

1 Sulfur-containing particles emitted by concealed sulfide ore deposits: An
2 unknown source of sulfur-containing particles in the atmosphere

3

4 Jianjin Cao^{a,b*}, Yingkui Li^a, Tao Jiang^a, Guai Hu^a

5 a School of Earth Science and Geological Engineering, Sun Yat-sen University,
6 Guangzhou, People's Republic of China 510275

7 b Guangdong Key Laboratory of Geological Process and Mineral Resources
8 Exploration, Guangzhou, Guangdong 510275, P.R. China

9

10 Abstract

11 Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels,
12 volcanic eruptions, and animal feeding operations, have attracted considerable
13 attention. In this study, we collected particles carried by geogas flows ascending
14 through soil, geogas flows above the soil that had passed through the soil, and geogas
15 flows ascending through deep faults of concealed sulfide ore deposits and analyzed
16 them using transmission electron microscopy. Numerous crystalline and amorphous
17 sulfur-containing particles or particle aggregations were found in the ascending
18 geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg,
19 Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred
20 nanometers in diameter with either regular or irregular morphology. The
21 sulfur-containing particles originated from deep-seated weathering or faulting
22 products of concealed sulfide ore deposits. The particles suspended in the ascending

23 geogas flow migrated through faults from deep-seated sources to the atmosphere. This
24 is a previously unknown source of the atmospheric particles. This paper reports, for
25 the first time, the emission of sulfur-containing particles into the atmosphere from
26 concealed sulfide ore deposits. The climatic and ecological influences of these
27 sulfur-containing particles and particle aggregations should be assessed.

28 Keywords: sulfur-containing particles, ascending gas flow, unknown source, sulfide
29 ore deposits.

30 *Corresponding author. Tel.: 862084035033; Fax: 862084035033

31 E-mail address: eescjj@mail.sysu.edu.cn

32

33 1. Introduction

34 Sources of sulfur oxides, sulfates, and organic sulfur compounds are diverse and

35 associated with natural and anthropogenic activities. Known sources of sulfur are

36 volatile sulfur compounds derived from animal feeding operations (Trabue et al.,

37 2008), and aerobic decomposition of food waste (Wu et al., 2010), biogenic sulfur

38 from rice paddies (Yang et al., 1996; Yang et al., 1998) and the Subantarctic and

39 Antarctic Oceans (Berresheim, 1987), sulfur gas (H_2S and SO_2) from geothermal

40 fields (Kristmannsdottir et al., 2000), organic sulfur compounds from sediments and

41 immature crude oil (Sinninghe Damsté et al., 1988), sulfur oxides from the oxidation

42 of fossil fuels (Soleimani et al., 2007), and sulfur dioxide from acid factories and

43 volcanic eruptions (Wong 1978; Sweeney et al., 2008). Sulfate particles, which are

44 important anthropogenic aerosols and influencing climate (Pósfai et al., 1997;

45 Williams et al., 2001). Furthermore, volcanic activity is a major contributor of sulfur

46 to the atmosphere (Zreda-Gostynska et al., 1993; Graf et al., 1998; Streets et al., 2000;

47 Seino et al., 2004; Bhugwant et al., 2009; Bao et al., 2010; Gieré and Querol, 2010),

48 particularly in countries such as Japan, Indonesia, Réunion Island, the Philippines,

49 Iceland, Guatemala, and New Zealand (Rose et al., 1986; Andres et al., 1993; Streets

50 et al., 2000; Seino et al., 2004; Chenet et al., 2005; Bhugwant et al., 2009).

51 Stratospheric sulfur adds very little to the environmental consequences of the

52 anthropogenic sulfur that is released in the troposphere and deposits within days to

53 weeks (Wong, 1978; Chenet et al., 2005). Existing research shows that SO_2 is

54 oxidized to SO_4^{2-} in both the gas and liquid phases. Moreover, sulfate aerosols can

55 directly affect the climate (Graf et al., 1998). In our previous work, particles carried
56 by an ascending geogas flow in the soil (Holub et al., 1999, 2001; Cao et al., 2009,
57 2010b; Cao et al., 2011; Liu et al., 2011; Wei et al., 2013) were studied and found to
58 contain sulfur. Further research showed that sulfur-containing particles carried by
59 ascending geogas flows can be transported through the soil layers and into the
60 atmosphere. Sulfur-containing particles suspended in the ascending geogas flow
61 migrate through faults from deep-seated concealed sulfide ore deposits to the Earth's
62 surface. These particles are a previously unknown source of sulfur-containing
63 particles in the atmosphere. This paper reports, for the first time, the emission of
64 sulfur-containing particles into the atmosphere from concealed sulfide ore deposits.
65 Because concealed sulfide ore deposits are widely distributed, the influence of
66 sulfur-containing particles derived from them is important. The climatic and
67 ecological effects of these particles should be studied.

68 2. Methods

69 Particles carried by an ascending geogas flow above the soil (that had flown through
70 the soil), in the soil, and in deep-seated faults were collected at the Dongshengmiao
71 polymetallic sulfide deposit in the Inner Mongolia Autonomous Region, China.
72 Particles carried by the ascending gas flow in the soil were also collected at other
73 concealed ore deposits containing sulfide minerals, such as the Kafang copper deposit
74 of the southern Yunnan Province, the Yongshengde copper deposit in northeastern
75 Yunnan, and the Qingmingshan copper–nickel sulfide deposit in Guangxi Province,
76 China.

77 Particles transported by the ascending geogas flow above the soil (that had flown
78 through the soil) were sampled using stainless steel tubes and carbon-coated nickel
79 transmission electron microscopy (TEM) grids. The length of the stainless steel tubes
80 was 40 cm and their diameter was 2.8 cm. These tubes were inserted vertically into
81 the soil to a depth of about 30 cm. A carbon-coated nickel TEM grid was fixed at the
82 end of the stainless steel tubes. The ascending geogas flow in the soil moved into the
83 stainless steel tubes and naturally passed through the 30 cm soil layer. Then, the gas
84 flow passed through the 10 cm of the empty stainless steel tubes above the soil.
85 Finally, the geogas flow arrived at the top of the tubes. Particles carried by the geogas
86 flow were adsorbed onto the carbon-coated nickel TEM grid. A protective device was
87 installed on the outside of the steel tubes to ensure that particles sampled were those
88 carried by the ascending geogas flow. The protective device is a cylindrical
89 polyethyleneterephthalate bottle. A small hole at the side of the bottle allowed the
90 outflow of ascending geogas flow; however, adsorption material placed in the hole did
91 not allow the external particles to enter. Sampling devices were installed between July
92 25, and August 23, 2013, and the carbon-coated nickel TEM grids were retrieved on
93 September 8, 2013. Sampling sites were distributed across a fault above the concealed
94 sulfide ore bodies of the Dongshengmiao polymetallic sulfide deposit.
95 Particles transported by the ascending geogas flow in the soil were collected using
96 ordinary plastic funnels. An inverted funnel was inserted in a hole that was 60–80 cm
97 deep and backfilled with soil, and a TEM grid was fixed at the end of the funnel spout
98 with nylon net. The setup was protected from contamination using plastic pipes and

99 cups. The TEM grids were retrieved after 60 days.

100 Particles carried by ascending geogas flows in deep-seated faults were sampled using

101 two methods. The first method used an active sampling device with a vacuum pump,

102 polyvinyl chloride (PVC) pipe and carbon-coated nickel TEM grid as the main

103 components. One end of the PVC pipe was connected with a tubing to the pump. A

104 drilling steel was inserted slantwise into the fault. The inserted depth was 30–50 cm.

105 As the drilling steel was pulled out, the PVC pipe was inserted into the hole. The PVC

106 pipe was compacted using fault gouge. The impurity gases in the PVC pipe were

107 pumped out using the vacuum pump, then, the PVC pipe was quickly sealed. A day

108 later, we connected a tube equipped with a carbon-coated nickel TEM grid to the PVC

109 pipe. The gas was pumped using a vacuum pump and flowed through the TEM grid

110 for 1 to 2 hours. Particles carried by the gas were collected by the TEM grid. Finally,

111 the carbon-coated nickel TEM grid was removed and sealed in a sample cell. The

112 second method did not use a vacuum pump. A carbon-coated nickel TEM grid was

113 fixed to the end of the PVC pipe. The ascending geogas flow in the fault flowed into

114 the PVC pipe and arrived at the top of the PVC pipe naturally. The particles carried by

115 the geogas flows in the faults were adsorbed onto the carbon-coated nickel grid. The

116 sampling devices were installed on August 3–10, 2013, and the TEM grids were

117 retrieved on September 7, 2013.

118 High-resolution TEM analyses were performed using a Tecnai G2 F30 S-TWIN

119 instrument at Yangzhou University, China, using an accelerating voltage of 300 kV.

120 The grids were checked using TEM before sampling to ensure they were devoid of

121 particles.

122 3. Results

123 3.1 Sulfur-containing particles carried by an ascending geogas flow above the soil
124 (that had flown through the soil)

125 According to the TEM analysis, particles containing high levels of S, O, Pb, Zn, Fe,
126 Hg, As, etc, were found in the ascending gas flows above the soil above the
127 Dongshengmiao polymetallic sulfide deposit. Table 1 provides the number of
128 sulfur-containing particles or particle aggregations that were found on the 100 $\mu\text{m} \times$
129 100 μm TEM grid. In general, one aggregation included more than five particles.

130 Figure 1 shows an elliptical particle (ID: 1) having a diameter of 500 nm. The particle
131 contains 78.17% S and 18.47% O (Table 2). Its O to S atomic ratio is 0.47. Figure 2
132 shows a particle aggregation (ID: 2) that consists of several small particles having a
133 diameter of 3–8 nm. It contains 31.23% S and 59.29% Hg. The spacing of the lattice
134 fringes was measured to be 0.333 nm. Figure 3 shows particle aggregations (ID: 3)
135 with sizes of less than 100 nm. Their O to S atomic ratio is 0.51. The particle
136 aggregations contain 14.48% Pb. The particle (ID: 4) illustrated in Figure 4 is
137 elliptical with a diameter of 200 nm and contains 18.55% As, 54.2% Pb, and 8.34%
138 Zn. The particle (ID: 5) shown in Figure 5 contains 2.25% Co. It is amorphous and
139 has an O to S atomic ratio of 2.91. The particle aggregation (ID: 6) illustrated in
140 Figure 6 contains 62.39% Cu and consists of small particles each having a diameter of
141 5–10 nm. Figure 7 presents a particle aggregation (ID: 7) that consists of many small
142 particles with diameters of about 5 nm, and contains 69.28% Pb.

143 3.2 Sulfur-containing particles carried by an ascending gas flow in the soil

144 Numerous sulfur-containing particles transported by an ascending gas flow were

145 found in the soil over sulfide ore deposits. Figure 8 shows an aggregation of such

146 particles from the Dongshengmiao polymetallic sulfide deposit. The aggregation (ID:

147 8) may be composed of CaSO_4 with trace amounts of K, Mg, Fe, and Si. It is regularly

148 shaped and 300 nm in size. The selected area electron diffraction pattern shows that

149 the aggregation is polycrystalline, possibly gypsum. Figure 9 shows a TEM image of

150 a sulfur-containing particle (ID: 9) from the Kafang copper deposit, South China.

151 Sulfur accounts for 63.99% of the particle (Table 3), and its O to S atomic ratio is 0.83.

152 Its K content is 8.93%, and its size is 330 nm. Figure 10 shows a regularly polygonal

153 particle (ID: 10) from the Yongshengde copper deposit, China. Its O to S atomic ratio

154 is 3.60, and its Fe and F contents are 9.94% and 1.71%, respectively. Figure 11 shows

155 a sulfur-containing particle (ID: 11) from the Qingmingshan Cu–Ni sulfide deposit,

156 Guangxi Province, China. Its O to S atomic ratio is 2.51. The particle contains 2.03%

157 Co and is 300 nm \times 400 nm in size. The selected area electron diffraction pattern

158 shows that the particle is amorphous.

159 3.3 Sulfur-containing particles carried by ascending geogas flows in deep-seated

160 faults

161 Sulfur-containing particles were found in samples obtained using two methods from

162 the deep fault gas of the Dongshengmiao polymetallic sulfide deposit. Figure 12

163 shows a sulfur-containing particle aggregation (ID: 12) that was obtained using the

164 vacuum pump from the deep-seated fault gas near a concealed ore body. The

165 aggregation contains O, Na, Si, S, K, Fe, Zn, and Pb. The S content is 23.8%. Figure
166 13 shows a particle aggregation (ID: 13) that was obtained using a PVC pipe from a
167 fault near a concealed ore body. The ascending gas flow arrived at the top of the PVC
168 pipe naturally, and the particles were adsorbed by a TEM nickel grid. The particle
169 aggregation consists of many small particles that are 4–15 nm in diameter. The small
170 particles are elliptical and crystalline, with 0.302 nm spacing of the lattice fringes, and
171 and their main components are O and S. Figure 14 shows a sulfur-containing particle
172 (ID: 14) that was sampled using a PVC pipe in a fault above a concealed ore body.
173 The vertical distance from the sample to the concealed ore body was 85 m. The
174 vertical distance from the sample to the Earth's surface was 230 m.

175 3.4 Sulfur-containing particles in deep-seated fault gouges and oxidized ores
176 Sulfur-containing particles were also found in deep-seated fault gouges and oxidized
177 zones of the Dongshengmiao polymetallic sulfide deposit. For example, Figure 15
178 shows a sulfur-containing particle (ID: 15) from the oxidized zone. According to its
179 atomic percentage, it contains SO_4^{2-} and may be Sr, Ba sulfate, and Ti oxide. Its size
180 is 200 nm × 400 nm. Figure 16 shows a rhombus-shaped particle (ID: 16) from a
181 deep-seated fault gouge. Its main components are O, S, and Ca, with minor amounts
182 of Fe, Co, and Si.

183 Overall, the sulfur-containing particles or particle aggregations transported by
184 ascending geogas flows can be both regular and irregular in shape and either
185 crystalline or amorphous. The particles or particle aggregations contain Ca, K, Mg, Fe,
186 Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, and Si, as well as O and S.

187 The number of sulfur-containing particles in the ascending geogas flows in
188 non-sulfur-rich areas is much lower than that from the sulfide ore deposits.
189 Furthermore, the overwhelming majority of particles in non-sulfur-rich areas have a
190 low sulphur content. These areas are different from those with the sulfide ore deposits,
191 in which sulfur-containing particles are densely distributed and are present at high
192 levels in the ascending geogas flows.

193 4. Discussion and conclusions

194 Gold particles are formed by post-mineralization fault activity, oxidation, and
195 bacterial weathering of primary minerals (Cao et al., 2010a). Deep-seated gold
196 particles can be transported to the surface by an ascending gas flow, as Brownian
197 motion enables the gold particles in the ascending gas flow to overcome the effect of
198 gravity (Cao et al., 2010a; Cao, 2011). We assume that the same mechanism applies to
199 sulfur-containing particles or particle aggregations. Primary sulfur-containing
200 minerals are transformed into particles by epigenetic reworking, such as
201 post-mineralization fault activity, in which S^{2-} in the sulfide minerals is oxidized to
202 S^{6+} . In this study, the sulfur-containing particles from fault gouges and oxidized ores
203 were found, indicating that these particles were formed by the faulting and oxidation
204 of ores. Faulting and oxidation are well-developed in the Dongshengmiao
205 polymetallic sulfide deposit and other sulfide deposits. This finding indicates that
206 faulting and oxidation play an important role in particle formation.

207 Sulfur-containing particles may be transported to the surface by an ascending geogas
208 flow through faults (Etiope and Martinelli, 2002; Cao et al., 2010a). Material carried

209 by an ascending geogas flow in the soil in the Xuanhan gas field, Sichuan Province,
210 China was sampled and measured using an instrumental neutron activation analysis.
211 Analysis of trace element anomalies has shown the gas-bearing ring fracture structure
212 to be 4000 m deep, suggesting that particles carried by an ascending geogas flow can
213 be transported over long distances (Yang et al., 2000). The gas flow migrates upward
214 because of the temperature difference and the pressure differences between the Earth's
215 interior and its surface is the reason that the gas flow migrate upward (Tong and Li,
216 1999; Etiope and Martinelli, 2002; Cao et al., 2010a). In this study, Sulfide-containing
217 particles suspended in gas above the soil were found, showing that these particles can
218 move through the soil and get into the atmosphere.

219 The probability that these particles are transported by an ascending geogas flow
220 originating in the soil is low. In the study area, the soil consists of kaolinite, halloysite,
221 montmorillonite, illite, chlorite, hematite, quartz, goethite, and similar minerals.
222 Kaolinite is the main mineral, and the sulfur content in the soil is low. Therefore, this
223 soil is clearly not a probable source of sulfur-containing particles transported by an
224 ascending geogas flow. Furthermore, there is no correlation between the numbers of
225 these particles and those of sulfur-containing particles in the soil solid phase.
226 Sulfur-containing particles are clearly enriched in soils above deep sulfur-rich sources
227 because sulfur-containing particles transported by an ascending geogas flow were
228 found in 16 deep sulfide ore bodies that were studied. This result indicates a close
229 relationship between sulfur-containing particles in the gas flow and deep-seated
230 sulfide ore bodies. Other rock types, such as limestone, siltstone, sandstone, and

231 mudstone, do not contain sufficient sulfur to become sources of sulfur-containing
232 particles in an ascending gas flow; for example, the mean sulfur concentrations of the
233 Devonian limestone, mudstone, siltstone, and sandstone in the northern Guangdong
234 Province, China are 610×10^{-6} (68 samples), 80×10^{-6} (25 samples), 160×10^{-6} (33
235 samples), and 110×10^{-6} sulfur (4 samples), respectively.

236 The estimated rate of degassing for the Dongshengmiao deposit calculated to be 2.325
237 $\text{m}^3 \text{s}^{-1}$. The mean sulfur content of the particles carried by the ascending geogas flow
238 for the Dongshengmiao deposit was calculated according to 45 mg/m^3 (Supplement).

239 The estimated annual sulfur emission from particles in the deposit was 3.254 tons. Qi
240 et al. (2007) reported a flue gas amount of $527300 \text{ m}^3 \text{ h}^{-1}$ from the Huhehaote power
241 plant in China and an exit particle concentration of 43.3 mg m^{-3} carried by the flue
242 gas. The SO_3 distribution range in fly ash in 14 power plants (e.g., Tangshan power
243 plant, Gaojing power plant, and Zhengzhou power plant) was reported to range
244 between 0 and 1.05 %. The mean SO_3 and sulfur contents in fly ash were 0.27 % and
245 0.108 %, respectively. On the basis of these mean values, 21.305 tons of annual
246 particulate sulfur emission occurred from the flue gas in the Huhehaote power plant.

247 The annual sulfur emission from the particles carried by ascending geogas flow in the
248 Dongshengmiao deposit was less than carried by the flue gas in the Huhehaote power
249 plant. However, the amount of concealed deposits is much more than that of
250 coal-burning power plants. Moreover, size of the particles carried by the ascending
251 geogas flow from concealed deposits is usually $<500 \text{ nm}$. The mean diameter of the
252 particles carried by the flue gas in 9 samples obtained from four coal-fired power

253 plants in China were 19.71, 3.18, 5.43, 5.67, 130.94, 77.29, 12.99, 11.59, and 236.63
254 μm respectively (Zhang et al. 2007). The sizes of particles carried by the ascending
255 geogas flow from concealed deposits were lesser than those of the particles carried by
256 the flue gas from coal-fired power plants. Within a certain volume, the particles were
257 smaller and the number of particles was more. These small particles are more capable
258 of migration and have a significant health and environmental impact. Therefore,
259 attention must be paid to the particles carried by the ascending geogas flow from
260 concealed deposits.

261 Such sulfur-containing particles enter the atmosphere. Several studies have discussed
262 the direct effects of sulfate particles on the climate (Liu et al., 2009). Some
263 researchers have suggested that sulfur-containing particles can reduce atmospheric
264 temperature or result in climate warming. Streets et al. (2000) suggested that because
265 sulfate aerosols play a vital role in cooling the atmosphere, a reduction in sulfur
266 dioxide emissions in the future would result in increased global warming.
267 Furthermore, aerosol sulfate has been identified as an important contributor to
268 sunlight scattering (Lelieveld and Heintzenberg, 1992; Kim et al., 2001). At the top of
269 the atmosphere above East Asia, SO_4^{2-} radiative forcing is -2 to -10 W m^{-2} over land
270 and -5 to -15 W m^{-2} over ocean (Gao et al., 2014). Niemeier et al. (2011) revealed
271 that an increase in the SO_2 emission rate does not lead to a similar increase in
272 radiative forcing because, as the size of the aerosols increases, their lifetime decreases.
273 It is thus possible that the sulfur-containing particles transported by an ascending
274 geogas flow have an effect on the climate and should, therefore, be evaluated.

275 Sulfate particles can be transported into the lungs leading to respiratory illnesses
276 (World Bank Group, 1999; Soleimani et al., 2007). In particular, the sulfur-containing
277 particles contain high levels of toxic Pb, Hg, Cu, and As. In nature, sulfur usually
278 combines with Pb, Hg, Cu, As, Ni, Cd, and Sb, which are toxic to organisms, to form
279 sulfide deposits. The sulfur-containing particles originating from sulfide deposits
280 commonly contain toxic elements. This phenomenon has been confirmed by EDX
281 analysis of particles. The particle sizes carried by the ascending gas flow are usually
282 less than 500 nm. The size is only one-fifth of the upper size limit of PM2.5. Geogas
283 particles undergo long-distance migration. They can remain in the atmosphere for
284 long periods and can get into bronchioles and alveoli, affecting the ventilative
285 function of lung. They can also enter the blood. The possible relationship between the
286 occurrence of sulfur-containing particles transported by an ascending geogas flow and
287 endemic diseases in the vicinity of sulfur-containing deposits should be investigated.
288 It is probable that sulfur-containing particles transported by the ascending geogas
289 flows in the soil affect the soil system; for example, sulfur-containing particles can
290 affect both soil biota and enzymatic activities, resulting in changes in the soil structure,
291 nutrient cycling, and organic matter decomposition and retention. Sulfur-containing
292 particles may directly catalyze organic matter decomposition. Furthermore, the
293 potential use of such particles as fertilizers for rice plants needs to be investigated.

294 Acknowledgments

295 Financial support from the National Natural Science Foundation of China (Grant Nos.
296 41030425, 41072263, 40773037, and 40673044) and the National High-Tech

297 Research and Development Program of China (863 Program; Grant No.
298 2008AA06Z101) are gratefully acknowledged.

299 References

300 Andres, R. J., Rose, W. I., Stoiber, R. E., Williams, S. N., Mat ás, O., and Morales, R.:
301 A summary of sulfur dioxide emission rate measurements from Guatemalan
302 volcanoes, *B. Volcanol.*, 55, 379–388, 1993.

303 Bao, H. M., Yu, S., and Tong, D. Q.: Massive volcanic SO₂ oxidation and sulphate
304 aerosol deposition in Cenozoic North America, *Nature*, 465, 909–912, 2010.

305 Berresheim H.: Biogenic sulfur emissions from the Subantarctic and Antarctic Oceans,
306 *J. Geophys. Res.*, 92, 13245–13262, 1987.

307 Bhugwant, C., Si  a, B., Bessafi, M., Staudacher, T., and Ecormier, J.: Atmospheric
308 sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de
309 La Fournaise volcano: Implications for human health and environmental changes,
310 *J. Volcanol. Geoth. Res.*, 184, 208–224, 2009.

311 Cao, J. J.: Migration mechanisms of gold nanoparticles explored in geogas of the
312 Hetai ore district, southern China, *Geochem. J.*, 45, e9–e13, 2011.

313 Cao, J. J., Hu, R. Z., Liang, Z. R., and Peng, Z. L.: TEM observation of
314 geogas-carried particles from the Changkeng concealed gold deposit, Guangdong
315 Province, South China, *J. Geochem. Explor.* 101, 247–253, 2009.

316 Cao, J. J., Hu, X. Y., Jiang, Z. T., Li, H. W., and Zou, X. Z.: Simulation of adsorption
317 of gold nanoparticles carried by gas ascending from the Earth's interior in
318 alluvial cover of the middle-lower reaches of the Yangtze River, *Geofluids*, 10,

319 438–446, 2010a.

320 Cao, J. J., Liu, C., Xiong, Z. H., and Qin, T. R.: 2010b, Particles carried by ascending
321 gas flow at the Tongchanghe copper mine, Guizhou Province, China, *Science
322 China Earth Sciences*, 53, 1647–1654, 2010b.

323 Cao, J. J., Liu, C., Zhang, P., Li, Y. P., and Xiong, Z. H.: The characteristic of geogas
324 particles from Daheishan basalt copper deposit in the Huize county of Yunnan,
325 Mital Mine, 113–115, 2011 (in Chinese with English abstract).

326 Chenet, A. L., Fluteau, F., and Courtillot, V.: Modelling massive sulfate aerosol
327 pollution, following the large 1783 Laki basaltic eruption, *Earth Planet. Sc. Lett.*,
328 236, 721–731, 2005.

329 Etiope, G., and Martinelli, G., Migration of carrier and trace gases in the geosphere: an
330 overview, *Phys. Earth Planet. In.*, 129, 185–204, 2002.

331 Gao Y., Zhao C., Liu X. H., Zhang, M. G., and Leung, L. R.: WRF-Chem simulations
332 of aerosols and anthropogenic aerosol radiative forcing in East Asia. *Atmos.
333 Environ.*, 92, 250–266, 2014.

334 Gieré R., and Querol, X.: 2010, Atmospheric particles: solid particulate matter in the
335 atmosphere. *Elements*, 6, 215–222, 2010.

336 Graf, H.-F., Langmann, B., and Feichter, J.: The contribution of Earth degassing to the
337 atmospheric sulfur budget, *Chem. Geol.*, 147, 131–145, 1998.

338 Holub, R. F., Hovorka, J., Reimer, G. M., Honeyman, B. D., Hopke, P. K., and Smrz P.
339 K.: Further investigations of the "geoaerosol" phenomenon, *J. Aerosol Sci.*, 32,
340 61–70, 2001.

341 Holub, R. F., Reimer, G. M., Hopke, P. K., Hovorka, J., Krcmar, B., and Smrz, P. K.:
342 “Geoaerosols”: their origin, transport and paradoxical behavior: a challenge to
343 aerosol science, *J. Aerosol Sci.*, 30, S111–S112, 1999.

344 Kim, B. G., Park, S. U., and Han, J. S: Transport of SO₂ and aerosol over the Yellow
345 sea, *Atmos. Environ.*, 35, 727–737, 2001.

346 Kristmannsdottir, H., Sigurgeirsson, M., Armannsson, H., Hjartarson, H., and
347 Olafsson, M., Sulfur gas emissions from geothermal power plants in Iceland,
348 Geothermics, 29, 525–538, 2000.

349 Lelieveld, J., and Heintzenberg, J.: Sulfate cooling effect on climate through in-cloud
350 oxidation of anthropogenic SO₂, *Science*, 258, 117–120, 1992.

351 Liu, C., Cao, J. J., and Ke, H. L.: Geogas characteristic of Yongshengde copper ores in
352 the Northeastern Yunnan, China, *Geology of Chemical Minerals*, 33, 201–207,
353 2011(in Chinese with English abstract).

354 Liu, Y., Sun, J. R., and Yang, B.: The effects of black carbon and sulfate aerosols in
355 China regions on East Asia monsoons, *Tellus B*, 61, 642–656, 2009.

356 Niemeier, U., Schmidt, H., and Timmreck, C.: The dependency of geoengineered
357 sulfate aerosol on the emission strategy, *Atmos. Sci. Lett. Special Issue: Geoengineering*, 12, 189–194, 2011.

359 Pósfai, M., Anderson, J. R., and Buseck, P. R.: Soot and sulfate aerosol particles in the
360 remote marine atmosphere, in: *Geological Society of America, 1997 annual meeting, Abstracts with Programs - Geological Society of America*, 29, 357,
361 1997.

363 Qi, L. Q., Yuan, Y.T., and Liu, J.: Current situations of emission and collection on fly
364 ash of power plants in China: International Conference on Power
365 Engineering-2007, Hangzhou, China, 23 – 27 October 2007, 766 – 772, 2007.

366 Rose, W. I., Chuan, R. L., Giggenbach, W. F., Kyle, P. R., and Symonds, R. B.: Rates
367 of sulfur dioxide and particle emissions from White Island volcano, New
368 Zealand, and an estimate of the total flux of major gaseous species, B. Volcanol.,
369 48, 181–188, 1986.

370 Seino, N., Sasaki, H., Sato, J., and Chiba, M.: High-resolution simulation of volcanic
371 sulfur dioxide dispersion over the Miyake Island, *Atmos. Environ.*, 38,
372 7073–7081, 2004.

373 Sinninghe Damst   J. S., Irene, W., Rijpstra, C., de Leeuw, J. W., and Schenck, P. A.:
374 1988, Origin of organic sulfur compounds and sulfur-containing high molecular
375 weight substances in sediments and immature crude oils, *Org. Geochem.*, 13,
376 593-606, 1988.

377 Soleimani, M., Bassi, A., and Margaritis A.: Biodesulfurization of refractory organic
378 sulfur compounds in fossil fuels, *Biotechnol. Adv.*, 25, 570–596, 2007.

379 Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K.: Sulfur dioxide emissions in Asia
380 in the period 1985–1997, *Atmos. Environ.*, 34, 4413–4424, 2000.

381 Sweeney, D., Kyle, P. R., and Oppenheimer, C.: Sulfur dioxide emissions and
382 degassing behavior of Erebus volcano, Antarctica, *J. Volcanol. Geoth. Res.*, 177,
383 725–733, 2008.

384 Tong, C. H., and Li, J. C.: A new method searching for concealed mineral resources:

385 geogas prospecting based on nuclear analysis and accumulation sampling, J.
386 China Univ. Geosci., 10, 329–332, 1999.

387 Trabue, S., Scoggin, K., Mitloehner, F., Li, H., Burns, R., and Xin, H. W.: Field
388 sampling method for quantifying volatile sulfur compounds from animal feeding
389 operations, Atmos. Environ., 42, 3332–3341, 2008.

390 Wei, X. J., Cao, J. J., Holub, R. F., Hopke, P. K., and Zhao, S, J.: TEM study of
391 geogas-transported nanoparticles from the Fankou Lead-Zinc Deposit,
392 Guangdong Province, South China, J. Geochem. Explor., 128, 124–135, 2013.

393 Williams, K. D., Jones, A., Roberts, D. L., Senior, C. A., and Woodage, M. J.: The
394 response of the climate system to the indirect effects of anthropogenic sulfate
395 aerosol, Clim. Dynam., 17, 845–856, 2001.

396 Wong, M. H.: An ecological survey of the effect of sulfur dioxide emitted from an
397 Acid Work Factory, B. Environ. Contam. Tox., 19, 715–723, 1978.

398 World Bank Group: Pollution prevention and abatement handbook: towards cleaner
399 production, World Bank Group Publishers, Washington DC, 1999, 1998.

400 Wu, T., Wang, X. M., Li, D. J., and Yi, Z. G.: Emission of volatile organic sulfur
401 compounds (VOSCs) during aerobic decomposition of food wastes, Atmos.
402 Environ., 44, 5065–5071, 2010.

403 Yang, F. G., and Tong, C. H.: Geogas anomaly and mechanism in Xuanhan gas field,
404 Earth Science-Journal of China University of Geosciences, 2000, 25, 103–106
405 (in Chinese with English abstract).

406 Yang, Z., Kanda, K., Tsuruta, H., and Minami, K.: Measurement of biogenic sulfur

407 gases emission from some Chinese and Japanese soils, *Atmos. Environ.*, 30,
408 2399–2405, 1996.

409 Yang, Z., Kong, U. L., Zhang, J., Wang, L., and Xia, S.: Emission of biogenic sulfur
410 gases from Chinese rice paddies, *Sci. Total Environ.*, 224, 1–8, 1998.

411 Zhang, C. F., Yao, Q., and Sun, J. M.: Characteristics of particulate matter from
412 emissions of four typical coal-fired power plants in China, *Fuel Process Technol.*,
413 86, 757– 768, 2005.

414 Zreda-Gostynska, G., Kyle, P., and Finnegan, D.: Chlorine, fluorine, and sulfur
415 emissions from Mount Erebus, Antarctica and estimated contributions to the
416 Antarctic atmosphere, *Geophys. Res. Lett.*, 20, 1959–1962, 1993.

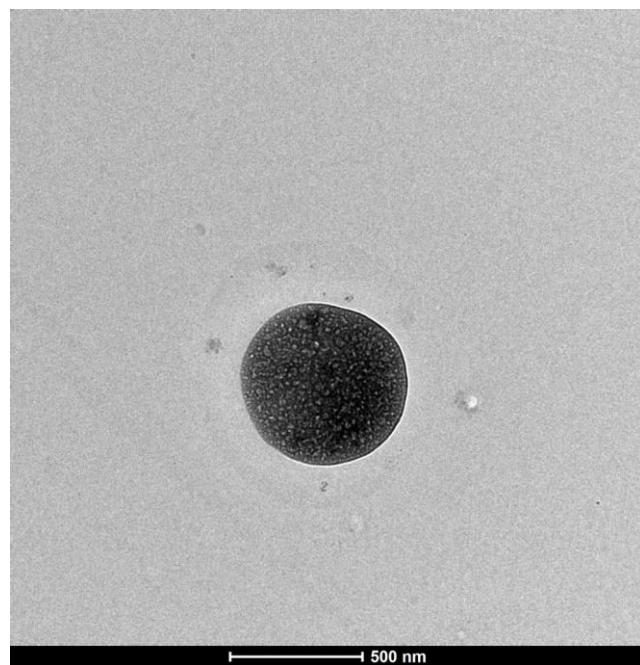
417

418

419

420

421


422

423

424

425

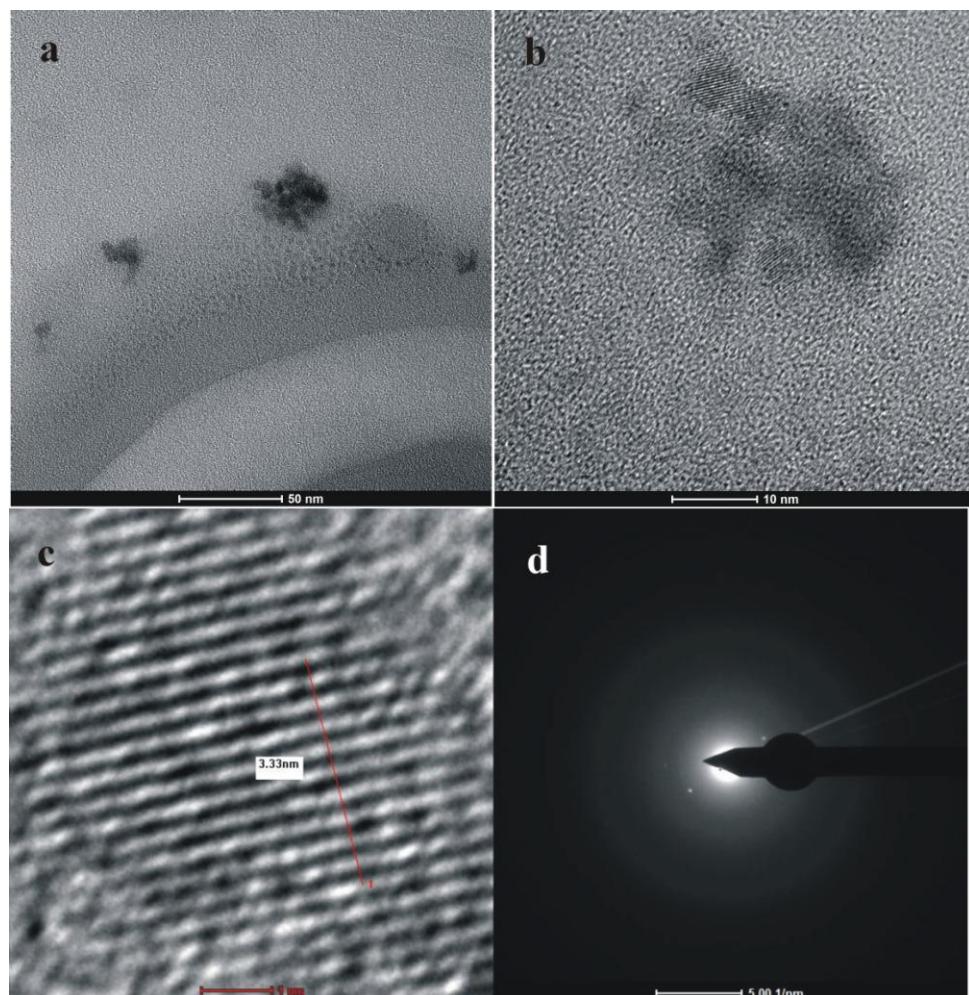
426

427 Fig. 1 TEM image of an S-, O-, and Si-containing particle obtained from an ascending
428 gas flow above the soil over the Dongshengmiao deposit.

429

430

431


432

433

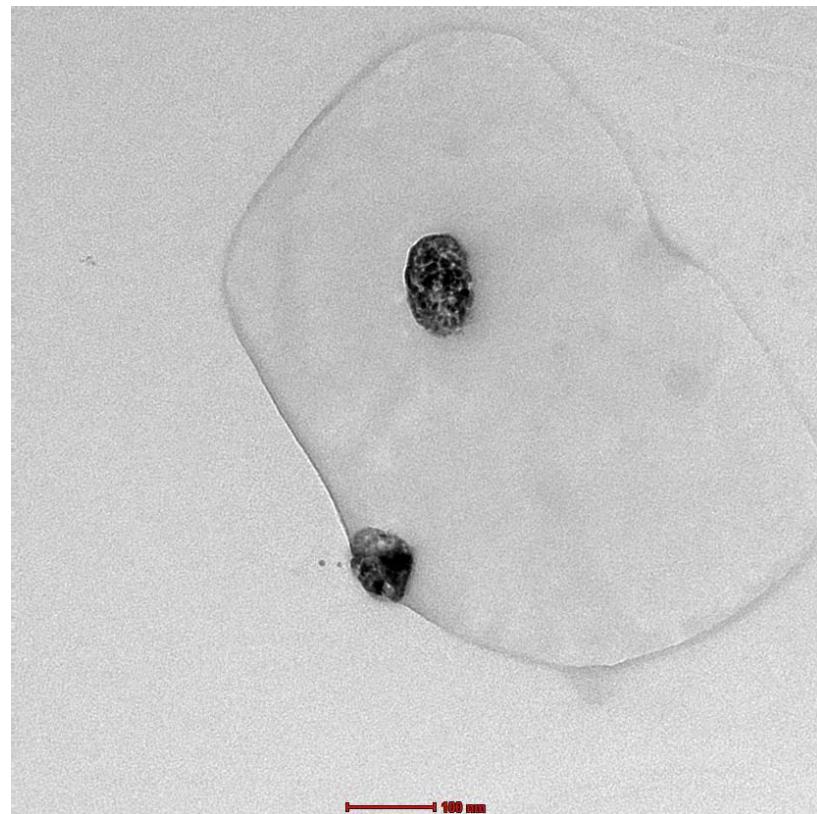
434

435

436

437 Fig. 2(a) TEM image, (b, c) high-resolution (HRTEM) images, and (d) selected area
438 electron diffraction (SAED) pattern of an S-, O-, Hg-containing particle aggregation
439 obtained from an ascending gas flow above the soil over the Dongshengmiao deposit.

440


441

442

443

444

445

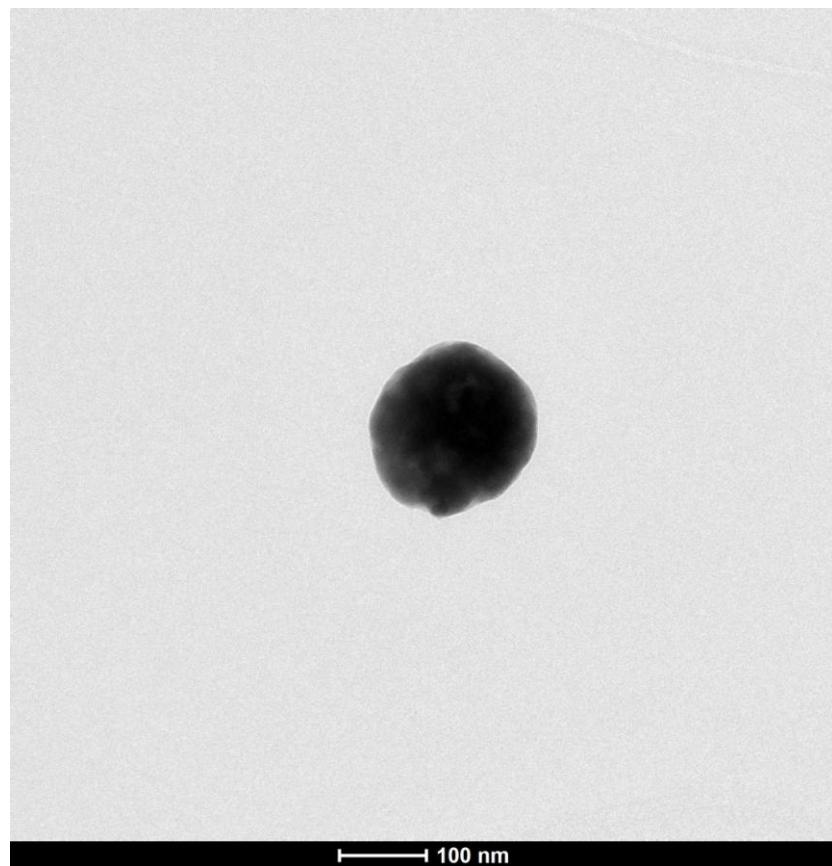
446

447 Fig. 3 TEM image of S-, O-, K-, and Pb-containing particle aggregations obtained
448 from an ascending gas flow above the soil over the Dongshengmiao deposit.

449

450

451


452

453

454

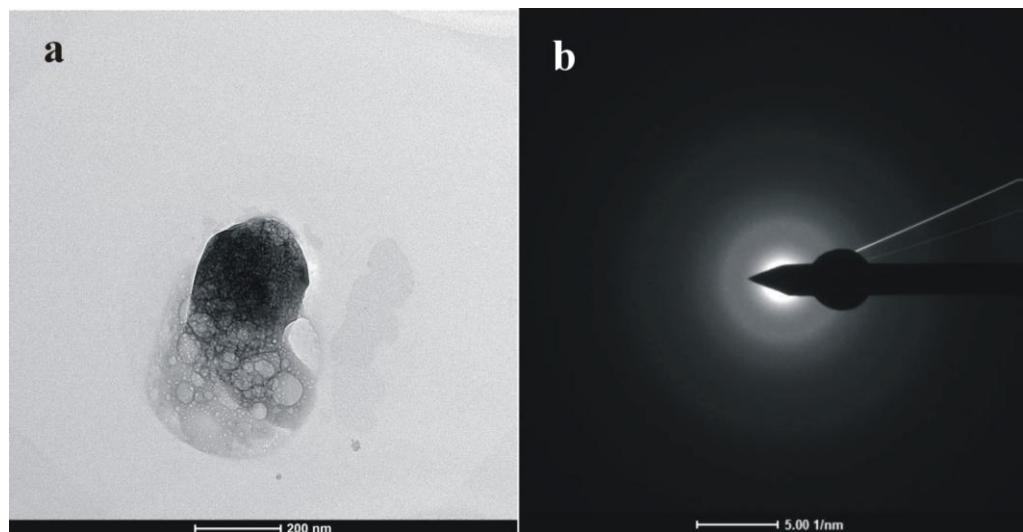
455

456

457

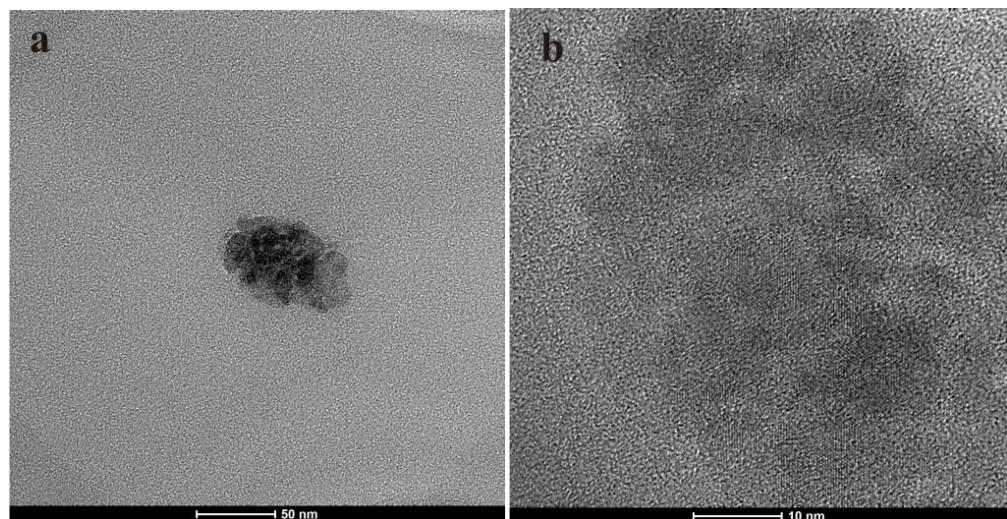
458

459 Fig. 4 TEM image of an S-, O-, Na-, Pb-, Zn-, and As-containing particle obtained
460 from an ascending gas flow above the soil over the Dongshengmiao deposit.


461

462

463


464

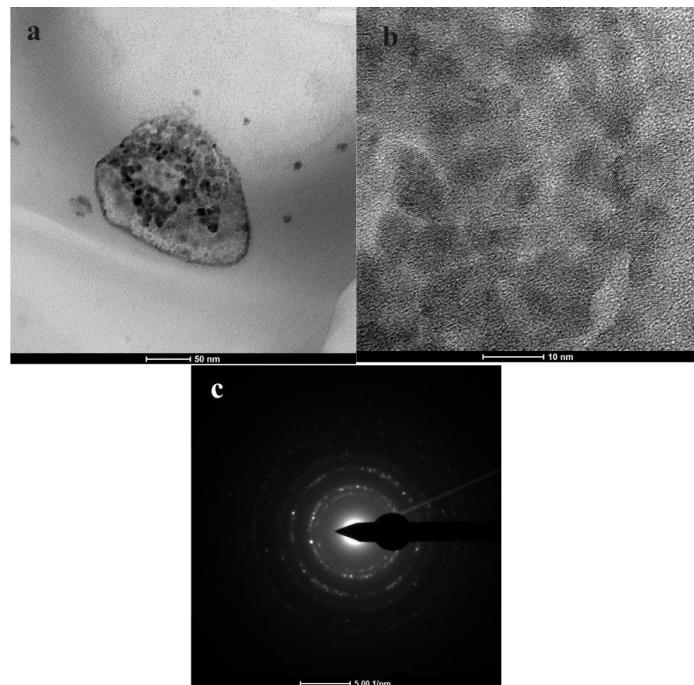
465

466 Fig. 5 (a) TEM image and (b) SAED pattern of an S-, O-, K-, Na-, and Pb-containing
467 particle obtained from an ascending gas flow above the soil over the Dongshengmiao
468 deposit.

469

470 Fig. 6 (a) TEM image and (b) HRTEM image of an O-, Si-, S-, and Cu-containing
471 particle aggregation obtained from an ascending gas flow above the soil over the
472 Dongshengmiao deposit.

473


474

475

476

477

478

479 Fig. 7 (a) TEM image, (b)HRTEM image, and (c) SAED pattern of an O-, S-, K-, and
480 Pb-containing particle aggregation obtained from an ascending gas flow above the
481 soil over the Dongshengmiao deposit.

482

483

484

485

486

487

488

489

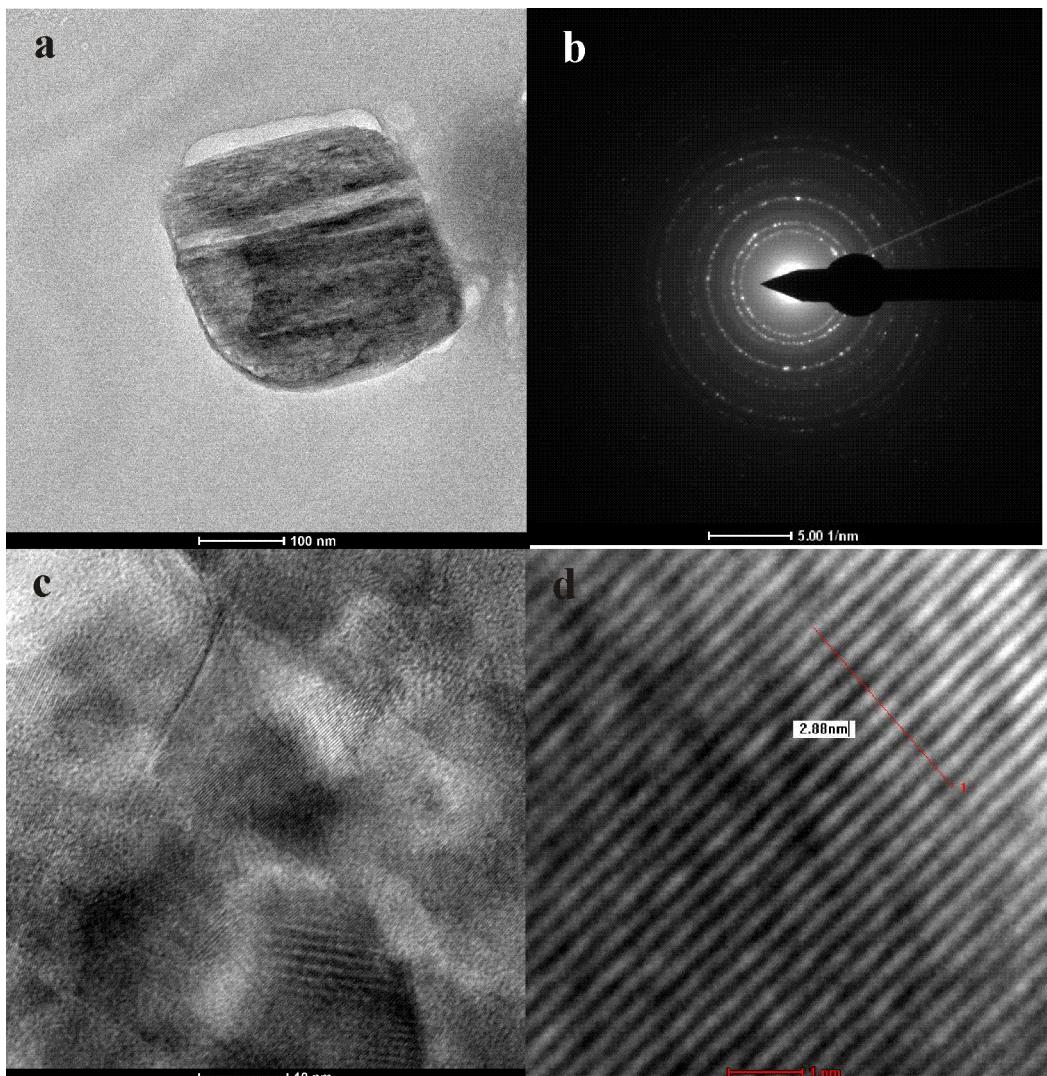
490

491

492

493

494


495

496

497

498

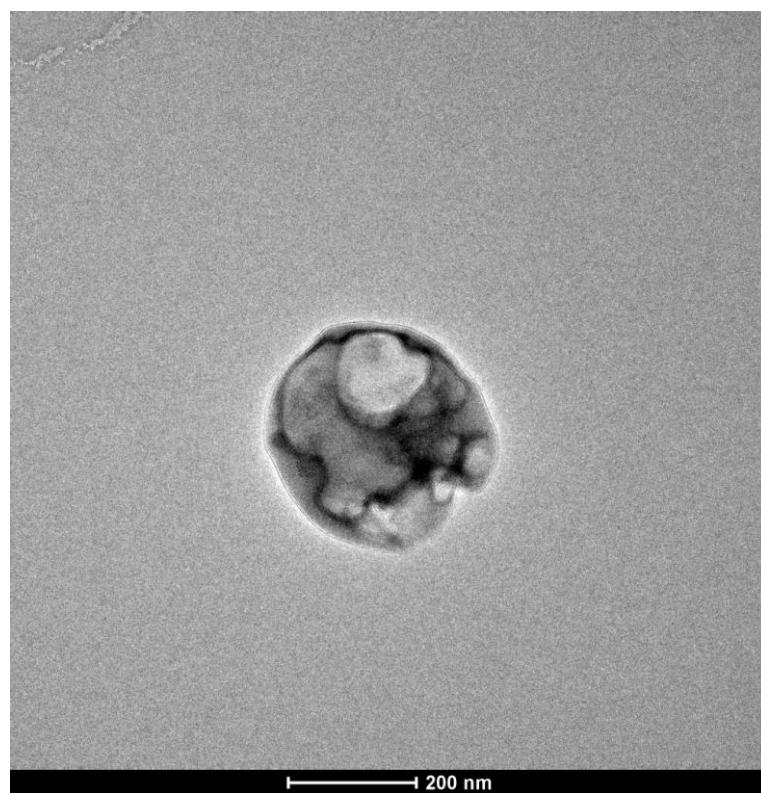
499

500
501 Fig. 8 (a) TEM image, (b) SAED pattern, and (c, d) HRTEM image of an O-, S-, Ca-,
502 and Mg-containing particle obtained from an ascending gas flow in the soil over
503 Dongshengmiao deposit.

504

505

506


507

508

509

510

511

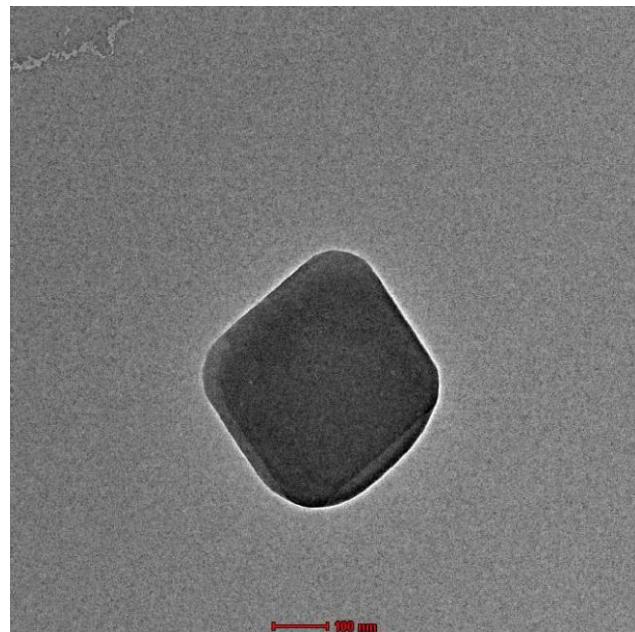
512

513 Fig. 9 TEM image of an O-, S-, and K-containing particle obtained from an ascending
514 gas flow in the soil from the Kafang copper deposit, Yunnan Province.

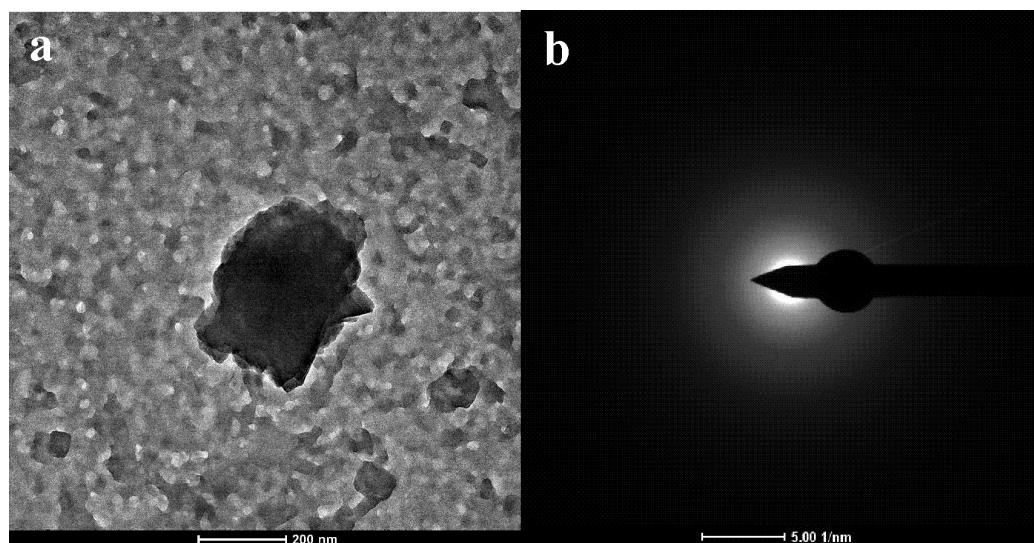
515

516

517


518

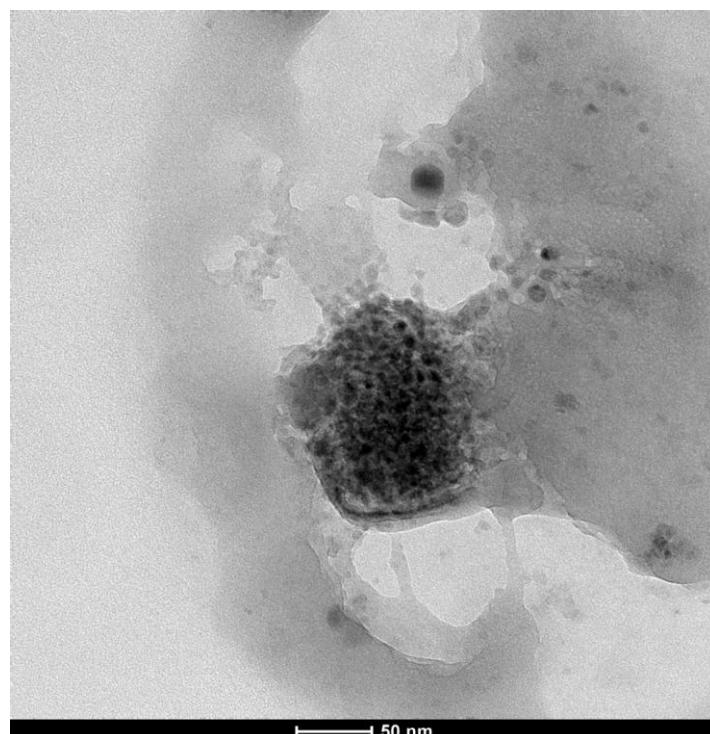
519


520

521

522

524 Fig. 10 TEM image of an O-, S-, and Fe-containing particle obtained from an
 525 ascending gas flow in the soil from the Yongshengde copper deposit in northeastern
 526 Yunnan.


528 Fig. 11 (a) TEM image and (b) SAED pattern of an O-, S-, and Co-containing particle
 529 obtained from an ascending gas flow in the soil from the Qingshingshan Cu–Ni
 530 sulfide deposit, Guangxi Province.

531

532

533

534

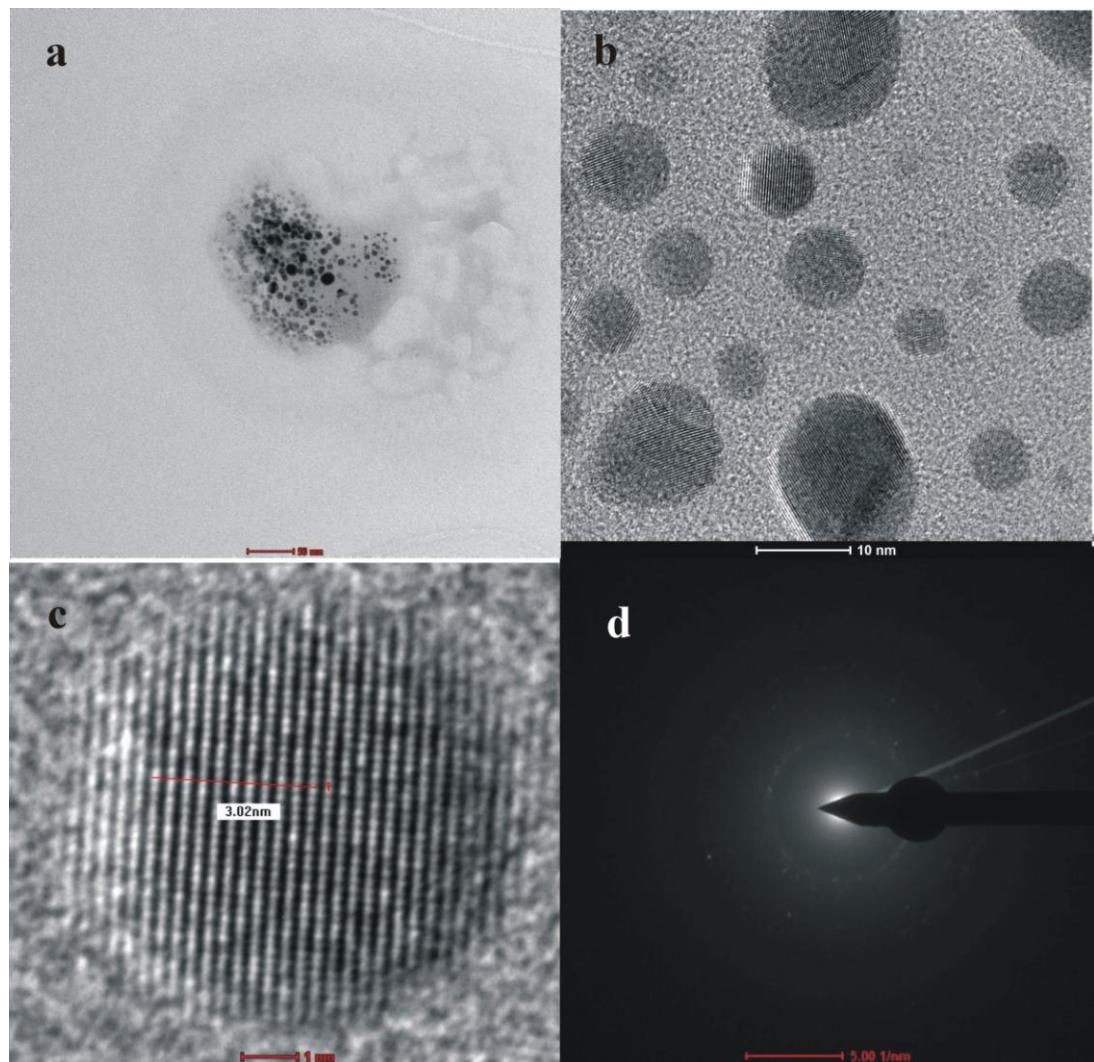
535

536 Fig. 12 TEM image of an O-, S-, K-, Pb-, and Na-containing particle sampled using a
537 vacuum pump from the fault gas near a concealed ore body of the Dongshengmiao
538 deposit.

539

540

541


542

543

544

545

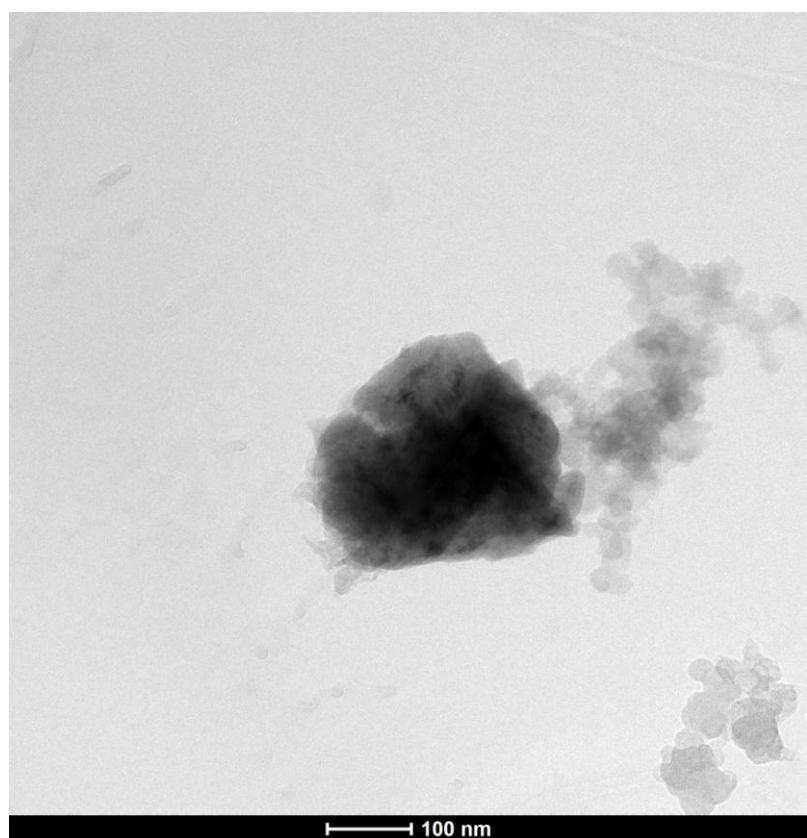
546

547

548 Fig. 13 (a) TEM image, (b, c) HRTEM images, and (d) SAED pattern of an O-, S-,
549 and K-containing particle aggregation sampled using a PVC pipe in a fault near a
550 concealed ore body of the Dongshengmiao deposit.

551

552


553

554

555

556

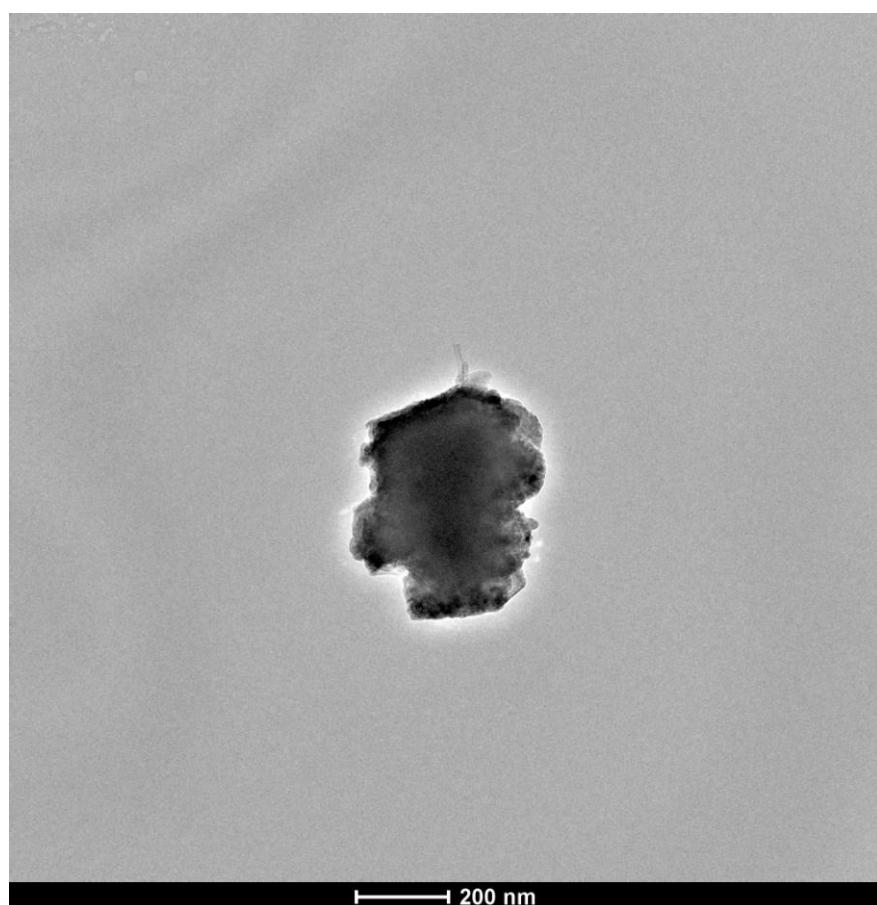
557

558

559

560 Fig. 14 TEM image of an O-, S-, Fe-, and Mg-containing particle aggregation
561 sampled using a PVC pipe in a fault above a concealed ore body of the
562 Dongshengmiao deposit.

563


564

565

566

567

568

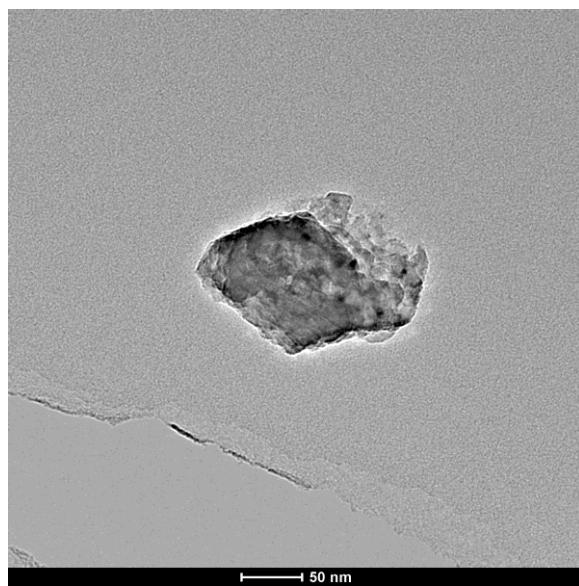
569

570 Fig. 15 TEM image of an O-, S-, Ti-, Sr-, and Ba-containing particle from a
571 deep-seated oxidized zone in the Dongshengmiao deposit.

572

573

574


575

576

577

578

579

580

581

582 Fig. 16 TEM image of an O-, S-, Fe-, Co-, and Ca-containing particle from a
583 deep-seated fault gouge in the Dongshengmiao deposit.

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601 Table 1 Number of sulfur-containing particles or particle aggregations number from the
602 Dongshengmiao deposit on 100 $\mu\text{m} \times 100 \mu\text{m}$ TEM grids

Sulfur-containing particles or particle aggregations carried by ascending gas flow above the soil (that had flown through the soil)				Sulfur-containing particles or particle aggregations carried by ascending gas flow in deep faults			
Sample	Sample box	Grid	Number	Sample	Sample box	Grid	Number
ND13-1	A1	A1-1	3	NDDW03	A2	A2-2	3
ND13-2	A2	A2-1	2	NDDW05	A4	A4-1	1
ND13-3	A3	A3-2	1			A4-2	29
		A3-3	6	NDDW06	A5	A5-2	1
ND13-4	A4	A4-1	1	NDDW07	B1	B1-1	4
		A4-2	2			B1-2	1
ND13-6	A5	A5-1	1	NDDW19	D3	D3-2	1
		A5-2	3			D3-3	2
		A5-3	1	NDDW26	E4	E4-1	1
ND13-8	B2	B2-1	1			E4-3	1
		B2-2	6	NDDW27	E5	E5-1	2
		B2-3	1			E5-3	2
ND13-9	B3	B3-1	1			E5-4	1
		B3-2	1	NDDW36	G4	G4-1	12
		B3-3	1			G4-3	10
ND13-10	B4	B4-1	1			G4-4	1
		B4-3	6	NDDW37	G5	G5-1	1
ND13-11	B5	B5-1	1				

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621 Table 2 EDX results for particles 1–8.

622

Element	Particle number							
	1	2	3	4	5	6	7	8
Weight O%	18.47	9.46	16.02	9.73	15.75	12.9	5.13	51.88
Atomic O%	31.1	31.78	31.12	39.3	34.16	31.35	22.74	69.78
Weight Si%	3.35		1.49	0.5	1.09	3.08		2.19
Atomic Si%	3.21		1.65	1.15	1.34	4.27		1.67
Weight S%	78.17	31.23	63.1	3.82	10.83	21.61	18.25	19.02
Atomic S%	65.68	52.33	61.16	7.7	11.72	26.2	40.32	12.76
Weight Hg%		59.29						
Atomic Hg%		15.87						
Weight K%			4.88		35.75		7.31	0.99
Atomic K%			3.88		31.73		13.25	0.54
Weight Pb%			14.48	54.2	22.5		69.28	
Atomic Pb%			2.17	16.9	3.76		23.67	
Weight Na%				3.1	9.66			
Atomic Na%				8.73	14.58			
Weight Fe%				0.75	2.14			0.21
Atomic Fe%				0.87	1.33			0.08
Weight Co%				0.98	2.25			
Atomic Co%				1.08	1.32			
Weight Zn%				8.34				
Atomic Zn%				8.24				
Weight As%				18.55				
Atomic As%				16				
Weight Cu%					62.39			
Atomic Cu%					38.16			
Weight Mg%							3.86	
Atomic Mg%							3.42	
Weight Ca%							21.82	
Atomic Ca%							11.71	

623

624

625

626

627

628

629

630

631

632

633

634

635 Table 3 EDX results for particles 9–16.

Element	Particle number							
	9	10	11	12	13	14	15	16
Weight O%	26.54	56.25	53.66	25.39	67.03	17.21	29.21	40.8
Atomic O%	42.51	73.54	70.2	37.32	80.72	35.83	64.85	62.97
Weight Si%	0.52			0.66	1	0.7		1.5
Atomic Si%	0.47			0.55	0.68	0.83		1.32
Weight S%	63.99	31.3	42.81	23.8	28.01	24.59	10.88	15.03
Atomic S%	51.15	20.42	27.95	17.45	16.83	25.53	12.05	11.58
Weight K%	8.93	0.78		2.01	2.59			
Atomic K%	5.85	0.42		1.21	1.27			
Weight Pb%				4.25				
Atomic Pb%				0.48				
Weight Na%			1.04	40.92		1.35		
Atomic Na%			0.95	41.84		1.96		
Weight Fe%		9.94	0.44	1.11	1.35	51.16	1.27	5.2
Atomic Fe%		3.72	0.16	0.46	0.46	30.5	0.81	2.3
Weight Co%			2.03				6.36	
Atomic Co%			0.72				2.66	
Weight Zn%				1.82				
Atomic Zn%				0.65				
Weight Mg%					2.74			
Atomic Mg%					3.75			
Weight Ca%					0.28	0.5	31.08	
Atomic Ca%					0.23	0.44	19.15	
Weight F%		1.71						
Atomic F%		1.88						
Weight Al%					0.25			
Atomic Al%					0.3			
Weight Mn%					1.68			
Atomic Mn%					1.02			
Weight Ti%						10.94		
Atomic Ti%						8.11		
Weight Sr%						10.32		
Atomic Sr%						4.18		
Weight Ba%						36.86		
Atomic Ba%						9.53		

636

637