., 15 

2012], the overestimated BC concentrations after optimization at XIA, GUC and TYS 16 

(Fig. 18a) may possibly be attributed to the underestimation of absorbing OC (brown 17 

carbon).  18 

Lastly, it is well known that the quality of the observation data plays a critical role in 19 

data assimilation. Although the OMI observed AAOD retrieval provided much better 20 

spatial and temporal coverage than remote sensing measurements such as AERONET, 21 

we noted that there were large discrepancies between OMI_GC AAOD and 22 
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AERONET observation in some areas, especially in October (see Fig. 15). The 1 

OMAERUV retrievals were typically more reliable over land than over water since 2 

the ocean surface reflectance shows distinct angular and spectral variations. The 3 

major factor affecting the quality of the OMI aerosol product was sub-pixel cloud 4 

contamination due to the relatively large footprint of the OMI observations [Torres et 5 

al., 1998]. Satheesh et al. [2009] demonstrated the potential of multi-satellite analysis 6 

of A-train data to improve the accuracy of retrieved aerosol products and suggested 7 

that a combined OMI-MODIS-CALIPSO retrieval had potential to further improve 8 

assessments of aerosol absorption, which would possible enhance the observation 9 

quality in data assimilation. Recently, other improvements include the development of 10 

CALIOP-based aerosol layer height climatology and the use of AIRS carbon 11 

monoxide real-time observations to distinguish smoke from dust aerosol, which 12 

improved the retrieval performance by 5-20% [Torres et al., 2013]. Using the updated 13 

OMAERUV when it becomes available will likely improve the optimization results in 14 

future work. 15 
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Figure captions. 4 

 5 

Figure 1. Absolute and relative differences in AAOD between OMI_Final and 6 

OMI_GC AAOD for April and October 2006. 7 

 8 

Figure 2. Twenty sites of ground measurements (black dots) and four sites of 9 

AERONET observation (red cross dots). Also shown are terrain heights (color shaded 10 

contours, unit: m).  11 

 12 

Figure 3. Annual anthropogenic emission of BC regridded into GEOS-Chem 13 

resolution of 0.5° × 0.667° from the inventories of (a) Bond, (b) INTEX-B, (c) 14 

SEAC4RS, and (d) MEIC. 15 

 16 

Figure 4. Comparison of the observed and simulated surface BC concentrations using 17 

four emission inventories at the site of GUC, LFS, NAN, XIA. The orange dots are 18 

the monthly mean posterior surface BC concentrations at these sites using MEIC 19 

inventory over China.  20 

 21 

Figure 5. Spatial distributions of prior surface BC concentrations using INTEX-B and 22 

MEIC_SEAC4RS inventories overlaid with BC in situ measurements of 20 sites. 23 

 24 

Figure 6. (a) Differences of monthly average AAOD between model using 25 

MEIC_SEAC4RS inventory and the OMI observation (former minus latter) and (b) 26 

corresponding OMI monthly data in each grid cell for April and October 2006. 27 

 28 

Figure 7. The same as Figure 6, but for OMI_AAOD _BC. 29 

 30 

Figure 8. Differences between optimized and prior anthropogenic BC emissions 31 

based on four methods of adjoint forcing (a) vertically resolved BC AAOD base on 32 

model, (b) column BC AAOD based on model, (c) column total OMI_GC AAOD and 33 

(d) column OMI_GC AAOD_BC for April and October 2006. 34 

 35 

Figure 9. Anthropogenic BC emissions for April 2006.  The first column shows the 36 

prior inventory, the second is the optimized inventory, the third is the differences 37 

between the prior and optimization, and the last column is the relative changes of 38 

posterior error, based on the inventories of (a) INTEX-B and (b) MEIC_SEAC4RS. 39 

 40 
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Figure 10. The same as Figure 9, but for October 2006. 1 

 2 

Figure 11. Differences of anthropogenic BC emissions between using the inventories 3 

of MEIC_SEAC4RS and INTEX-B for April and October 2006. The left column 4 

shows the prior inventory, the center is the optimized inventory, and right column is 5 

the ratio between their posterior differences and prior differences. 6 

 7 

Figure 12. The sensitivities of optimized anthropogenic emission based on GFED2 8 

and GFED3 relative to the differences between GFED2 and GFED3. 9 

 10 

Figure 13. Comparison of BC AAOD over eastern China (105°-125°E, 20°-45°N) 11 

between OMI measurements and GEOS-Chem before and after the assimilation for 12 

April and October 2006. 13 

 14 

Figure 14. Comparison of BC AAOD over IGP (70°-90°E, 23°-32°N) between OMI 15 

measurements and GEOS-Chem before and after the assimilation for April and 16 

October 2006. 17 

 18 

Figure 15. Comparison of total daily AAOD from OMI, AERONET and GEOS-19 

Chem before and after the data assimilation at the four AERONET sites for April and 20 

October 2006. 21 

 22 

Figure 16. Spatial distributions of optimized surface BC concentrations using 23 

INTEX-B and MEIC_SEAC4RS inventories overlaid with BC in situ measurements 24 

of 20 sites. 25 

 26 

Figure 17. Comparison of monthly surface BC concentration for April and October 27 

2006, between in situ measurements and GEOS-Chem before and after the 28 

assimilation (a) without and (b) with population density downscaling. 29 

 30 

Figure 18. Comparison of monthly surface BC concentration between in situ 31 

measurements and GEOS-Chem over (a) China and (b) India before and after the 32 

assimilation using the inventories of MEIC_SEAC4RS and INTEX-B for April and 33 

October 2006. 34 

 35 

Figure 19. The resolution errors of surface BC between the simulations of coarse 36 

resolution (2°x2.5°) and fine resolution (0.5°x0.667°). 37 

 38 

Figure 20. The differences between the prior and posterior anthropogenic BC 39 

emissions for April and October 2006, using OMI_GC AAOD_BC as the observation. 40 

 41 

 42 

References 43 

Ackerman,A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan,V., and 44 



 49

Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288(5468), 1 

1042–1047, doi:10.1126/science.288.5468.1042, 2000. 2 

Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol optical 3 

depth over land, J. Geophys. Res. Atmos., 119, 2457–2473, 4 

doi:10.1002/2013JD020188, 2014. 5 

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of 6 

light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131-3148, 7 

doi:10.5194/acp-6-3131-2006, 2006. 8 

Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by 9 

elemental and brown carbon determined from spectral observations, P. Natl. 10 

Acad. Sci. USA, 109, 17366–17371, doi:10.1073/pnas.1205910109, 2012. 11 

Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S.K., Vinoj, V., Badarinath, 12 

K.V.S., Safai, P.D., Devara, P.C.S., Singh, S., Vinod, Dumka, U.C., Pant, P.: 13 

Spatial distribution of aerosol black carbon over India during pre-monsoon 14 

season, Atmos. Environ., 43(5), 2009, 1071-1078, 2009. 15 

Bey, I., Jacob, D. J., Yantosca,R. M., Logan, A. J., Field, B., Fiore, A. M., Li, Q., Liu, 16 

H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry 17 

with assimilated meteorology: Model description and evaluation, J. Geophys. 18 

Res., 106, 23,073–23,095, 2001 19 

Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An 20 

investigative review, Aerosol Sci. Tech., 40, 27–67, 2006. 21 

Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. 22 

G., and Trautmann, N. M.: Historical emissions of black and organic carbon 23 

aerosol from energy-related combustion, 1850-2000, Glob. Biogeochem. Cy., 21, 24 

Gb2018, doi:10.1029/2006GB002840, 2007 25 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. 26 

J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, 27 

P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., 28 

Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, 29 

J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., 30 

Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate 31 

system: A scientific assessment, J. Geophys. Res., 118, 5380–5552, doi: 32 

10.1002/jgrd.50171, 2013. 33 

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: 34 

A technology-based global inventory of black and organic carbon emissions from 35 

combustion, J. Geophys. Res.-Atmos., 109, D14203, doi:10.1029/2003JD003697, 36 

2004. 37 

Bousserez, N., Henze, K. D., Perkins, A., Bowman, W. K., Lee, M., Liu, J., Deng, F., 38 

Jones, B. A. D: Improved analysis error covariance matrix for high-dimensional 39 

variational inversions: application to source estimation using a 3D atmospheric 40 

transport model, Q.J.R. Meteorol. Soc.. doi: 10.1002/qj.2495 41 

Buchard, V., M. da Silva, A., R. Colarco, P., Darmenov, A., A. Randles, C., 42 

Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI Aerosol 43 

Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA 44 



 50

Aerosol Reanalysis, Atmos. Chem. Phys. Discuss., 14, 32177-32231, 1 

doi:10.5194/acpd-14-32177-2014, 2014. 2 

Byrd, R. H., Lu, H. P., Nocedal, J., and Zhu, C. Y.: A limited memory algorithm for 3 

bound constrained optimization, SIAM J. Sci. Comput., 16(5), 1190–1208, 1995 4 

Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., Jin, Z. D., I 5 

Shen, Z. X.,  Chen, G. C., Kang, Y. M., Zou, S. C., Zhang, L. Z., Qi, S. H., Dai, 6 

M. H., Cheng, Y., and Hu, K.: Spatial and seasonal distributions of carbonaceous 7 

aerosols over China, J. Geophys. Res., 112, D22S11, doi:10.1029/2006JD008205, 8 

2007. 9 

Cao, J. J., Zhu, C. S., Chow, J. C., Watson, J. G., Han, Y. M., Wang, G., Shen, Z., and 10 

An, Z. S.: Black carbon relationships with emissions and meteorology in Xi’an, 11 

China, Atmos. Res., 94,194–202, 2009 12 

Charlson, R. J., and Pilat, M. J.: Climate: The influence of aerosols, J. Appl. Met., 13 

8(5), 1001–1002,1969 14 

Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.: 15 

Regional CO pollution and export in China simulated by the high-resolution 16 

nested-grid GEOS-Chem model, Atmos. Chem. Phys., 9, 3825–3839, 17 

doi:10.5194/acp-9-3825-2009, 2009 18 

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. 19 

V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical 20 

thickness from the GOCART model and comparisons with satellite and sun 21 

photometer measurements, J. Atmos. Sci., 59, 461–483, 2002. 22 

Chow, J. C., Watson, G. J., Doraiswamy, P., Chen, W. A., L., Sodeman, A. D., 23 

Lowenthal, H. D., Park, K., Arnott, P. W., and Motallebi, N.: Aerosol light 24 

absorption, black carbon, and elemental carbon at the Fresno Supersite, 25 

California, Atmos. Res., 93(4), 874-887, 2009 26 

Cohen, J. B. and Prinn, R. G.: Development of a fast, urban chemistry metamodel for 27 

inclusion in global models, Atmos. Chem. Phys., 11, 7629-7656, 28 

doi:10.5194/acp-11-7629-2011, 2011. 29 

Cohen, J. B., Prinn, R. G., and Wang, C.: The impact of detailed urban-scale 30 

processing on the composition, distribution, and radiative forcing of 31 

anthropogenic aerosols, Geophys. Res. Lett., 38, L10808, 32 

doi:10.1029/2011GL047417, 2011. 33 

Cohen, J. B. and Wang, C.: Estimating Global Black Carbon Emissions Using a Top-34 

Down Kalman Filter Approach, J. Geophys. Res. Atmos., 119, 307–35 

323doi: 10.1002/2013JD019912, 2014. 36 

Cohen, J. B.;  Quantifying the occurrence and magnitude of the Southeast Asian fire, 37 

Environ. Res. Lett. 9, 114018 (13pp) 2014 38 

Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a 1°x1° fossil 39 

fuel emission data set for carbonaceous aerosol and implementation and 40 

radiative impact in the ECHAM4 model, J. Geophys. Res., 104, 22137–22162, 41 

1999. 42 

Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., 43 

Baltensperger, U., and Weingartner, E.: Scavenging of black carbon in mixed 44 



 51

phase clouds at the high alpine site Jungfraujoch, Atmos. Chem. Phys.,7, 1797–1 

1807, 2007 2 

Dana, M. T. and Hales, J. M.: Statistical aspects of washout of polydisperse aerosols, 3 

Atmos. Environ., 10, 45–50, 1976 4 

Dubovik, O. and King, D. M.: A flexible inversion algorithm for retrieval of aerosol 5 

optical properties from Sun and sky radiance measurements, J. Geophys. Res., 6 

105, 20,673-20,696, 2000.  7 

Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., 8 

Tanré, D., and Slutsker, I.: Variability of absorption and optical properties of key 9 

aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590-608, 10 

2002a. 11 

Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang P., 12 

and Slutsker, I.: Non-spherical aerosol retrieval method employing light 13 

scattering by spheroids, Geophys. Res. Lett., 29(10),10.1029/2001GL014506, 14 

2002b.  15 

Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, 16 

T.F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W.J., Leon, J.-F., 17 

Sorokin, M., and Slutsker, I.: Application of spheroid models to account for 18 

aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 19 

111, D11208, doi:10.1029/2005JD006619, 2006. 20 

Dubovik, O., Smirnov, A., Holben, B.N., King, M.D., Kaufman, Y. J., Eck, T.F., and 21 

Slutsker, I.: Accuracy assessment of aerosol optical properties retrieval from 22 

AERONET sun and sky radiance measurements, J. Geophys. Res ,105, 9791-23 

9806, 2000.  24 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., 25 

Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of 26 

biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104(D24), 27 

31,333–31,349, 1999 28 

Fairlie, T. D., Jacob, J. D., Dibb, E. J., Alexander, B., Avery, A. M., van Donkelaar, A., 29 

and Zhang, L.: Impact of mineral dust on nitrate, sulfate, and ozone in 30 

transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-4012, 31 

doi:10.5194/acp-10-3999-2010, 2010. 32 

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate 33 

forcing and response from black carbon in snow, Geophys. Res.-Atmos., 112, 34 

D11202, 10.1029/2006jd008003, 2007 35 

Forster, P., Ramawamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., 36 

Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and 37 

Dorland, V. R.: Changes in Atmospheric Constituents and in Radiative Forcing, 38 

in: Climate Change 2007: The Physical Scinece Basis. Contributions of working 39 

group I to the fourth Assessment Report on the Intergovernmental Panel on 40 

Climate Changed, edited by Solomon, S., Wuin, D., Manning, M., Chen, A., 41 

Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge University 42 

Press, Cambridge, United Kingdom and New York, NY, USA, 2007 43 

Fu, T.-M., Cao, J. J., Zhang, X. Y., Lee, S. C., Zhang, Q., Han, Y. M., Qu, W. J., 44 



 52

Han, Z., Zhang, R., Wang, Y. X., Chen, D., and Henze, D. K.: Carbonaceous 1 

aerosols in China: top-down constraints on primary sources and estimation of 2 

secondary contribution, Atmos. Chem. Phys., 12, 2725-2746, doi:10.5194/acp-3 

12-2725-2012, 2012. 4 

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., 5 

Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in 6 

burned area by merging multiple satellite fire products, Biogeosciences, 7, 1171-7 

1186, 2010. 8 

Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P.: 9 

Global estimation of burned area using MODIS active fire observations, Atmos. 10 

Chem. Phys., 6, 957–974, doi:10.5194/acp-6-957-2006, 2006. 11 

Ginoux, P., Prospero, M. J., Torres, O., and Chin, M.: Long-term simulation of global 12 

dust distribution with the GOCART model: correlation with North Atlantic 13 

oscillation. Environ. Modell. and Softw., 19, 113–128, 2004. 14 

Hakami, A., Henze, K. D., Seinfeld, H. J., Chai, T., Tang, Y., Carmichael, R. G., and 15 

Sandu, A.: Adjoint inverse modeling of black carbon during the Asian Pacific 16 

Regional Aerosol Characterization Experiment, J. Geophys. Res., 110, D14301, 17 

doi:10.1029/2004JD005671, 2005. 18 

Hansen, A. D. A., Rosen, H., and Novakov, T.: The Aethalometer—An Instrument for 19 

the Real-Time Measurement of Optical Absorption by Aerosol Particles, Sci. 20 

Total Environ. 36:191–196, 1984. 21 

Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: Global warming in the 22 

twenty-first century: An alternative scenario, P. Natl. Acad. Sci. USA, 97(18), 23 

9875–9880, 2000. 24 

Hansen, J., and Nazarenko, L.: Soot climate forcing via snow and ice albedos, Proc. 25 

Natl. Acad. Sci. 101(2), 423–428, doi:10.1073/pnas.2237157100, 2004. Hansen, 26 

J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., 27 

Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., 28 

Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., 29 

Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., 30 

Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, 31 

Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., 32 

Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate 33 

forcings, J. Geophys. Res., 110, D18104, doi: 10.1029/2005JD005776, 2005. 34 

Hansen, P. C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of 35 

Linear Inversion, SIAM, Philadelphia, USA, 1998. 36 

Heald, C. L., Jacob, J. D., Park, J. R., Russell, M. L., Huebert, J. B., Seinfeld, H. J., 37 

Liao, H., and Weber, J. R.: A large organic aerosol source in the free 38 

troposphere missing from current models, Geophys. Res. Lett., 32, L18809, 39 

doi:10.1029/2005GL023831, 2005. 40 

Henze, D. K., Hakami, A., and Seinfeld, H. J: Development of the adjoint of GEOS-41 

Chem, Atmos. Chem. Phys., 7, 2413-2433, 2007. 42 

Henze, D. K., Seinfeld, J. H., and Shindell, D. T.: Inverse modeling and mapping US 43 

air quality influences of inorganic PM2.5 precursor emissions using the adjoint 44 



 53

of GEOS-Chem, Atmos. Chem. Phys., 9, 5877–5903, doi: 10.5194/acp-9-5877-1 

2009, 2009. 2 

Hoffer, A., Gelencser, A., Guyon, Kiss, P., G., Schmid, O., Frank, P. G., Artaxo, P., 3 

and Andreae, O. M.,: Optical properties of humic-like substances (HULIS) in 4 

biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563-3570, 2006. 5 

Holben, B. N.,  Eck, F. T., Slutsker, I., Tanré, D., Buis, P. J., Setzer, A., Vermote, E., 6 

Reagan, A. J., Kaufman, J. Y., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, 7 

A.: AERONET--A federated instrument network and data archive for aerosol 8 

characterization, Remote Sens. Environ., 66, 1-16, 1998. 9 

Hu, Y., Napelenok, L. S., Odman, T. M., and Russell, G. A.: Sensitivity of inverse 10 

estimation of 2004 elemental carbon emissions inventory in the United States to 11 

the choice of observational networks, Geophys. Res. Lett., 36, L15806, 12 

doi:10.1029/2009GL039655, 2009a 13 

Hu, Y., Odman, T. M., and Russell, G. A., Top-down analysis of the elemental carbon 14 

emissions inventory in the United States by inverse modeling using Community 15 

Multiscale Air Quality model with decoupled direct method (CMAQ-DDM), J. 16 

Geophys. Res., 114, D24302, doi:10.1029/2009JD011987, 2009b 17 

Huneeus, N., Boucher, O., and Chevallier, F.: Atmospheric inversion of SO2 and 18 

primary aerosol emissions for the year 2010, Atmos. Chem. Phys., 13, 6555-19 

6573, doi:10.5194/acp-13-6555-2013, 2013. 20 

Jacobson, M. Z.: A physically-based treatment of elemental carbon optics: 21 

Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27(2), 22 

217–220, doi:10.1029/1999GL010968, 2000. 23 

Jacobson, M. Z.: Isolating nitrated and aromatic aerosols and nitrated aromatic gases 24 

as sources of ultraviolet light absorption, J. Geophys. Res.-Atmos., 104(D3), 25 

3527-3542, 1999 26 

Janssen N.A., Hoek G., Simic-Lawson M., Fischer P., van Bree L., ten Brink H., 27 

Keuken, M; Atkinson, R. W., Anderson, H. R., Brunekreef, B.,  Cassee, F. R.: 28 

Black Carbon as an Additional Indicator of the Adverse Health Effects of 29 

Airborne Particles Compared with PM10 and PM2.5. Environ Health Perspect 30 

119:1691-1699, 2011. 31 

Janssen NAH, Lanki, T., Hoek, G., Vallius, M., de Hartog, J. J., Van Grieken, R., 32 

Pekkanen, J., Brunekreef, B.: Associations between ambient, personal and 33 

indoor exposure to fine particulate matter constituents in Dutch and Finnish 34 

panels of cardiovascular patients. Occup. Environ. Med., 62:868–877, 2005 35 

Jethva, H. and Torres, O.: Satellite-based evidence of wavelengthdependent aerosol 36 

absorption in biomass burning smoke inferred from Ozone Monitoring 37 

Instrument, Atmos. Chem. Phys., 11, 10541–10551, doi:10.5194/acp-11-10541-38 

2011, 2011. 39 

Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol single-40 

scattering albedo using ground-based AERONET inversion, J. Geophys. Res. 41 

Atmos., 119, 9020–9040, doi:10.1002/2014JD021672, 2014. 42 

Jiang, Z., Jones, B. A. D., Kopacz, M., Liu, J., Henze, K., D., and Heald, C.: 43 

Quantifying the impact of model errors on top-down estimates of carbon 44 



 54

monoxide emissions using satellite observations, J. Geophys. Res., 116, 1 

D15306, doi:10.1029/2010JD015282, 2011. 2 

Johnson, B. T., Shine, P. K., and Forster, M. P.: The semi-direct aerosol effect: Impact 3 

of absorbing aerosols on marine stratocumulus, Quart J. Roy. Meteor. Soc., 4 

130(599), 1407–1422, doi:10.1256/qj.03.61, 2004. 5 

Kirchstetter, T. W., Novakov, T., and Hobbs, V. P.: Evidence that the spectral 6 

dependence of light absorption by aerosols is affected by organic carbon, J. 7 

Geophys. Res.-Atmos., 109, D21208, doi:10.1029/2004JD004999.12, 2004. 8 

Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., 9 

Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., 10 

De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., 11 

Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., 12 

Horowitz, L., Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M., 13 

Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., 14 

Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., 15 

Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor, C., 16 

van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations in 17 

global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-18 

9001-2009, 2009. 19 

Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols suggests 20 

climate models underestimate the size of the global dust cycle, P. Natl. Acad. 21 

Sci., 108(3), 1016-1021, 2011 22 

Kondo, Y., Oshima, N., Kajino, M., Mikami, R., Moteki, N., Takegawa, N., Verma, L. 23 

R., Kajii, Y., Kato, S., and Takami, A.: Emissions of black carbon in East Asia 24 

estimated from observations at a remote site in the East China Sea, J. Geophys. 25 

Res., 116, D16201, doi:10.1029/2011JD015637, 2011 26 

Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., 27 

Yantosca, R. M., Singh, K., Henze, D. K., Burrows, J. P., Buchwitz, M., 28 

Khlystova, I., McMillan, W. W., Gille, J. C., Edwards, D. P., Eldering, A., 29 

Thouret, V., and Nedelec, P.: Global estimates of CO sources with high 30 

resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, 31 

SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, doi:10.5194/acp-10-32 

855-2010, 2010. 33 

Kopacz, M., Jacob, J. D., Henze, K. D., Heald, L. C., Streets, G. D., and Zhang. Q.: A 34 

comparison of analytical and adjoint Bayesian inversion methods for 35 

constraining Asian sources of CO using satellite (MOPITT) measurements of 36 

CO columns, J. Geophys. Res., 114, D04305, doi:10.1029/2007JD009264, 37 

2009. 38 

Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., and 39 

Singh, K.: Origin and radiative forcing of black carbon transported to the 40 

Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837-2852, 41 

doi:10.5194/acp-11-2837-2011, 2011. 42 

Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., 43 

van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way 44 



 55

nested global chemistry-transport zoom model TM5: algorithm and applications, 1 

Atmos. Chem. Phys., 5, 417-432, doi:10.5194/acp-5-417-2005, 2005.  2 

Ku, B., and Park, J. R.: Inverse modeling analysis of soil dust sources over East Asia, 3 

Atmos. Environ., 45(32), 5903–5912, doi:10.1016/j.atmosenv.2011.06.078, 4 

2011 5 

Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. 6 

K., Tamminen, J., de Haan, J. F., Veefkind, J. P.: Science objectives of the 7 

Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sens., 44(5), 1199-8 

1208, doi:10.1109/TGRS.2006.872336, 2006b. 9 

Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries, 10 

J., Stammes, P., Lundell, J. O. V., Saari, H.: The Ozone Monitoring Instrument, 11 

IEEE Trans. Geosci. Remote Sens., 44(5), 1093-1101, 12 

doi:10.1109/TGRS.2006.872333, 2006a. 13 

Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations; 14 

Springer-Verlag: Berlin, 1971. 15 

Liu, H. Y., Jacob, J. D., Bey, I., and Yantosca, M. R.: Constraints from Pb-210 and Be-16 

7 on wet deposition and transport in a global three-dimensional chemical tracer 17 

model driven by assimilated meteorological fields, J. Geophys. Res. Atmos., 18 

106, 12109–12128, 2001. 19 

Liu, X. H., Penner, E. J., and Wang M. H.: Influence of anthropogenic sulfate and 20 

black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled 21 

to the IMPACT global aerosol model, J. Geophys. Res., 114, D03204, 22 

doi:10.1029/2008JD010492, 2009. 23 

Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous 24 

aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 25 

9839-9864, doi:10.5194/acp-11-9839-2011, 2011. 26 

Luo, M., Rinsland, C. P., Logan, J. A., Worden, J., Kulawik, S., Eldering, A., 27 

Goldman, A., Shephard, M. W., Gunson, M., Lampel M.: Comparison of carbon 28 

monoxide measurements by TES and MOPITT: The influence of a priori data 29 

and instrument characteristics on nadir atmospheric species retrievals, J. 30 

Geophys. Res., 112, D09303, doi:10.1029/2006JD007663, 2007. 31 

Ma, X., Yu, F., and Luo, G.: Aerosol direct radiative forcing based on GEOS-Chem-32 

APM and uncertainties, Atmos. Chem. Phys., 12, 5563-5581, doi:10.5194/acp-33 

12-5563-2012, 2012. 34 

Magi, B. I., Ginoux, P., Ming, Y., and Ramaswamy, V.: Evaluation of tropical and 35 

extratropical Southern Hemisphere African aerosol properties simulated by a 36 

climate model, J. Geophys. Res.-Atmos., 114, D14204, 37 

doi:10.1029/2008JD011128, 2009. 38 

Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux,  P.: Global and 39 

regional decreases in tropospheric oxidants from photochemical effects of 40 

aerosols, J. Geophys. Res., 108, 4097,  doi:10.1029/2002JD002622, 2003. 41 

Moorthy, K. K., Beegum, S. N., Srivastava, N., Satheesh, S.K., Chin, M., Blond, N., 42 

Babu, S. S., Singh, S.: Performance evaluation of chemistry transport models 43 

over India, Atmos. Environ., 71, 210-225, 2013. 44 



 56

Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z., Vaughan, M. 1 

A., Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol optical 2 

depth comparisons: One size fits none, J. Geophys. Res. Atmos., 118, 4748–3 

4766, doi:10.1002/jgrd.50330, 2013. 4 

Oshima, N., Koike, M., Zhang, Y., Kondo, Y., Moteki, N., Takegawa, N., and 5 

Miyazaki, Y.: Aging of black carbon in outflow from anthropo-genic sources 6 

using a mixing state resolved model: Model development and evaluation, J. 7 

Geophys. Res., 114, D06210, doi:10.1029/2008JD010680, 2009. 8 

Park, R. J., Jacob, J. D., Chin, M., and Martin, R. V.: Sources of carbonaceous 9 

aerosols over the United States and implications for natural visibility, J. Geophys. 10 

Res., 108(D12), 4355, doi:10.1029/2002JD003190, 2003 11 

Philip, S., Martin, R. V., van Donkelaar, A., J., Lo, Wai-Ho, J., Wang, Y., Chen, D., 12 

Zhang, L., Kasibhatla, P. S., Wang, S. W., Zhang, Q., Lu, Z., Streets, G. D., 13 

Bittman, S., and Macdonald, J. D.: Global Chemical Composition of Ambient 14 

Fine Particulate Matter for Exposure Assessment, Environ. Sci. Technol., 48(22), 15 

pp. 13060-13068. doi : 10.1021/es502965b, 2014 16 

Punger, E. M. and West, J. J.: The effect of grid resolution on estimates of the burden 17 

of ozone and fine particulate matter on premature mortality in the USA, Air Qual. 18 

Atmos. Health, 6, 563–573, doi:10.1007/s11869-013-0197-8, 2013. 19 

Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of soot-induced snow 20 

albedo change on snowpack and hydrological cycle in western United States 21 

based on Weather Research and Forecasting chemistry and regional climate 22 

simulations, J. Geophys. Res., 114, D03108, doi:10.1029/2008JD011039, 2009 23 

Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to 24 

black carbon, Nature Geoscience, 1, 221-227, 2008. 25 

Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, 26 

G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., 27 

Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E., Zender, C. S.: The impact of 28 

boreal forest fire on climate warming, Science, 314, 1130-1132, 2006. 29 

Ridley, D. A., Heald, L. C., and Ford, B.: North African dust export and deposition: A 30 

satellite and model perspective, J. Geophys. Res., 117, D02202, 31 

doi:10.1029/2011JD016794, 2012. 32 

Rodgers, C. D.: Inverse methods for atmospheric sounding, Series on Atmospheric, 33 

Oceanic and Planetary Physics, vol. 2, World Scientific, Singapore, 2000. 34 

Satheesh, S. K., Torres, O., Remer, L. A., Babu, S. S., Vinoj, V., Eck, T. F., Kleidman, 35 

R. G., and Holben, B. N.: Improved assessment of aerosol absorption using 36 

OMI-MODIS joint retrieval, J. Geophys. Res., 114, D05209, 37 

doi:10.1029/2008JD011024, 2009. 38 

Satheesh, S. K., and Ramanathan, V.: Large differences in tropical aerosol forcing at 39 

the top of the atmosphere and Earth’s surface, Nature, 405, 60–63, 40 

doi:10.1038/35011039, 2000 41 

Schwartz, J., Coull, B., Laden, F., Ryan, L.: The effect of dose  and timing of dose on 42 

the association between airborne  particles and survival. Environ Health 43 

Perspect 116:64–69, 2008 44 



 57

Shen, Z., Liu, J., Horowitz, L. W., Henze, D. K., Fan, S., H., Levy II, 1 

Mauzerall, D. L., Lin, J.-T., and Tao, S.: Analysis of transpacific transport of 2 

black carbon during HIPPO-3: implications for black carbon aging, Atmos. 3 

Chem. Phys., 14, 6315-6327, doi:10.5194/acp-14-6315-2014, 2014. 4 

Silva, A. R., West, J. J., Zhang, Y., Aneberg, C. S., Lamarque, J.-F., Shindell, T. D., 5 

Collins, J. W., Dalsoren, S., Faluvegl, G., Folbeth, G., Horowitz, W. L., 6 

Nagashima, T., Nalk, V., Rumbold, S., Skele, R., Sudo, K., Takemura, T., 7 

Bergmann, D., Camero-smith, P., Cionnl, I., Doherty, M. R., Eyring, V., Josse, 8 

B., MacKenzie, I. A., Plummer, D., Righl, M., Stevenson, S. D., Strode, S., 9 

Szopa, S., Zeng, G.: Global premature mortality due to anthropogenic outdoor 10 

air pollution and the contribution of past climate change.  Environ. Res. Lett. 8, 11 

034005 doi:10.1088/1748-9326/8/3/034005, 2013. 12 

Sinyuk, A, Dubovik, O., Holben, B., Eck, T. F., Breon, F. M., Martonchik, J., Kahn, 13 

R., Diner, D. J., Vermote, E. F., Roger, J. C., Lapyonok, T., Slutsker, I.: 14 

Simultaneous retrieval of aerosol and surface properties from a combination of 15 

AERONET and satellite data. Remote Sens. Environ., 107(2-Jan), 90-108, 2007. 16 

Stier, P., Seinfel,d J. H., Kinne, S., Feichter, J., and Boucher, O.: Impact of 17 

nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption, J. 18 

Geophys. Res., 111, D18201, doi:10.1029/2006JD007147, 2006. 19 

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., 20 

Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Feichter, J., 21 

Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., 22 

Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch, D., Kirkevåg, A., 23 

Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., 24 

Myhre, G., Penner, J. E., Pitari, G., Reddy, M. S., Seland, Ø., Stier, P., 25 

Takemura, T., and Tie, X.: The effect of harmonized emissions on aerosol 26 

properties in global models – an AeroCom experiment, Atmos. Chem. Phys., 7, 27 

4489-4501, doi:10.5194/acp-7-4489-2007, 2007. 28 

Torres, O., Ahn, C., and Chen, Z.: Improvements to the OMI near-UV aerosol 29 

algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 30 

6, 3257-3270, doi:10.5194/amt-6-3257-2013, 2013. 31 

Torres, O., Bhartia, P. K., Herman, J. R., and Ahmad, Z.: Derivation of aerosol 32 

properties from satellite measurements of backscattered ultraviolet radiation. 33 

Theoretical Basis, J. Geophys. Res., 103(D14), 17,099– 17,110, 34 

doi:10.1029/98JD00900, 1998. 35 

Torres, O., Bhartia, P. K., Sinyuk, A., Welton, E. J., and Holben, B.: Total Ozone 36 

Mapping Spectrometer measurements of aerosol absorption from space: 37 

Comparison to SAFARI 2000 ground-based observations, J. Geophys. Res., 38 

110, D10S18, doi:10.1029/2004JD004611, 2005. 39 

Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., 40 

Veefkind, P., and Levelt P.: Aerosols and surface UV products from Ozone 41 

Monitoring Instrument observations: An overview, J. Geophys. Res., 112, 42 

D24S47, doi:10.1029/2007JD008809, 2007. 43 

United Nations Environment Program and World Meteorological Organization,  44 



 58

“Integrated Assessment of Black Carbon and Tropospheric Ozone” (Nairobi, 1 

2011).  2 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and 3 

Arellano Jr., A. F.: Interannual variability in global biomass burning emissions 4 

from 1997 to 2004, Atmos. Chem. Phys., 6, 3423-3441, doi:10.5194/acp-6-5 

3423-2006, 2006. 6 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. 7 

S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire 8 

emissions and the contribution of deforestation, savanna, forest, agricultural, 9 

and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, doi: 10 

10.5194/acp-10-11707-2010, 2010. 11 

van Donkelaar, A., Martin, R. V., Spurr, R. J. D.,  Drury, E.,  Remer, L. A., Levy, R. 12 

C., and Wang, J., Optimal estimation for global ground-level fine particulate 13 

matter concentrations, J. Geophys. Res. Atmos., 118, 5621–5636, 14 

doi:10.1002/jgrd.50479,2013 15 

Wang, J., Xu, X., Henze, K. D., Zeng, J., Ji, Q., Tsay, S.-C., and Huang, J.,: Top-down 16 

estimate of dust emissions through integration of MODIS and MISR aerosol 17 

retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, 18 

L08802, doi:10.1029/2012GL051136, 2012. 19 

Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., 20 

Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: 21 

Sources of carbonaceous aerosols and deposited black carbon in the Arctic in 22 

winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 23 

12453-12473, doi:10.5194/acp-11-12453-2011, 2011. 24 

Wang, X., Wang, Y., Hao, J., Kondo, Y., Irwin, M., Munger, J. W., and Zhao, Y.: Top-25 

down estimate of China’s black carbon emissions using surface observations: 26 

Sensitivity to observation representativeness and transport model error, J. 27 

Geophys. Res. Atmos., 118, 5781–5795, doi:10.1002/jgrd.50397, 2013. 28 

Wang, Y. X., McElroy, B. M., Jacob, J. D., and Yantosca, R. M.: A nested grid 29 

formulation for chemical transport over Asia: Applications to CO, J. Geophys. 30 

Res., 109, D22307, doi:10.1029/2004JD005237, 2004. 31 

Wang, Y., Jacob, J. D., and Logan, A. J.: Global simulation of tropospheric O3-NOx-32 

hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res., 103/D9, 33 

10,713-10,726, 1998. 34 

Wecht, K. J., J. D., Jacob, Wofsy, C. S., Kort, A. E., Worden, R. J., Kulawik, S. S., 35 

Henze, K. D., Kopacz, M., and Payne, H. V.: Validation of TES methane with 36 

HIPPO aircraft observations: implications for inverse modeling of methane 37 

sources, Atmos. Chem. Phys., 12, 1823-1832, 2012. 38 

Wecht, K. J., Jacob, J. D., Frankenberg, C., Jiang, Z., and Blake, D. R.: Mapping of 39 

North American methane emissions with high spatial resolution by inversion of 40 

SCIAMACHY satellite data, J. Geophys. Res. Atmos., 119, 7741–7756 41 

doi:10.1002/2014JD021551, 2014 42 

Wesely, M. L.: Parameterization of surface resistance to gaseous dry deposition in 43 

regional-scale numerical models, Atmos. Environ., 23, 1293-1304, 1989. 44 



 59

Worden, H. M., Logan, J. A., Worden, J. R., Beer, R., Bowman, K., Clough, S. A., 1 

Eldering, A., Fisher, B. M., Gunson, M. R., Herman, R. L., Kulawik, S. S., 2 

Lampel, M. C., Luo, M., Meqretskaia, I. A., Osterman, G. B., Shephard, M. W.: 3 

Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to 4 

ozonesondes: Methods and initial results, J. Geophys. Res., 112, D03309, 5 

doi:10.1029/2006JD007258, 2007. 6 

Xu, X., Wang, J., Henze, K. D., Qu, W., Kopacz, M.: Constraints on Aerosol Sources 7 

Using GEOS-Chem Adjoint and MODIS Radiances, and Evaluation with Multi-8 

sensor (OMI, MISR) data, J. Geophys. Res., 118, 6396–6413 9 

doi:10.1002/jgrd.50515, 2013 10 

Zhang L., Liao, H., Li, J.: Impacts of Asian Summer Monsoon on Seasonal and 11 

Interannual Variations of Aerosols over Eastern China. J. Geophys. Res., 115, 12 

D00K05, doi:10.1029/2009JD012299, 2010. 13 

Zhang, L., Jacob, J. D., Kopacz, M. Henze, K. D., Singh, K., and Jaffe, D. A.: 14 

Intercontinental source attribution of ozone pollution at western U.S. sites using 15 

an adjoint method, Geophys. Res. Lett., 36, L11810, 16 

doi:10.1029/2009GL037950, 2009. 17 

Zhang, L., Kok, J., Henze, K. D., Li, Q. B., and Zhao, C.: Improving simulations of 18 

fine dust surface concentrations over the Western United States by optimizing 19 

the particle size distribution, Geophys. Res. Lett., 40, 3270–3275, doi: 20 

10.1002/grl.50591, 2013. 21 

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., 22 

Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, 23 

L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, 24 

Atmos. Chem. Phys., 9, 5131-5153, 2009. 25 

Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., Gong, S. L., Zhao, P., and Jin, J. 26 

L.: Carbonaceous aerosol composition over various regions of China during 27 

2006, J. Geophys. Res., 113, D14111, doi:10.1029/2007JD009525, 2008 28 

Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., 29 

Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its 30 

shortwave radiative forcing over North Africa: modeling sensitivities to dust 31 

emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821-8838, 32 

doi:10.5194/acp-10-8821-2010, 2010.  33 

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: L-BFGS-B: A limited memory 34 

FORTRAN code for solving bound constrained optimization problems, Tech. 35 

Rep., Northwestern University, 1994 36 

Zhu, L., Henze, K. D., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder, R. W., 37 

Bash, J. O., Jeong, G.: Constraining U.S. ammonia emissions using TES remote 38 

sensing observations and the GEOS-Chem adjoint model, J. Geophys. Res., 118, 39 

3355–3368, doi:10.1002/jgrd.50166, 2013. 40 

 41 



50N

40N

30N

20N

10N

EQ

10S

70E 90E 110E 150E130E

50N

40N

30N

20N

10N

EQ

10S
70E 90E 110E 150E130E

-5 -4 -3 -2 -1 -0.5 0 0.5 1 2 3 4 5 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

GC_OMI minus OMI (GC_OMI-OMI)/OMI %April

October

Fig. 1

%10-2



50N

10N

20N

30N

40N

75E
10S

EQ

120E105E90E 150E135E

0 15001000500 25002000 35003000 45004000 55005000

Fig. 2



45N

30N

15N

EQ

75E 90E 105E 135E120E 150E

0 1 100 250 500 1000 2000 3000 5000 0 1 100  250 500 1000 2000 3000 5000

Bond INTEX-B

Fig. 3

kg/yr/grid box103

SEAC RS

75E 90E 105E 135E120E 150E

MEIC

45N

30N

15N

EQ

4



m/ gµ[ 
C

B
3 ]

m/gµ [  
C

B
3 ]

NAN, Lat=22.8, Lon=108.4

GUC, Lat=39.1, Lon=115.8
Posteriori

LFS, Lat=44.7, Lon=127.6INTEX-B
Bond
SEAC RS
MEIC

4

Observation

Posteriori

Observation INTEX-B
Bond
SEAC RS
MEIC

4

XIA, Lat=34.4, Lon=109.0

1 98765432 10 11 120

35
40

30
25
20
15
10
5

Posteriori
INTEX-B
Bond

SEAC RS
MEIC

4Observation

Fig. 4



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S
75E 90E 105E 150E135E

0.1 0.5 1 2 3 4 5 6 8 10 12

INTEX-B MEIC_SEAC RSApril

October

Fig. 5

μg/m3

135E 120E

4

0.1 0.5 1 2 3 4 5 6 8 10 12



50N

40N

30N

20N

10N

EQ

10S

70E 90E 110E 150E130E

50N

40N

30N

20N

10N

EQ

10S
70E 90E 110E 150E130E

-6 -5 -3 -2 -1 -0.5 0 0.5 1 2 3 5 6 0 10 20 40 60 80 100 120 140 160 180

(a) GEOS-Chem minus OMI (b) Data countsApril

Fig. 6

10-2

October



50N

40N

30N

20N

10N

EQ

10S

70E 90E 110E 150E130E

50N

40N

30N

20N

10N

EQ

10S
70E 90E 110E 150E130E

-6 -5 -3 -2 -1 -0.5 0 0.5 1 2 3 5 6 0 10 20 40 60 80 100 120 140 160 180

(a) GEOS-Chem minus OMI (b) Data countsApril

Fig. 7

10-2

October



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S

-50 -20 -10 -5 -1 -0.01 0.01 1 5 10 20

(a) Vertically reolved BC AAOD (b) Column BC AAODApril

October

Fig. 8

10  kg4

135E

50

75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E

(c) Column total OMI AAOD (d) Column OMI_AAOD_BC



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S

-50 -20 -10 -5 -1-0.01 0.011 5 10 20

Prior  Posterior
(a) INTEX-B

(b) MEIC_SEAC RS

Fig. 9

10  kg4

135E

50

75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E

 Posterior - Prior  Relative changes of posterior error

0.1 1 2.5 5 10 20 30 50 -30 -20 -15 -10 -5 -1 1 5 10 15 20 30 %

4

10  kg4



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S

-50 -20 -10 -5 -1-0.01 0.011 5 10 20

 Prior  Posterior
(a) INTEX-B

(b) MEIC_SEAC RS

Fig. 10

10  kg4

135E

50

75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E

  Posterior - Prior Relative changes of posterior error

0.1 1 2.5 5 10 20 30 50 -30 -20 -15 -10 -5 -1 1 5 10 15 20 30 %

4

10  kg4



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S

-50 -20 -10 -5 -1 -0.1 0.1 1 5 10 20

Prior PosteriorApril

October

Fig. 11

10  kg
4

135E

50

75E 90E 105E 150E120E 135E 75E 90E 105E 150E120E 135E

Posterior / Prior

0.05 0.1 0.2 0.5 0.8 0.9 1 1.1 1.2 1.5 2 2.5 3



75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S
75E 90E 105E 150E135E

April October

Fig. 12

135E 120E

-25 -20 -15 -10 -5 -1 1 5 %10 15 20 25 -25 -20 -15 -10 -5 -1 1 5 10 15 20 25







Kanpur
Lat=26.5, Lon=80.2

Mukdahan
Lat=16.6, Lon=104.7

Kanpur
Lat=26.5, Lon=80.2

Mukdahan
Lat=16.6, Lon=104.7

Gandhi
Lat=25.9, Lon=84.1

Beijing
Lat=40.0, Lon=116.4

Beijing
Lat=40.0, Lon=116.4

Gandhi
Lat=25.9, Lon=84.1

AERONET
OMI

Prior-MEIC
Prior-INTEX-B
Posterior-MEIC
Posterior-INTEX-B

Prior-MEIC
Prior-INTEX-B
Posterior-MEIC
Posterior-INTEX-B

AERONET
OMI

0.36

0.45

0.27

0.18

0.09

0
1APR 29APR25APR21APR17APR13APR9APR5APR

0.36

0.45

0.27

0.18

0.09

0
1OCT 26OCT21OCT16OCT11OCT6OCT

0.20

0.25

0.15

0.10

0.05

0
1APR 29APR25APR21APR17APR13APR9APR5APR

0.20

0.25

0.15

0.10

0.05

0
1OCT 26OCT21OCT16OCT11OCT6OCT

0.20

0.25

0.15

0.10

0.05

0

0.20

0.25

0.15

0.10

0.05

0

0.08

0.10

0.06

0.04

0.02

0

0.08

0.10

0.06

0.04

0.02

0

1OCT 26OCT21OCT16OCT11OCT6OCT

1OCT 26OCT21OCT16OCT11OCT6OCT1APR 29APR25APR21APR17APR13APR9APR5APR

1APR 29APR25APR21APR17APR13APR9APR5APR

April October

Fig. 15



50N

40N

30N

20N

10N

EQ

10S

75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S
75E 90E 105E 150E135E

0.1 0.5 1 2 3 4 5 6 8 10 12

INTEX-B MEIC_SEAC RSApril

October

Fig. 16

μg/m3

135E 120E

4

0.1 0.5 1 2 3 4 5 6 8 10 12



(a) Without downcaling (b) With downcaling

Observation Observation

Observation Observation

M
od

el
M

od
el

0 4 8 12 16 20 0 4 8 12 16 20

0 4 8 12 16 20 0 4 8 12 16 20

0

4

8

12

16

20

0

4

8

12

16

20

0

4

8

12

16

20

0

4

8

12

16

20

Fig. 17

April

October

before/after before/after

before/after before/after



20

16

12

8

4

0

LAS CHD XIA PAYNAN

18

12

9

6

3

0

15

GUC DAL DUH LIAGLS

(b) IndiaApril

October

(a) China

NTLTYSLFS DEL KGP HYDPUN MCYTVM PBR

NTL DEL KGP HYDPUN MCYTVM PBRLAS CHD XIA PAYNAN GUC DAL DUH LIAGLS TYSLFS

15

12

9

6

3

0

15

12

9

6

3

0

Fig. 18

Obervation
Prior-MEIC_SEAC
Posterior-MEIC_SEAC
Prior-INTEX-B
Posterior-INTEX-B

Obervation
Prior-MEIC_SEAC
Posterior-MEIC_SEAC
Prior-INTEX-B
Posterior-INTEX-B

B
C

 C
on

ce
nt

ra
tio

n 
[μ

g/
m

 ]3
B

C
 C

on
ce

nt
ra

tio
n 

[μ
g/

m
 ]3



75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S
75E 90E 105E 150E135E

-300 -200-100 -50 -20 0 20 50 100 200 300

April October

Fig. 19

%

135E 120E

-300 -200-100 -50 -20 0 20 50 100 200 300



75E 90E 105E 150E120E

50N

40N

30N

20N

10N

EQ

10S
75E 90E 105E 150E135E

April October

Fig. 20

50

135E 120E

-50 -20 -10 -5 -1 -0.1 0.1 1 5 10 20 50-50 -20 -10 -5 -1 -0.1 0.1 1 5 10 20 10  kg4




