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Abstract 1 

Accurate estimates of the emissions and distribution of black carbon (BC) in the 2 

region referred to here as Southeastern Asia (70°E–150°E, 11°S–55°N) are critical to 3 

studies of the atmospheric environment and climate change. Analysis of modeled BC 4 

concentrations compared to in situ observations indicates levels are underestimated 5 

over most of Southeast Asia when using any of four different emission inventories. 6 

We thus attempt to reduce uncertainties in BC emissions and improve BC model 7 

simulations by developing top-down, spatially resolved, estimates of BC emissions 8 

through assimilation of OMI observations of aerosol absorption optical depth 9 

(AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. 10 

Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown 11 

after optimization over broad areas of Southeast Asia in April. In October, the 12 

optimization of anthropogenic emissions yields a slight reduction (1~5%) over India 13 

and parts of southern China, while emissions increase by 10~50% over eastern China. 14 

Observational data from in situ measurements and AERONET observations are used 15 

to evaluate the BC inversions and assess the bias between OMI and AERONET 16 

AAOD. Low biases in BC concentrations are improved or corrected in most eastern 17 

and central sites over China after optimization, while the constrained model still 18 

underestimates concentrations in Indian sites in both April and October, possibly as a 19 

consequence of low prior emissions. Model resolution errors may contribute up to a 20 

factor of 2.5 to the underestimate of surface BC concentrations over northern India. 21 

We also compare the optimized results using different anthropogenic emission 22 

inventories and discuss the sensitivity of top-down constraints on anthropogenic 23 

emissions with respect to biomass burning emissions. In addition, the impacts of 24 

different observation operators and a priori constraints on the optimization are 25 

investigated. Overall, despite these limitations and uncertainties, using OMI AAOD to 26 

constrain BC sources improves model representation of BC distributions, particularly 27 

over China. 28 

 29 
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 1 

1. Introduction 2 

Black carbon (BC) is a product of incomplete combustion of carbonaceous fuels, 3 

enhanced concentrations of which have led to a present-day overall positive radiative 4 

forcing and climate warming [Charlson and Pilat, 1969; Satheesh and Ramanathan, 5 

2000; Bond et al., 2013].  More than ten years ago, Jacobson [2000] and Hansen et al. 6 

[2000] recognized that preindustrial to present increases in BC might warm the 7 

atmosphere about one third as much as CO2. Recently, an assessment report by Bond 8 

et al. [2013] indicates that the global average preindustrial to present radiative forcing 9 

from BC is +1.1 W/m2 with 90% uncertainty bounds of +0.17 to +2.1 W/m2, which is 10 

more than two thirds that of CO2 (+1.56 W/m2). Additionally, BC aerosols constitute 11 

up to 10-15% of the mass concentration of fine particulate matter (PM2.5) over 12 

continental regions, exposure to which is known to adversely effect human health 13 

[e.g., Janssen et al., 2005; Schwartz et al., 2008; Janssen et al., 2011; Li et al., 2014]. 14 

Given the magnitude of BC climate effects and health impacts, a number of studies 15 

have investigated its direct effect [Forster 2007; Ramanathan and Carmichael, 2008], 16 

semi-direct effect [Ackeman et al., 2000; Johnson et al., 2004], indirect effect [Cozic 17 

et al., 2007; Liu et al., 2009; Oshima et al., 2009], and the albedo effect when 18 

deposited on snow [Hansen and Nazarenko, 2004; Hansen et al., 2005; Flanner et al., 19 

2007; Qian et al., 2009] using various numerical models and observations.  20 

Central estimates of global annual emissions of BC are 8.0 Tg, of which 38% comes 21 

from fossil fuel, 20% from biofuel and 42% from open burning [Bond et al., 2004]. 22 

At the same time, estimates of BC emissions are recognized as having large 23 
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uncertainties -- 50% at global scales and a factor of two to five at regional scales 1 

[Bond et al., 2004; Ramanathan and Carmichael, 2008]. The Asian region referred to 2 

here as Southeast Asia (70°E–150°E, 11°S–55°N) is the major anthropogenic BC 3 

source region in the world, with growth in BC emissions of 21% over China and 41% 4 

over India from 1996 to 2010 associated with rapid economic and industrial 5 

development [Lu et al., 2011]. BC emissions from both energy-related combustion 6 

and biomass burning that occur largely in Asia and Africa currently appear 7 

underestimated [Bond et al., 2013]. A global top-down estimate of BC emission using 8 

AERONET observation by Cohen and Wang [2014] indicated that commonly used 9 

global BC emissions datasets may be underestimated by a factor of two or more. 10 

Sixteen models from the AeroCom aerosol model intercomparisons underestimated 11 

the Southeast Asian BC surface concentrations by a factor of 2~3 [Koch et al., 2009]. 12 

The GEOS-Chem model also underestimated monthly BC concentrations at almost all 13 

rural sites in China, particularly in January 2006, which indicated a regional 14 

underprediction of carbonaceous aerosol sources associated with anthropogenic 15 

activities [Fu et al., 2012; Wang et al., 2013]. In addition, the global atmospheric 16 

absorption attributable to BC is too low in many global aerosol models by a factor of 17 

almost three on a global mean basis, which can be attributed to the models lacking 18 

treatment of enhanced absorption caused by mixing of BC with other constituents and 19 

the amount of BC in the atmosphere [Koch et al., 2009; Bond et al., 2013]. On the 20 

other hand, a typical fresh particle mass absorption cross section (MABS, essentially 21 

the column BC absorption divided by the load) of about 7.5 m2 g−1 recommended by 22 
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Bond and Bergstrom [2006] is not represented in most models, which should 1 

probably increase as particles age [Koch et al., 2009]. This bias would also impact 2 

simulated AAOD, and inferences about emissions based on such comparisons would 3 

likewise be biased. 4 

To reduce uncertainties in BC emissions and improve poor representation of BC in 5 

model simulations, different top-down approaches have been used to constrain bottom 6 

up BC emissions, such as the linear constraints between concentrations and emissions 7 

[Park et al., 2003; Kondo et al., 2011; Fu et al., 2012; Wang et al., 2013], inverse 8 

modeling using the decoupled direct method [Hu et al., 2009a; Hu et al., 2009b], the 9 

Kalman filter technique [Cohen and Wang 2014], and the adjoint based 4D variational 10 

approach [Hakami et al., 2005]. These studies have exclusively used in situ 11 

measurements or airborne observations, which can provide accurate observations of 12 

aerosol properties. However, they are often incomplete in their spatial or temporal 13 

coverage. Satellite measurements of aerosol optical depth (AOD) have much broader 14 

temporal and spatial coverage, and have also been used to constrain BC sources 15 

[Huneeus et al., 2003; Xu et al., 2013]. However, AOD reflects the contribution from 16 

all aerosol components, making it difficult to distinguish and quantify different 17 

aerosol species, especially their relative fractions.  18 

The OMI aerosol absorption optical depth (AAOD), the non-scattering part of the 19 

AOD, is an atmospheric column measurement of absorbing aerosol particles, i.e., 20 

absorbing carbon and mineral dust, which provides a different perspective to 21 

constrain BC sources [Torres et al., 1998; Koch et al., 2009].  In this study, the 22 
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GEOS-Chem adjoint model and satellite observations of OMI AAOD are used to 1 

constrain spatially resolved BC emissions. Our study will focus on April and October 2 

to compare times when the dust loading is relatively large and small over Southeast 3 

Asia. Section 2 describes the observations, emissions, and forward and inverse model 4 

used in this study. Then we quantify discrepancies between observations and model 5 

estimates based on different BC anthropogenic emissions in Section 3. Section 4 6 

describes how formulation of the inverse problem affects the results; evaluation of the 7 

inversion results with different prior emission inventories and independent 8 

observations are presented in Section 5, and we end with discussion and conclusions 9 

in Section 6. 10 

 11 

2. Data and Models 12 

2.1 Observations 13 

2.1.1 OMI AAOD 14 

The Ozone Monitoring Instrument (OMI) aboard Aura is a nadir-viewing, wide-swath 15 

hyper-spectral imaging spectrometer that provides daily global coverage with high 16 

spectral resolutions and spatial resolution of 13 × 24 km2 at nadir [Levelt et al., 17 

2006a]. It detects backscattered solar radiance in the ultraviolet-visible wavelengths 18 

(0.27 to 0.5 µm) to measure aerosols, clouds, surface UV irradiance, and trace gases 19 

[Levelt et al., 2006b]. OMI takes advantage of the greater sensitivity of radiances 20 

measured at the top-of-atmosphere in the near-UV region to the varying load and type 21 

of aerosols to derive extinction AOD, single scattering albedo (SSA), and AAOD 22 
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using an inversion procedure at 354, 388 and 500 nm generated by the near-UV 1 

(OMAERUV) algorithm [Torres et al., 2007]. The optical depths at 388 nm are 2 

inverted from radiance observations while the 354 and 500 nm results are obtained by 3 

conversion of the 388 nm retrievals. The OMAERUV retrieval algorithm is 4 

particularly sensitive to carbonaceous and mineral aerosols. The OMAERUV retrieval 5 

algorithm assumes that the column aerosol load can be represented by one of three 6 

types of aerosols and uses a set of aerosol models to account for the presence of these 7 

aerosols: carbonaceous aerosol from biomass burning, desert dust, and light absorbing 8 

sulfate-based aerosols. Each aerosol type is represented by seven aerosol models of 9 

varying single scattering albedo, for a total of twenty-one models.  The twenty-one 10 

aerosol models used by OMAERUV are based on long-term statistics of ground-based 11 

observations by the AERONET. Due the large sensitivity of the OMI near UV 12 

observations to particle absorption, the AAOD is the most reliable quantitative 13 

OMAERUV aerosol parameter, especially over land. The root-mean-square error for 14 

AAOD is estimated to be ~0.011. 15 

Since the retrieval algorithm is sensitive to the aerosol height, the Level 2 OMI 16 

AAOD data reports a set of retrieved parameters for different assumptions of the 17 

altitude of the aerosol center of mass: at the surface, and at 1.5, 3.0, 6.0 and 10.0 km 18 

above the surface [Torres et al., 2005]. For carbonaceous and desert dust particles, the 19 

aerosol load is assumed to be vertically distributed following a Gaussian function 20 

characterized by peak (aerosol layer height) and half-width (aerosol layer geometric 21 

                                                        
1daac.gsfc.nasa.gov/Aura/data-

holdings/OMI/documents/v003/OMAERUV_README_V003.doc 
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thickness) values [Torres et al., 2005; Torres et al., 2013]. The retrieval values of 1 

AAOD are much larger if using the aerosol layer altitude where more absorbing 2 

aerosols are loaded. In general, when comparing satellite retrievals of trace gases with 3 

other measurements or model simulations, it is essential to take into account the 4 

different sensitivities of the instruments by applying averaging kernels [Luo et al., 5 

2007; Worden et al., 2007]. However, there is no averaging kernel for OMI 6 

AOD/AAOD retrievals. It is thus important to consider differences in aerosol 7 

properties and distributions used in the retrieval algorithm with those in the 8 

assimilation model (e.g., GEOS-Chem). The retrieval “Final AAOD” products are 9 

interpolated values using the aerosol layer height value given by the Cloud-Aerosol 10 

Lidar with Orthogonal Polarization (CALIOP) climatology as the retrieval algorithm 11 

is sensitive to aerosol layer height [Torres et al., 2013]. In order to obtain a consistent 12 

vertical profile between the OMI retrieval and GEOS-Chem, we use the GEOS-Chem 13 

simulated aerosol layer height instead of the CALIOP-based aerosol layer height 14 

climatology to calculate a GEOS-Chem-based OMI AAOD (OMI_GC AAOD) as a 15 

linear interpolation of the OMI AAOD values corresponding to different assumed 16 

peak heights. Figure 1 shows the differences between OMI_Final and OMI_GC 17 

AAOD over Southeast Asia for April and October 2006. In April, the enhancements 18 

from applying the GEOS-Chem aerosol layer height are quite significant, with 30-19 

50% increases over eastern China and downwind areas while 20-30% increases over 20 

India and southeastern Asia, since the simulated aerosol layer heights are much lower 21 

than those based on CALIOP. The increases even exceed 60% across broad areas over 22 
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the tropical ocean. Some reductions are shown over parts of western China and 1 

northern Asia in the OMI_GC AAOD. In October, the patterns of enhancement and 2 

reduction are similar to those in April, with smaller changes (less than 20%) over 3 

broad continental areas. The most significant differences occur near the major aerosol 4 

source regions, such as eastern China and South Asia.  5 

2.1.2 AERONET AAOD 6 

The Aerosol Robotic Network (AERONET) is a ground-based instrument network 7 

providing a long-term, continuous and readily accessible public domain database of 8 

aerosol optical, microphysical and radiative properties [Holben et al., 1998]. 9 

AERONET inversion code provides aerosol optical properties (including size 10 

distribution, refractive index, and single scattering albedo) in the total atmospheric 11 

column derived from the direct and diffuse radiation measured by Cimel sun/sky-12 

radiometers [Dubovik and King, 2000; Dubovik et al., 2000, 2002a, 2002b; Dubovik 13 

et al., 2006; Sinyuk et al., 2007].  14 

We use Level 2.0 quality-assured AERONET aerosol inversions data of AAOD at 440 15 

nm. The prefield and postfield calibrations have been applied in these measurements 16 

and they were cloud cleared and manually inspected [Omar et al., 2013]. The total 17 

uncertainty in the AERONET AOD for field instruments is ±0.1 to ±0.2 and is 18 

spectrally dependent with the higher errors (±0.2) in the UV spectral range [Eck et al., 19 

1999]. The retrieved single scattering albedo uncertainties were within 0.03, 20 

estimated by Dubovik et al., [2000], with the exception of the 0.44 µm retrievals for 21 

the desert dust case when they increased by ∼0.09 and 0.07 for low and high aerosol 22 
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loadings, respectively [Sinyuk et al., 2007]. 1 

2.1.3 In situ measurements 2 

For the monthly surface BC observation over Southeast Asia, we combine the in situ 3 

measurements of BC concentration based on several published studies [Zhang et al., 4 

2008; Beegum et al., 2009; Moorthy et al., 2013]. Over China, the monthly surface 5 

BC concentrations are from 12 sites, including urban sites and rural sites for April and 6 

October, 2006, which were based on results of Zhang et al. [2008]. The locations of 7 

these 12 sites are shown in Fig. 2. The BC concentrations are analyzed using thermo-8 

chemical analysis from PM10 aerosols, which were collected by air sample [Zhang et 9 

al., 2008]. The daily BC measurements are only available at the site of Xi’an (XIA). 10 

The PM2.5 BC concentrations were measured continuously as 5-min averages by 11 

quartzfiber filter tape transmission at an 880 nm wavelength with an aethalometer 12 

[Hansen et al., 1984]. More details about the measurement methods are described by 13 

Cao et al. [2007; 2009]. 14 

The measurements of monthly surface BC concentrations for 2006 using 15 

aethalometers over India were based on Beegum et al. [2009] and Moorthy et al. 16 

[2013], which were carried out in eight sites (see Table 1) covering India and adjacent 17 

oceanic regions. Locations of these sites are indicated in Fig. 2. More details about 18 

the measurements and sites are described by Beegum et al. [2009]. DEL and KGP 19 

represent urban and semi-urban sites in the Indo-Gangetic Plain (IGP).  HYD and 20 

PUN represent urban locations. TVM is a semi-urban coastal station in the south 21 
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India; NTL is a high altitude location in the central Himalayas, and MCY and PBR 1 

are two island locations representing the Arabian Sea and Bay of Bengal, respectively. 2 

2.2 GEOS-Chem  3 

GEOS-Chem is a global three-dimension chemical transport model driven by 4 

assimilated meteorological observations from the Goddard Earth Observing System 5 

(GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) [Bey et al., 6 

2001]. We use the nested-grid GEOS-Chem model [Wang et al., 2004; Chen et al., 7 

2009] driven by GEOS-5 meteorological fields with 6-hour temporal resolution (3-8 

hour for surface variables and mixing depths), 0.5° (latitude) × 0.667° (longitude) 9 

horizontal resolution over the window of Southeast Asia (70°E–150°E, 11°S–55°N), 10 

and 47 vertical layers between the surface and 0.01 hPa. A global simulation with 11 

lower resolution of 4° (latitude) × 5° (longitude) provides the lateral boundary 12 

conditions to the higher resolution nested-grid simulation every 3 hours. 13 

The original carbonaceous aerosol simulation in GEOS–Chem was developed by Park 14 

et al. [2003]. It assumes that 80% of BC and 50% of OC emitted from primary 15 

sources are hydrophobic and that hydrophobic aerosols become hydrophilic with an e-16 

folding time of 1.15 days [Park et al., 2003; Chin et al., 2002; Cooke et al., 1999].  17 

Dust in GEOS-Chem is distributed across four size bins (radii 0.1– 1.0, 1.0–1.8, 1.8–18 

3.0, and 3.0–6.0 µm) following Ginoux et al. [2004]. The smallest size bin is further 19 

divided equally into four sub-micron size bins (with effective radii centered at 0.15, 20 

0.25, 0.4 and 0.8µm) for calculation of optical properties and heterogeneous 21 

chemistry [Fairlie et al., 2010; Ridley et al., 2012]. Due to the significant positive 22 
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biases identified in GEOS-Chem dust simulations both in surface concentration and 1 

dust AOD [Fairlie et al., 2010, Ku and Park, 2011; Ridley et al., 2012; Wang et al., 2 

2012], a new emitted dust particle size distribution (PSD) based upon scale-invariant 3 

fragmentation theory [Kok, 2011] with constraints from in situ measurements [Zhao 4 

et al., 2010] is implemented in GEOS-Chem to improve the dust simulation [Zhang et 5 

al., 2013]. Large discrepancies are reduced between the simulated surface-level fine 6 

dust concentration and measurements from the IMPROVE network in the western US 7 

during March to May of 2006 [Zhang et al., 2013]. The new PSD also improves the 8 

positive biases of AOD over the Asian and African dust source region in April 2006 9 

(See Fig. S1 in supplemental). The wet deposition scheme [Liu et al., 2001] includes 10 

scavenging in convective updrafts as well as in-cloud and below-cloud scavenging 11 

from convective and large-scale precipitation. Dry deposition is based on the 12 

resistance-in-series scheme of Wesely [1989] as implemented by Wang et al. [1998]. 13 

The aerosol optical depth at 400 nm is calculated online assuming log-normal size 14 

distributions of externally mixed aerosols and is a function of the local relative 15 

humidity to account for hygroscopic growth [Martin et al., 2003]. The AAOD of each 16 

aerosol species is calculated as [Ma et al., 2012; Cohen and Wang, 2014; Cohen, 17 

2014] 18 

                                         AAOD=AOD* (1-SSA)                                                   (1), 19 

where SSA is the single scattering albedo. 20 

2.3 BC Emission Inventories  21 

Emissions of BC from biomass burning sources are taken from version 2 of the GFED 22 
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8-day inventory [van der Werf et al., 2006; Randerson et al., 2006]. GFED v2 is 1 

derived using satellite observations of active fire counts and burned areas in 2 

conjunction with the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical 3 

model. Carbon emissions are calculated as the product of burned area, fuel load and 4 

combustion completeness. Burned area is derived using the active fire and 500-meter 5 

burned area datasets from the Moderate Resolution Imaging Spectroradiometer 6 

(MODIS) as described by Giglio et al. [2006]. We also use a newer version of GFED 7 

v3 daily emissions for sensitivity analysis [van derWerf et al., 2010]. Compared to 8 

GFED v2, the main update in GFED v3 is the spatial resolution of the global grid is 9 

quadrupled from 1° to 0.5°, the native 500-m MODIS daily burned area maps are 10 

applied [Giglio et al., 2010], the regional regression trees of GFEDv2 are replaced by 11 

a local regression approach in producing the indirect, active-fire based estimates of 12 

burned area, and a revised version of Carnegie-Ames Stanford Approach (CASA) 13 

biogeochemical model is used.  14 

Global anthropogenic emissions for carbonaceous aerosols (BC/OC) in GEOS-Chem 15 

are originally from Bond et al. [2004, 2007], which contain both biofuel and fossil 16 

fuel emissions. The estimated BC emissions uncertainties are −36% to 149% over 17 

China and 38% to −119% for India [Bond et al., 2004; Lu et al., 2011].  In this study, 18 

we evaluate three additional carbonaceous anthropogenic emission inventories over 19 

Southeast Asia and China: the Streets regional inventory for Intercontinental 20 

Chemical Transport Experiment - Phase B (INTEX-B), the Southeast Asia 21 

Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emission 22 
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inventory, and the Multi-resolution Emission Inventory for China (MEIC, 1 

http://www.meicmodel.org/). Anthropogenic emissions are all classified into four 2 

major sectors: power generation, industry, residential and transport. The INTEX-B 3 

inventory is based on 2006 and contains monthly variations with 0.5° × 0.5° 4 

horizontal resolution over Southeast Asia (Zhang et al., 2009). The SEAC4RS 5 

inventory is an annual, finer resolution inventory based on 2012, with 0.1°× 0.1° 6 

horizontal resolution over Southeast Asia [Lu et al., 2011]. The average uncertainties 7 

of BC are estimated to be −43% to 90% over China, which are much lower than those 8 

of the INTEX-B between −68% to 308% [Zhang et al., 2009; Lu et al., 2011]. The 9 

MEIC emission inventory over China also includes monthly variations and is 10 

provided at the 0.5° × 0.5° horizontal resolution. These four anthropogenic emission 11 

inventories are regridded to the GEOS-Chem resolution of 0.5° × 0.667°, and their 12 

annual emissions are shown in Fig. 3. The differences in these inventories exceed 13 

100% across broad areas, especially over India and eastern China. The anthropogenic 14 

emission inventory of INTEX-B is comparable to that of MEIC over eastern China 15 

while lower than that of Bond and SEAC4RS over western China and India. Both 16 

Bond and SEAC4RS inventories are lower over central and eastern China compared to 17 

those of INTEX-B and MEIC inventories. With much finer resolution, the SEAC4RS 18 

emission inventory indicates more hot spots spread across eastern and central China 19 

and the IGP and eastern India where rural population densities are high and residential 20 

coal and biofuel combustion are prevalent [Lu et al., 2011].  21 

2.4 GEOS-Chem Adjoint and Inverse Modeling 22 
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An adjoint model is a set of equations auxiliary to a forward model that are used to 1 

efficiently calculate the gradient of a scalar model response function with respect to 2 

all model parameters simultaneously [Lions, 1971]. The adjoint of GEOS-Chem was 3 

developed specifically for inverse modeling including explicit treatment of gas-phase 4 

chemistry, heterogeneous chemistry, black and organic primary aerosol, as well as the 5 

treatment of the thermodynamic couplings of the sulfate-ammonium-nitrate-formation 6 

chemistry [Henze et al., 2007; 2009], with code updates following the relevant parts 7 

of the GEOS-Chem forward model up through version v9. The GEOS-Chem adjoint 8 

model has been developed and widely used to constrain sources of emission such as 9 

dust [Wang et al., 2012], ammonia [Zhu et al., 2013], CO [Kopacz et al., 2009; 10 

Kopacz et al., 2010; Jiang et al., 2011], CH4 [Wecht et al., 2012; Wecht et al., 2014], 11 

and to investigate pollution transport [e.g., Zhang et al., 2009, Kopacz et al., 2011]. 12 

     The 4D variational data assimilation technique is used with the GEOS-Chem 13 

adjoint model to combine observations and models to calculate an optimal estimate of 14 

emissions. A range of emissions are constructed using control variables, σ, to adjust 15 

the vector of model emissions via application as scaling factors with elements � = �
��, 16 

where E and Ea are posterior and prior BC emission vectors, respectively. This 17 

method of inverse modeling seeks σσσσ that minimizes the cost function, �, presented 18 

by: 19 

� = 1
2�	
� − ���������� 	
� − ����
�∈�

+ 12 ��	� − ��������	� − ���													2�,	22 

where � is the vector of species concentrations mapped to the observation space by H, 20 

the observation operator, ���  is the vector of species observations, σa is the prior 21 
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estimate of the scaling factors, ���  and ��  are error covariance estimates of the 1 

observations and scaling factors, respectively, and Ω  is the domain over which 2 

observations are available. The first term of the cost function in Eq. (2) is the 3 

observation term, which is the total prediction error incurred for departure of model 4 

predictions from the observations. The second term, the a priori term or penalty 5 

(background) term, is the penalty incurred for departure from the prior emissions. 6 

Here �� is assumed to be diagonal, and the significance of the prior information is 7 

more of a smoothness constraint than a rigorous estimate of prior uncertainty 8 

[Rodgers, 2000]. �� 	is a regularization parameter, which used to balance the two terms 9 

[Hansen 1998; Henze et al., 2009]. We will discuss the contributions of the penalty 10 

term in Section 4.2. 11 

Overall, the minimum value of the cost function balances the objectives of improving 12 

model performance while ensuring the model itself remains within a reasonable range 13 

(as dictated by ����) of the initial model. The minimum of the cost function is sought 14 

iteratively using the quasi-Newton L-BFGS-B algorithm [Zhu et al., 1994; Byrd et al., 15 

1995].  This approach requires the gradients of the cost function with respect to the 16 

emission scaling factors at each iteration, which are calculated with the GEOS-Chem 17 

adjoint model. 18 

2.5 Cost function and adjoint forcing 19 

OMI AAOD column observations represent the combined absorption of all aerosols 20 

species (dominated by BC, dust, and to a lesser extent OC). Similarly, modeled total 21 

column AAOD,  !", is the sum of modeled column absorption from BC ( !"_$"�, OC 22 
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( !"_%"� and dust ( !"_&'()�:  1 

 !" =	 !"_$" +  !"_%" +  !"_&'()						3�. 2 

In order to use AAOD observations to develop constraints on BC alone, we must 3 

formulate the observation term of the cost function to isolate the impacts of BC on the 4 

difference between simulated and observed AAOD. Here we consider four 5 

approaches: methods (a) – (d).  The first two methods use modeled ratios of BC to 6 

total absorption (either in each layer (a), or the total column (b)) to derive an 7 

“observed” BC AAOD. Method (c) makes a direct comparison between total AAOD 8 

in the model and measurements.  Lastly, in method (d), we also consider using a 9 

subset of the OMI data that has been flagged in the retrieval process as being 10 

impacted by carbonaceous aerosol. These different approaches to constructing a cost 11 

function, and the gradient of these cost functions with respect to the vertically 12 

resolved modeled BC concentration (i.e., the adjoint forcing) are presented below. 13 

Here we do not consider the penalty term in the cost function in order most clearly 14 

assess how formulation of the observation term impacts the inversion. The 15 

consequences of the different cost function formulations are described in Section 4.1. 16 

(a): In this method, the observation term of the cost function can be written as: 17 

� = 1
2	��	τ!"_$",-,. − τ%/0_$",-,.�1

2

-3�
∗ �%/0,.�1

5

6
						4�, 18 

where L is the top of atmosphere, N is the total number of observations, and τ!"_$",-,. 19 

and τ%/0_$",-,.  are the modeled and observed BC AAODs at layer 8  for the ith 20 

observation, respectively.  The latter is calculated for any i from the OMI column 21 

AAOD ( %/0,.� using the ratio of vertically resolved BC AAOD to column AAOD in 22 
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the prior model,  1 

τ%/0_$",-,. =  %/0,. τ
�!"_$",-,. �!",. 										5�, 2 

where superscript : indicates the prior model estimates. Since the ratio 
@�AB_CB,D,E
 �AB,E  is a 3 

constant throughout the inversion, the ith adjoint forcing is 4 

∂�
∂BC	- =

∂τ	!"_$",-,.∂BC- ∗ 	Iτ!"_$",-,. −  %/0,. τ
�!"_$",-,. �!",. J	∗ �%/0,.�1 							6�. 5 

(b) In this method, the cost function is based on BC AAOD column differences: 6 

� = 1
2	�	 !"_$",. −  %/0_$",.�1

5

6
∗ �%/0,.�1 					7�. 7 

The observed BC AAOD column is calculated from the OMI AAOD column and the 8 

ratio of modeled column BC AAOD to total column AAOD from the prior simulation: 9 

 %/0_$",. =  %/0,.  �AB_CB,E �AB,E 								8�. 10 

The ith adjoint forcing is thus  11 

N�
N$"	D =

N@	AB_CB,D,E
N$"D ∗ O !"_$",. −  %/0,. P�AB_CB,E �AB,E Q ∗ �%/0,.�1 							9�. 12 

 (c) The observation term of the cost function can be written in terms of total column 13 

absorption as: 14 

� = 1
2	�	 !",. −  %/0,.�1

5

6
∗ �%/0,.�1 							10�. 15 

In this case, the adjoint forcing is 16 

N�
N$"	D = N@	AB_CB,D,E

N$"D 	* 	 !"_$",. +  !"_%",. +  !"_&'(),. −  %/0,.� ∗ �%/0,.�1 					11�. 17 

(d) The OMI OMAERUV retrievals algorithm also flags instances for which the 18 

retrieval algorithm relied upon the presence of carbonaceous aerosols. Using only 19 

these retrievals, the observation term of the cost function can be written in terms of 20 

the direct difference between simulated columns BC AAOD and flagged OMI AAOD 21 
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observations: 1 

� = 1
2	�	 !"_$",. −  %/0_$"_T-�U,.�1 ∗ �%/0_$",.�1

5

6
						12�. 2 

where  %/0_$"_T-�U  is the OMI AAOD flagged for the presence of carbonaceous 3 

aerosols (which is different than Eq. 5 or 8 which depend upon prior model ratios). In 4 

this case, the gradient of the cost function with respect to BC concentration at the 5 

layer 8 will be 6 

N�
N$"	D = N@AB_CB,D,E

N$"D  * V !"_$",. −  %/0_$"_T-�U,.W ∗ �%/0_$",.�1 					13�. 7 

The implications of the different cost function formulations will be described in 8 

Section 4.1. 9 

3 Impacts of BC anthropogenic emission uncertainties  10 

In this section, we quantify the extent to which differences in anthropogenic emission 11 

inventories contribute to uncertainties in simulated surface BC and AAOD. Here, the 12 

SEAC4RS emission inventory is appended to the MEIC emission inventory outside of 13 

China for the Southeast Asian nested simulation (MEIC_SEAC4RS). Figure 4 shows 14 

the impact of different BC anthropogenic emission inventories on simulated surface 15 

BC concentrations and comparisons to in situ measurements over China [Zhang et al., 16 

2008, Cao et al., 2009]. The monthly and daily ground-based measurements at sites 17 

representative of four different regions are shown: northern China (Gucheng, GUC), 18 

northeastern China (Longfengshan, LFS), southern China (Nanning, NAN), and 19 

midwestern China (XiAn, XIA). Generally, the modeled and observed BC 20 

concentrations are higher in winter than in summer. In addition to enhanced 21 

anthropogenic emissions during the winter [Fu et al., 2012], the Asian summer 22 
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monsoon plays an important role in this seasonal cycle by reducing aerosol 1 

concentrations in the summer over China [Zhang et al., 2010]. Though the model 2 

simulation is able to capture the seasonal variability, it underestimates surface BC 3 

concentration at the urban sites, such as GUC, NAN, and XIA, with all of these 4 

anthropogenic emission inventories, except at NAN, where the SEAC4RS inventory 5 

leads to values as high or higher than observed, but the seasonal variation has not yet 6 

been reproduced. With the INTEX-B and MEICS inventory, though the surface BC 7 

concentrations are underestimated at some background and rural sites [Fu et al., 2012; 8 

Wang et al., 2013], the simulated BC surface concentrations at the rural site of LFS 9 

are quite comparable to the observation, especially the seasonal variations. The 10 

INTEX-B and MEIC inventories improve the BC concentrations in winter with the 11 

inclusion of monthly variability over China compared to the inventories of Bond and 12 

SEAC4RS.  13 

The spatial distributions of simulated surface BC concentrations using 14 

MEIC_SEAC4RS and INTEX-B inventories are compared to the in situ observation at 15 

20 sites over Southeast Asia for April and October 2006 in Fig. 5. The east to west 16 

gradient in China and the north to south gradient in India are not well reproduced by 17 

the model, where the simulated BC concentrations are much lower over eastern China 18 

and the IGP for both April and October, especially for the urban areas since the model 19 

is unable to resolve individual urban hot spots [Fu et al., 2012]. 20 

Figure 6a shows the differences in monthly average AAOD between the model using 21 

the MEIC_SEAC4RS inventory and OMI (former minus latter) for April and October 22 
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2006. GEOS-Chem underestimates AAOD compared to OMI across broad areas of 1 

Southeast Asia in April, especially eastern China and the IGP. In October, AAOD is 2 

underpredicted over northern China while it is over predicted over eastern China and 3 

most of South Asia. Corresponding OMI data counts towards the monthly average at 4 

each grid cell are shown in Fig. 6b. In general, more data are available over northern 5 

China and India. We note that the data counts are much lower in October compared to 6 

April over southern China and the Indo China Peninsular, where the observations are 7 

overestimated. Sparse OMI observations over these areas may result in apparent high 8 

or low biases. If we only take into account the OMI_AAOD_BC retrievals, the 9 

differences and corresponding OMI data counts for April and October are shown in 10 

Fig. 7. The spatial distributions are quite similar to those using all AAOD 11 

observations shown in Fig. 6, but with much larger negative differences over Asia in 12 

April and over northern China and IGP in October. The data counts are also smaller 13 

when only considering the OMI_AAOD_BC observations, especially over the dust 14 

source regions and downwind areas in April and broad areas over South Asia in 15 

October.  16 

We also compared the observed to simulated AAOD using different emission 17 

inventories (figures not shown here). The simulated AAOD is comparable using 18 

INTEX-B and MEIC emission inventories over eastern China, while it is much lower 19 

than the OMI column retrieval using the inventories of Bond and SEAC4RS. With the 20 

SEAC4RS inventories, the simulated AAOD over the IGP shows enhancements 21 

compared to that using Bond and INTEX-B inventories.  22 
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4. Uncertainties of observation and penalty terms 1 

4.1 Adjoint forcing 2 

As described in Section 2.5, there are four methods to formulate the observation term 3 

of the cost function owning to different approaches of deriving an “observed” BC 4 

AAOD. We perform sensitivity experiments to quantify the impact of using these 5 

different formulations. For these tests, only the observation term is considered in the 6 

cost function (i.e., the penalty term is not included), and we use the same 7 

anthropogenic emission inventory (MEIC_SEAC4RS) as the prior emissions for each 8 

test. Figure 8 shows the results of the differences between optimized and prior 9 

anthropogenic BC emissions based on the four approaches.  10 

Qualitatively, there are many noticeable differences between the optimization results 11 

using the different formulations of the observation operator.  In April, enhanced 12 

anthropogenic BC emissions are shown over broad areas using all four methods. 13 

However, slight reductions appear over eastern China and southern India when using 14 

method (b), (c) and (d). In particular, method (c) results in lower posterior emissions 15 

over China. The results of methods (c) and (d) are quite consistent except the 16 

enhancements of posterior emissions over southern India occur using method (d). 17 

Similarly, although the four optimized patterns are quite consistent in October, much 18 

larger areas of BC emissions reduction result from using method (c). The reductions 19 

of method (d) are similar to that of method (c) over eastern China, while quite 20 

different over India with significantly enhanced posterior emissions.  21 

The differences in results are related to different assumptions implicit in the various 22 
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forms of the cost function considered.  Both method (a) and method (b) depend on the 1 

relative ratio of BC to other absorbing aerosol (e.g. dust, OC) in the model. Further, 2 

method (a) introduces a stronger dependency on the GEOS-Chem prior vertical 3 

distribution, since the observation operator includes three dimensions with all vertical 4 

layers, compared to the column based method (b). Since there are more observations 5 

over IGP and northeastern China in April, this stronger constraint may enhance the 6 

negative forcing due to the model underestimation, which leads to increasing 7 

emissions. Since, through the adjustment of the OMI data to generate the OMI_GC 8 

product, we have already used the GEOS-Chem prior information on the aerosol 9 

vertical distribution, it seems preferable to adopt a column-based approach for the 10 

assimilation. Though both method (b) and method (c) are based on the column 11 

AAOD, the former assumes that the relative contributions of BC to total AAOD in the 12 

model is correct, while the latter assumes that absolute contributions of OC and dust 13 

are correct. The simulated total AAOD might not be equivalent to the observed 14 

AAOD after optimization in both method (a) and method (b) since the adjoint forcing 15 

only accounts for the BC AAOD. In addition, the results would highly depend on the 16 

model performance in simulating the ratio between BC and other absorbing aerosol. 17 

There are no significant biases for the GEOS-Chem simulated faction of coarse model 18 

dust mass [Wang et al., 2012, Philip et al., 2014], which suggests that the simulated 19 

dust AAOD fraction is likely unbiased. However the simulated mass of both BC and 20 

OC in GEOS-Chem are biased low [Heald et al., 2005; Fu et al., 2012].  We thus 21 

adopt method (c), since the strength of the adjoint forcing with respect to BC sources 22 
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depends upon the BC absolute contribution in AAOD rather than the relative 1 

contribution of method (b), which may have less model dependency in simulating the 2 

distribution of other aerosols. The major differences between method (c) and method 3 

(d) are the available observation data counts, as the data counts of the latter are much 4 

fewer than the former.  In April, the pattern of optimized emissions using method (c) 5 

and method (d) are quite consistent, suggesting that BC AAOD play a dominant role 6 

in contributing to the total AAOD. We will adopt method (c) for the following 7 

experiments and also discuss method (d) in section 5.4 for comparison. 8 

4.2 Penalty Term 9 

The inclusion of a penalty, or background term, in the cost function is a key factor for 10 

inverse modeling. It is specified through the prior (background) error covariance 11 

matrix, ��, and a regularization parameter �� . In the absence of rigorous statistical 12 

information on the error covariance of the emissions, we assume the errors are 13 

uncorrelated and use an L-curve selection criterion to identify an optimal value of ��  14 

[Hansen, 1998; Henze et al., 2009]. The uncertainties of BC are assumed to be 100% 15 

of the maximum BC emissions over the simulation domain. Thus, the optimal values 16 

of ��  are selected to be 0.5 for April and 1.0 for October based on the 17 

MEIC_SEAC4RS emission and the cost function in Eq. (10). The contribution of the 18 

penalty term results in smaller adjustments to emissions, as the regularized results 19 

prefer smoother solutions than those of the unconstrained inversion tests in Fig. 8. 20 

Here we assume a single constant value for �� along the diagonal and no off-diagonal 21 

terms.  22 
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 1 

5. Analysis of Optimizations 2 

We next proceed to constrain Southeast Asian BC sources using OMI AAOD. The 3 

OMI AAOD observations are compared to model estimates from GEOS-Chem nested 4 

simulation for April and October 2006 using the difference between simulated total 5 

AAOD and observed OMI AAOD (i.e., Eq. (10)). Tens of thousands of OMI 6 

retrievals per month are available for the assimilation, but not all of the retrievals are 7 

usable. In the presence of cirrus clouds, retrievals errors are significant. The effect of 8 

optically thin cirrus is similar to that of subpixel cloud contamination. As plumes of 9 

dust or smoke aerosol drift away from their source regions, they become mixed with 10 

clouds. This problem is particularly evident over the oceans, which are frequently 11 

covered with thin cirrus and fair-weather cumulus clouds. Generally, the retrieved 12 

AAOD shows a reduced coverage especially over the oceans due to cloud 13 

contamination and the effects of sun glint [Torres et al., 2007]. Thus, quality and 14 

diagnostic flags are defined to classify and filter the retrievals.  In October, only 15 

observations north of 5°N are included for data assimilation to minimize contributions 16 

of biomass burning from Indonesian fires. 17 

5.1 Optimized emissions 18 

Considering the performances of the four emission inventories discussed in Section 19 

2.3, the following optimized results will mainly focus on using the MEIC_SEAC4RS 20 

and INTEX-B inventories. The prior and posterior (optimized) BC emissions from 21 

anthropogenic sources are shown in Fig. 9. Overall, the results show an enhancement 22 
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in BC emissions over broad areas of Southeast Asia, with adjustments that are 1 

seasonally and spatially heterogeneous. This is consistent with the top-down 2 

constraints on BC emissions based on ground-base measurements by Fu et al., [2012], 3 

which also show that the BC emissions are greatly enhanced across broad areas of 4 

China, in particular northern and central China and the megacity clusters. In April, 5 

either using MEIC_SEAC4RS or INTEX-B inventories, large increases of up to a 6 

factor of 3-5 are shown after optimization. The largest enhancements occur sharply in 7 

eastern China and the IGP in April by up to a factor of five (Fig. 9). Other large 8 

increases are located in South Asia, northeastern and northwestern China. There is a 9 

small decrease in anthropogenic BC in part of southwestern China. That is quite 10 

different from the inversion results based on AOD by Xu et al. [2013], wherein the 11 

optimized anthropogenic BC emissions are reduced by 9.1% over China, even though 12 

the prior BC anthropogenic emissions that they used are from Bond et al., [2004, 13 

2007], which much lower than what we used. The dust scheme had not yet been 14 

updated and modified in Xu et al., [2013] following the revised particle size 15 

distribution suggested in Zhang et al. [2013]. Thus it is possible that overestimated 16 

dust and AOD projected a model bias onto adjustments of emissions of all type of 17 

aerosols over dust regions and downwind areas, such as eastern China. However, the 18 

adjustments of anthropogenic BC emissions before and after optimization in October 19 

are different than those in April (Fig. 10). The optimization of anthropogenic 20 

emissions yields a slight reduction (1~5%) over central India and part of southern 21 

China and an increase by 10~50% over eastern and northern China, as well as 22 
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northwestern India.  1 

Though the adjusted patterns of optimized BC emission are basically comparable by 2 

using MEIC_SEAC4RS and INTEX-B inventories, significant differences are located 3 

over India and eastern China (Fig. 11). We also note that the differences in the 4 

optimized results are almost the same as those of the prior emissions between 5 

MEIC_SEAC4RS and INTEX-B inventories. The ratio between their posterior 6 

differences and prior differences (see Fig. 11, right column) shows that the 7 

optimization increases their differences, relative to the prior, over broad areas over 8 

China and India up to a factor of three in April, with only slight decreases over south 9 

India. In October, optimization decreases the posterior differences between 10 

MEIC_SEAC4RS and INTEX-B emission inventories relative to the prior by 10-20% 11 

over southern and most of India. Areas where prior differences are increased/reduced 12 

are consistent with the areas where the emissions increase/decrease after optimization 13 

(see Fig. 10). This suggests that absolute errors in the prior emissions may be larger 14 

than the relative prior uncertainty percentages considered here. 15 

In addition to reducing the bias of the emissions, it is important to consider how much 16 

the inversion has reduced uncertainty in the emissions. A new method based on the 17 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to estimate the 18 

posterior uncertainty [Bousserez et al., 2014]. The posterior error reductions are up to 19 

30% and 15% in April and October over the IGP and eastern China, where the 20 

anthropogenic emission enhancements were the largest (Figure 9 and 10). The prior 21 

errors do not change across broad areas, where the changes of optimized emissions 22 
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are relatively smaller. 1 

While the most substantial adjustments are made to anthropogenic emissions, biomass 2 

burning emission are also adjusted. The most significant increases are over South 3 

Asia and eastern Europe in April, especially, the indo-China peninsula and eastern 4 

Russia (figures not shown). The optimized biomass burning emissions in October 5 

have the largest enhancements are over south Borneo and Sumatra. Similar to the 6 

optimized anthropogenic emission, there is also not much change for the optimazed  7 

biomass burning emission throughout India and and indo-China peninsula in October.  8 

To examine the impacts of different prior anthropogenic inventories on optimized 9 

biomass burning emissions, we consider the following ratios: 10 

∆Y�Z[_\�][^_\`abcd�∆Y�Z[_\�][^_\`abce
fg�hi�fg�h1      (14). 11 

Eq. 14 shows how changes in anthropogenic emissions during the optimization 12 

compare when using two different biomass burning inventories, relative to the 13 

difference in these biomass burning inventories themselves. Large values of this ratio 14 

indicate regions where our top-down constrains on anthropogenic emissions are more 15 

sensitive to errors in the prior biomass burning inventories, such as over eastern China 16 

and the southern IGP (Fig. 12).  17 

5.2 Optimized BC AAOD 18 

The largest uncertainty reductions are obtained over eastern China and the IGP, so 19 

here we consider AAOD in these regions alone. Fig. 13 shows the observed and 20 

simulated BC AAOD over eastern China (105°-125°E, 20°-45°N) before and after 21 

optimization in green along with linear line slope equation and correlation R2. Here 22 
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the observed BC AAOD is derived from the OMI AAOD and the prior ratio of 1 

simulated BC AAOD versus total AAOD. The prior BC AAOD is misrepresented and 2 

underestimated compared to observation over eastern China, especially in April. The 3 

low biases of the prior slopes are improved after optimization in April and October by 4 

132% and 11%, respectively. Similar to the optimized BC concentrations, the 5 

improvements in October after optimization are less significant than in April. There 6 

are only slight changes in correlation coefficients, which may due to the large number 7 

of samples in both spatial and temporal dimensions across which variations are not in 8 

the same directions. In the IGP area, which we define as (70°-90°E, 23°-32°N), the 9 

low biases of prior BC AAOD are much larger than those in eastern China (Fig. 14). 10 

The values of most observed BC AAOD are lower than 0.3 and the slopes are 0.22 11 

and 0.28 in April and October. After optimization, the slope increase by 155% and the 12 

correlation coefficients change from 0.2 to 0.25 in April. In October, there is a 32% 13 

increase in slope and the correlation coefficient doubles but still remains small (from 14 

0.06 to 0.12).  15 

Though slopes improve after optimization for both eastern China and India, they still 16 

show considerable lower biases. This results, in part, from constraints of the penalty 17 

term. Additionally, we note that many prior AAOD values are very small and close to 18 

zero. These are hard for the optimization routine to adjust significantly in the areas 19 

where the values of prior emission are very small or close to zero. Since the 20 

optimization scheme is based on the use of emissions scaling factors, large gradients 21 

with respect to BC concentrations will result in small gradients with respect to 22 
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emissions scaling factors in locations with small emissions.  To test how much this 1 

formulation restricts the inversion, a sensitivity experiment was performed assuming 2 

uniform prior emissions in all grid boxes.  This facilitates adjustments to prior 3 

emissions throughout the domain, resulting in larger posterior AAOD after 4 

optimization. However, the resulting spatial distributions and gradients of 5 

anthropogenic emissions are not realistic (e.g., large emissions are not placed in 6 

known source areas). Alternatively, instead of adjusting emissions through application 7 

of scaling factors, �, to the a priori emissions, the BC emissions themselves could be 8 

treated as the control variables in the cost function (Eq. 15). Another sensitivity 9 

experiment is performed for April 2006, inverting for the emissions themselves rather 10 

than the emissions scaling factors.  Figure S2 in supplemental shows the total 11 

emissions (summed across sectors) after optimization using different inversion 12 

approaches. Fig. S2a is result based on the scaling factor as describe by Eq. 2 in 13 

Section 2.4 that the range of emissions are constructed using scaling factors as control 14 

variables to adjust the vector of model emissions. Fig. S2b shows the results when 15 

emissions are constrained directly as the control variables in the penalty term as: 16 

� = 1
2�	
� − ���������� 	
� − ����
�∈�

+ 12 ��	j − j�������	j − j��													15�. 17 

This formulation allows the inversion to place significant emissions in areas where 18 

the prior emissions are very small or close to zero. The optimized emissions over the 19 

larger prior source areas, such as northeastern China and the middle IGP, are smaller 20 

than when optimizing scaling factors. These sensitivity tests demonstrate the value of 21 

using the prior emissions inventories, either explicitly or implicitly through scaling 22 
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factors, in terms of constraining the magnitude of known sources, and the downside in 1 

terms of the difficulty in introducing new sources through the inversion.  2 

We also evaluate (Fig. 15) the prior and posterior simulated AAOD against the OMI 3 

and AERONET daily average AAOD at 4 sites where there are available 4 

measurements during the periods of April and October, 2006 (see the red sites in Fig. 5 

2): Beijing (BJ) in China, Kanpur (KP) and Gandhi_College (GH) in India, and 6 

Mukdahan (MD) in Thailand. The daily average GEOS-Chem model results and OMI 7 

AAOD are sampled according to the AERONET observations at the locations of the 4 8 

sites. At the Beijing site, the prior model AAOD estimates driven either by 9 

MEIC_SEAC4RS or INTEX-B inventories are underestimated by a factor of ~2, 10 

while the posterior AAOD are more comparable to the observations in April. In terms 11 

of temporal variability, the model is able to capture some features of peaks after 12 

optimization. At the two sites in India, only a few measurements are available in late 13 

April, but the magnitudes are close to OMI observation. The optimized results using 14 

the MEIC_SEAC4RS inventory shows great improvements compared to the prior 15 

AAOD. However, the optimized AAOD using the INTEX-B inventory still shows 16 

negative biases. The differences in optimized AAOD between using INTEX-B and 17 

MEIC_SEAC4RS come from their prior differences in AAOD. This again 18 

demonstrates that the posterior optimization results are not independent of the prior 19 

emission inventories, consistent with the estimated reduction in posterior error shown 20 

in Fig 10. At the site of Gandhi_College (GH) and Mukdahan (MK) there are large 21 

differences between the OMI and AERONET AAODs; the magnitudes of the OMI 22 
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AAODs are much lower than those from AERONET, even close to zero on some 1 

days. Koch et al. [2009] compared the AERONET and OMI retrievals of AAOD at 2 

AERONET sites. The results showed that the two retrievals broadly agree with each 3 

other, but that the OMI AAOD is much smaller over Asia. In our study, only a few 4 

OMI AAOD pixels are available in Thailand site (MK) (Fig. 6); these limited and 5 

sparse observations do not provide enough information to robustly constrain 6 

emissions in this region.  7 

5.3 Optimized surface BC concentrations 8 

As mentioned before, the prior surface BC concentrations are underestimated in most 9 

of the urban and rural sites over China.  Figure 16 shows the spatial distribution of 10 

optimized surface BC concentrations compared to in situ measurements at 20 sites in 11 

Southeast Asia.  The largest in situ BC concentrations observed over eastern China 12 

and the IGP, which are densely populated, industrialized areas, are now reproduced 13 

well by the optimized simulation. After optimization, the spatial gradients of the 14 

observed BC concentrations are captured by the model: high in the east and low in the 15 

west for China, and high in the north and low in the south for India. Using the 16 

MEIC_SEAC4RS inventory for the prior emissions, the optimized spatial distributions 17 

are better simulated than when than using the INTEX-B inventory. In particular, the 18 

simulated BC concentrations are much closer to the observations over the IGP after 19 

optimization. The scatter plots in Fig. 17 show the correlations of BC concentrations 20 

from surface observations and GEOS-Chem before (blue) and after (red) 21 

optimization. Initial negative biases are shown in both April and October. The linear 22 
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regression slope increases by more than a factor of four in April. However, the 1 

modeled BC concentrations at most of the sites only slightly change after the 2 

optimization in October, which result in a much smaller improvement in the 3 

regression slope (21%). The correlation coefficients increase by 0.04 to 0.08 after 4 

optimization, such small improvement may be owing to the sparse spatial 5 

distributions of the observational sites.  6 

More specific site-by-site comparisons between model and observations are shown in 7 

Fig. 18. Although the optimized BC surface concentrations are enhanced in April, 8 

overestimation occurs in some eastern sites over China. In October, the low biases are 9 

corrected both in the urban sites and rural sites, especially the eastern rural sites in 10 

China. However, there is a persistent negative bias in most sites after optimization in 11 

October. Due to the very low prior emissions, the optimization has less impact on the 12 

western sites over China. The GEOS-Chem prior simulation underestimates surface 13 

BC concentrations in all the urban sites and coastal sites over India in April (Fig. 16). 14 

While the optimization enhances the BC sources and surface concentration, it still 15 

shows a negative bias in most of sites over India, especially the urban sites. The 16 

smaller improvement in coastal sites is not only due to the low prior emissions but 17 

also the large uncertainties of AAOD retrieval for low aerosol amounts over the 18 

ocean.   19 

Given the stark contrast between the inversion results in April and October, we also 20 

conducted the optimization for two additional months in winter (January) and summer 21 

(July) season using MEIC_SEAC4RS as the prior inventory. In January, the 22 
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anthropogenic emissions show enhancements over the IGP and parts of western and 1 

northern China and slight decreases over southern India and eastern and southern 2 

China (figures not shown here), which results in increasing the surface BC 3 

concentrations in XIA and LFS sites while decreasing concentrations in the sites of 4 

GUC and NAN (see Fig. 4). In July, there is no significantly change for the surface 5 

BC concentrations after optimization owing to very sparse observation in July over 6 

eastern China. From this seasonal comparison, it appears that the BC anthropogenic 7 

emissions are not always underestimated during the year. The largest 8 

underestimations across the whole region of Southeast Asia occur in April. The 9 

underestimated regions are mainly over IGP and northern China in both January and 10 

October. The slight overestimates are indicated over southern India and part of 11 

eastern China in January as well as northern China in July. 12 

Discrepancies versus surface observations might also relate to model representational 13 

error incurred by comparing ~50 km gridded estimates to in situ BC measurements, 14 

which likely have finer length-scales of variability [Wang et al., 2013; Cohen and 15 

Prinn, 2011; Cohen et al., 2011].  Considering the coarse resolution of the model 16 

when comprising with the ground-based measurements, we investigate the impacts of 17 

model resolution by considering approaches for downscaling the model simulations. 18 

One approach is to use high-resolution population datasets to redistribute primary 19 

aerosol concentrations [e.g., Krol et al., 2005; UNEP, 2011; Silva et al., 2013]. Based 20 

on a finer resolution population density dataset, a parameterization of the urban 21 

increment for non-reactive primary emitted anthropogenic BC and organic matter has 22 
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been developed and tested for coarse resolution air quality model. This method does 1 

not alter concentrations at rural sites since it assumes that results at coarse resolution 2 

only represent the rural (background) sites. According to this method, we used a high-3 

resolution (1/24° x 1/24°) population dataset of Gridded Population of the World, 4 

Version 3 (GPWv3, http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-5 

density-future-estimates) to downscale and adjust the simulated BC concentration at 6 

urban sites (defined locations where population density exceeding 600/km2). The 7 

scatter plots (Fig. 17b) show that, on average, the application of population 8 

downscaling improves the performance of the modeled results compared to the non-9 

adjusted BC concentrations in April for both the prior and posterior simulations, 10 

although low biases remain in each. It does not make any change in the slope in 11 

October after applying the population parameterization, and correlation is degraded. 12 

Downscaled estimates at only two sites (LIA and NAN) show enhancements, the rest 13 

are not impacted.  14 

To more directly investigate the impact of model resolution, it would be ideal to 15 

compare the results of the present simulations to higher resolution simulations with 16 

the same model [e.g., Punger and West, 2013]. While this is not currently an option 17 

for this model version, we can conduct GEOS-Chem simulations at a coarser 18 

resolution (2° latitude × 2.5° longitude) and make inferences about the role of 19 

resolution errors. Fig. 19 shows the resolution errors in estimated surface BC 20 

concentrations in the coarse resolution results (2°× 2.5°) with respect to fine 21 

resolution simulations (0.5°x0.667°). The resolution error exceeds 20% across broad 22 
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areas, and even up to 300% over the IGP and part of Southeastern Asia. The surface 1 

BC concentrations are much lower using coarse resolution over the major source 2 

regions, in particular the IGP, where the resolution error is more than 3. This is likely 3 

owing to coarse grid boxes not describing the sharp gradient between high 4 

concentrations in the valley and low concentrations in the mountain. The optimized 5 

surface BC concentrations from our 0.5°x0.667° simulations are underestimated by a 6 

factor of 2-3 at the IGP sites compared to in situ measurements. Punger and West 7 

[2013] show that the percent difference between all-cause mortality estimates at 12 8 

km resolution and at coarser resolutions of 36 km and 96 km for BC is ~9% and 9 

~23% respectively. Assuming that model skill at estimating variations in 10 

concentrations at the scales of the in situ measurements is similar to that for 11 

estimating exposure based on highly resolved populations distribution, we can 12 

extrapolate from the results of Punger and West [2013] that the resolution errors in the 13 

0.5°x0.667° simulation, relative to the scale of the measurements, is a bit less than the 14 

resolution error in the 2°x2.5° simulation relative to the 0.5°x0.667° simulation   15 

Thus, the former may be as large as a factor of ~2.5 in individual grid cells. 16 

5.4. Comparisons using OMI_AAOD_BC 17 

A subset of the OMI retrievals (OMI_AAOD_BC) represents the presence of 18 

carbonaceous aerosols. Using only these retrievals for the inversion, the differences 19 

between prior and posterior (later minus former) BC anthropogenic emissions using 20 

MEIC_SEAC4RS inventory are shown in Fig. 20. Compared to Fig. 9 and Fig. 10, 21 

there are similar signs of emissions adjustments over most of Southeast Asia except in 22 
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October over India where reductions are not shown in the posterior emissions due to 1 

fewer available observations in the OMI_AADO_BC data subset. Moreover, the 2 

magnitudes of enhanced emissions in April are much larger if we use only the 3 

OMI_AAOD_BC retrievals. This also results in larger posterior surface BC 4 

concentrations (figures not shown) in some area and AAOD that improve the 5 

underestimates in a few sites when compared to the ground-base measurements and 6 

AERONET observation. However, the differences are not obvious in October and the 7 

improvements in April are neither significant nor widespread. Considering there are 8 

less observations available using OMI_AAOD_BC, especially in October and other 9 

summer month (e.g. July), and that it does not change the major conclusions 10 

compared to using OMI AAOD, using OMI AAOD is recommended. 11 

 12 

6. Summary and Discussions 13 

In this study, we used space-based observations of absorbing aerosol optical depth 14 

(AAOD) from the OMI instrument to constrain BC monthly average emissions for 15 

April and October, 2006, with the GEOS-Chem model and its adjoint. First, we 16 

evaluated the model simulated BC concentrations using four different anthropogenic 17 

emission inventories. The differences in these inventories exceeded 100% across 18 

broad areas of Southeast Asia. For each of the four emission inventories, the 19 

simulated surface BC concentrations had low biases compared to the available surface 20 

observations in most urban sites in Southeast Asia.  21 

The adjoint model was used to perform 4D-Var inverse modeling to constrain BC 22 
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emissions.  After optimization, both anthropogenic and biomass burning emissions 1 

were adjusted. Either using the MEIC_SEAC4RS or INTEX-B inventory, the 2 

optimized anthropogenic emissions for BC were significantly enhanced over broad 3 

areas of Southeast Asia in April compared to the prior emission, with the largest 4 

enhancements in eastern China and India IGP of up to a factor of five. From analysis 5 

of inversions using different prior biomass burning inventories it was shown that 6 

optimized anthropogenic emissions was most sensitive to the prior biomass burning 7 

over eastern China and southern IGP.  The adjustments in October were smaller than 8 

those in April. Inverse modeling in additional months indicated that BC 9 

anthropogenic emissions were not always underestimated throughout the year. The 10 

largest underestimates occurred in April throughout Southeast Asia. Only slight 11 

overestimates were indicated over southern India and eastern China for both January 12 

in July. Inversion results were in general similar using either all OMI AAOD or just 13 

the OMI_AAOD_BC. In October, the posterior anthropogenic emissions yielded a 14 

slight reduction (1~5%) over central India and part of southern China while they 15 

increased by 10~50% over eastern and northern China, as well as northwestern India.  16 

The uncertainty of the posterior emissions over the IGP and eastern China were 17 

estimated to have reduced up to 30% and 15% in April and October.   18 

After optimization, the low model biases for BC AAOD improved by 132% and 11% 19 

over Southeast Asia in April and October, respectively. In eastern China, these 20 

improvements were more significant (143% and 30% in April and October). The 21 

remaining residual error in the simulated OMI AAOD, which was significant in 22 
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October, particularly in India, may be a consequence of the inverse modeling 1 

framework, which had difficulty introducing emissions in locations where the prior 2 

emissions were close to zero This downside may be overcome by performing 3 

inversions directly for the emissions, rather than emissions scaling factors. 4 

Results of the inversion were also compared to remote and in situ measurements that 5 

were not assimilated. The posterior AAOD were quite comparable to AERONET 6 

AAOD observations in April in China; however, large discrepancies remained at the 7 

sites over India and Thailand after data assimilation.  These residual errors compared 8 

to AERONET may be associated with the limited and sparse observations of OMI 9 

AAOD in these regions, which themselves were not very consistent with the 10 

AERONET AAOD. Low biases of surface BC concentrations were improved or 11 

corrected at urban sites and eastern rural sites over China in April, with the linear 12 

regression slope between model and observed values increasing by more than a factor 13 

of four. However, the adjustments were not strong enough in most sites over India in 14 

April and October and over China in October. Moreover, the optimization had less 15 

impact on the western sites over China and costal sites over India due to the very low 16 

prior emissions and the large uncertainties in AAOD retrieval for low aerosol 17 

amounts over ocean. Model resolution error was also an important factor contributing 18 

to discrepancies of BC concentrations compared to in situ measurements. Comparison 19 

to coarser model simulations and the results of Punger and West [2013] indicates that 20 

the resolution errors may be up to a factor of 2.5 in grid cells in regions such as the 21 

IGP and part of southeastern Asia.  22 
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Overall, this work was the first attempt to formally use the absorbing aerosol products 1 

from satellite observation for a BC emissions inversion. Both the simulated AAOD 2 

and surface BC concentration showed significant improvements spatially and 3 

temporally after data assimilation, especially in April. However, there were still 4 

several sources of uncertainty and limitations of this work worth considering. Aspects 5 

such as model error and assumptions made regarding the observations and 6 

uncertainties in the observations and prior emissions inventories contributed greatly to 7 

uncertainties in the optimization results.  8 

Our estimate that the errors in the prior emissions were only 100% restricted the 9 

magnitude of the emissions adjustments allowed by the inversion. One might 10 

conclude that such restrictions were too strict; however, uncertainties in emissions 11 

were also not likely the only source of the discrepancy between observed and 12 

predicted BC concentrations and AAOD. Textor et al. [2007] noted that inter-model 13 

differences were only partially explained by differences in emission inventories; 14 

removal processes also play an important role in affecting the lifetime and 15 

concentrations of BC in the free troposphere. Although the 1 day aging from 16 

hydrophobic BC to hydrophilic BC in GEOS-Chem is typical for this type of model 17 

[Koch et al., 2009], aerosol internal mixing that includes effects of various physical, 18 

chemical, and meteorological processing can also significantly impact BC 19 

concentrations and aerosol absorptions [Stier et al., 2006; Cohen and Prinn 2011; 20 

Cohen et al., 2011; Buchard et al., 2014], in some cases even more so than 21 

uncertainties in emissions [Shen et al., 2014]. The scheme used in our study for 22 
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aerosol scavenging was based on Liu et al., [2001], which did not distinguish between 1 

rain and snow. The recent updates by Wang et al. [2011] included corrections to 2 

below-cloud and in-cloud scavenging that improved the overestimation of integrated 3 

scavenging [Dana and Hales, 1976]. Corresponding updates to the wet scavenging in 4 

the GEOS-Chem adjoint might also be helpful for improving the optimized results. 5 

The optimizations were sensitive to how model information was used to calculate BC 6 

component of the measured AAOD, which alone provided only a constraint on the 7 

column concentrations of all absorbing aerosol (i.e., including dust and OC).  We 8 

have adjusted the OMI AAOD by applying the GEOS-Chem simulated aerosol layer 9 

height to reduce the differences in the vertical profiles between the model and 10 

observation. However, there could be inconsistent treatment of microphysical and 11 

optical properties used in the AAOD calculation between the model and OMI 12 

retrievals.  The results of the optimization may be biased by error in the model’s 13 

vertical distribution of BC, which has been adjusted in other studies [van Donkelaar et 14 

al., 2013].  It is important to realize that BC from most emission sources contained 15 

not only elemental and organic fractions [Chow et al., 2009], but also non-soot OC, 16 

i.e., brown carbon, that has a significant absorbing component at short wavelengths 17 

comparable to elemental carbon absorption [Jacobson, 1999; Kirchstetter et al., 2004; 18 

Andreae and Gelencser, 2006; Hoffer et al., 2006; Magi et al., 2009]. However, 19 

absorbing aerosols in GEOS-Chem only include BC, OC and dust, while the brown 20 

carbon has not yet been taken into account. While the attribution of ambient aerosol 21 

absorption to BC may be a reasonable approximation in areas dominated by fresh soot 22 
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emissions, it may lead to misleading estimates of the AAOD when other light absorbing 1 

particles were present since the brown carbon contributed 28% on average of the total 2 

absorption at the wavelength of 440 nm [Bahadur et al., 2012]. It undoubtedly resulted 3 

in overestimation of BC emissions after optimization in the areas where brown carbon 4 

and other absorbing aerosols were considered in the observed AAOD.  5 

Lastly, it is well known that the quality of the observation data plays the most 6 

important role in data assimilation. Although the OMI AAOD retrieval provided much 7 

better spatial and temporal coverage than the remote sensing measurements, such as 8 

AERONET, we noted that there were large discrepancies between OMI AAOD and 9 

AERONET observation in some areas, especially in October (See Fig. 15). Normally, 10 

the OMAERUV retrievals were more reliable over land than over water since the 11 

ocean surface reflectance show distinct angular and spectral variations. The major 12 

factor affecting the quality of the OMI aerosol product was sub-pixel cloud 13 

contamination due to the relatively large footprint of the OMI observations [Torres et 14 

al., 1998]. Satheesh et al. [2009] demonstrated the potential of multisatellite analysis 15 

of A-train data to improve the accuracy of retrieved aerosol products and suggested 16 

that a combined OMI-MODIS-CALIPSO retrieval had potential to further improve 17 

assessments of aerosol absorption, which would possible enhance the observation 18 

quality in data assimilation. Important algorithm improvements have been 19 

implemented in the current OMAERUV algorithm and the carbonaceous aerosol 20 

model was replaced with a new model that accounted for the presence of OC while 21 

the previous aerosol model only assumed black carbon as the absorbing component 22 
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[Jethva and Torres, 2011]. Recently, other improvements included the development of 1 

CALIOP-based aerosol layer height climatology and the use of AIRS carbon 2 

monoxide real time observations to distinguish smoke from dust type aerosols, which 3 

improved the retrieval performance by 5-20% [Torres et al., 2013]. Using the updated 4 

OMAERUV when it becomes available will likely improve the optimization results in 5 

future work. 6 
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Table captions. 1 

Table 1 Comparison of BC anthropogenic emissions over eastern China (105°-125°E, 2 

20°-45°N) and IGP (70°-90°E, 23°-32°N), unit: Tg. 3 

 
Domain 

Prior emissions 
(MEIC_SEAC4RS) 

Posterior emissions 
(with penalty term) 

Posterior emissions 
(without penalty term) 

 April October April October April October 

Eastern 

China 
0.11 0.11 0.30 0.11 0.22 0.12 

IGP 0.04 0.04 0.14 0.04 0.11 0.05 

 4 

Figure captions. 5 

 6 

Figure 1. Absolute and relative differences in AAOD between OMI_Final and 7 

OMI_GC AAOD for April and October, 2006. 8 

 9 

Figure 2. Twenty sites of ground measurements (black dots) and four sites of 10 

AERONET observation (red cross dots). Also shown are terrain heights (color shaded 11 

contours, unit: m).  12 

 13 

Figure 3. Annual anthropogenic emission of BC regridded into GEOS-Chem 14 

resolution of 0.5° × 0.667° from the inventories of (a) Bond, (b) INTEX-B, (c) 15 

SEAC4RS, and (d) MEIC. 16 

 17 

Figure 4. Comparison of the observed and simulated surface BC concentrations using 18 

four emission inventories at the site of  GUC, LFS, NAN, XIA. The orange dots are 19 

the monthly mean posterior surface BC concentrations at these sites using MEIC 20 

inventory over China.  21 

 22 

Figure 5. Spatial distributions of prior surface BC concentrations using INTEX-B and 23 

MEIC_SEAC4RS inventories overlaid with BC in situ measurements of 20 sites. 24 

 25 

Figure 6. (a) Differences of monthly average AAOD between model using 26 

MEIC_SEAC4RS inventory and the OMI observation (former minus latter) and (b) 27 

corresponding OMI monthly data in each grid cell for April and October, 2006. 28 

 29 

Figure 7. The same as Figure 6, but for OMI_AAOD _BC. 30 

 31 

Figure 8. Differences between optimized and prior anthropogenic BC emissions 32 

based on four methods of adjoint forcing (a) vertically resolved BC AAOD base on 33 
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model, (b) column BC AAOD based on model, (c) total OMI AAOD and (d) column 1 

OMI_AAOD_BC for April and October, 2006. 2 

 3 

Figure 9. Anthropogenic BC emissions for April, 2006.  The first column shows the 4 

prior inventory, the second the optimized inventory, the third the differences between 5 

the prior and optimization, and the last column the relative changes of posterior error, 6 

based on the inventories of (a) INTEX-B and (b) MEIC_SEAC4RS. 7 

 8 

Figure 10. The same as Figure 8, but for October 2006. 9 

 10 

Figure 11. Differences of anthropogenic BC emissions between using the inventories 11 

of MEIC_SEAC4RS and INTEX-B for April and October 2006. The left column 12 

shows the prior inventory, the center the optimized inventory, and right column the 13 

between their posterior differences and prior differences. 14 

 15 

Figure 12. The sensitivities of optimized anthropogenic emission based on GFED2 16 

and GFED3 relative to the differences between GFED2 and GFED3. 17 

 18 

Figure 13. Comparison of BC AAOD over eastern China (105°-125°E, 20°-45°N) 19 

from OMI measurements and GEOS-Chem before and after the assimilation for April 20 

and October, 2006. 21 

 22 

Figure 14. Comparison of BC AAOD over IGP (70°-90°E, 23°-32°N) from OMI 23 

measurements and GEOS-Chem before and after the assimilation for April and 24 

October, 2006. 25 

 26 

Figure 15. Comparison of total daily AAOD from OMI, AERONET and GEOS-27 

Chem before and after the assimilation at the four AERONET sites for April and 28 

October, 2006. 29 

 30 

Figure 16. Spatial distributions of optimized surface BC concentrations using 31 

INTEX-B and MEIC_SEAC4RS inventories overlaid with BC in situ measurements 32 

of 20 sites. 33 

 34 

Figure 17. Comparison of monthly surface BC concentration for April and October, 35 

2006, from in situ measurements and GEOS-Chem before and after the assimilation 36 

(a) without and (b) with population density downscaling. 37 

 38 

Figure 18. Comparison of monthly surface BC concentration from in situ 39 

measurements and GEOS-Chem over (a) China and (b) India before and after the 40 

assimilation using the inventories of MEIC_SEAC4RS and INTEX-B for April and 41 

October, 2006. 42 

 43 

Figure 19. The resolution errors of surface BC between the simulations of coarse 44 



 46

resolution (2°x2.5°) and fine resolution (0.5°x0.667°). 1 

 2 

Figure 20. The differences between the prior and posterior anthropogenic BC 3 

emissions for April and October, 2006, using OMI_AAOD_BC as the observation. 4 

 5 

  6 
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