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Abstract  10 

Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, 11 

volcanic eruptions, and animal feeding operations, have attracted considerable 12 

attention. In this study, we collected particles carried by geogas flows ascending 13 

through soil, geogas flows above the soil that had passed through the soil, and geogas 14 

flows ascending through deep faults of concealed sulfide ore deposits and analyzed 15 

them using transmission electron microscopy. Numerous crystalline and amorphous 16 

sulfur-containing particles or particle aggregations were found in the ascending 17 

geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, 18 

Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred 19 

nanometers in diameter with either regular or irregular morphology. The 20 

sulfur-containing particles originated from deep-seated weathering or faulting 21 

products of concealed sulfide ore deposits. The particles suspended in the ascending 22 
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geogas flow migrated through faults from deep-seated sources to the atmosphere. This 23 

is a previously unknown source of the atmospheric particles. This paper reports, for 24 

the first time, the emission of sulfur-containing particles into the atmosphere from 25 

concealed sulfide ore deposits. The climatic and ecological influences of these 26 

sulfur-containing particles and particle aggregations should be assessed.  27 
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ore deposits. 29 
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1. Introduction 33 

Sources of sulfur oxides, sulfates, and organic sulfur compounds are diverse and 34 

associated with natural and anthropogenic activities. Known sources of sulfur are 35 

volatile sulfur compounds derived from animal feeding operations (Trabue et al., 36 

2008), and aerobic decomposition of food waste (Wu et al., 2010), biogenic sulfur 37 

from rice paddies (Yang et al., 1996; Yang et al., 1998) and the Subantarctic and 38 

Antarctic Oceans (Berresheim, 1987), sulfur gas (H2S and SO2) from geothermal 39 

fields (Kristmannsdottir et al., 2000), organic sulfur compounds from sediments and 40 

immature crude oil (Sinninghe Damsté et al., 1988), sulfur oxides from the oxidation 41 

of fossil fuels (Soleimani et al., 2007), and sulfur dioxide from acid factories and 42 

volcanic eruptions (Wong 1978; Sweeney et al., 2008). Sulfate particles, which are 43 

important anthropogenic aerosols and influencing climate (Pósfai et al., 1997; 44 

Williams et al., 2001). Furthermore, volcanic activity is a major contributor of sulfur 45 

to the atmosphere (Zreda-Gostynska et al., 1993; Graf et al., 1998; Streets et al., 2000; 46 

Seino et al., 2004; Bhugwant et al., 2009; Bao et al., 2010; Gieré and Querol, 2010), 47 

particularly in countries such as Japan, Indonesia, Réunion Island, the Philippines, 48 

Iceland, Guatemala, and New Zealand (Rose et al., 1986; Andres et al., 1993; Streets 49 

et al., 2000; Seino et al., 2004; Chenet et al., 2005; Bhugwant et al., 2009).  50 

Stratospheric sulfur adds very little to the environmental consequences of the 51 

anthropogenic sulfur that is released in the troposphere and deposits within days to 52 

weeks (Wong, 1978; Chenet et al., 2005). Existing research shows that SO2 is 53 

oxidized to SO4
2−

 in both the gas and liquid phases. Moreover, sulfate aerosols can 54 

删除的内容: , occur in mineral dust (Kiehl, 55 

1999).56 
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directly affect the climate (Graf et al., 1998). In our previous work, particles carried 57 

by an ascending geogas flow in the soil (Holub et al., 1999, 2001; Cao et al., 2009, 58 

2010b; Cao et al., 2011; Liu et al., 2011; Wei et al., 2013) were studied and found to 59 

contain sulfur. Further research showed that sulfur-containing particles carried by 60 

ascending geogas flows can be transported through the soil layers and into the 61 

atmosphere. Sulfur-containing particles suspended in the ascending geogas flow 62 

migrate through faults from deep-seated concealed sulfide ore deposits to the Earth's 63 

surface. These particles are a previously unknown source of sulfur-containing 64 

particles in the atmosphere. This paper reports, for the first time, the emission of 65 

sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. 66 

Because concealed sulfide ore deposits are widely distributed, the influence of 67 

sulfur-containing particles derived from them is important. The climatic and 68 

ecological effects of these particles should be studied.  69 

2. Methods 70 

Particles carried by an ascending geogas flow above the soil (that had flown through 71 

the soil), in the soil, and in deep-seated faults were collected at the Dongshengmiao 72 

polymetallic sulfide deposit in the Inner Mongolia Autonomous Region, China. 73 

Particles carried by the ascending gas flow in the soil were also collected at other 74 

concealed ore deposits containing sulfide minerals, such as the Kafang copper deposit 75 

of the southern Yunnan Province, the Yongshengde copper deposit in northeastern 76 

Yunnan, and the Qingmingshan copper–nickel sulfide deposit in Guangxi Province, 77 

China. 78 

删除的内容: ;79 
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Particles transported by the ascending geogas flow above the soil (that had flown 80 

through the soil) were sampled using stainless steel tubes and carbon-coated nickel 81 

transmission electron microscopy (TEM) grids. The length of the stainless steel tubes 82 

was 40 cm and their diameter was 2.8 cm. These tubes were inserted vertically into 83 

the soil to a depth of about 30 cm. A carbon-coated nickel TEM grid was fixed at the 84 

end of the stainless steel tubes. The ascending geogas flow in the soil moved into the 85 

stainless steel tubes and naturally passed through the 30 cm soil layer. Then, the gas 86 

flow passed through the 10 cm of the empty stainless steel tubes above the soil. 87 

Finally, the geogas flow arrived at the top of the tubes. Particles carried by the geogas 88 

flow were adsorbed onto the carbon-coated nickel TEM grid. A protective device was 89 

installed on the outside of the steel tubes to ensure that particles sampled were those 90 

carried by the ascending geogas flow. The protective device is a cylindrical 91 

polyethyleneterephthalate bottle. A small hole at the side of the bottle allowed the 92 

outflow of ascending geogas flow; however, adsorption material placed in the hole did 93 

not allow the external particles to enter. Sampling devices were installed between July 94 

25, and August 23, 2013, and the carbon-coated nickel TEM grids were retrieved on 95 

September 8, 2013. Sampling sites were distributed across a fault above the concealed 96 

sulfide ore bodies of the Dongshengmiao polymetallic sulfide deposit.  97 

Particles transported by the ascending geogas flow in the soil were collected using 98 

ordinary plastic funnels. An inverted funnel was inserted in a hole that was 60–80 cm 99 

deep and backfilled with soil, and a TEM grid was fixed at the end of the funnel spout 100 

with nylon net. The setup was protected from contamination using plastic pipes and 101 
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cups. The TEM grids were retrieved after 60 days. 102 

Particles carried by ascending geogas flows in deep-seated faults were sampled using 103 

two methods. The first method used an active sampling device with a vacuum pump, 104 

polyvinyl chloride (PVC) pipe and carbon-coated nickel TEM grid as the main 105 

components. One end of the PVC pipe was connected with a tubing to the pump. A 106 

drilling steel was inserted slantwise into the fault. The inserted depth was 30–50 cm. 107 

As the drilling steel was pulled out, the PVC pipe was inserted into the hole. The PVC 108 

pipe was compacted using fault gouge. The impurity gases in the PVC pipe were 109 

pumped out using the vacuum pump, then, the PVC pipe was quickly sealed. A day 110 

later, we connected a tube equipped with a carbon-coated nickel TEM grid to the PVC 111 

pipe. The gas was pumped using a vacuum pump and flowed through the TEM grid 112 

for 1 to 2 hours. Particles carried by the gas were collected by the TEM grid. Finally, 113 

the carbon-coated nickel TEM grid was removed and sealed in a sample cell. The 114 

second method did not use a vacuum pump. A carbon-coated nickel TEM grid was 115 

fixed to the end of the PVC pipe. The ascending geogas flow in the fault flowed into 116 

the PVC pipe and arrived at the top of the PVC pipe naturally. The particles carried by 117 

the geogas flows in the faults were adsorbed onto the carbon-coated nickel grid. The 118 

sampling devices were installed on August 3–10, 2013, and the TEM grids were 119 

retrieved on September 7, 2013. 120 

High-resolution TEM analyses were performed using a Tecnai G2 F30 S-TWIN 121 

instrument at Yangzhou University, China, using an accelerating voltage of 300 kV. 122 

The grids were checked using TEM before sampling to ensure they were devoid of 123 
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particles. 124 

3. Results 125 

3.1 Sulfur-containing particles carried by an ascending geogas flow above the soil 126 

(that had flown through the soil) 127 

According to the TEM analysis, particles containing high levels of S, O, Pb, Zn, Fe, 128 

Hg, As, etc, were found in the ascending gas flows above the soil above the 129 

Dongshengmiao polymetallic sulfide deposit. Table 1 provides the number of 130 

sulfur-containing particles or particle aggregations that were found on the 100 μm × 131 

100 μm TEM grid. In general, one aggregation included more than five particles. 132 

Figure 1 shows an elliptical particle (ID: 1) having a diameter of 500 nm. The particle 133 

contains 78.17% S and 18.47% O (Table 2). Its O to S atomic ratio is 0.47. Figure 2 134 

shows a particle aggregation (ID: 2) that consists of several small particles having a 135 

diameter of 3–8 nm. It contains 31.23% S and 59.29% Hg. The spacing of the lattice 136 

fringes was measured to be 0.333 nm. Figure 3 shows particle aggregations (ID: 3) 137 

with sizes of less than 100 nm. Their O to S atomic ratio is 0.51. The particle 138 

aggregations contain 14.48% Pb. The particle (ID: 4) illustrated in Figure 4 is 139 

elliptical with a diameter of 200 nm and contains 18.55% As, 54.2% Pb, and 8.34% 140 

Zn. The particle (ID: 5) shown in Figure 5 contains 2.25% Co. It is amorphous and 141 

has an O to S atomic ratio of 2.91. The particle aggregation (ID: 6) illustrated in 142 

Figure 6 contains 62.39% Cu and consists of small particles each having a diameter of 143 

5–10 nm. Figure 7 presents a particle aggregation (ID: 7) that consists of many small 144 

particles with diameters of about 5 nm, and contains 69.28% Pb. 145 
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3.2 Sulfur-containing particles carried by an ascending gas flow in the soil 146 

Numerous sulfur-containing particles transported by an ascending gas flow were 147 

found in the soil over sulfide ore deposits. Figure 8 shows an aggregation of such 148 

particles from the Dongshengmiao polymetallic sulfide deposit. The aggregation (ID: 149 

8) may be composed of CaSO4 with trace amounts of K, Mg, Fe, and Si. It is regularly 150 

shaped and 300 nm in size. The selected area electron diffraction pattern shows that 151 

the aggregation is polycrystalline, possibly gypsum. Figure 9 shows a TEM image of 152 

a sulfur-containing particle (ID: 9) from the Kafang copper deposit, South China. 153 

Sulfur accounts for 63.99% of the particle (Table 3), and its O to S atomic ratio is 0.83. 154 

Its K content is 8.93%, and its size is 330 nm. Figure 10 shows a regularly polygonal 155 

particle (ID: 10) from the Yongshengde copper deposit, China. Its O to S atomic ratio 156 

is 3.60, and its Fe and F contents are 9.94% and 1.71%, respectively. Figure 11 shows 157 

a sulfur-containing particle (ID: 11) from the Qingmingshan Cu–Ni sulfide deposit, 158 

Guangxi Province, China. Its O to S atomic ratio is 2.51. The particle contains 2.03% 159 

Co and is 300 nm × 400 nm in size. The selected area electron diffraction pattern 160 

shows that the particle is amorphous. 161 

3.3 Sulfur-containing particles carried by ascending geogas flows in deep-seated 162 

faults 163 

Sulfur-containing particles were found in samples obtained using two methods from 164 

the deep fault gas of the Dongshengmiao polymetallic sulfide deposit. Figure 12 165 

shows a sulfur-containing particle aggregation (ID: 12) that was obtained using the 166 

vacuum pump from the deep-seated fault gas near a concealed ore body. The 167 
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aggregation contains O, Na, Si, S, K, Fe, Zn, and Pb. The S content is 23.8%. Figure 168 

13 shows a particle aggregation (ID: 13) that was obtaied using a PVC pipe from a 169 

fault near a concealed ore body. The ascending gas flow arrived at the top of the PVC 170 

pipe naturally, and the particles were adsorbed by a TEM nickel grid. The particle 171 

aggregation consists of many small particles that are 4–15 nm in diameter. The small 172 

particles are elliptical and crystalline, with 0.302 nm spacing of the lattice fringes, and 173 

and their main components are O and S. Figure 14 shows a sulfur-containing particle 174 

(ID: 14) that was sampled using a PVC pipe in a fault above a concealed ore body. 175 

The vertical distance from the sample to the concealed ore body was 85 m. The 176 

vertical distance from the sample to the Earth's surface was 230 m. 177 

3.4 Sulfur-containing particles in deep-seated fault gouges and oxidized ores 178 

Sulfur-containing particles were also found in deep-seated fault gouges and oxidized 179 

zones of the Dongshengmiao polymetallic sulfide deposit. For example, Figure 15 180 

shows a sulfur-containing particle (ID: 15) from the oxidized zone. According to its 181 

atomic percentage, it contains SO4
2−

 and may be Sr, Ba sulfate, and Ti oxide. Its size 182 

is 200 nm × 400 nm. Figure 16 shows a rhombus-shaped particle (ID: 16) from a 183 

deep-seated fault gouge. Its main components are O, S, and Ca, with minor amounts 184 

of Fe, Co, and Si. 185 

Overall, the sulfur-containing particles or particle aggregations transported by 186 

ascending geogas flows can be both regular and irregular in shape and either 187 

crystalline or amorphous. The particles or particle aggregations contain Ca, K, Mg, Fe, 188 

Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, and Si, as well as O and S. 189 
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The number of sulfur-containing particles in the ascending geogas flows in 190 

non-sulfur-rich areas is much lower than that from the sulfide ore deposits. 191 

Furthermore, the overwhelming majority of particles in non-sulfur-rich areas have a 192 

low sulphur content. These areas are different from those with the sulfide ore deposits, 193 

in which sulfur-containing particles are densely distributed and are present at high 194 

levels in the ascending geogas flows.  195 

4. Discussion and conclusions 196 

Gold particles are formed by post-mineralization fault activity, oxidation, and 197 

bacterial weathering of primary minerals (Cao et al., 2010a). Deep-seated gold 198 

particles can be transported to the surface by an ascending gas flow, as Brownian 199 

motion enables the gold particles in the ascending gas flow to overcome the effect of 200 

gravity (Cao et al., 2010a; Cao, 2011). We assume that the same mechanism applies to 201 

sulfur-containing particles or particle aggregations. Primary sulfur-containing 202 

minerals are transformed into particles by epigenetic reworking, such as 203 

post-mineralization fault activity, in which S
2−

 in the sulfide minerals is oxidized to 204 

S
6+

. In this study, the sulfur-containing particles from fault gouges and oxidized ores 205 

were found, indicating that these particles were formed by the faulting and oxidation 206 

of ores. Faulting and oxidation are well-developed in the Dongshengmiao 207 

polymetallic sulfide deposit and other sulfide deposits. This finding indicates that 208 

faulting and oxidation play an important role in particle formation. 209 

Sulfur-containing particles may be transported to the surface by an ascending geogas 210 

flow through faults (Etiope and Martinelli, 2002; Cao et al., 2010a). Material carried 211 
删除的内容: . Because gases and particles 212 

move along faults, they can migrate over 213 

long distances214 
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by an ascending geogas flow in the soil in the Xuanhan gas field, Sichuan Province, 215 

China was sampled and measured using an instrumental neutron activation analysis. 216 

Analysis of trace element anomalies has shown the gas-bearing ring fracture structure 217 

to be 4000 m deep, suggesting that particles carried by an ascending geogas flow can 218 

be transported over long distances (Yang et al., 2000). The gas flow migrates upward 219 

because of the temperature difference and the pressure differences between the Earth’s 220 

interior and its surface is the reason that the gas flow migrate upward (Tong and Li, 221 

1999; Etiope and Martinelli, 2002; Cao et al., 2010a). In this study, Sulfide-containing 222 

particles suspended in gas above the soil were found, showing that these particles can 223 

move through the soil and get into the atmosphere. 224 

The probability that these particles are transported by an ascending geogas flow 225 

originating in the soil is low. In the study area, the soil consists of kaolinite, halloysite, 226 

montmorillonite, illite, chlorite, hematite, quartz, goethite, and similar minerals. 227 

Kaolinite is the main mineral, and the sulfur content in the soil is low. Therefore, this 228 

soil is clearly not a probable source of sulfur-containing particles transported by an 229 

ascending geogas flow. Furthermore, there is no correlation between the numbers of 230 

these particles and those of sulfur-containing particles in the soil solid phase. 231 

Sulfur-containing particles are clearly enriched in soils above deep sulfur-rich sources 232 

because sulfur-containing particles transported by an ascending geogas flow were 233 

found in 16 deep sulfide ore bodies that were studied. This result indicates a close 234 

relationship between sulfur-containing particles in the gas flow and deep-seated 235 

sulfide ore bodies. Other rock types, such as limestone, siltstone, sandstone, and 236 

删除的内容: the particles or particle 237 

aggregations were found in ascending 238 

geogas flows in faults at different depths 239 

near or above the concealed ore bodies of 240 

the Dongshengmiao polymetallic sulfide 241 

deposit. This observation demonstrates that 242 

the faults are channels for particles carried 243 

by the ascending geogas flow. 244 
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mudstone, do not contain sufficient sulfur to become sources of sulfur-containing 245 

particles in an ascending gas flow; for example, the mean sulfur concentrations of the 246 

Devonian limestone, mudstone, siltstome, and sandstone in the northern Guangdong 247 

Province, China are 610 × 10
−6

 (68 samples), 80 × 10
−6

 (25 samples), 160 × 10
−6

 (33 248 

samples), and 110 × 10
−6

 sulfur (4 samples), respectively. 249 

The estimated rate of degassing for the Dongshengmiao deposit calculated to be 2.325 250 

m
3 

s
−1

.The mean sulfur content of the particles carried by the ascending geogas flow 251 

for the Dongshengmiao deposit was calculated according to 45 mg/m
3
 (Supplement). 252 

The estimated annual sulfur emission from particles in the deposit was 3.254 tons. Qi 253 

et al. (2007) reported a flue gas amount of 527300 m
3
 h

-1
 from the Huhehaote power 254 

plant in China and an exit particle concentration of 43.3 mg m
−3 

carried by the flue 255 

gas. The SO3 distribution range in fly ash in 14 power plants (e.g.,Tangshan power 256 

plant, Gaojing power plant, and Zhengzhou power plant) was reported to range 257 

between 0 and 1.05 %. The mean SO3 and sulfur contents in fly ash were 0.27 % and 258 

0.108 %, respectively. On the basis of these mean values, 21.305 tons of annual 259 

particulate sulfur emission occurred from the flue gas in the Huhehaote power plant. 260 

The annual sulfur emission from the particles carried by ascending geogas flow in the 261 

Dongshengmiao deposit was less than carried by the flue gas in the Huhehaote power 262 

plant. However, the amount of concealed deposits is much more than that of 263 

coal-burning power plants. Moreover, size of the particles carried by the ascending 264 

geogas flow from concealed deposits is usually <500 nm. The mean diameter of the 265 

particles carried by the flue gas in 9 samples obtained from four coal-fired power 266 

删除的内容: For 16 ore deposits, in which 321 

we have studied particles carried by 322 

ascending geogas, a large number of 323 

sulfur-containing and Pb- and 324 

As-containing particles were found. There 325 

are oxidative ore bodies in many concealed 326 

sulfide ore deposits. As sulfide minerals 327 

change into oxide minerals, sulfide was 328 

released from these minerals. There are 329 

some sulfide concentration data for 330 

ascending geogas. Yuan et al. (China 331 

University of Geosciences, Beijing, China, 332 

2014) analyzed sulfide concentrations of 333 

ascending geogas in soil at the Sunit deposit 334 

(the Inner Mongolia Autonomous Region, 335 

China), using plasma mass spectrographic 336 

analysis. Their sampling method allowed 337 

the flow of geogas in the soil through liquid 338 

collector slowly using a pump. The 339 

particles carried by the ascending geogas 340 

flow were adsorbed in the liquid collector. 341 

The volume of the geogas extracted per 342 

hole was 5 liters. The geogas extracted from 343 

3 holes (15 liters) was combined to make 344 

one sample. The liquid collector was made 345 

with high purity nitric acid and Mini-Q 346 

ultra pure water. The liquid collector was 347 

placed in a 25 ml polyethylene bottle. The 348 

analysis results from 1054 samples showed 349 

that the average sulfur content of the liquid 350 

collector was 26.4571 μg ml−1. The 351 

maximum value was 35.33 μg ml−1 and the 352 

minimum value was 16.89 μg ml−1. A 353 

concentration of 26.4571 μg ml−1 in the 354 

liquid collector may be translated into 355 

44.095 mg per cubic meter of geogas flow. 356 

We know that sulfur-containing substances 357 

carried by geogas flow may be not 358 

completely adsorbed in the liquid collector. 359 

Therefore, the average sulfur content of the 360 

ascending geogas flow may have been 361 

higher than 44.095 mg per cubic meter. We 362 

analyzed the sulfide concentration of 363 

ascending geogas in the soil at the 364 
...
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plants in China were 19.71, 3.18, 5.43, 5.67, 130.94, 77.29, 12.99, 11.59, and 236.63 365 

μm respectively (Zhang et al. 2007). The sizes of particles carried by the ascending 366 

geogas flow from concealed deposits were lesser than those of the particles carried by 367 

the flue gas from coal-fired power plants. Within a certain volume, the particles were 368 

smaller and the number of particles was more. These small particles are more capable 369 

of migration and have a significant health and environmental impact. Therefore, 370 

attention must be paid to the particles carried by the ascending geogas flow from 371 

concealed deposits.  372 

Such sulfur-containing particles enter the atmosphere. Several studies have discussed 373 

the direct effects of sulfate particles on the climate (Liu et al., 2009). Some 374 

researchers have suggested that sulfur-containing particles can reduce atmospheric 375 

temperature or result in climate warming. Streets et al. (2000) suggested that because 376 

sulfate aerosols play a vital role in cooling the atmosphere, a reduction in sulfur 377 

dioxide emissions in the future would result in increased global warming. 378 

Furthermore, aerosol sulfate has been identified as an important contributor to 379 

sunlight scattering (Lelieveld and Heintzenberg, 1992; Kim et al., 2001). At the top of 380 

the atmosphere above East Asia, SO4
2−

 radiative forcing is −2 to −10 W m
−2

 over land 381 

and −5 to −15 W m
−2

 over ocean (Gao et al., 2014). Niemeier et al. (2011) revealed 382 

that an increase in the SO2 emission rate does not lead to a similar increase in 383 

radiative forcing because, as the size of the aerosols increases, their lifetime decreases. 384 

It is thus possible that the sulfur-containing particles transported by an ascending 385 

geogas flow have an effect on the climate and should, therefore, be evaluated.  386 

删除的内容: The distribution areas of 387 

concealed sulfur ore deposits are different. 388 

The ore deposits with the distribution areas 389 

of 1–12 km2 may have more deposits than 390 

other areas. Concealed metal deposits 391 

containing sulfide minerals can be very 392 

extensive, such as the Killik massive sulfide 393 

deposit in northeastern Turkey (Çiftçi et al., 394 

2005), the Masa Valverde blind massive 395 

sulfide deposit in Spain (Ruiz et al., 2002), 396 

and the Huize carbonate-hosted Zn–Pb–(Ag) 397 

District in South China (Han et al., 2007). 398 

Concealed sulfur nonmetallic deposits, such 399 

as gypsum and barite, are also widely 400 

distributed. The number of concealed 401 

sulfide deposits is far greater than those of 402 

active volcanoes. Under the 403 

climate-warming conditions, oxidation of 404 

sulfur-containing minerals is particularly 405 

accelerated. 406 
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Sulfate particles can be transported into the lungs leading to respiratory illnesses 407 

(World Bank Group, 1999; Soleimani et al., 2007). In particular, the sulfur-containing 408 

particles contain high levels of toxic Pb, Hg, Cu, and As. In nature, sulfur usually 409 

combines with Pb, Hg, Cu, As, Ni, Cd, and Sb, which are toxic to organisms, to form 410 

sulfide deposits. The sulfur-containing particles originating from sulfide deposits 411 

commonly contain toxic elements. This phenomenon has been confirmed by EDX 412 

analysis of particles. The particle sizes carried by the ascending gas flow are usually 413 

less than 500 nm. The size is only one-fifth of the upper size limit of PM2.5. Geogas 414 

particles undergo long-distance migration. They can remain in the atmosphere for 415 

long periods and in can get into bronchioles and alveoli, affecting the ventilative 416 

function of lung. They can also enter the blood. The possible relationship between the 417 

occurrence of sulfur-containing particles transported by an ascending geogas flow and 418 

endemic diseases in the vicinity of sulfur-containing deposits should be investigated. 419 

It is probable that sulfur-containing particles transported by the ascending geogas 420 

flows in the soil affect the soil system; for example, sulfur-containing particles can 421 

affect both soil biota and enzymatic activities, resulting in changes in the soil structure, 422 

nutrient cycling, and organic matter decomposition and retention. Sulfur-containing 423 

particles may directly catalyze organic matter decomposition. Furthermore, the 424 

potential use of such particles as fertilizers for rice plants needs to be investigated.  425 
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 617 

 618 

 619 

Fig. 1 TEM image of an S-, O-, and Si-containing particle obtained from an ascending 620 

gas flow above the soil over the Dongshengmiao deposit. 621 

 622 

 623 

 624 

 625 

 626 

 627 
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 628 

 629 

Fig. 2 (a) TEM image, (b, c) high-resolution (HRTEM) images, and (d) selected area 630 

electron diffraction (SAED) pattern of an S-, O-, Hg-containing particle aggregation 631 

obtained from an ascending gas flow above the soil over the Dongshengmiao deposit. 632 

 633 

 634 

 635 

 636 

 637 
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 638 

 639 

Fig. 3 TEM image of S-, O-, K-, and Pb-containing particle aggregations obtained 640 

from an ascending gas flow above the soil over the Dongshengmiao deposit. 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 
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 650 

 651 

Fig. 4 TEM image of an S-, O-, Na-, Pb-, Zn-, and As-containing particle obtained 652 

from an ascending gas flow above the soil over the Dongshengmiao deposit. 653 

 654 

 655 

 656 

 657 

 658 
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Fig. 5 (a) TEM image and (b) SAED pattern of an S-, O-, K-, Na-, and Pb-containing 659 

particle obtained from an ascending gas flow above the soil over the Dongshengmiao 660 

deposit. 661 

 662 

Fig. 6 (a) TEM image and (b) HRTEM image of an O-, Si-, S-, and Cu-containing 663 

particle aggregation obtained from an ascending gas flow above the soil over the 664 

Dongshengmiao deposit.  665 

 666 

 667 

 668 
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 669 

 670 

 671 

Fig. 7 (a) TEM image, (b)HRTEM image, and (c) SAED pattern of an O-, S-, K-, and 672 

Pb-containing particle aggregation obtained from an ascending gas flow above the 673 

soil over the Dongshengmiao deposit. 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 
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 693 

Fig. 8 (a) TEM image, (b) SAED pattern, and (c, d) HRTEM image of an O-, S-, Ca-, 694 

and Mg-containing particle obtained from an ascending gas flow in the soil over 695 

Dongshengmiao deposit. 696 

 697 

 698 

 699 

 700 

 701 

 702 
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 703 

 704 

 705 

Fig. 9 TEM image of an O-, S-, and K-containing particle obtained from an ascending 706 

gas flow in the soil from the Kafang copper deposit, Yunnan Province. 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 
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 716 

Fig. 10 TEM image of an O-, S-, and Fe-containing particle obtained from an 717 

ascending gas flow in the soil from the Yongshengde copper deposit in northeastern 718 

Yunnan. 719 

 720 

Fig. 11 (a) TEM image and (b) SAED pattern of an O-, S-, and Co-containing particle 721 

obtained from an ascending gas flow in the soil from the Qingmingshan Cu–Ni 722 

sulfide deposit, Guangxi Province. 723 
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 724 

 725 

 726 

 727 

 728 

Fig. 12 TEM image of an O-, S-, K-, Pb-, and Na-containing particle sampled using a 729 

vacuum pump from the fault gas near a concealed ore body of the Dongshengmiao 730 

deposit. 731 

 732 

 733 

 734 

 735 

 736 
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 737 

 738 

 739 

 740 

Fig. 13 (a) TEM image, (b, c) HRTEM images, and (d) SAED pattern of an O-, S-, 741 

and K-containing particle aggregation sampled using a PVC pipe in a fault near a 742 

concealed ore body of the Dongshengmiao deposit. 743 

 744 
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 746 

 747 

 748 

 749 

 750 

 751 

 752 

Fig. 14 TEM image of an O-, S-, Fe-, and Mg-containing particle aggregation 753 

sampled using a PVC pipe in a fault above a concealed ore body of the 754 

Dongshengmiao deposit. 755 

 756 

 757 
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 758 

 759 

 760 

 761 

 762 

Fig. 15 TEM image of an O-, S-, Ti-, Sr-, and Ba-containing particle from a 763 

deep-seated oxidized zone in the Dongshengmiao deposit. 764 

 765 

 766 

 767 

 768 
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 769 

 770 

 771 

 772 

 773 

 774 

Fig. 16 TEM image of an O-, S-, Fe-, Co-, and Ca-containing particle from a 775 

deep-seated fault gouge in the Dongshengmiao deposit. 776 
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 793 

Table 1 Number of sulfur-containing particles or particle aggregations number from the 794 

Dongshengmiao deposit on 100 μm × 100 μm TEM grids 795 

Sulfur-containing particles or particle 

aggregations carried by ascending gas 

flow above the soil (that had flown 

through the soil) 

Sulfur-containing particles or particle 

aggregations carried by ascending gas flow in 

deep faults 

Sample Sample 

box 

Grid Number Sample Sample 

box 

Grid Number 

ND13-1 A1 A1-1 3 NDDW03 A2 A2-2 3 

ND13-2 A2 A2-1 2 NDDW05 A4 A4-1 1 

ND13-3 A3 A3-2 1   A4-2 29 

  A3-3 6 NDDW06 A5 A5-2 1 

ND13-4 A4 A4-1 1 NDDW07 B1 B1-1 4 

  A4-2 2   B1-2 1 

ND13-6 A5 A5-1 1 NDDW19 D3 D3-2 1 

  A5-2 3   D3-3 2 

  A5-3 1 NDDW26 E4 E4-1 1 

ND13-8 B2 B2-1 1   E4-3 1 

  B2-2 6 NDDW27 E5 E5-1 2 

  B2-3 1   E5-3 2 

ND13-9 B3 B3-1 1   E5-4 1 

  B3-2 1 NDDW36 G4 G4-1 12 

  B3-3 1   G4-3 10 

ND13-10 B4 B4-1 1   G4-4 1 

  B4-3 6 NDDW37 G5 G5-1 1 

ND13-11 B5 B5-1 1     
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 810 

 811 

 812 

 813 

Table 2 EDX results for particles 1–8. 814 

 815 

Element Particle number 

1 2 3 4 5 6 7 8 

Weight O% 18.47 9.46 16.02 9.73 15.75 12.9 5.13 51.88 

Atomic O% 31.1 31.78 31.12 39.3 34.16 31.35 22.74 69.78 

Weight Si% 3.35  1.49 0.5 1.09 3.08  2.19 

Atomic Si% 3.21  1.65 1.15 1.34 4.27  1.67 

Weight S% 78.17 31.23 63.1 3.82 10.83 21.61 18.25 19.02 

Atomic S% 65.68 52.33 61.16 7.7 11.72 26.2 40.32 12.76 

Weight Hg%  59.29       

Atomic Hg%  15.87       

Weight K%   4.88  35.75  7.31 0.99 

Atomic K%   3.88  31.73  13.25 0.54 

Weight Pb%   14.48 54.2 22.5  69.28  

Atomic Pb%   2.17 16.9 3.76  23.67  

Weight Na%    3.1 9.66    

Atomic Na%    8.73 14.58    

Weight Fe%    0.75 2.14   0.21 

Atomic Fe%    0.87 1.33   0.08 

Weight Co%    0.98 2.25    

Atomic Co%    1.08 1.32    

Weight Zn%    8.34     

Atomic Zn%    8.24     

Weight As%    18.55     

Atomic As%    16     

Weight Cu%      62.39   

Atomic Cu%      38.16   

Weight Mg%        3.86 

AtomicMg%        3.42 

Weight Ca%        21.82 

Atomic Ca%        11.71 
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 824 

 825 

 826 

 827 

Table 3 EDX results for particles 9–16. 828 

Element Particle number 

9 10 11 12 13 14 15 16 

Weight O% 26.54 56.25 53.66 25.39 67.03 17.21 29.21 40.8 

Atomic O% 42.51 73.54 70.2 37.32 80.72 35.83 64.85 62.97 

Weight Si% 0.52   0.66 1 0.7  1.5 

Atomic Si% 0.47   0.55 0.68 0.83  1.32 

Weight S% 63.99 31.3 42.81 23.8 28.01 24.59 10.88 15.03 

Atomic S% 51.15 20.42 27.95 17.45 16.83 25.53 12.05 11.58 

Weight K% 8.93 0.78  2.01 2.59    

Atomic K% 5.85 0.42  1.21 1.27    

Weight Pb%    4.25     

Atomic Pb%    0.48     

Weight Na%   1.04 40.92  1.35   

Atomic Na%   0.95 41.84  1.96   

Weight Fe%  9.94 0.44 1.11 1.35 51.16 1.27 5.2 

Atomic Fe%  3.72 0.16 0.46 0.46 30.5 0.81 2.3 

Weight Co%   2.03     6.36 

Atomic Co%   0.72     2.66 

Weight Zn%    1.82     

Atomic Zn%    0.65     

Weight Mg%      2.74   

Atomic Mg%      3.75   

Weight Ca%      0.28 0.5 31.08 

Atomic Ca%      0.23 0.44 19.15 

Weight F%  1.71       

Atomic F%  1.88       

Weight Al%      0.25   

Atomic Al%      0.3   

Weight Mn%      1.68   

Atomic Mn%      1.02   

Weight Ti%       10.94  

Atomic Ti%       8.11  

Weight Sr%       10.32  

Atomic Sr%       4.18  

Weight Ba%       36.86  

Atomic Ba%       9.53  
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Supplementary Information 905 

For 16 ore deposits, in which we have studied particles carried by ascending geogas, a 906 

large number of sulfur-containing and Pb- and As-containing particles were found. 907 

There are oxidative ore bodies in many concealed sulfide ore deposits. As sulfide 908 

minerals change into oxide minerals, sulfide was released from these minerals. There 909 

are some sulfide concentration data for ascending geogas. Yuan et al. (China 910 

University of Geosciences, Beijing, China, 2014) analyzed sulfide concentrations of 911 

ascending geogas in soil at the Sunit deposit (the Inner Mongolia Autonomous Region, 912 

China), using plasma mass spectrographic analysis. Their sampling method allowed 913 

the flow of geogas in the soil through liquid collector slowly using a pump. The 914 

particles carried by the ascending geogas flow were adsorbed in the liquid collector. 915 

The volume of the geogas extracted per hole was 5 liters. The geogas extracted from 3 916 

holes (15 liters) was combined to make one sample. The liquid collector was made 917 

with high purity nitric acid and Mini-Q ultra pure water. The liquid collector was 918 

placed in a 25 ml polyethylene bottle. The analysis results from 1054 samples showed 919 

that the average sulfur content of the liquid collector was 26.4571 μg ml
−1

. The 920 

maximum value was 35.33 μg ml
−1

 and the minimum value was 16.89 μg ml
−1

. A 921 

concentration of 26.4571 μg ml
−1

 in the liquid collector may be translated into 44.095 922 

mg per cubic meter of geogas flow. We know that sulfur-containing substances 923 

carried by geogas flow may be not completely adsorbed in the liquid collector. 924 

Therefore, the average sulfur content of the ascending geogas flow may have been 925 

higher than 44.095 mg per cubic meter. We analyzed the sulfide concentration of 926 
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ascending geogas in the soil at the Kangjiawan deposit in the Hunan Province, China. 927 

Our sampling method is similarly to the method used by Yuan et al. (2014). The main 928 

difference is that our liquid collector was made with high purity aqua regia and 929 

tri-distilled water. The volume of the liquid collector was 100 ml. The volume of the 930 

geogas extracted from a hole was 9 liters. Therefore, the volume of the geogas 931 

extracted from 3 holes was 27 liters. The sulfide concentration of the liquid collector 932 

was analyzed using the plasma spectrum method. We analyzed the samples along 3 933 

sections (sample numbers were 31, 74, and 20). The results showed that the average 934 

sulfur contents of the 3 sections were 0.27, 1.40, and 32.81 μg ml
−1

 respectively 935 

(Tables S1–3), which may be translated into 1.00, 5.19, and 121.50 mg per cubic 936 

meter of geogas flow, respectively. Wang et al. (2008) collected particles carried by 937 

ascending geogas in soil over the Jiaolongzhang Pb-Zn-Cu-Ag deposit, Eastern Gansu, 938 

China using a liquid collector. Analysis results from 14 samples showed that the mean 939 

content of Cu, Pb, and Zn was 844 ng/ml (gas volume), 107 ng/ml, and 1751 ng/ml, 940 

respectively.  941 

There is earth degassing phenomena in metallic and nonmetallic deposits. The giant 942 

gold deposits, such as the Porcupine gold deposit in Canada, the Witwatersrand gold 943 

deposit in South Africa, and the Muruntau gold deposit in Uzbekistan, exhibit upward 944 

vertical movement of hydrocarbon gas. The Witwatersrand gold deposit has 945 

significant upward gas flow. In one day, 36700 m
3
 of hydrocarbon gases degas from 946 

underground gold mining vents and 5 × 10
8
 m

3 
of hydrocarbon gases degas from 947 

3000m or deeper mines every year. The Azerbaijan oil and gas region is strongly 948 
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degassed, with 4 × 10
8
 m

3
 of gases degassed every year (Du, 2009). The ascending 949 

gas flow rates were measured to be between 60 × 10
−4

 and 4 cm
3
 min

−1
 m

−2
 950 

horizontally projected borehole area at three different sites by Malmqvist & 951 

Kristiansson (1984). Carbon dioxide concentrations above sulfide mineralizations are 952 

often enhanced. Hidden sulfide mineralizations at a depth of 200 m have been located 953 

in quartzite in areas such as Brittany, and sulphide ores have been located in granite in 954 

Cornwall. Above mineralizations, carbon dioxide in the soil gas has been found to 955 

increase to 10% from the normal concentration of 1%. The carbon dioxide flow may 956 

be as large as 0.2 l m
−2

 h
−1

 (Hermansson et al. 1991). The Dongshengmiao deposit lies 957 

in a seismically active zone. The Langshan Mountain-front fault, in which minor 958 

earthquake activity frequently takes place and where M=6 earthquakes have taken 959 

place three times in the twentieth century, passes through the deposit. The release of 960 

geogas in active tectonic areas is widespread and occurs at a significant level (Judd et 961 

al., 1997; Etiope, 1999; Mörner and Etiope, 2002). The CO2 emission flux of the 962 

Siena Graben Faults (Italy), Siena G. Arbia Fault (Italy), Ustica Arso Fault (Italy), and 963 

San Andreas Fault (California) were 0.83–1123, 12.4–74.4, 77.3, and 0.4–23 kg m
–2 

964 

year
–1

 respectively
 
(Etiope, 1995; 1999; Mörner and Etiope, 2002; Lewicki and 965 

Brantley, 2000). These equate, respectively, to 0.02–26.94, 0.3–1.78, 1.85, and 966 

0.01–0.55 cm
3
 m

−2 
s

−1
 if CO2 density is assumed to be 1.3401 kg m

-3
. The area of the 967 

Dongshengmiao deposit is 4.65 km
2
. The emission flux estimation of the 968 

Dongshengmiao deposit was 0.5 cm
3
 m

−2 
s

−1 
according to the emission fluxes of the 969 

above-mentioned faults and deposits. Therefore, the estimated degassing rate for the 970 
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Dongshengmiao deposit was 2.325 m
3 

s
−1

. 971 

The distribution areas of concealed sulfur ore deposits are different. The ore deposits 972 

with the distribution areas of 1–12 km
2
 may have more deposits than other areas. 973 

Concealed metal deposits containing sulfide minerals can be very extensive, such as 974 

the Killik massive sulfide deposit in northeastern Turkey (Çiftçi et al., 2005), the 975 

Masa Valverde blind massive sulfide deposit in Spain (Ruiz et al., 2002), and the 976 

Huize carbonate-hosted Zn–Pb–(Ag) District in South China (Han et al., 2007). 977 

Concealed sulfur nonmetallic deposits, such as gypsum and barite, are also widely 978 

distributed. The number of concealed sulfide deposits is far greater than those of 979 

active volcanoes. Under the climate-warming conditions, oxidation of 980 

sulfur-containing minerals is particularly accelerated.  981 

 982 

 983 

 984 

 985 

Table S1 Plasma spectrum S results for liquid collectors along the 1
st
 section (μg/mL) 986 

Number S Number S Number S Number S  

K1-1 

K1-2 

K1-3 

K1-4 

K1-5 

K1-6 

K1-7 

K1-8 
 

0.22 

0.20 

0.13 

0.12 

0.12 

0.12 

0.35 

0.13 
 

K1-9 

K1-10 

K1-11 

K1-12 

K1-13 

K1-14 

K1-15 

K1-16 
 

0.08 

0.18 

0.15 

0.12 

0.75 

0.13 

0.14 

0.20 
 

K1-17 0.12 

K1-18 0.13 

K1-19 0.26 

K1-20 0.27 

K1-21 0.68 

K1-22 0.37 

K1-23 0.91 

K1-24 0.11 
 

K1-25 0.43 

K1-26 0.33 

K1-27 0.83 

K1-28 0.15 

K1-29 0.48 

K1-30 0.09 

K1-31 0.09 

  
 

 

 987 

 988 

 989 
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Table S2 Plasma spectrum S results for liquid collectors along the 2
nd

 section (μg/mL) 990 

Number S Number S Number S Numer S 

K2-1 

K2-2 

K2-3 

K2-4 

K2-5 

K2-6 

K2-7 

K2-8 

K2-9 

K2-10 

K2-11 

K2-12 

K2-13 

K2-14 

K2-15 

K2-16 

K2-17 

K2-18 

K2-19 
 

1.74 

1.21 

1.46 

0.27 

1.68 

0.97 

0.31 

1.35 

0.93 

1.51 

0.27 

0.52 

2.55 

0.48 

1.97 

1.21 

2.73 

1.27 

0.22 
 

K2-20 

K2-21 

K2-22 

K2-23 

K2-24 

K2-25 

K2-26 

K2-27 

K2-28 

K2-29 

K2-30 

K2-31 

K2-32 

K2-33 

K2-34 

K2-35 

K2-36 

K2-37 

K2-38 
 

3.81 

1.52 

4.44 

0.72 

1.07 

0.57 

0.43 

0.61 

0.11 

0.39 

1.39 

0.88 

0.6 

4.63 

1.84 

4.1 

1.92 

1.18 

0.38 
 

K2-39 

K2-40 

K2-41 

K2-42 

K2-43 

K2-44 

K2-45 

K2-46 

K2-47 

K2-48 

K2-49 

K2-50 

K2-51 

K2-52 

K2-53 

K2-54 

K2-55 

K2-56 

K2-57 
 

0.6 

0.9 

1.08 

0.26 

2.03 

1.05 

0.48 

2.46 

0.45 

0.8 

0.28 

0.24 

4.73 

0.29 

6.85 

0.57 

0.69 

5.85 

0.61 
 

K2-59 

K2-60 

K2-61 

K2-62 

K2-63 

K2-64 

K2-65 

K2-66 

K2-67 

K2-68 

K2-69 

K2-70 

K2-71 

K2-72 

K2-73 

K2-74 

K2-75 

K2-76 

K2-77 
 

0.31 

0.58 

0.42 

0.59 

3.86 

0.51 

0.57 

0.2 

0.2 

0.49 

0.29 

0.87 

0.65 

0.3 

8.28 

0.48 

1.84 
 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

Table S3 Plasma spectrum S results for liquid collectors along the 3
rd

 section (μg/mL) 1002 

Number S Number S Number S Number S 

K3-1 34.90 K3-6 19.43 K3-11 4.08 K3-16 76.28 

K3-2 2.35 K3-7 1.00 K3-12 16.88 K3-17 77.21 

K3-3 4.89 K3-8 1.38 K3-13 74.51 K3-18 79.81 

K3-4 0.52 K3-9 1.43 K3-14 51.57 K3-19 81.52 

K3-5 2.65 K3-10 0.10 K3-15 49.66 K3-20 76.07 

 1003 

 1004 

 1005 

 1006 
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The comments of an anonymous Referee #3 1057 

1. Reviewer's 1 worries are unfounded - the experimental data and the authors' 1058 

procedures have been observed and employed by many, including us, and are 1059 

certainly true. Their speculative ideas about "ascending gas carrying along 1060 

nanoparticles 5-500 nm", I consider wrong. In addition, these "nanoparticles" 1061 

penetrate through high efficiency filters, as reported in "Progress in the collection of 1062 

Geogas in China", by Wang MQ, Gao YY and Liu YH, Geochemistry: Exploration, 1063 

Environment, Analysis, vol. pp 183-190, 2008. This paper has to be cited instead of 1064 

Yuan LL, Wang MQ and Hu JL, line 246 in the MS. This paper is in Chinese and not 1065 

accessible on the Web of Science. 1066 

2. Response to your second point, whether the authors' revisions are OK, the answer is 1067 

- they are irrelevant. Here is how big the flows are: the "passive" ones are about 10^-6 1068 

cm/s (lines 270-305). The "active" ones are, roughly, 10^7 x higher (Wang MQ et al. 1069 

mentioned above). It uses a pump and reports the flow, the concentration/m
3
, in the 1070 

flow drawn through the high efficiency filter, into their adsorber. 1071 

The total flow of the "ascending flow" nanoparticles could be estimated if multiplied 1072 

by the earth surface area (or the surface area of faults, if anyone knows what it is), and 1073 

one ends up with enormous total flow. However, any quantification attempt is 1074 

premature; the main purpose of this paper should be to establish existence of an 1075 

anomaly. 1076 

Another point, the authors cite a paper (line 408), Holub et al., J. Aerosol Sci., 30, 1077 

1999, which is appropriate - except they should also quote the essential sequel, Holub 1078 

RF et al, "Further investigations...", J. Aerosol Sci., 2001 to . 1079 

To conclude: This paper provides an opportunity to start what's called a "paradigm 1080 

shift". The first step is to acknowledge there exists an anomaly. So far numerous 1081 

papers reporting this have been ignored for about 15 years. 1082 

Responses to the comments of an anonymous referee #3 1083 

1. Speculation about the mechanisms of particle transport has been minimized. 1084 

“Progress in the collection of Geogas in China” by Wang, M. Q., Gao, Y. Y., and 1085 

Liu, Y. H., Geochemistry: Exploration, Environment, Analysis, Vol. 8, pp. 183–190, 1086 

2008 has been cited. Because the sulfur content of particles carried by ascending 1087 

geogas flow was not mentioned in “Progress in the collection of Geogas in China” 1088 

“Research of geochemical gas prospecting in sunit” by Yuan, L. L.，Wang, M. Q.，and 1089 

Hu, J. L., Coal Technology, Vol. 33, pp. 85–87, 2014, has been retained. 1090 

2. “Further investigations of the “geoaerosol” phenomenon” by Holub, R. F., 1091 

Hovorka, J., Reimer, G. M., Honeyman, B. D., Hopke, P. K., and Smrz P. K., Journal 1092 

of Aerosol Science, Vol. 32, no. 1, Sup., 2001 has also been cited. 1093 

 1094 

 1095 

 1096 
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The comments of the editor’s comments 1097 

Please take into account the referee report when revising the manuscript. Especially, 1098 

minimize the speculations about the mechanisms of particle transport. As you and 1099 

your co-authors admit in your new Resource Geology article (which should be 1100 

referenced), currently there is no good theoretical process that can explain the 1101 

transport.  1102 

Regarding the flow of the nanoparticles, I do not completely agree with the referee. I 1103 

think that the order-of-magnitude estimate for the Dongshengmiao deposit is useful, 1104 

and you can get an estimate of the sulfur emission (tons per year) if you multipliy it 1105 

with the sulfur content obtained from the liquid collector. Furthermore, this estimate 1106 

can be compared e.g. to a typical coal-fired power plant emission. However, I think 1107 

that the text relating to the estimates (lines 242-312) is too long and tedious. I suggest 1108 

that you shift it to a supplement, and replace it just by giving the estimates of the 1109 

sulfur contents of the geogas (1-121.5 mg/m^3) and the degassing rate of the 1110 

Dongshngmiao deposit ( ~2000M^3/s), and the resulting estimate for the annual 1111 

sulfur emission from the deposit.  1112 

As a minor point, the sentence on lines 43-45 should be rewritten: Kiehl (1999) notes 1113 

that gas phase sulfur can attach to mineral particle surfaces, but saying that "Sulfate 1114 

particles... occur in mineral dust" is confusing. 1115 

Responses to editor’s comments 1116 

The estimated rate of degassing for the Dongshengmiao deposit calculated to be 2.325 1117 

m
3 

s
−1

.The mean sulfur content of the particles carried by the ascending geogas flow 1118 

for the Dongshengmiao deposit was calculated according to 45 mg/m
3
 (Supplement). 1119 

The estimated annual sulfur emission from particles in the deposit was 3.254 tons. Qi 1120 

et al. (2007) reported a flue gas amount of 527300 m
3
 h

-1
 from the Huhehaote power 1121 

plant in China and an exit particle concentration of 43.3 mg m
−3 

carried by the flue 1122 

gas. The SO3 distribution range in fly ash in 14 power plants (e.g.,Tangshan power 1123 

plant, Gaojing power plant, and Zhengzhou power plant) was reported to range 1124 

between 0 and 1.05 %. The mean SO3 and sulfur contents in fly ash were 0.27 % and 1125 

0.108 %, respectively. On the basis of these mean values, 21.305 tons of annual 1126 

particulate sulfur emission occurred from the flue gas in the Huhehaote power plant. 1127 

The annual sulfur emission from the particles carried by ascending geogas flow in the 1128 

Dongshengmiao deposit was less than carried by the flue gas in the Huhehaote power 1129 

plant. However, the amount of concealed deposits is much more than that of 1130 

coal-burning power plants. Moreover, size of the particles carried by the ascending 1131 

geogas flow from concealed deposits is usually <500 nm. The mean diameter of the 1132 

particles carried by the flue gas in 9 samples obtained from four coal-fired power 1133 

plants in China were 19.71, 3.18, 5.43, 5.67, 130.94, 77.29, 12.99, 11.59, and 236.63 1134 

μm respectively (Zhang et al. 2007). The sizes of particles carried by the ascending 1135 

geogas flow from concealed deposits were lesser than those of the particles carried by 1136 

the flue gas from coal-fired power plants. Within a certain volume, the particles were 1137 

smaller and the number of particles was more. These small particles are more capable 1138 



 

49 
 

of migration and have a significant health and environmental impact. Therefore, 1139 

attention must be paid to the particles carried by the ascending geogas flow from 1140 

concealed deposits. 1141 

In addition, the sentence on lines 43–45 has been revised. Speculation about the 1142 

mechanisms of particle transport has been minimized. Lines 242–312 have been 1143 

moved to a supplementary section.  1144 

References 1145 

Qi, L. Q., Yuan, Y. T., and Liu, J.: Current situations of emission and collection on fly 1146 

ash of power plants in China: International Conference on Power Engineering-2007, 1147 

Hangzhou, China, 23 – 27 October 2007, 766 – 772, 2007. 1148 

Zhang, C. F, Yao, Q., and Sun, J. M.: Characteristics of particulate matter from 1149 

emissions of four typical coal-fired power plants in China, Fuel Process Technol., 86, 1150 

757– 768, 2005. 1151 

  1152 

 1153 

Author’s changes in manuscript 1154 

P. 3, line 45: “, occur in mineral dust (Kiehl, 1999)” has been deleted. 1155 

 1156 

P. 4, line 58: “, 2001” has been added. 1157 

 1158 

P. 10, line 211: “. Because gases and particles move along faults, they can migrate 1159 

over long distances” has been deleted. 1160 

 1161 

P. 11, line 222: “the particles or particle aggregations were found in ascending geogas 1162 

flows in faults at different depths near or above the concealed ore bodies of the 1163 

Dongshengmiao polymetallic sulfide deposit. This observation demonstrates that the 1164 

faults are channels for particles carried by the ascending geogas flow.” was deleted. 1165 

 1166 

P. 12, line 250: “For 16 ore deposits, in which we have studied particles carried by 1167 

ascending geogas, a large number of sulfur-containing and Pb- and As-containing 1168 

particles were found. There are oxidative ore bodies in many concealed sulfide ore 1169 

deposits. As sulfide minerals change into oxide minerals, sulfide was released from 1170 

these minerals. There are some sulfide concentration data for ascending geogas. Yuan 1171 

et al. (China University of Geosciences, Beijing, China, 2014) analyzed sulfide 1172 

concentrations of ascending geogas in soil at the Sunit deposit (the Inner Mongolia 1173 

Autonomous Region, China), using plasma mass spectrographic analysis. Their 1174 

sampling method allowed the flow of geogas in the soil through liquid collector 1175 

slowly using a pump. The particles carried by the ascending geogas flow were 1176 

adsorbed in the liquid collector. The volume of the geogas extracted per hole was 5 1177 

liters. The geogas extracted from 3 holes (15 liters) was combined to make one 1178 

sample. The liquid collector was made with high purity nitric acid and Mini-Q ultra 1179 

pure water. The liquid collector was placed in a 25 ml polyethylene bottle. The 1180 
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analysis results from 1054 samples showed that the average sulfur content of the 1181 

liquid collector was 26.4571 μg ml
−1

. The maximum value was 35.33 μg ml
−1

 and the 1182 

minimum value was 16.89 μg ml
−1

. A concentration of 26.4571 μg ml
−1

 in the liquid 1183 

collector may be translated into 44.095 mg per cubic meter of geogas flow. We know 1184 

that sulfur-containing substances carried by geogas flow may be not completely 1185 

adsorbed in the liquid collector. Therefore, the average sulfur content of the ascending 1186 

geogas flow may have been higher than 44.095 mg per cubic meter. We analyzed the 1187 

sulfide concentration of ascending geogas in the soil at the Kangjiawan deposit in the 1188 

Hunan Province, China. Our sampling method is similarly to the method used by 1189 

Yuan et al. (2014). The main difference is that our liquid collector was made with 1190 

high purity aqua regia and tri-distilled water. The volume of the liquid collector was 1191 

100 ml. The volume of the geogas extracted from a hole was 9 liters. Therefore, the 1192 

volume of the geogas extracted from 3 holes was 27 liters. The sulfide concentration 1193 

of the liquid collector was analyzed using the plasma spectrum method. We analyzed 1194 

the samples along 3 sections (sample numbers were 31, 74, and 20). The results 1195 

showed that the average sulfur contents of the 3 sections were 0.27, 1.40, and 32.81 1196 

μg ml
−1

 respectively (Tables 4–6), which may be translated into 1.00, 5.19, and 1197 

121.50 mg per cubic meter of geogas flow, respectively. There is earth degassing 1198 

phenomena in metallic and nonmetallic deposits. The giant gold deposits, such as the 1199 

Porcupine gold deposit in Canada, the Witwatersrand gold deposit in South Africa, 1200 

and the Muruntau gold deposit in Uzbekistan, exhibit upward vertical movement of 1201 

hydrocarbon gas. The Witwatersrand gold deposit has significant upward gas flow. In 1202 

one day, 36700 m
3
 of hydrocarbon gases degas from underground gold mining vents 1203 

and 5 × 10
8
 m

3 
of hydrocarbon gases degas from 3000m or deeper mines every year. 1204 

The Azerbaijan oil and gas region is strongly degassed, with 4 × 10
8
 m

3
 of gases 1205 

degassed every year (Du, 2009). The ascending gas flow rates were measured to be 1206 

between 60 × 10
−4

 and 4 cm
3
 min

−1
 m

−2
 horizontally projected borehole area at three 1207 

different sites by Malmqvist & Kristiansson (1984). Carbon dioxide concentrations 1208 

above sulfide mineralizations are often enhanced. Hidden sulfide mineralizations at a 1209 

depth of 200 m have been located in quartzite in areas such as Brittany, and sulphide 1210 

ores have been located in granite in Cornwall. Above mineralizations, carbon dioxide 1211 

in the soil gas has been found to increase to 10% from the normal concentration of 1%. 1212 

The carbon dioxide flow may be as large as 0.2 l m
−2

 h
−1

 (Hermansson et al. 1991). 1213 

The Dongshengmiao deposit lies in a seismically active zone. The Langshan 1214 

Mountain-front fault, in which minor earthquake activity frequently takes place and 1215 

where M=6 earthquakes have taken place three times in the twentieth century, passes 1216 

through the deposit. The release of geogas in active tectonic areas is widespread and 1217 

occurs at a significant level (Judd et al., 1997; Etiope, 1999; Mörner and Etiope, 1218 

2002). The CO2 emission flux of the Siena Graben Faults (Italy), Siena G. Arbia Fault 1219 

(Italy), Ustica Arso Fault (Italy), and San Andreas Fault (California) were 0.83–1123, 1220 

12.4–74.4, 77.3, and 0.4–23 kg m
–2 

year
–1

 respectively
 
(Etiope, 1995; 1999; Mörner 1221 

and Etiope, 2002; Lewicki and Brantley, 2000). These equate, respectively, to 1222 

0.02–26.94, 0.3–1.78, 1.85, and 0.01–0.55 cm
3
 m

−2 
s

−1
 if CO2 density is assumed to be 1223 

1.3401 kg m
-3

. The area of the Dongshengmiao deposit is 4.65 km
2
. The emission flux 1224 



 

51 
 

estimation of the Dongshengmiao deposit was 0.5 cm
3
 m

−2 
s

−1 
according to the 1225 

emission fluxes of the above-mentioned faults and deposits. Therefore, the estimated 1226 

degassing rate for the Dongshengmiao deposit was 2.325 m
3 

s
−1

. The distribution 1227 

areas of concealed sulfur ore deposits are different. The ore deposits with the 1228 

distribution areas of 1–12 km
2
 may have more deposits than other areas. Concealed 1229 

metal deposits containing sulfide minerals can be very extensive, such as the Killik 1230 

massive sulfide deposit in northeastern Turkey (Çiftçi et al., 2005), the Masa 1231 

Valverde blind massive sulfide deposit in Spain (Ruiz et al., 2002), and the Huize 1232 

carbonate-hosted Zn–Pb–(Ag) District in South China (Han et al., 2007). Concealed 1233 

sulfur nonmetallic deposits, such as gypsum and barite, are also widely distributed. 1234 

The number of concealed sulfide deposits is far greater than those of active volcanoes. 1235 

Under the climate-warming conditions, oxidation of sulfur-containing minerals is 1236 

particularly accelerated.” has been moved to a supplementary section.  1237 

“The estimated rate of degassing for the Dongshengmiao deposit calculated to be 1238 

2.325 m
3 

s
−1

.The mean sulfur content of the particles carried by the ascending geogas 1239 

flow for the Dongshengmiao deposit was calculated according to 45 mg/m
3
 1240 

(Supplement). The estimated annual sulfur emission from particles in the deposit was 1241 

3.254 tons. Qi et al. (2007) reported a flue gas amount of 527300 m
3
 h

-1
 from the 1242 

Huhehaote power plant in China and an exit particle concentration of 43.3 mg m
−3 

1243 

carried by the flue gas. The SO3 distribution range in fly ash in 14 power plants 1244 

(e.g.,Tangshan power plant, Gaojing power plant, and Zhengzhou power plant) was 1245 

reported to range between 0 and 1.05 %. The mean SO3 and sulfur contents in fly ash 1246 

were 0.27 % and 0.108 %, respectively. On the basis of these mean values, 21.305 1247 

tons of annual particulate sulfur emission occurred from the flue gas in the Huhehaote 1248 

power plant. The annual sulfur emission from the particles carried by ascending 1249 

geogas flow in the Dongshengmiao deposit was less than carried by the flue gas in the 1250 

Huhehaote power plant. However, the amount of concealed deposits is much more 1251 

than that of coal-burning power plants. Moreover, size of the particles carried by the 1252 

ascending geogas flow from concealed deposits is usually <500 nm. The mean 1253 

diameter of the particles carried by the flue gas in 9 samples obtained from four 1254 

coal-fired power plants in China were 19.71, 3.18, 5.43, 5.67, 130.94, 77.29, 12.99, 1255 

11.59, and 236.63 μm respectively (Zhang et al. 2007). The sizes of particles carried 1256 

by the ascending geogas flow from concealed deposits were lesser than those of the 1257 

particles carried by the flue gas from coal-fired power plants. Within a certain volume, 1258 

the particles were smaller and the number of particles was more. These small particles 1259 

are more capable of migration and have a significant health and environmental impact. 1260 

Therefore, attention must be paid to the particles carried by the ascending geogas flow 1261 

from concealed deposits. ” has been added. 1262 

 1263 

P. 14, line 415: “have high migration ability and” has been deleted. 1264 

 1265 

P. 15, line 433–P. 20, line 604: “Çiftçi, E., Kolayli, H., and Tokel, S.: Lead-arsenic 1266 

soil geochemical study as an exploration guide over the Killik volcanogenic massive 1267 

sulfide deposit, Northeastern Turkey, J. Geochem. Explor., 86, 49–59, 2005.”, “Du, L. 1268 
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T.: The new implication about oil-gas origin and outgassing of the earth obtained in 1269 

Russia, Ukraine, Azerbaijan in new century, Lithologic Reservoirs, 21(4), 1–9, 2009 1270 

(in Chinese with English abstract).”, “Etiope, G.: Migrazione e comportamento del 1271 

‘‘Geogas’’ in bacini argillosi. Ph.D. Thesis, Dept. Earth Sciences, University of Rome 1272 

‘‘La Sapienza’’, Extended abstract in Plinius (1996), 15, 90–94, 1995.”, “Etiope, G.: 1273 

Subsoil CO2 and CH4, and their advective transfer from faulted grassland to the 1274 

atmosphere, J. Geophys. Res., 104 (D14), 16889–16894, 1999.”, “Han, R. S., Liu, C. 1275 

Q., Huang, Z. L., Chen, J., Ma, D. Y., Lei, L., and Ma, G. S.: Geological features and 1276 

origin of the Huize carbonate-hosted Zn–Pb–(Ag) District, Yunnan, South China, Ore 1277 

Geol. Rev., 31, 360–383, 2007.”, “Hermansson, H.P., Akerblom, G., Chyssler, J., and 1278 

Linden, A.: Geogas: A Carrier or a Tracer. SKN Report No. 51. National Board for 1279 

Spent Nuclear Fuel, Stockolm, 1–66, 1991. ”, “Judd, A. G., Davies, J., Wilson, J., 1280 

Holmes, R., Baron, G., and Bryden, I.: Contributions to atmospheric methane by 1281 

natural seepages on the UK continental shelf, Mar. Geol., 137, 165–189, 1997. 1282 
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