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Abstract

In June 2013, a ground-based mobile lidar performed the 10 000 km ride from Paris
to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all
the way from Western Europe to central Siberia. The instrument was equipped with
N2-Raman and depolarization channels that enabled an optical speciation of aerosols5

in the low and middle troposphere. The backscatter-to-extinction ratio (BER) and parti-
cle depolarization ratio (PDR) at 355 nm have been retrieved. The BER in the lower
boundary layer (300–700 m) was found to be 0.017±0.009 sr−1 in average during
the campaign, with slightly higher values in background conditions near Lake Baikal
(0.021±0.010 sr−1 in average) corresponding to dust-like particles. PDR values ob-10

served in Russian cities (>1.7 %) are higher than the ones measured in European
cities (<1.3 %) due to the lifting of terrigenous aerosols by traffic on roads with a bad
tarmac. Biomass burning layers from grassland or/and forest fires in southern Russia
exhibit BER values ranging from 0.010 to 0.015 sr−1 and from 2 to 3 % for the PDR.
Desert dust aerosols originating from the Caspian and Aral seas regions were char-15

acterized for the first time, with a BER (PDR) of 0.022 sr−1 (21 %) for pure dust, and
0.011 sr−1 (15 %) for a mix between dust and biomass burning. The lidar observations
also showed that this dust event extended over 2300 km and lasted for ∼6 days. Mea-
surements from the Moderate Resolution Imaging Spectrometer (MODIS) show that
our results are comparable in terms of aerosol optical thickness (between 0.05 and20

0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

1 Introduction

Quantification of the aerosol radiative forcing still suffers from large uncertainties, mak-
ing aerosols the dominant contribution in uncertainties on the anthropogenic influence
on climate (IPCC, 2013). To improve the performances of climate models, observations25

are needed in order to provide better constraints from the regional to the global scale.
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Large observational networks such as the Aerosol Robotic Network (AERONET; Hol-
ben et al., 1998), the Micropulse Lidar Network (MPLNET; Welton et al., 2001) or the
Aerosol, Clouds and Trace gases Research Infrastructure Network (ACTRIS, formerly
EARLINET; Matthias et al., 2004) provide the long-term measurement series needed
to build a climatology of aerosol optical properties.5

Complementarily, numerous large field experiments also took place over the past
years to monitor long-range transport of aerosols and cover areas that do not host
dense observation networks like oceans, South-East Asia, Africa or Arctic: for in-
stance the Aerosol Characterization Experiments (ACE-1, ACE-2, ACE-Asia; Bates
et al., 1998; Raes et al., 2000; Huebert et al., 2003), the Indian Ocean Experiment (IN-10

DOEX, Chazette, 2003), the African Monsoon Multidisciplinary Analysis (AMMA; Lebel
et al., 2010), or the Polar study using Aircraft, Remote sensing, surface measurements
and models, of Climate chemistry, Aerosols and Transport project (POLARCAT; Law
et al., 2014). During those field campaigns, airborne measurements have been per-
formed, which offer observations on a larger scale than ground-based stations.15

On a smaller, regional scale, field experiments took place near large pollution
hotspots like Mexico City, with the Megacity Initiative: Local And Global Research
Observations project (MILAGRO, Molina et al., 2010), or Paris, with the Air Pollu-
tion Over the Paris Region project (ESQUIF, Vautard et al., 2003; Chazette et al.,
2005), the Lidar pour la Surveillance de l’Air (LISAIR, Raut and Chazette, 2007) and20

the Megacities: emissions, urban, regional and Global Atmospheric Pollution and cli-
mate effects, and Integrated tools for assessment and mitigation project (MEGAPOLI,
http://megapoli.dmi.dk/; Royer et al., 2011). Therefore, aerosol optical properties have
been extensively documented over Western Europe and North America. On the other
hand, Asia has drawn a growing attention as this region is becoming a larger contributor25

to aerosol anthropogenic emissions.
However, very few measurement programs exist over Russia, which for instance

hosts only five stable AERONET stations while the country covers 11.5 % of the world’s
dry lands and contribute to aerosol emissions through large forest fires and several pol-
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lution hotspots like Moscow (12 Mhab) or large industrial cities. Some measurement
stations exist like the ZOTTO tower, located in the taiga 600 km North-West of Krasno-
yarsk, where CO, particle concentration and aerosol optical properties are measured
continuously up to 300 ma.g.l. since 2006 (Chi et al., 2013). Vertical profiles of parti-
cle concentration and extinction up to 5 km have been collected in the Tomsk region5

during an intensive flight campaign in 1986–1988, and then from monthly flights be-
tween 1999 and 2007 (Panchenko et al., 2012). At a larger scale, CO and particle
concentrations have been measured during transcontinental flights in the framework of
the Airborne Extensive Regional Observations in Siberia project (YAK-AEROSIB, Paris
et al., 2010). However, most of the resulting observations took place in the free tropo-10

sphere, and the flight plan was aimed towards the remote Northern Siberian regions
rather than the industrial cities of Southern Siberia.

For other regions, and particularly for the industrial cities of Southern Siberia, only
space-borne instruments offer a regular coverage, for instance the Moderate Resolu-
tion Imaging Spectrometer (MODIS, e.g. King et al., 1992; Salomonson et al., 1989) or15

the Polarization and Directionality of the Earth Reflectance/Polarization and Anisotropy
of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar
(POLDER/PARASOL, e.g. Deuzé et al., 2001) or the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation (CALIPSO, e.g. Chazette et al., 2010; Winker
et al., 2003). However, observations are limited by cloud coverage and by the satellite20

overpass time, so that ground-based observations are welcome to better document
aerosols over Russia.

In June 2013, we performed the first road transect through Europe and Russia for
aerosol profiling, with a Raman lidar instrument embedded on a van going all the way
from Paris to Lake Baikal. This campaign offers a unique snapshot of aerosol opti-25

cal properties from Western Europe to Eastern Russia, which can be extrapolated in
a broader climatological vision through satellite observations. This article is the first one
of the pair that will describe the results obtained during this campaign; it has two main
objectives. Firstly, it aims at presenting the general variability of the aerosol nature,
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amount and optical properties along the journey. For this purpose, a systematic data
treatment is used whose precision is limited by the need to apply it both to the nighttime
and to the daytime, noisier data. For this reason, in a second time, a finer character-
ization of the optical properties of the desert dust and biomass burning aerosols en-
countered in Russia will be presented, based on a few case studies using best quality5

data.
Therefore, this paper is organized as follow. Section 2 presents the itinerary of the

campaign, the lidar instrument and the data processing methods used to retrieve the
aerosol extinction, Backscatter to Extinction Ratio (BER) and Particle Depolarization
Ratio (PDR). Then, Sect. 3 presents the variability of aerosols along the journey, the10

particle nature being identified through the combination of the two intensives proper-
ties that are the BER and PDR. Section 3 also analyzes the representativeness of the
observations in regards to longer time series of space-borne measurements. Finally,
Sect. 4 presents a few case studies on which it was possible to perform a finer char-
acterization of the optical properties (BER and PDR) of the dust and biomass burning15

particles encountered during the route, and the origin of those particles is also dis-
cussed. The finer characterization of the anthropogenic particles encountered over the
various pollution hot-spots along the journey will be presented in the up-coming second
paper.

2 Experimental setup and method20

2.1 Itinerary and instrumentation

The van carrying the lidar instrument departed from Paris on 4 June 2013 and reached
Lake Baikal on 28 June. Afterwards, fixed location measurements were performed
on the lake shore, in Istomino village (52.128◦N, 106.287◦ E), and mobile observa-
tions were recorded during round trips between Istomino and Ulan-Ude city, 80 km25

South-East of the Lake. Ground-based mobile measurements, though limited by bat-
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tery power, could be conducted during most of the journey (during daytime). Fixed
location measurements took place during most of the stop-overs (during nighttime) us-
ing local power supply so that rain showers and low-level clouds were the main limiting
factors.

An overview of the van itinerary and of the lidar data availability can be found5

on Fig. 1, over a map of PM10 emissions extracted from the Emission Database
for Global Atmospheric Research (EDGAR v4.2, http://edgar.jrc.ec.europa.eu/). The
journey went through a number of pollution hotspots: Paris, the Rhine Valley, Berlin,
Warsaw, Moscow, and several large and industrial Russian cities such as Nizhniy-
Novgorod, Kazan, Ufa, Chelyabinsk, Omsk, Novosibirsk, Krasnoyarsk and Irkutsk. Re-10

garding wildfires, three main vegetation types susceptible to produce biomass burning
aerosols were encountered: first, temperate forest dominate in the Baltic countries and
western Russia, then the vegetation turns into grasslands in the steppes of southern
Russia (from Nizhniy-Novgorod to Omsk, except in the Ural Mountains) and finally bo-
real forest occupies all the eastern part of the journey (and also the Ural Mountains15

between Ufa and Chelyabinsk).
The lidar instrument used during the campaign is similar to the one previously de-

scribed by Royer et al. (2011). It operates at 355 nm with 15 mJ emitted energy by
pulse, and has three acquisition channels for elastic, depolarization and N2-Raman
backscatters. The signals were recorded with an initial resolution of 25 s (500 laser20

shots) and 0.75 m, before being averaged over 5 or 30 min and 7.5 m in altitude. A sys-
tematic treatment was performed on the 30 min average profiles from the whole cam-
paign to analyze the variability of the Backscatter to Extinction Ratio (BER) in the lower
troposphere (Sect. 2.2.3). For dust or biomass burning events, a more complete pro-
cessing is performed to retrieve the full BER profile (Sect. 2.2.2 and 2.2.4). The retrieval25

of the particle depolarization ratio (PDR) is described in Sect. 2.3.

27886

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://edgar.jrc.ec.europa.eu/


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.2 Retrieval of the aerosol extinction and Backscatter to Extinction Ratio (BER)

2.2.1 Lidar equations

After correction for the sky background, the solid angle and the overlap function, the
range-corrected signals Si measured at wavelength λi (i = e,r for the elastic and N2-
Raman channels respectively) and at the altitude z for a vertically pointing lidar can be5

written under the form (Measures, 1984):

Se(z) = Ke · [βp(λe,z)+βm(λe,z)] ·exp

−2

z∫
0

[αp(λe,s)+αm(λe s)]ds

 (1)

Sr(z) = Kr ·βN2
(λr,z) ·exp

− z∫
0

[(1+η)αp(λe,s)+αm(λe,s)+αm(λr,s)]ds

 (2)

with η = (λr/λe)−a.10

The Ki are the instrumental constants which include contributions of optical reflec-
tions/transmissions, quantum efficiency of the detectors, amplification gains, laser en-
ergy and reception area. β and α are the backscatter and extinction coefficients, the
subscripts p or m standing for the particular and molecular contributions respectively.
βN2

is the Raman backscatter coefficient, which is proportional to the air density ρ15

(the Raman backscatter differential cross-section and N2 mixing ratio being constant
with altitude in the troposphere). Aerosol extinction coefficients at the emitted and Ra-
man wavelength are linked by the Ångström exponent a (Ångström, 1964); a constant
value of a = 1 was used over the journey. Indeed, only sun-photometers can provide
Ångström values in the UV wavelengths (MODIS only provides the coefficient between20

its 470 and 660 nm channels) and the van journey came close to only four AERONET
stations over the 10 000 km. In the absence of experimental data, using an average
value of 1 appears as a good compromise (as the residual relative uncertainty was
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calculated to be less than 3 %; Chazette et al., 2014). The molecular extinction and
backscatter coefficients are determined using a reference atmospheric density profile
and a polynomial interpolation between the 40 levels of the profile (Royer et al., 2011
and references therein). The effects of the molecular extinction αm are corrected in the
signals Si to give S ′i .5

The particle extinction αp and backscatter βp coefficients are the two unknowns of
the lidar equation. Using the Raman signal, which depends only on the extinction,
it is possible to retrieve separately both coefficients and determine the Backscatter
to Extinction Ratio kp = βp/αp. The BER is the inverse of the more commonly used
Lidar Ratio (LR); it was preferred as it is more directly linked to the single scattering10

albedo of aerosols, which is one of the most important parameter to determine their
radiative impact on climate. The BER (or LR) is an intensive property that does not
depend on the particle concentration but is linked to their microphysical and chemical
characteristics; it is therefore very useful to identify the aerosol nature.

To retrieve the particle extinction coefficient from the Raman signal, the intermediate15

function Qr(z) is used:

Qr(z) = − 1
1+η

ln

[
S ′r (z)

ρ (z)

]
= τp (0,z)−K ′r (3)

where τp is the cumulative particle extinction, i.e. the aerosol optical thickness (AOT)
between the ground and altitude z. Constant K ′r includes the instrumental constant Kr,
the N2 mixing ratio, the Raman backscatter differential cross-section and coefficient η20

(e.g. Chazette et al., 2014). More generally, the AOT between two altitudes z1 and z2
is defined and related to Qr following:

τp (z1,z2) =

z2∫
z1

αp (s)ds =Qr (z2)−Qr (z1) (4)
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The wavelength dependency of αp and τp is now omitted as S ′r does not depend on λr

anymore. Note that the way K ′r is dealt with depends if the Raman signal is exploitable
up to a purely molecular layer or not: if the Signal to Noise Ratio (SNR) is too low, only
the lower part of the profile will be used.

2.2.2 Raman inversion for case studies5

When using nighttime data and long averaging periods, the Raman channel can range
easily up to 5 km and reach a purely molecular layer. In this case, constants Ke and K ′r
are removed by normalizing the signals at the altitude z0 of the molecular layer, so that
the profile of aerosol backscatter coefficient is computed directly following:

βp (z) = βm(z0) ·
S
′

e (z)

S
′
e (z0)

·exp(−Qr (z)+Qr(z0))−βm(z) (5)10

Theoretically, the extinction coefficient could be retrieved simply by differentiating the
optical depth profile (αp = dτp/dz) as in Ansmann et al. (1990). However, differentiating
noisy signals is not possible as it dramatically increases the resulting noise level. One
possible solution is to use a low-pass derivative filter like a Savitzky–Golay filter (Sav-
itzky and Golay, 1964, applied for instance in Pappalardo et al., 2004) or a Kaiser filter15

(Kaiser and Reed, 1977, applied for instance by Ferrare et al., 1998). Another possi-
ble solution is to use first or second order polynomial curve fitting on a sliding window
(e.g. Pappalardo et al., 2004; Whiteman, 1999). Note that slope estimation using lo-
cal polynomial fits can be reduced to a digital filter, making these solutions somewhat
equivalent. Finally, the BER profile can be retrieved using a regularization method such20

as the one proposed by Tikhonov and Arsenin (1977), as was applied for instance by
Royer et al. (2011). Low-pass derivative filters and sliding polynomial fits are the most
commonly and longest used methods. Besides being easier to implement, their advan-
tage is that the extinction coefficient and BER values retrieved at different altitudes are
independent, though the effective vertical resolution is always degraded by this pro-25
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cess. Regularization methods are more complicated to implement especially because
it is difficult to automatize the choice of the regularization parameter. Moreover, the dis-
advantage of these methods is that the regularized profile is a global solution, implying
that an outlier can perturb the extinction coefficient and BER values at all altitudes.

Here, we use a low-pass derivative filter which kernel is based on the first derivative5

of a Gaussian curve (ter Haar Romeny et al., 1993). The magnitude of the transfer
function of such a filter is presented on Fig. 2 for a filter width σ of 4 points (30 m).
The transfer functions of a 4th order Savitzky–Golay filter and of a linear least-square
fit filter are also presented. To make the comparison easier, the kernel size of both
filters has been adjusted to obtain the same cut-off frequency as the Gaussian filter10

(∼ 11 km−1), the cut-off frequency being defined as the frequency at which the filter
response reaches 1/e of its maximum amplitude. Figure 2 clearly shows that the re-
jection of high frequencies, i.e. short-scale fluctuations in the extinction, is much better
with the Gaussian filter than with the Savitzky–Golay or linear fit filter (the difference is
around 30 dB after 20 km−1).15

To take into account the decrease of the SNR with increasing altitude, the fil-
ter width σ is increased following a saturating exponential function σ (z) = a+b ·(
1−exp(−z/1.5)

)
with z the altitude a.g.l. in km. Usually, the pair a = 3 and b = 7

produces good results, but if the aerosol load is low or if the averaging time is short,
b can be increased up to 19 or 24 (in which case, a is reduced to 1 so as to avoid20

too large σ values in the lowest layers). The effective vertical resolution of the resulting
extinction profile is presented on Fig. 3 for the three sets of parameters (the effective
resolution is defined as the inverse of the cut-off spatial frequency). With a = 3 and
b = 7, the vertical resolution tends towards 200 m at 5 kma.g.l., while the pair a = 1
and b = 24 will be used to produce a coarse resolution profile (∼ 500 m) in low SNR25

conditions.
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2.2.3 Single layer constrained Klett inversion for systematic treatment

During daytime, the range of the N2-Raman channel is greatly limited by the sky back-
ground. With a 30 min averaging period, the signal is exploitable up to 700 ma.g.l. in
the worst conditions, i.e. around noon. Using longer time averages enables only a lim-
ited improvement (900 ma.g.l. for 1 h averages) and leads to mix data recorded over5

long distances, i.e. in potentially heterogeneous atmospheric conditions. The speed
limits being 90 kmh−1 (110 kmh−1 on western motorways), in 30 min, the van travels
by a maximum of 45 km (55 km in Western Europe), which is a good compromise for
spatial averaging. Data from the whole campaign produced 560 distinct 30 min average
cloudless profiles that were all processed as described below.10

First, the Raman channel is used to determine the partial AOT between 300 m (com-
plete overlap) and 700 ma.g.l. (range limit). The partial AOT is not computed directly
using Eq. (4) as such a derivative is rather sensitive to noise, even after smoothing
Qr and using an average over several points around z1 and z2. Instead, a linear fit of
Qr is performed over the 300–700 ma.g.l. range, which slope is the average extinction15

coefficient in the aerosol layer. Then, multiplying this result by the layer depth gives the
partial AOT.

In a second step, the partial AOT is used to constrain the BER used in the Klett
inversion (Klett, 1985). The principle is the same as described in Royer et al. (2011),
except that the convergence is not dealt with using a dichotomy algorithm. Indeed, the20

partial AOT in the lowest layers also depends on the transmission by the upper layers
so that the partial AOT is not always a monotonic function of the BER, especially when
elevated layers of aerosols are present. Instead, the extinction profile is inverted using
20 BER values distributed from 0.005 to 0.1 sr−1 (i.e. LR: lidar ratios – extinction-to-
backscatter ratios – from 10 to 200 sr) as this range covers BER values observed in25

the literature for the main types of aerosols (Tables 1–3). Then, the interval is narrowed
between the two BER values that produce the partial AOT values closest to the Raman
constraint and the process is repeated.
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After three iterations, the BER value giving the best agreement between the con-
straint and the inverted partial AOT is chosen; then, the BER is known by 10−4 sr−1

and the agreement is better than 10−3, if a solution exists. Indeed, there is not always
a BER value which allows to reproduce the Raman partial AOT, either because the
constraint layer is not homogeneous, or because elevated layers are present and con-5

tain aerosols of a different type than in the PBL (with a very different BER value). In this
case, reaching convergence in the lowest layers would require a manual set-up of the
BER in the upper layers, which is not compatible with an automatic data processing.

According to the sensitivity study carried out by Royer et al. (2011), the main source
of uncertainty on the BER value is the random detection processes. It leads to a relative10

error on the BER ranging between 4 and 18 % (16 to 100 %) during nighttime (daytime)
for AOT values ranging from 0.1 to 0.5 and with a SNR of 35 (10). For the lidar-derived
AOT the relative uncertainty stands between 4 and 16 % (12 to 40 %) during nighttime
(daytime) for the same SNR. In this paper, the uncertainty is assessed using a Monte-
Carlo process: the photon noise at detection is propagated throughout the inversion15

process to give an estimation of the resulting error on the extinction coefficient profile
and BER value (or profile).

2.2.4 Multi-layer constrained Klett inversion

When the Raman channel has a longer detection range than 700 ma.g.l. (during night-
time), the process described in the previous section can be applied over several suc-20

cessive layers. At first, the constraint zone is located just below the normalization zone,
or just below the limit range of the Raman channel. The BER value giving the best
agreement between the partial AOT from the Raman channel and from Klett’s inver-
sion is determined and attributed to this layer. Then, the constraint zone is translated
downwards and the process is repeated until reaching the ground level. Layers where25

the aerosol load is too small (average extinction coefficient lower than 0.02 km−1) are
ignored and the BER from the layer located directly above them is kept. The constraint
zone width depends on the aerosol load and varies from 200 to 900 m; the altitude
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shift from one step to the next is between 1 and 1/3 of the constraint zone width. The
case studies that will be presented in Sect. 4 show that this method gives similar re-
sults as the derivative Raman inversion, with the advantage of producing a smoother
BER profile (no fluctuations in the layers with low aerosol load). Therefore, the case
study process is constructed as follows: first, we determine BER profiles from a long5

time average profile (at least 1 h) using both methods and then, we use the BER profile
from the sliding-window converging process to inverse the 5 min average profiles and
retrieve the extinction coefficient.

2.3 Retrieval of the Particle Depolarization Ratio (PDR)

The volumetric depolarization ratio (VDR) was determined following the procedure de-10

scribed in Chazette et al. (2012) i.e. using the plate transmission and reflection coef-
ficients measured in the lab before departure, along with the gain ratio between the
total and perpendicular polarization channels. The gain ratio value was calibrated us-
ing measurements obtained next to Lake Baikal during one night when the atmosphere
was devoid of any elevated aerosol layer. Several tests that have been carried on other15

days earlier during the campaign showed that the gain ratio was stable over time, so
that the value obtained from the Lake Baikal experiment was used during the whole
campaign. The particle depolarization ratio (PDR) is then computed as in Chazette
et al. (2012) with a relative uncertainty that increases from 9 to 24 % with AOT values
decreasing from 0.34 to 0.08. As the PDR is a physical parameter without meaning20

when there are no aerosols, its calculation is performed only for layers where the scat-
tering ratio (defined as the ratio of the total to molecular backscatter coefficients) is at
least 1.005.
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3 Variability of aerosols along the transect

In order to analyze the aerosol variability along the transect, data from the whole cam-
paign are processed using a systematic treatment whose details are summarized in
Sect. 3.1. The next section (Sect. 3.2) aims at highlighting the general features of
the campaign and identifying the case studies by studying the spatial distribution of5

aerosols along the transect. The latter is analyzed in terms of amount (optical thick-
ness) and depolarization, which is a first sorting criterion between terrigenous and
carbonaceous particles. A finer classification of the particle types encountered during
the campaign is proposed in Sect. 3.3, based on the Backscatter to Extinction Ratios
(BER) and Particle Depolarization Ratios (PDR) retrieved in the boundary layer using10

the systematic data treatment. Finally, the representativeness of the campaign period
is assessed by comparison with longer time series of space-borne observations and
ground sunphotometers (Sect. 3.4).

3.1 Retrieval process for the systematic analysis

As explained in Sect. 2.2.3, the systematic analysis of data recorded during the whole15

campaign relies on 30 min average profiles, which leads the N2-Raman channel to be
exploitable up to 700 m from the lidar in all conditions. The partial optical thickness
derived from the N2-Raman channel is used to constrain the BER in the 300–700 m
layer following the convergent Klett procedure described in Sect. 2.2.3. However, con-
vergence is reached for only 193 (34.5 %) of the 560 30 min average profiles. As ex-20

plained in Sect. 2.2.3, this is not surprising because the constraint only bears on the
lower PBL, so that the process does not work in a heterogeneous atmosphere. This
is for instance the case if the humidity in the upper PBL is higher than at ground level
and contributes to aerosols growth, or if an elevated layer containing another type of
aerosol is present.25

When a BER value fitting the constraint provided by the N2-Raman channel cannot
be retrieved, it is necessary to choose an arbitrary BER value in order to compute the
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aerosol optical thickness (AOT) that will be used to study the variability of aerosols
along the transect. In order not to introduce discontinuities in the AOT dataset between
profiles that converged or not, the same BER value is used to invert all profiles through
a standard Klett procedure. The chosen BER is the average obtained over the 193
converging profiles (0.017±0.009 sr−1), a value that will be discussed in Sect. 3.3,5

along with the distribution of BER values.
As the computation of the Particle Depolarization Ratio (PDR) depends on the in-

verted profile of aerosol backscatter, this also raises the question of choosing an ar-
bitrary BER value to treat the profiles that did not converge. Therefore, and again to
avoid discontinuities in the PDR dataset, the depolarization is also determined using10

the campaign average BER. The uncertainty associated with this hypothesis can be
assessed only when and where the Raman channel provided a constrained BER that
could be used to compute a reference PDR value. This reduces the ensemble to the
193 converging profiles, and to the 300–700 m layer used to constrain the BER. The
detailed discussion about the uncertainties is presented in Sect. 3.3, along with the15

BER and PDR distributions. As it appears that 90 % of the PDR values are affected
by a variation of less than 0.9 % when the constrained BER value is replaced by the
campaign average BER, we believe that this latter value can be used to discuss the
general distribution of PDR values along the transect.

3.2 Identification of general features on the spatial distribution of aerosols20

In order to discuss the horizontal distribution of aerosols along the transect, Fig. 4
presents the map of AOT values obtained when inverting all the 30 min average profiles
using the campaign average BER value of 0.017±0.009 sr−1 (see Sect. 3.1). Profiles
recorded within a radius of 15 km are grouped and replaced by their average profile,
which leaves 123 profiles. The method chosen to discuss the vertical distribution of25

aerosols and their nature was to compute the partial AOT and the average PDR below
and above a fixed level. An altitude of 1500 ma.g.l. was chosen as it can be considered
as an average value for continental PBL or residual layer top, i.e. the maximum altitude

27895

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

influenced by the ground. The partial AOT and the average PDR values as a function
of longitude are presented on Fig. 5. Values of PDR above 1500 ma.g.l. are scarce
because this ratio cannot be computed for profiles gathered around noon (the depo-
larization channel SNR is too low) or when the aerosol load is too small in the free
troposphere. Combustion aerosols from pollution or biomass burning are found with5

PDR values below 5 % at 355 nm while aerosol mix dominated by dust-like particles
usually have PDR values above 10 % (Burton et al., 2012; Müller et al., 2007). Median
values cannot be attributed certainly to the previous types of aerosols and indicate
most probably a mixture of these particles.

In Europe (longitude < 26◦ E), PDR values in big cities such as Paris and Berlin are10

below 1 %, indicating the preponderance of pollution aerosols, while PDR values in
the rural regions of Central Germany are slightly higher (< 2.1 %). Over Germany and
Poland (particularly near Frankfurt, Berlin and Warsaw), higher values of free tropo-
spheric AOT show the presence of elevated aerosols layers with PDR values similar to
those found in the PBL, suggesting that this is probably pollution lifted up and trans-15

ported from another part of Europe. In Russian cities, the urban PBL is generally char-
acterized by higher PDR values (2–4 %) as compared to European cities (PDR< 1 %
in Paris PBL), which indicates that the particle composition results from a mixture of
traffic and industrial emissions with terrigenous aerosols. Indeed, Russian cities East
of Moscow appear much dustier than European cities due to bad road tarmac and lack20

of vegetation on traffic islands, which results in a lot of terrigenous aerosols being lifted
up by road traffic and injected in the urban PBL.

Between Kazan and Ufa (47–57◦ E), an obvious desert dust event is visible, associ-
ated with PDR values reaching 37 % above 1500 m and 18 % below, where the dust
layer was observed to mix into the PBL. The highest AOT values (up to 0.43, associated25

with up to 70 % of the AOT above 1500 ma.g.l.) were observed farther East, between
Ishim and Omsk. However, the PDR values (5–9 %) indicate that a mixing has occurred
with combustion aerosols, most probably of biomass burning origin since the region is
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very isolated. Above Moscow, PDR values in altitude (3–5 %) indicate the presence of
a mixed elevated layer containing dust-like aerosols.

Between Krasnoyarsk and Nizhneudinsk, AOT values up to 0.28 have been ob-
served, with a large fraction located in the free troposphere (up to 47 %). As they are
associated with very low values of PDR (< 1 %), both below and above 1500 ma.g.l.,5

it could either be pollution aerosols transported from the industrial city of Krasnoyarsk,
or more probably part of a forest fire plume. Finally, small AOT values (below 0.1 at
355 nm) show that Russian background aerosols were sampled between Pskov and
Smolensk (West of Moscow, not shown on Fig. 5), between Omsk and Novosibirsk,
and in Istomino village, on the shore of Lake Baikal (between Irkutsk and Ulan-Ude).10

3.3 Classification of boundary layer aerosols

Among the 193 profiles for which a BER could be retrieved, 69 (36 %) are located
in Istomino village, on Lake Baikal shore, as several days of observations have been
recorded there between 29 June and 7 July 2013. In order not to give the Baikal region
an excessive weight, the BER distribution is computed on the 124 profiles recorded15

elsewhere than Istomino village (Fig. 6). BER values range from 0.006 to 0.045 sr−1,
which corresponds to lidar ratio values from 22 to 171 sr. The average BER during the
campaign was 0.017 sr−1 (58 sr) with a SD of 0.009 sr−1 (±41 sr) and a distribution
that is clearly skewed towards small values (the median BER of 0.015 sr−1 being lower
than the average). In Istomino village, the range of BER values is the same but the20

distribution (not shown) is shifted towards the higher values and slightly more scattered,
with an average value and SD of 0.021 and 0.010 sr−1, respectively.

Comparisons can be made with three aerosol classifications that provide BER values
for different types of particles: (i) Cattrall et al. (2005) using sun-photometers from the
AERONET network (BER at 550 nm), (ii) Burton et al. (2012) using high spectral resolu-25

tion lidar observations from several campaigns over North America and the Caribbean
(BER at 532 nm), and (iii) Müller et al. (2007) using a multi-wavelength N2-Raman lidar
on different sites over Europe and Asia (BER at 355 and 532 nm). The values obtained
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during these previous studies and the comparisons with the work presented here are
summarized in Tables 1–3. The campaign average BER (0.017 sr−1) exhibits a domi-
nance of pollution or biomass burning aerosols (both having BER values standing from
0.014 to 0.019 sr−1). The lower BER values in the left wing of the distribution are con-
sistent with the 0.011 and 0.012±0.002 sr−1 values observed in Paris by Raut and5

Chazette (2007) and Royer et al. (2011), indicating that those cases consist of pure
pollution particles. BER values corresponding to desert dust aerosols (> 0.019 sr−1)
are scarce in the general distribution while they are more frequent in Istomino village,
where the average BER value (0.021 sr−1) indicates a dominance of dust-like aerosols.

To understand these results, it is necessary to keep in mind that these BER values10

are constrained in the lower PBL, implying that the elevated layers of dust or biomass
burning aerosols have little influence. The relative weight given to the cities in the ob-
servations is increased thanks to the fixed night-time observations, but as most of the
journey went through the rural, unpopulated areas of Siberia, the BER values repre-
sented in Fig. 6 stem from an average between pollution cases and remote background15

cases. Moreover, due to the terrigenous aerosols lifted from the ground, the BER values
in Russian cities are likely to be higher than in European cities, where urban aerosols
are dominated by carbonaceous particles from combustion processes.

To get more insight into the type of aerosols encountered, the scatter plot of PDR
vs. BER values in the constraint layer (300–700 ma.g.l.) is presented on Fig. 7. Here,20

PDR values are computed from the profiles inverted with the campaign average BER,
in order to prevent BER fluctuations from impacting the PDR. Of course, replacing the
profile-constrained BER by the campaign average BER impacts the PDR value. To
assess this effect, the 300–700 m average PDR was computed using either the con-
strained BER values or the average one. The distribution of PDR absolute difference25

(not shown here) is symmetric and centered around zero (the median is 4×10−3 %),
indicating that the BER substitution does not introduce a systematic bias in the PDR
values. For 50 % (resp. 90 %) of the profiles, the difference in PDR is lower than 0.2 %
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(resp. 0.9 %), showing that the PDR values computed using the campaign average
BER can be used to study the distribution along the journey.

Dots on Fig. 7 are colored according to their geographic origin. Aerosols from Eu-
rope (longitude < 26◦ E, red dots) are characterized by low BER and low PDR values
(0.006 to 0.018 sr−1 and 0.5 to 1.3 %) indicating the predominance of carbonaceous5

particles. In Russia, profiles were split between urban and background cases, the “ur-
ban” criterion being a longitude difference smaller than 0.5◦ with the city center. Profiles
were also split between the dust event zone (longitude from 45 to 75◦ E) and the rest
of the country. Cities in the dust zone are Kazan, Ufa, Chelyabinsk and Omsk (Ishim
is not included because too small); other Russian cities are Pskov, Moscow, Nizhniy-10

Novgorod, Novosibirsk, Irkutsk and Ulan-Ude (Nizhneudinsk is not included because
too small). Krasnoyarsk was analyzed separately.

Russian cities (black and orange dots) show higher PDR values than European
cities, all points except two being above 1.7 %. This is in accordance with our obser-
vations of the abundance of terrigenous aerosols being lifted from the cities surface.15

Krasnoyarsk is the only one city where PDR values are comparable with European
cities but this is probably not due to a difference in the aerosol sources. Indeed, heavy
rain had fallen during the night before the van went through the city and the ground was
still wet, proving that the terrigenous aerosol had all been washed down. Cities located
in the area where elevated layers of dust were observed (orange dots) do not show20

a different distribution of BER and PDR compared to other Russian cities (black dots).
This indicates that the mixing of the elevated dust layers towards the PBL was low, or
that its effects were limited as the BER values were already affected by terrigenous
aerosols from local sources lifted in the PBL. Finally, the BER values in Russian cities
are more variable than in European cities (from 0.006 to 0.035 sr−1, except one outlier).25

On the contrary, regarding the background profiles, there is a clear difference be-
tween profiles recorded in the area where elevated dust layers were observed, for
which the 300–700 m average PDR values are all above 1.8 %, and the rest of the
country, where PDR values are all below 1.3 %. Background aerosols in the unpop-
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ulated areas of Russia result probably from a mixing between aged particles from
biomass burning and secondary organic aerosols, so that very low depolarization can
be expected when no dust is present. Also, under local terrigenous aerosol source-free
conditions, the dust plume has a more sensible effect on the PDR than in town. BER
values in remote areas are very variable (0.013 to 0.046 sr−1). However, in the absence5

of dust, the AOT values used as constraint are small and result in large uncertainties
on the BER values.

3.4 Temporal representativeness of the observations

To assess the representativeness of our measurements, the lidar-derived AOT pre-
sented in the previous section were compared with the optical thickness measured by10

MODIS Terra, using the monthly averaged and 1◦ ×1◦ gridded product MOD08_M3.
AOT from MODIS 412 nm channel was converted to AOT at the lidar wavelength using
the monthly averaged Ångström coefficient between MODIS 470 and 660 nm channels.
MODIS data from the grid pixel where the lidar was located were extracted and no spa-
tial interpolation was performed. The months of June from years 2000 to 2013 (Terra15

launch to the campaign year) were then averaged; years when intense fire events oc-
curred (2001, 2003 and 2012) were removed because they were not representative of
the conditions experienced during the campaign.

The four AERONET stations located close to the path of the van (Palaiseau,
Mainz, Moscow and Irkutsk) were also included in the comparison. The 380 nm sun-20

photometer AOT was converted to the lidar wavelength using the Ångström coefficient
computed between the 380 and 440 nm channels (the 340 nm channel was not used as
it can be biased at high solar zenith angles and high aerosol loads, Zhao et al., 2012).
The monthly averages were computed from the daily averages including at least 4
observations, and the multi-annual June average was computed from years 2006 to25

2013. The time period is different from MODIS because Mainz and Irkutsk stations do
not have data prior to 2006. The resulting 355 nm AOT values for the lidar, MODIS and
AERONET, are presented in Fig. 8 (top panel).
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The lidar-derived AOT stays within a 1-σ interval around the MODIS multi-annual
June average during most of the journey. The largest deviation from the average was
observed between Ishim and Omsk, due to the mixed dust and biomass burning event
identified in Sect. 3.1. However, the values of AOT (< 0.4) remain small compared
to values observed during years of intense fires (MODIS monthly averaged AOT for5

June 2012 reaches up to 0.8 in the fire region). The pure dust layers observed near
Kazan, as well as the fire or pollution layers observed near Nizhneudinsk are associ-
ated with moderate AOT values, which remain close to MODIS multi-annual June av-
erage. In the areas where we observed background aerosols, i.e. between Pskov and
Smolensk (∼ 30◦ E, West of Moscow) and between Omsk and Novosibirsk (∼ 80◦ E), li-10

dar AOT values are lower than 0.1 and clearly below MODIS. Therefore, the N2-Raman
lidar observations performed in Russia sampled both the clean background and dust
and fire events that are not exceptional in amplitude and can then be considered rep-
resentative of aerosols in remote parts of Siberia.

In the European part of the transect, AOT values observed by the lidar are close to15

MODIS multi-annual June average, except in Central Germany (Leipzig area) where
lidar AOT values are clearly below MODIS. N2-Raman lidar observations in Europe
sampled both moderate pollution levels and background, and can also be considered
representative of the aerosol load in June.

In middle and bottom panels of Fig. 8, the blue curves (green dots) present the20

470–660 (440–675) nm Ångström coefficient and the 550 (500) nm AOT fine mode
fraction from MODIS Terra (AERONET). The average and SD have been computed
the same way as the AOT. These observations cannot be compared with the lidar but
they underline an interesting transition around 23◦ E, i.e. where the van left Poland for
Lithuania. There, MODIS shows a drop in AOT from an average of 0.2–0.3 in Europe25

to an average of 0.1–0.2 in the Baltic countries and Russia. This is correlated with an
increase of the Ångström coefficient (0.8 to 1.4 in most Europe vs. 1.4 to 1.7 in Rus-
sia) and of the fine mode fraction (0.15 to 0.6 in Europe vs. 0.5 to 0.8 in Russia). This
indicates that the aerosol mixture in Russia contains more small particles than in Eu-
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rope. This fact would seem in contradiction with the observations of the N2-Raman lidar
showing that the aerosol mix over Russia includes a larger faction of coarse particles
of terrigenous type.

In fact, this discrepancy is probably due to the differences in the observation scales.
The BER and PDR values observed by the N2-Raman lidar indicate the presence5

of coarse terrigenous aerosols, but these observations concern only the lower PBL
(300–700 ma.g.l.) and the areas nearby the road followed by the van. In the lower PBL
and near this road (one of the busiest of Russia), it is more likely to observe dust-like
particles lifted by the wind or by the intense traffic which includes a large number of
trucks. On the other hand, MODIS Ångström coefficients and fine mode fractions re-10

trievals, that indicate the dominance of small particles over Russia, represent an aver-
age over the whole atmospheric column and a land surface of 1◦×1◦ (111km×64km at
55◦N). MODIS observations are therefore more representative of the free troposphere
and of the rural areas of Russia, where the aerosol mixture is dominated by biomass
burning particles. In Moscow however, the city is large enough to occupy a significant15

part of the 1◦×1◦ pixel and MODIS exhibits a drop of the fine mode fraction from 0.7 to
0.3 in this single pixel (the effect is lower on the Ångström coefficient though it slightly
decreases).

The analysis of AERONET sun-photometers data along the journey shows a slight
increase of the Ångström coefficient from Europe (Palaiseau and Mainz) to Russia20

(Moscow and Irkutsk) though this increase is much less pronounced than on MODIS
observations. The fine mode fraction, however, does not exhibit any significant dif-
ference between Europe and Russia. This might be due to a difference between the
models of aerosols used in AERONET and MODIS retrievals.

Finally, the dust event near Kazan is visible on MODIS daily gridded product (not25

shown here). It results in a zero small mode fraction and a 0.6 Ångström coefficient,
values that are far from the multi-annual MODIS average. This shows that such a phe-
nomenon is quite uncommon and confirms that the multi-annual average is dominated
by biomass burning aerosols.
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4 Characterization of dust and biomass burning aerosols events

This section presents case studies of dust or biomass burning aerosol plumes during
which a finer characterization of the optical properties of these particles was possible.
The origin of the particles is also studied for each plume. Finally, a comparison with
observations made in other regions of the world is presented in Sect. 4.4.5

4.1 Dust and biomass burning aerosols observed West of Kazan

The first significant observation of dust layers occurred near Kazan (49◦ E, 56◦N). The
weather was mostly overcast this day, so that only one hour and 45 min of cloudless
observations could be recorded, starting ∼ 35 km West of Kazan city. A map of the lidar
5 min average profile locations is presented on Fig. 9 along with MODIS Aqua Aerosol10

Optical Thickness (AOT, MYD04_L2 product). MODIS indicates moderate AOT values
during Terra overpass at 07:30 UTC (AOT∼ 0.2, not shown here) but during Aqua over-
pass at 09:20 (Fig. 9), values have risen up to ∼ 0.5, even 0.9 more to the West, show-
ing the arrival of an aerosol plume. In the time interval between Aqua overpass and the
lidar observations (∼17:30 UTC), the wind blew from the south-southwest at the dust-15

like layer altitude, according to the reanalyzes from the European Center for Medium
range Weather Forecast (ECMWF, ERA-Interim product at 0.75◦ and 6 h resolution).
This direction is perpendicular to the AOT gradient visible on MODIS so it is possible
to suppose that the general pattern in AOT was conserved until the van arrived.

4.1.1 Aerosol optical properties20

The Backscatter to Extinction Ratio (BER) profile is computed on a 55 min average
profile (17:29–18:24 UTC). Even after selecting only the data recorded after sunset
(around 17:25 UTC), the signal to noise ratio (SNR) is close to its acceptable limit
for inversion (∼ 20) in the upper part of the profile. The profile is treated both using
the Raman inversion (with a very wide filter due to the low SNR: parameters a = 125
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and b = 24) and using the constrained Klett procedure on a sliding window as de-
scribed in Sect. 2.2.4 (window width and shift of 200 m). The resulting extinction and
BER profiles are presented on Fig. 10, along with the uncertainties computed through
the Monte-Carlo process. The two inversions result in a very good agreement above
1.05 kma.m.s.l.; below this altitude, the constrained Klett procedure did not converge5

due to the low aerosol load.
The aerosol extinction coefficient profile shows the existence of four layers above

1.05 kma.m.s.l. (altitude above mean sea level). According to the particle depolar-
ization profile (not shown here), the dust layer corresponds to the two highest layers
and extends from 2.05 to 3.45 kma.m.s.l. With an average extinction of 0.05 km−1, the10

lower part of the dust layer (2.05–2.85 kma.m.s.l.) is the denser of the two sub-layers.
Both inversion processes agree on an average BER of 0.013±0.002 sr−1 (75±12 sr) in
this sub-layer. Conversely, the upper part of the dust layer (2.85–3.45 kma.m.s.l.) has
a much lower density, as the average extinction is only 0.03 km−1. This results in large
uncertainties on the BER values, both for the Raman inversion (0.021±0.009sr−1/48±15

25 sr) and for the constrained Klett process (0.023±0.012sr−1/43±32 sr). In the liter-
ature, the experimental BER values associated with dust layers are very variable (see
Table 1) and will be discussed thoroughly in Sect. 4.4.1. Still, we note that the 0.013 sr−1

BER value retrieved in the Kazan lower dust layer corresponds to the lowest limit of the
results reported in literature (Mattis et al., 2002) while the 0.022 sr−1 BER value re-20

trieved in the Kazan upper dust layer is more within the range of other observations
(e.g. Burton et al., 2012) though it is marred by a large uncertainty.

A finer temporal sampling can be considered using the 5 min average profiles.
Hence, the inversion is performed using the BER profile derived from the constrained
Klett procedure. The resulting aerosol extinction coefficient and Particle Depolarization25

Ratio (PDR) are presented on Figs. 11 and 12. The PDR clearly highlights the pres-
ence of a dust layer in altitude, with an average value of 23 % from 17:15 to 17:45 UTC
and between 2.05 and 2.85 kma.m.s.l. (lower part of the layer) and 20 % between 2.85
and 3.45 kma.m.s.l. (upper part of the layer). The temporal and spatial variability of the
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PDR inside the layers is the dominant source of uncertainty (±2 %). Values of desert
dust PDR reported in the literature are also very variable (see Table 1) and depend
whether the dust layer is pure or mixed with another type of aerosol with lower intrinsic
depolarization power (i.e. pollution or biomass burning aerosols). The detailed discus-
sion about dust layers PDR values will follow in Sect. 4.4.1. We can partially conclude5

that the plume observed west of Kazan certainly contains dust particles, relying on the
fact that the PDR is 23 %. Nevertheless, it is difficult to determine whether it is pure,
especially as dust in southern Russia is not originated from sources that have been
previously described in the literature.

The aerosol extinction coefficient plot (Fig. 11) also shows a dense layer between10

0.95 and 1.55 kma.m.s.l. that corresponds to the lowest visible layer on the average
extinction coefficient profile (Fig. 10, left). The average BER value associated to this
layer is low using both retrievals: 0.010±0.002 sr−1 (i.e. a LR of 104±21 sr). The PDR
also is very low (Fig. 12) with an average value of 1.9 % in the densest part of the
layer (before 17:00 UTC and between 1.05 and 1.25 kma.m.s.l.). Here, the uncertainty15

calculated from the Monte-Carlo process is lower than 0.1 % but the time and space
variabilities in the layer are very large (±1.1 %). Based on these elements, we can
conclude that we are facing a case of biomass burning layer (see references in Table 2
and detailed discussion in Sect. 4.4.2). Indeed, pollution particles are very unlikely as
the wind was not coming from Kazan or Nizhniy-Novgorod, which are the only large20

cities in the region.

4.1.2 Origin of the dust particles

To identify the dust sources, Fig. 13 presents 7 day backward trajectories from the Hy-
brid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT 4) in ensemble
mode (the wind field at the ending point is shifted by one grid point to assess the ef-25

fect of uncertainties on the wind). The back-trajectories have been calculated under
the isentropic mode for the vertical velocity. The ending point was chosen in the dust
layer, (2.6 kma.m.s.l.), above the lidar location at 17:00 UTC. As 20 trajectories out of
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27 did not touch ground during their journey, most of the air mass was originated from
the free troposphere, so that the dust concentration was probably low, explaining the
low aerosol extinction coefficient. Among the 7 remaining trajectories, ground contact
occurred in the North-Western and central parts of Kazakhstan, in the Volga mouth
region and in the area between the Caspian and Aral seas.5

The maps of aerodynamic roughness lengths established using the ERS scatterom-
eter (Pringent et al., 2005) or the ACAST and PARASOL instruments (Pringent et al.,
2012) show values of roughness length between 0.02 and 0.04 cm in the Aral-Caspian
region, and 0.04 to 0.08 cm in all the Northern part of Kazakhstan. Geological maps
available from the European Soil Portal (http://eusoils.jrc.ec.europa.eu/library/esdac/10

index.html) show that large sandy areas stand at the South and East of the Aral Sea
(Kyzylkum and Karakum deserts), and to a lesser extent at the North-West of the
Caspian Sea. In the area between the Aral and Caspian seas, and also in large parts of
central Kazakhstan, soils are of loamy type, even including clay deserts (“takyr”) or salt
deserts (“solonchak”). Conditions for dust lifting by saltation are thus gathered in this15

region, as it offers sources of large particles (saltators) whose impact on the ground
can splash away the smaller clay particles then able to undergo long range transport.

4.2 Dust and biomass burning aerosols observed above Omsk

Omsk is one of Russia’s largest industrial centers and a 1.15 million inhabitant city
located 2300 km East of Moscow (55◦N, 73◦ E). Several oil and gas fields are exploited20

north of the city, whose industry is dominated by gas and oil manufacturing (the largest
petrochemical complex of Russia is located near Omsk). The van was stationed in the
center of the city, near the Irtysh River, during the night of 22–23 June.

4.2.1 Aerosol optical properties

Observations show the successive overpass of a dust layer and a biomass burn-25

ing layer over the van. To determine the BER, two average profiles were computed:

27906

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://eusoils.jrc.ec.europa.eu/library/esdac/index.html
http://eusoils.jrc.ec.europa.eu/library/esdac/index.html
http://eusoils.jrc.ec.europa.eu/library/esdac/index.html


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

one that samples the overpass of the dust layer (16:44–19:12 UTC) and one during
the overpass of the biomass burning layer (19:12–21:42 UTC). Both profiles include
only nighttime data (sunset/sunrise at 15:50/22:30 UTC) so that the N2-Raman signal
reaches the molecular zone (> 4 km). Figure 14 presents the BER profiles computed
using the Raman inversion (filter parameters a = 1 and b = 15) and the constrained5

Klett inversion (window width and shift of 250 m).
In the heart of the dust layer (left profile, 2.5–3.5 kma.g.l.), the average BER is

0.020±0.003 sr−1 according to the constrained Klett inversion and 0.023±0.004 sr−1

according to the Raman inversion (44±8 sr). These BER values are in the average
of what is reported in the literature for desert dust aerosols (see references in Table 110

and detailed discussion in Sect. 4.4.1). Contrary to what has been observed for the dust
layer near Kazan, no smoke layer is present just below the Omsk dust layer. Therefore,
a mixing with biomass burning aerosols is less likely and BER values observed over
Omsk can safely be attributed to pure dust. In the biomass burning layer that arrived
later in the night (right profile, 1.5–2.5 kma.g.l.), both inversion methods lead to an av-15

erage BER of 0.013±0.002 sr−1 (76±12 sr), a value that falls in the lower range of what
is reported in the literature for biomass burning aerosols (see Table 2 and discussion
in Sect. 4.4.2).

In the residual layer (0.5–1.0 kma.g.l.), BER values seem to decrease slightly dur-
ing the night: before 19:00 UTC (profile #1), the average BER is 0.013±0.002 sr−1

20

for the constrained Klett inversion and 0.014±0.003 sr−1 for the Raman inversion
(70±12 sr), while after 19:00 UTC (profile #2), the average BER is only 0.010±0.001
and 0.011±0.002 sr−1 for the Klett/Raman inversions respectively (95±16 sr). How-
ever, it is difficult to assess whether this decrease in BER is significant as the as-
sociated error bars are not fully separated. In the literature (Table 3), BER values25

for pollution aerosols range between 0.011±0.002 sr−1 (Raut and Chazette, 2007)
and 0.017±0.004 sr−1 (Müller et al., 2007), both at 355 nm. Burton et al. (2012) give
a 0.014–0.019 sr−1 interval in their aerosol classification. The values that we observed
in the Omsk residual layer are therefore in the lower end of the observation range. Fi-
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nally, BER values above 3.9 km and between 1.1 and 1.4 kma.g.l. are not significant
due to the very low aerosol load.

To invert the aerosol extinction coefficient, the BER profiles retrieved from the
constrained Klett inversion process are used (only the uppermost layer is removed
as the BER did not converge at the limit of the molecular zone); a linear transi-5

tion is introduced between 18:55 and 19:30 UTC in order to avoid a discontinuity in
time. The average aerosol extinction coefficient is only 0.02±0.01 km−1 in the dust
layer (16:44–19:12 UTC, 2.5–3.3 kma.g.l.), against 0.09±0.03 km−1 in the smoke layer
(19:12–22:30 UTC, 1.4–2.6 kma.g.l.). Figure 15 also shows a large decrease in the ex-
tinction coefficient between the late afternoon turbulent boundary layer (14:33–15:30,10

0.3–1.2 kma.g.l., average extinction of 0.122±0.017 km−1) and the residual layer
(19:12–22:30, 0.3–1.0 kma.g.l., average extinction of 0.039±0.008 km−1) following the
disconnection from fresh ground emissions. After 18:00 UTC, the biomass burning and
residual layers were separated by a clean layer associated with a sharp wind shear
visible between the 900 and 850 hPa levels on the ECMWF ERA-Interim reanalysis15

(not shown here).
The AOT (Fig. 15, upper panel) decreased from ∼ 0.27 during late afternoon to
∼ 0.17 at 19:00 UTC, mainly due to the decrease of extinction in the residual layer
after sunset. After 19:00 UTC, AOT rose again due to the arrival of the biomass burn-
ing layer. MODIS observations show that the dust and biomass burning plume was20

already present the previous morning during Terra and Aqua overpasses (22 June
∼ 07:00 UTC). The very high 355 nm AOT values (∼ 0.7) suggest that the plume was
denser at this earlier moment and that the lidar observations sampled only the edge of
the plume. This is confirmed by the overpass of MODIS Terra on 23 June (06:10 UTC)
which produces an AOT value similar to the lidar observations 5 h earlier (AOT∼ 0.17).25

The particle depolarization ratio (Fig. 16) displays the reverse pattern of the aerosol
extinction coefficient. Indeed, the dust and biomass burning layers stand out with an
average PDR of 16±2 % and 3.5±1.6 %, respectively. In the most depolarizing part of
the dust layer (15:45–16:17 UTC, 2.8–3.2 kma.g.l.), the PDR even reaches 21±4 %.
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Such a value is similar to the observations near Kazan and appeals the same discus-
sion as in Sect. 4.1.1: knowing whether this layer is pure desert dust or a mix with
other types of aerosols is not possible given the PDR values reported in the literature
(Table 1, Sect. 4.4.1). Finally, below 1 kma.g.l., there is little change in depolarization
between the afternoon turbulent boundary layer (3.8±0.5 %) and the residual layer5

(3.2±0.8 %). Both values are compatible with the classification of Burton et al. (2012),
who reported 3 to 8 % of depolarization for pollution aerosols, and with the observa-
tions of Müller et al. (2007), who always observed PDR values lower than 5 % for urban
haze.

4.2.2 Origin of the elevated layers10

Figure 17 displays HYSPLIT 7 day back-trajectories ending in the dust layer above
Omsk. These trajectories show many changes of direction or even cusps, except during
the last two days when they all converged in a North-West/South-East turn. Examina-
tion of the geopotential height maps extracted from ECMWF reanalyzes (not displayed
here) show that the air mass was close to the center of a high pressure system from15

15–19 June, so that the weak and changing winds produced erratic trajectories. When
the anticyclone strengthened and moved north-east, on 20 June, the air mass started
curling around it and quickly reached Omsk.

Due to wind shear, the back-trajectories split into three families: the first one
had ground contact in the region located east of Chelyabinsk and Yekaterinburg20

(∼ 64◦ E), a region composed of forests and grasslands. The two other families of back-
trajectories touched ground more to the West, in a wide area standing from the Ufa
region (55◦N, 56◦ E) to the Aral Sea. The desert dust plume observed above Omsk
thus has the same origin as the layer observed near Kazan 5 days earlier, i.e. the
sandy/loamy soils of south-western Kazakhstan. Actually, the high pressure system25

that drove dust from Kazakhstan above Omsk is the same that brought it above Kazan
and Ishim and even Moscow (these two latter cases are not detailed). This anticyclone
detached itself from a larger high pressure system located over Europe around 14 June
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and then moved eastwards along with the lidar van until 22 June, when it took another
direction than the van trajectory and departed northwards. As the winds curled around
the anticyclone, air masses which had passed over the dust source region were contin-
uously brought up to the North, producing dust outbreaks over 2300 km, from Moscow
(38◦ E) to Omsk (73◦ E).5

The back-trajectories (not shown here) ending above Omsk a few hours later, dur-
ing the overpass of the biomass burning layer are very similar to those presented on
Fig. 17 due to the stable anticyclonic weather situation. The back-trajectories pass at
low altitude above three fire areas highlighted by MODIS Terra on 18 and 19 June
and located in the steppes of north-western Kazakhstan (51◦N–54◦ E, 50◦N–56◦ E and10

48◦N–57◦ E). Their fire radiative power was between 90 and 120 MW according to the
MODIS product from the University of Maryland (MCD14ML; Giglio et al., 2006). Fires
hot-spots were also observed by MODIS in the wooded area corresponding to the lat-
est part of the back-trajectories (60–62◦N, 69–73◦ E) and from 17–25 June at least.
However, as the fire radiative power is low (max. 38 MW), the injection height might15

not be large enough to allow the aerosols to catch up with the air mass that, accord-
ing to HYSPLIT, passed above this region above 2 kma.g.l. On the other side, those
fires were detected at the edge of a cloud system, suggesting that other fire areas with
higher fire radiative power, thus higher injection heights, might have existed further
north and escaped detection by MODIS.20

4.3 Additional cases

Some additional cases that cannot be detailed extensively will be briefly described in
this section; results are summarized in Tables 1 and 2.

During the night from 21–22 June, the van stopped near the town of Ishim (65 000
inhabitants, 56◦N, 69◦ E). A small depolarizing layer is observed between 1.2 and25

1.7 kma.g.l. at the start of the record. This layer’s BER can be determined from a 50 min
average profile, using the sliding-window constrained Klett procedure (window width
and shift of 300 m). The BER in the layer is 0.011±0.005 sr−1 (90±12 sr), a value
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close to the 0.013±0.002 sr−1 observed 4 days earlier in the lower part of Kazan dust
layer. The PDR is 15±2 %, i.e. closer to the 16±2 % observed in Omsk dust layer on
the day after. HYPSLIT back-trajectories (not shown) confirm that these dust particles
have the same origin that those observed near Kazan and Omsk.

A biomass burning layer was also observed above Ishim during the second part of5

the night, between 0.6 and 2.1 kma.g.l. The BER can be determined from a 1 h and
40 min average profile, using the complete Raman inversion (a = 1, b = 19). The aver-
age BER in this layer is 0.015±0.001 sr−1 (67±3 sr) and the PDR is 3.2±0.2 %, i.e.
values close to what was observed in Omsk biomass burning layer on the following
night. In the residual layer, the BER is much higher: 0.026±0.002 sr−1 (39±3 sr), re-10

flecting the dominance of terrigenous aerosols in this small city where the industrial
activity is mainly food-processing.

During the night from 25–26 June, the van halted in the small city of Nizhneudinsk
(55◦N, 99◦ E, 37 000 inhabitants). No dense layers of aerosols were visible but a dif-
fuse background reached up to 3.5 kma.g.l. Using a full Raman inversion (a = 1,15

b = 19) on a 1 h and 20 min average profile, the BER of this background is found to be
0.014±0.002 sr−1 (70±9 sr) while its PDR is 0.9±0.2 %. Back-trajectories (not shown
here) show that the air mass came from the Far North but a dense cloud cover blinded
MODIS and prevented the identification of the aerosol sources.

Dust plumes were also visible while the van traveled in between cities although day-20

time observations do not allow the quantitative determination of the BER and PDR for
elevated layers. Those cases will therefore not be included in the discussion.

4.4 Discussion

To synthesize, BER and PDR values from the different case studies are summarized
in the lower part of Table 1 (desert dust) and Table 2 (biomass burning), along with the25

references they can be compared with.
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4.4.1 Desert dust

Particle depolarization ratio. High values of the particle depolarization ratio are the
most certain way to identify desert dust layers, as only volcanic ash can exhibit such
high PDR values (Chazette et al., 2012). The depolarization ratios observed for desert
dust during the campaign vary between 15 and 23 % (Table 1, lower part). They are5

in fairly good agreement with previous observations also made at 355 nm. Indeed,
Tesche et al. (2011) observed similar PDR values at 355 nm in Saharan dust layers
advected over Morocco and Cape Verde during the Saharan Mineral dust experiments
(SAMUM): they reported 26±6 % for pure dust and 16±4 % for a mix of dust and
biomass burning. Chazette et al. (2014) found lower PDR values at 355 nm, between10

16 and 19 %, in Saharan dust layers advected over the Balearic Islands during the
Hydrological cycle in Mediterranean Experiment (HyMeX) campaign. Based on obser-
vations from 14 airborne campaigns over North America and the Caribbean, Burton
et al. (2012) reported 532 nm PDR values ranging from 30 to 35 % for pure dust layers,
and from 10 to 28 % for dust mixed with pollution or biomass burning (what they called15

“dusty mix”). Tesche et al. (2011) presented simultaneous observations at 355, 532
and 710 nm and showed that the PDR of desert dust increases with wavelength. They
reported values of 31±3 % at 532 nm that are similar to the observations of Burton
et al. (2012). Therefore, it is not surprising to have less agreement with observations
of depolarization ratio made at higher wavelengths.20

Backscatter to extinction ratio. The BER values reported in the literature for pure
desert dust are very variable and range from 0.013 to 0.029 sr−1 (34–77 sr, see Table 1,
upper part). The aerosol classification based on AERONET sun-photometers spread
all around the world gives an average BER value of 0.024±0.002 sr−1 (42±4 sr) at
550 nm (Cattrall et al., 2005) while the aerosol classification based on airborne high25

spectral resolution lidar data recorded over North America and the Caribbean gives
BER values ranging from 0.018 to 0.024 sr−1 (42–56 sr) at 532 nm (Burton et al., 2012).
Note that observations with a multi-wavelength N2-Raman lidar (at 355 and 532 nm)
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showed that the BER of desert dust particles does not vary much with wavelength
(Müller et al., 2007; Murayama et al., 2004; Tesche et al., 2011). Therefore, observa-
tions at 532 nm can be directly compared to the results from our study.

Among all deserts, the Saharan desert dust is probably the best documented, as
several campaigns produced observations using N2-Raman lidars. Tesche et al. (2011)5

reported an average BER of 0.019±0.003 sr−1 (53±10 sr) at 355 nm for dust advected
over Cape Verde during SAMUM. Chazette et al. (2014) found similar 355 nm BER
values, from 0.016 to 0.021 sr−1 (48–63 sr), for dust advected over the Balearic Islands
during HyMeX. Further south, Chazette et al. (2007) reported a higher BER value of
0.025±0.006 sr−1 (40±11 sr), also at 355 nm, in the Harmattan layer over Niamey10

(Niger) during AMMA. On the contrary, (Mattis et al. (2002) found slightly lower BER
values at 532 nm, from 0.013 to 0.020 sr−1 (50–77 sr), in the case of aged Saharan dust
advected over Germany. Elsewhere, Arabian dust advected over the Maldives Islands
and observed during INDOEX had an average BER of 0.026±0.004 sr−1 (38±6 sr;
Müller et al., 2007) at 355 nm. Closer to southern Russia, Asian dust from China (Gobi15

desert) were associated with a high BER of 0.029±0.004 sr−1 (34±5 sr) at 355 nm in
a layer advected over Beijing (Müller et al., 2007) though the 355 nm BER was only of
0.020±0.004 sr−1 (50±11 sr) in a layer advected over Tokyo (Murayama et al., 2004).

In the case of desert dust mixed with biomass burning aerosols or pollution, Burton
et al. (2012) also reported very variable BER values at 532 nm, ranging from 0.01620

to 0.067 sr−1 (16–63 sr) though the most frequent values ranged only from 0.024 to
0.033 sr−1 (30–42 sr) vs. 0.020 to 0.023 sr−1 for pure dust. This view seems counter
intuitive as it means that the BER values tend to increase when the dust is mixed
with aerosols of higher absorbing power (that have a higher extinction coefficient). The
opposite effect, and more logical according to us, was observed at 355 nm for mixed25

layers containing both Saharan dust and smoke from forest fires in West Africa: Tesche
et al. (2011) reported an average BER of 0.015±0.003 sr−1 (67±14 sr) for the aerosol
mix vs. 0.019±0.003 sr−1 for pure dust. Similarly, Chazette et al. (2007) found a value
of 0.015 sr−1 for the aerosol mix vs. 0.025 sr−1 for pure dust. Observations performed
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with a multi-wavelength N2-Raman lidar (at 355 and 532 nm) showed that, unlike desert
dust aerosols, the BER value of biomass burning aerosols can vary significantly with
wavelength (Müller et al., 2005; Murayama et al., 2004; Nicolae et al., 2013; Tesche
et al., 2011). Moreover, these studies disagree on the way the BER varies with wave-
length, therefore, it is safer to limit the comparison to the observations made at the5

same wavelength as in this study (Chazette et al., 2007; Tesche et al., 2011) and con-
sider that the BER decreases in the case of a “dusty mix”.

In this perspective, the layer observed above Ishim, with a very low BER (0.011 sr−1)
and moderate PDR (15 %), is clearly a mix between desert dust and carbonaceous
aerosols, most probably biomass burning from forest fires. The layer observed above10

Omsk and the upper part of the layer observed West of Kazan have BER values that
are typical of dust (0.022 to 0.023 sr−1) and also higher PDR values (20 to 21 %) that
could fit with pure desert dust aerosols. The lower part of the layer observed West of
Kazan has a 23 % PDR pointing toward pure desert dust but a 0.013 sr−1 BER that
suggests a mixing with biomass burning aerosols. However, it is not possible to con-15

firm whether what we observed was pure or mixed desert dust because, in both cases,
biomass burning layers were observed close (in time or space) to the dust layer, and
also because MODIS showed the presence of forest or grassland fires in the area
where the air mass was supposed to came close to the ground level according to HYS-
PLIT. Actually, MODIS highlighted the regular presence of small to medium size fires20

over western Kazakhstan during the whole period immediately prior to the sampling
and while the van journeyed north of this region (15–23 June). This means that the
longer the air mass stayed in this region and the more spread out the back-trajectories
are, the more likely it is that the dust got mixed with biomass burning aerosols. This is
the case for the layers observed above Kazan and Omsk (Figs. 13 and 17) as well as25

Ishim (not shown).
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4.4.2 Biomass burning

Particle depolarization ratio. PDR values for biomass burning layers observed in Siberia
vary between 0.9 and 3.5 %. The lowest value was not observed in a dense layer, but
in the diffuse particle background above Nizhneudinsk. It is also the only case where
particles came from the Far North; during the three other biomass-burning events,5

the particles came from the steppes or forests of southern Russia and Kazakhstan.
Unfortunately, the back-trajectories ending over Nizhneudinsk (not shown) passed in
a zone of dense cloud cover so that it was not possible to identify precisely the origin
of the particles through the MODIS fire product. The second lowest value (1.6 %) was
observed in a thin layer (∼ 250 m deep) just at the boundary layer top, so the smoke10

plume might have been diluted during transport. In both cases when a thick and dense
smoke layer was observed, the PDR is close: 3.2 % (Ishim) and 3.5 % (Omsk).

In the literature, depolarization ratios for aged smoke are 4–9 % (Burton et al., 2012),
5±2 % (Tesche et al., 2011) or < 5 % (Müller et al., 2007), for measurements all per-
formed at 532 nm. No simultaneous observations of PDR at 355 and 532 nm exist15

for biomass burning aerosols, although measurement of a mixed smoke and dust layer
suggest that the PDR does not vary much with wavelength (Tesche et al., 2011). There-
fore, observations in thick, dense layers (Ishim and Omsk) are in good agreement with
the literature. The small layer above Kazan stands not so far from the extreme low (5th
percentile at 2 %) given by Burton et al. (2012). However, the diffuse background of20

particles above Nizhneudinsk has a lower depolarization ratio than every observations
reported. The low value of extinction in this diffuse background indicates that the par-
ticle concentration is small, suggesting that, rather than the plume from a single large
fire, this might result from a mix between smoke from several small scattered fires and
biogenic aerosols (secondary organics) collected all along the air mass journey over25

the plains of northern Siberia.
Backscatter to extinction ratio. BER values reported in the literature for aged biomass

burning aerosols split into two families. The first one encompasses studies that re-
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trieved low BER values, close to those of pollution aerosols (Table 3). This is the case
in the aerosols classification based on worldwide ARONET sun-photometers (Cattrall
et al., 2005) that reported an average BER value of 0.017±0.002 sr−1 (59±7 sr) at
550 nm. Similarly, the classification based on multi-campaign high spectral resolution
lidar observations over North America and the Caribbean (Burton et al., 2012) reported5

values ranging from 0.012 to 0.022 sr−1 (45–83 sr), most values being between 0.014
and 0.018 sr−1 (56–71 sr) at 532 nm. The lowest BER values were observed using N2-
Raman lidars at 355 nm, in smoke plumes from fires in West Africa advected over Cape
Verde during SAMUM (0.011±0.003 sr−1 i.e. 91±27 sr; Tesche et al., 2011) or over
Niger during AMMA (∼ 0.009 sr−1 i.e. 111 sr; Chazette et al., 2007).10

Another family of studies retrieved higher BER values, closer to those of desert dust
aerosols (Table 1). Murayama et al. (2004) found a BER of 0.025 sr−1 (40 sr) at 355 nm
in a biomass burning layer advected over Tokyo from Siberia. Müller et al. (2005) re-
ported 0.022±0.006 sr−1 (45±14 sr) at 355 nm in smoke plumes from Canada and
Siberia advected over Germany. And Nicolae et al. (2013) retrieved BER values ranging15

from 0.02 to 0.031 sr−1 (32–50 sr) at 355 nm in four fire plumes advected over Roma-
nia from Turkey, Ukraine and Southern Russia. Observations with a multi-wavelength
N2-Raman lidar (at 355 and 532 nm) showed a strong variability of the BER of biomass
burning aerosols with wavelength (Müller et al., 2005; Murayama et al., 2004; Nico-
lae et al., 2013; Tesche et al., 2011) but even considering only observations made at20

the same 355 nm wavelength as in this study, BER values reported in the literature
still split into pollution-like and dust-like families. This discrepancy in BER values might
come from differences in the vegetation nature or in the soil type (as dust will be lifted
from the nearby ground by the eddies caused by the fire heat); however, investigating
the origin of this BER variability is out of the scope of this paper. We can only con-25

clude that the BER values of biomass burning layers observed in Siberia during this
campaign clearly belong to the first family of observations (pollution-like BER) as they
range only from 0.010 to 0.015 sr−1, and with little uncertainty (Table 2, lower part).
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5 Conclusions

For one full month, a mobile N2-Raman and depolarization lidar probed aerosols along
the 10 000 km ride from Paris to Ulan-Ude (2 to 108◦ E). A systematic data-processing
was performed on the 30 min average profiles: the Raman channel was used to con-
strain the inversion and determine the average backscatter-to-extinction ratio (BER)5

between 300 and 700 ma.g.l. The campaign average BER was found to be 0.017 sr−1

along the journey, and 0.021 sr−1 in the isolated village of Istomino (Lake Baikal shore).
The distribution of the BER and particle depolarization ratio (PDR) values show that
aerosols in Europe are characterized by low BER values (< 0.018 sr−1) and low PDR
(< 1.3 %) both in cities and in the countryside, indicating the dominance of pollution10

aerosols. In Russia, the BER values are much more variable (up to 0.046 sr−1) and
a clear distinction exists between the countryside, where the PDR is as low as in Eu-
rope (< 1.3 %), and the cities where the PDR is higher (> 1.7 %). The higher depolar-
ization in Russian cities is likely due to the significant amount of terrigenous aerosols
lifted by vehicles or by the wind from the roads and sidewalks that generally have a bad15

tarmac.
Fixed measurements were performed in the cities where the van carrying the lidar

stopped for the night. Long time-averages enabled the determination of BER profiles
above the cities through a complete Raman inversion using a low-pass derivative filter.
The precise determination of the BER also enables an accurate retrieval of the PDR.20

Several events of biomass burning plumes were recorded during these nighttime obser-
vations, with BER values ranging from 0.010 to 0.015 sr−1 and PDR values of from 2 to
3 %. Desert dust layers were also observed, with BER (PDR) values around 0.022 sr−1

(21 %) for pure dust layers and 0.011 sr−1 (15 %) for a mixed dust and biomass burn-
ing layer. The back-trajectories analysis identifies the dust source in the region of the25

Caspian and Aral seas (south-western Kazakhstan), an area whose dust emissions
had not been characterized so far. Moreover, dust layers were observed from Moscow
to Omsk (37–73◦ E, ∼ 2300 km), demonstrating that the Caspian-Aral region can give
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birth to large dust events spreading over wide areas of Russia and lasting for sev-
eral days. Such an event does not require special conditions but a regular anticyclone
moving eastwards over southern Russia or northern Kazakhstan, meaning such dust
spreading could happen regularly and contribute significantly to the aerosol budget in
southern Russia.5

This ground-based mobile campaign provided a unique picture of summer aerosols
in areas where observations are usually scarce. Although it was only a snapshot and
not a climatology, these observations hold more representativeness for two reasons:
first, the lidar instrument involved in this campaign enabled the determination of two in-
tensive properties of the particles (BER and PDR) that do not depend on the aerosols10

amount. And secondly, the comparison with a multi-annual average of MODIS Terra ob-
servations showed that the AOT values observed during the campaign are representa-
tive of the aerosol loads existing over Europe and Russia in the absence of exceptional
fire events like the ones that occurred in 2003 or 2010. Only the area where the dust
event took place stands out from MODIS multi-annual average, however, it offered the15

opportunity to characterize the unstudied desert dust from the Caspian-Aral region.
Regarding the anthropogenic sources, a second paper is in preparation to present

case studies of pollution hotspots along the journey and analyze in more details the
variability of pollution aerosols optical properties in Europe and Russia. Then, future
work will focus on identifying the frequency, geographical extent and duration of desert20

dust events such as the one observed during this campaign, using the space-borne
observations from MODIS and CALIPSO. In a second step, radiative modeling studies
can be conducted to assess the radiative impact of desert dust over southern Russia.
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Table 1. Values of the Backscatter to Extinction Ratio (BER) and Particle Depolarization Ra-
tio (PDR) reported in the literature and observed in this study for desert dust aerosols, pure
or mixed with biomass burning or pollution. For Burton et al. (2012), values are the 25–75th
(5–95th) percentiles respectively. Bold numbers highlight observations made at the same wave-
length as this study.

Aerosol Site, campaign Instrument, λ (nm) BER PDR Reference
type inversion method (10−3 sr−1) (%)

Pure dust AERONET network Sun-photometer 550 24±2 – Cattrall et al. (2005)
North America, High spectral 532 20–23 31–33 Burton et al. (2012)
multi campaign resolution lidar (18–24) (30–35)
Morrocco and Cape Verde, N2 Raman lidar 355 19±3 26±6 Tesche et al. (2011)
SAMUM
Maldives Islands, N2 Raman lidar 355 26±4 – Müller et al. (2007)
INODEX
Beijing (China) N2 Raman lidar 355 29±4 – Müller et al. (2007)
Tokyo (Japan) N2 Raman lidar 355 20±4 ∼ 20 Murayama et al. (2004)
Niamey (Niger) N2 Raman lidar 355 26±5 – Chazette et al. (2007)
Balearic islands, N2 Raman lidar 355 16–21 16–19 Chazette et al. (2013)
HyMeX

Dusty mix North America, High spectral 532 24–33 13–20 Burton et al. (2012)
multi campaign resolution lidar (16–67) (10–28)
Mor./C. Verde, SAMUM N2 Raman lidar 355 15±3 16±4 Tesche et al. (2011)
Niamey (Niger) N2 Raman lidar 355 15 – Chazette et al. (2007)

Pure dust Kazan, lower sub-layer Full Raman inversion 355 13±2 23±2 This study
Kazan, upper sub-layer Multi-layer Raman constr. 22±12 20±2

Dusty mix Ishim Multi-layer Raman constr. 11±5 15±2
Pure dust Omsk Full Raman inversion 23±4 21±4
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Table 2. Same as Table 1 but for biomass burning aerosols, either freshly emitted or aged.
When the Backscatter to Extinction Ratio (BER) and the Particle Depolarization Ratio (PDR)
have been retrieved at different wavelengths, the two values of wavelength are given.

Aerosol type Site, campaign Instrument, λ (nm) BER PDR Reference
inversion method 10−3 sr−1 (%)

Fresh smoke North America, High spectral 532 22–29 3–5 Burton et al. (2012)
multi campaign resolution lidar (19–42) (2–8)
Bucharest, EARLINET N2 Raman lidar 355 14±2 – Nicolae et al. (2013)

Aged smoke AERONET network Sun-photometer 550 17±2 – Cattrall et al. (2005)
North America, High spectral 532 14–18 4–9 Burton et al. (2012)
multi campaign resolution lidar (12–22) (2–15)
Tokyo (Siberian smoke) N2 Raman lidar 355 ∼ 25 5–8 Murayama et al. (2004)
Leipzig, EARLINET N2 Raman lidar 355–532 22±6 < 5 Müller et al. (2005)
Morrocco/Cape Verde, N2 Raman lidar 355–532 11±3 5±2 Tesche et al. (2011)
SAMUM
Bucharest, EARLINET N2 Raman lidar 355 20–31 – Nicolae et al. (2013)

Aged smoke Kazan Partial Raman constraint 355 10±2 1.9±1.1 This study
Ishim Full Raman inversion 15±1 3.2±0.2
Omsk Full Raman inversion 13±2 3.5±1.6
Niznheudinsk Full Raman inversion 14±2 0.9±0.2
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Table 3. Same as Tables 1 and 2 but for pollution aerosols.

Site, campaign Instrument, λ (nm) BER PDR Reference
inversion method (10−3 sr−1) (%)

AERONET network Sun-photometer 550 14±2 – Cattrall et al. (2005)
North America, High spectral 532 14–19 3–8 Burton et al. (2012)
multi campaign resolution lidar (13–24) (2–11)
Central Europe, EARLINET N2 Raman lidar 355–532 17±4 < 5 Müller et al. (2007)
Paris, ESQUIF Lidar/sun-phot. synergy 532 14–17 – Chazette et al. (2005)
Paris, LISAIR N2 Raman lidar 355 11±2 – Raut and Chazette (2007)
Paris N2 Raman lidar 355 12±2 – Royer et al. (2011)
Po Valley CALIOP/MODIS synergy 532 14±2 – Royer et al. (2010)
Pearl River delta, China N2 Raman lidar 532 21±3 – Müller et al. (2007)
Beijing N2 Raman lidar 532 26±5 – Müller et al. (2007)

Omsk (residual layer) Full Raman inversion 355 12±4 3.5±0.8 This study
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Figure 1. PM10 emissions for year 2008 from EDGAR v4.2 database (in kgkm−2 year−1). White
and black dots show respectively the location of lidar measurements and of the main cities
along the journey.
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Figure 2. Magnitude of the transfer functions of three low-pass derivative filters: the linear least-
square fit (blue), the Savitzky–Golay filter (green) and the Gaussian derivative filter (red). The
Gaussian kernel was computed for a filter width σ = 4, then the kernel size of the two other
filter was adjusted to produce the same cut-off frequency (∼ 11 km−1), defined as 1/e of the
magnitude maximum amplitude.

27929

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 3. Effective vertical resolution of the extinction profile retrieved from the Raman optical
depth using the Gaussian low-pass derivative filter, plotted for several sets of parameters. To
answer the decrease of the signal to noise ratio with the distance from the lidar, the filter width
is increased following σ (z) = a+b ·

(
1−exp(−z/1.5)

)
where z is the altitude above ground level

(in km). The effective vertical resolution is the inverse of the spatial cut-off frequency of the filter
(see Fig. 2).
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Figure 4. Map of the 355 nm Aerosol Optical Thickness (AOT) computed from the 30 min av-
erage profiles inverted using Klett’s inversion with the campaign average Backscatter to Ex-
tinction Ratio (BER=0.017 sr−1). Pink circles show the main cities, from West to East: Paris,
Frankfurt, Berlin, Poznań, Warsaw, Kaunas, Riga, Pskov, Saint-Petersburg (not in the transect),
Smolensk, Moscow, Nizhniy-Novgorod, Kazan, Ufa, Chelyabinsk, Ishim, Omsk, Novosibirsk,
Kemerovo, Krasnoyarsk, Nizhneudinsk, Irkutsk and Ulan-Ude.
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Figure 5. Partial Aerosol Optical Thickness (AOT, top) and average Particle Depolarization
Ratio (PDR, bottom) along the route, computed below (in black) and above (in red) 1500 ma.g.l.
All values are computed from the 30 min average profiles inverted using Klett’s inversion and
the campaign average Backscatter to Extinction Ratio (BER=0.017 sr−1). The average PDR is
computed only when the scattering ratio is greater than 1.005. The blue dashed lines indicate
the boundaries between pollution or biomass burning aerosols (below 3 % PDR), a mixing of
different types, and desert dust aerosols (above 10 %).
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Figure 6. Distribution of the Backscatter to Extinction Ratio (BER) values obtained from the
30 min average profiles by constraining Klett’s inversion with the partial aerosol optical thickness
provided by the Raman channel between 0.3 and 0.7 kma.g.l. Profiles from Istomino village
(Lake Baikal shore) have been removed and only the 124 profiles for which the agreement was
better than 10−3 were included in the histogram. The red lines represent the BER average value
and 1-σ SD.

27933

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 7. Average Particle Depolarization Ratio (PDR) in the constraint zone (0.3–0.7 kma.g.l.)
vs. Backscatter to Extinction Ratio (BER) values for the 124 convergent 30 min profiles for 6
types of atmospheric and geographic conditions (apart from Istomino village). Here, PDR was
computed using the campaign average BER (0.017 sr−1).
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Figure 8. (top) Aerosol Optical Thickness (AOT) at 355 nm from the lidar (red), from MODIS
Terra (blue) and from the AERONET stations along the transect (green). (middle) Ångström co-
efficients from MODIS Terra (470–660 nm) and from AERONET (440–675 nm). (bottom) AOT
small mode fraction from MODIS Terra (550 nm) and from AERONET (500 nm). For MODIS
(MOD08_M3 product), the 1◦ ×1◦ pixels including the van position were extracted and the
months of June from years 2000 to 2013 (except years 2001, 2003 and 2012 due to intense fire
events) were used to compute MODIS average and SD (blue line and shading). For AERONET,
only data since 2006 were used since only Palaiseau (2.5◦ E) has data prior to this year.
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Figure 9. Location of the 5 min average lidar profiles (black dots) recorded on 18 June 2013
West of Kazan (the city is at the right end of the trajectory) and MODIS Aerosol Optical Thick-
ness (AOT) at 355 nm from the Terra overpass at 09:20 UTC on the same day. The pink arrow
represents the wind direction in the dust layer from ECMWF ERA-Interim reanalysis (12:00 UTC
and 750 hPa pressure level).
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Figure 10. Vertical profiles of aerosol extinction and Backscatter to Extinction Ratio (BER) de-
termined from the 55 min average profile on 18 June 2013, using either the low-pass derivative
filter inversion (blue) or the constrained Klett procedure on a sliding 200 m window (red). Thick
and thin lines are the average and 1-σ SD from the Monte-Carlo process. For these mobile
observations, the altitude is above mean sea level (a.m.s.l.); the ground average altitude was
around 0.1 kma.m.s.l.
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Figure 11. Aerosol extinction and optical thickness (AOT) observed West of Kazan on
18 June 2013 twilight as a function of UTC time and altitude above mean sea level (a.m.s.l.).
Retrieval was made using a Klett inversion with the backscatter to extinction ratio profile from
the sliding-window constrained Klett procedure (Fig. 10).
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Figure 12. Particle Depolarization Ratio (PDR) observed West of Kazan on 18 June 2013
twilight as a function of UTC time and altitude above mean sea level (a.m.s.l.).
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Figure 13. Seven-day back-trajectories ending in the dust layer observed west of Kazan city on
18 June 2013, computed using HYSPLIT Lagrangian model in single (bold line) and ensemble
mode (thin lines). Trajectories are colored following the altitude above ground level (a.g.l.): red
parts correspond to ground contact. Ticks are spaced by 24 h.
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Figure 14. Profiles of Backscatter to Extinction Ratio (BER) retrieved above Omsk city on
23 June 2013 from two different processes: (red) profiles from the sliding-window constrained
Klett process, (blue) profiles from the low-pass derivative filter inversion.

27941

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/27881/2014/acpd-14-27881-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 27881–27944, 2014

Lidar profiling of
aerosol optical

properties from Paris
to Lake Baikal

(Siberia)

E. Dieudonné et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 15. Aerosol Optical Thickness (AOT, up) and extinction (bottom) retrieved above Omsk
during the night from 22–23 June 2013 as a function of UTC time and altitude above ground
level (a.g.l.). Retrieval was made using a Klett inversion with the backscatter to extinction Ratio
profiles from Fig. 14.
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Figure 16. Particle depolarization ratio retrieved above Omsk during the night of
22–23 June 2013 as a function of UTC time and altitude above ground level (a.g.l.).
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Figure 17. Seven-day back-trajectories ending in the dust layer observed above Omsk city on
22 June 2013, computed using HYSPLIT Lagrangian model in single (bold line) and ensemble
mode (thin lines). Trajectories are colored following the altitude above ground level (a.g.l.): red
parts correspond to ground contact. Ticks are spaced by 24 h.
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