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Abstract 13 

Given significant challenges with available measurements of aerosol acidity, proxy methods are 14 

frequently used to estimate the acidity of atmospheric particles.  In this study, four of the most 15 

common aerosol acidity proxies are evaluated and compared: 1) the ion balance method, 2) the 16 

molar ratio method, 3) thermodynamic equilibrium models, and 4) the phase partitioning of 17 

ammonia.  All methods are evaluated against predictions of thermodynamic models and against 18 

direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the 19 

MILAGRO study.  The ion balance and molar ratio methods assume that any deficit in inorganic 20 

cations relative to anions is due to the presence of H+; and that a higher H+ loading and lower 21 

cation/anion ratio both correspond to increasingly acidic particles (i.e., lower pH).  Based on the 22 

MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion 23 
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balance and aerosol pH predicted by the thermodynamic models and NH3-NH4
+ partitioning.  1 

Similarly, no relationship is observed between the cation/anion molar ratio and predicted aerosol 2 

pH.  Using only measured aerosol chemical composition as inputs without any constraint for the 3 

gas phase, the E-AIM and ISORROPIA-II thermodynamic equilibrium models tend to predict 4 

aerosol pH levels that are inconsistent with the observed NH3-NH4
+ partitioning.  The modeled 5 

pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with 6 

the aerosol pH predicted by the phase partitioning of ammonia.  It appears that 1) 7 

thermodynamic models constrained by gas + aerosol measurements, and 2) the phase partitioning 8 

of ammonia provide the best available predictions of aerosol pH.  Furthermore, neither the ion 9 

balance nor the molar ratio can be used as surrogates for aerosol pH, and published studies to 10 

date with conclusions based on such acidity proxies may need to be reevaluated.  Given the 11 

significance of acidity for chemical processes in the atmosphere, the implications of this study 12 

are important and far reaching. 13 

 14 
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1 Introduction 1 

The acidity of atmospheric particles is a critical parameter that affects air quality and the health 2 

of aquatic and terrestrial ecosystems.  Acute and chronic exposures to acidic particles have been 3 

linked to deleterious effects in people, although the underlying physiological mechanisms are 4 

unclear (Gwynn et al., 2000; Dockery et al., 1996).  The deposition of acidic gases and particles 5 

has been known for decades to damage freshwater and terrestrial ecosystems (Schindler, 1988; 6 

Johnson et al., 2008).  While the trends in emissions are promising in the U.S. and western 7 

Europe, ecosystem recovery from the effects of acid deposition is a slow process that can take 8 

decades (Likens et al., 1996; Stoddard et al., 1999).  This may be a source of emerging 9 

environmental crisis in places such as China, where acid deposition is increasing due to rapid 10 

industrialization (Pan et al., 2013; Cao et al., 2013).  Particle acidity also affects global 11 

biogeochemical cycles by controlling the solubility – and thus, bioavailability – of limiting 12 

nutrients that are delivered through atmospheric deposition in many marine environments 13 

(Meskhidze et al., 2005; 2003; Nenes et al., 2011).  This has important implications for marine 14 

primary productivity, the carbon cycle, and even climate (Mahowald, 2011). 15 

Particle acidity is also a critical factor that influences many chemical processes in the 16 

atmosphere.  The oxidation of S(IV) to S(VI) in liquid water, the primary pathway of sulfate 17 

formation, is highly sensitive to pH (Chameides, 1984).  Halogen chemistry is strongly 18 

influenced by particle acidity, which has direct implications for the oxidation of volatile organic 19 

compounds (VOCs) and ozone formation in marine and coastal regions (e.g., Keene et al., 1998; 20 

Sander and Crutzen, 1996; Pszenny et al., 2004).  Recent evidence has demonstrated that aerosol 21 

pH is also a critical parameter influencing halogen chemistry in continental locations (Brown et 22 

al., 2013; Thornton et al., 2010; Young et al., 2013).  Further, aerosol acidity directly affects the 23 
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deposition and lifetime of many compounds in the atmosphere through its influence on the gas-1 

particle partitioning of semi-volatile species, including ammonia (NH3), nitric acid (HNO3), and 2 

organic acids (Ahrens et al., 2012; Keene et al., 2004).  Aerosol acidity may affect secondary 3 

organic aerosol (SOA) formation, as well (e.g., Gaston et al., 2014; Surratt et al., 2007), although 4 

the atmospheric importance of this phenomenon remains highly uncertain (Peltier et al., 2007; 5 

Takahama et al., 2006; Tanner et al., 2009; Zhang et al., 2007; Xu et al., 2015). 6 

Despite its significance, aerosol acidity remains very poorly constrained in the 7 

atmosphere (Keene et al., 1998).  All direct measurements employ filter sampling (e.g., Jang et 8 

al., 2008; Keene et al., 2002; Koutrakis et al., 1988), which is both labor intensive and limited by 9 

poor time resolution. Measurements are also challenged by the non-conservative nature of H+: 10 

due to buffering effects and the partial dissociation of weak acids, H+ concentrations do not scale 11 

in proportion to the level of dilution (e.g., in aqueous filter extracts). Certain methods are also 12 

susceptible to sampling artifacts, which can greatly increase the uncertainty of an inherently 13 

challenging measurement (Pathak et al., 2004).  Due to these limitations, indirect methods are 14 

frequently employed to estimate the acidity of atmospheric particles.  These methods include 1) 15 

the ion balance method, 2) the molar ratio, 3) thermodynamic equilibrium models, and 4) the 16 

phase-partitioning of semi-volatile species (HCl, NH3, HNO3).  The purpose of this study is to 17 

evaluate and compare the proxy methods most commonly used to estimate aerosol acidity.  18 

2 Methods to Infer pH 19 

Before proceeding with this analysis, it is necessary to define the different physical 20 

quantities commonly described by the term ‘aerosol acidity’.  First, it is used to represent the pH 21 

of an aerosol particle or distribution.  The pH represents the hydrogen ion activity in an aqueous 22 

solution (Stumm and Morgan, 1996): 23 

4 
 



pH = -log(γ*𝑥𝑥𝐻𝐻+)         (1) 1 

where γ is the hydrogen ion activity coefficient and 𝑥𝑥𝐻𝐻+  is the aqueous mole fraction of 2 

dissociated H+.  The presence of aerosol water is implicit in this definition since free H+ cannot 3 

exist in solid particles.  Second, ‘aerosol acidity’ is commonly used to describe the loading of 4 

protons in atmospheric particles, in units of nmol m-3 or neq m-3.  This definition can take several 5 

forms, including aerosol strong acidity (H+ contributed by strong acids that dissociate completely 6 

at most pH), free acidity (dissociated H+), or total acidity (includes free H+ and the undissociated 7 

H+ bound to weak acids), typically defined by the measurement approach (Keene et al., 2004; 8 

Lawrence and Koutrakis, 1996).  The major difference between aerosol pH and the proton 9 

loading is that pH is the H+ concentration per liquid water volume  (i.e., aerosol water) while the 10 

aerosol proton loading is the H+ concentration per unit volume of air.   Aerosol pH is the 11 

parameter of interest for the atmospheric phenomena described above, but the proton loading is 12 

often treated as a surrogate for pH.  This is a critical distinction that will be discussed in detail 13 

below, especially in relation to the appropriate use of each parameter for the analysis of chemical 14 

processes in the atmosphere. 15 

2.1 Ion Balance Method 16 

The ion balance method is commonly employed to estimate the proton loading in 17 

atmospheric particles.  This method is based upon the principle of electroneutrality, and assumes 18 

that any deficit in measured cationic charge compared to measured anionic charge is due to the 19 

presence of protons, according to: 20 

[H+] = ∑𝑛𝑛𝑖𝑖[𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖] −  ∑𝑛𝑛𝑖𝑖[𝑐𝑐𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖]      (2) 21 
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where ni is the charge of species i, and [anioni] and [cationi] are the molar concentrations of 1 

anion and cation species, respectively.  If the sum of measured cations exceeds that of the 2 

measured anions, then the difference is attributed to OH-.  H+ levels under an anion deficit are 3 

then calculated from the inferred [OH-] using the water dissociation constant, KW.  Most 4 

applications of the ion balance use inorganic ions only, even though organic acids can be 5 

important to the interpretation of aerosol acidity in diverse locations (Lawrence and Koutrakis, 6 

1996; Metzger et al., 2006; Trebs et al., 2005), especially at relatively low acidities where 7 

organic acids dissociate and contribute to the ion balance.  Neglecting this effect will lead to 8 

biases in the inferred H+.  Organic compounds can also form salt complexes with inorganic 9 

species (e.g., ammonium oxalate) (Reid et al., 1998; Paciga et al., 2014), further indicating the 10 

importance of organic acids in the ion balance.   11 

2.2 Molar Ratio 12 

While the ion balance method is used to estimate the absolute proton loading in 13 

atmospheric particles, the molar ratio is independent of absolute concentrations.  The molar ratio 14 

is a ratio of the total molar concentration of measured inorganic cations to the measured 15 

inorganic anions: 16 

Molar ratio = Σ(cations)/Σ(anions)           (3) 17 

It is also frequently employed as an equivalence (charge) ratio.  The concept was first introduced 18 

in thermodynamic models to define major ions and composition domains (e.g., Pilinis and 19 

Seinfeld, 1987; Nenes et al., 1998; Kim et al., 1993; Fountoukis and Nenes, 2007), but never to 20 

infer the levels of acidity and pH.  Thermodynamic models using the major species/composition 21 

domain approach (e.g., Fountoukis and Nenes, 2007) consider the possibility that aerosol species 22 

may volatilize enough to affect the ratio at equilibrium.  Furthermore, the degree of dissociation 23 
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of species such as H2SO4/HSO4
-/SO4

2-, HNO3/NO3
-, HCl/Cl-, and NH3/NH4

+ can affect the value 1 

of the ratio.  In subsequent studies; however, the molar ratio has been treated as a proxy for 2 

acidity, with lower ratios corresponding to particles with the highest levels of acidity (lowest pH) 3 

(e.g., Kerminen et al., 2001).  Molar ratios that yield a charge balance (i.e., equivalence ratios of 4 

unity or greater) are assumed for fully neutralized aerosol.  Two common simplifications of the 5 

molar ratio approach are often applied when the concentrations of crustal elements are relatively 6 

low (e.g., Zhang et al., 2007): 7 

Molar ratio = NH4
+/(Cl- + NO3

- + 2*SO4
2-)         (4) 8 

and (e.g., Peltier et al., 2007; Tanner et al., 2009; Froyd et al., 2010): 9 

Molar ratio = NH4
+/(2* SO4

2-)       (5) 10 

2.3 Thermodynamic Equilibrium Models  11 

Multiple thermodynamic equilibrium models have been developed to predict the behavior 12 

– most commonly the phase partitioning, liquid water content, and chemical speciation – of 13 

inorganic aerosol precursors.  Previous studies have performed detailed comparisons and have 14 

explored the causes of disagreement among different thermodynamic equilibrium models (Ansari 15 

and Pandis, 1999; Zhang et al., 2000).  We do not attempt to repeat this exercise.  Instead, 16 

thermodynamic models are considered as one method to estimate the acidity of atmospheric 17 

particles.  Two models are used in the present analysis: ISORROPIA-II (Fountoukis and Nenes, 18 

2007; Nenes et al., 1999) and the Extended Aerosol Inorganics Model (E-AIM) (Clegg et al., 19 

1998; Clegg et al., 2003; Wexler and Clegg, 2002).  ISORROPIA-II was designed with high 20 

computational efficiency to facilitate its incorporation in large-scale models and has seen wide 21 

usage.  E-AIM is computationally expensive but is considered the benchmark since it employs 22 

few assumptions in its calculation of aerosol inorganic behavior (Zaveri et al., 2008).   23 
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Two applications of each model are considered (Fountoukis et al., 2009): (a) “forward” 1 

(or “closed”) mode calculations, in which inputs to the model include T, RH and the total (gas + 2 

aerosol) concentrations of aerosol precursors in the air parcel, and, (b) “reverse” (or “open”) 3 

calculations, in which inputs to the model include T, RH and the concentration of aerosol 4 

species. The output of both calculations is the concentration of species in the gas and aerosol 5 

(solid/liquid) phases, pH, and aerosol water.  Highly time-resolved measurements of aerosol 6 

composition (e.g., via PILS-IC or AMS) are frequently conducted without the corresponding 7 

gas-phase aerosol precursor measurements (HCl, HNO3, NH3).  Under this condition, it is 8 

conceptually straightforward to run the thermodynamic models in “reverse” mode, and this 9 

approach is frequently applied to analyze ambient and experimental data.  In this analysis, we 10 

consider aerosol acidity predictions using both methods. 11 

2.4 Phase Partitioning 12 

Aerosol pH can also be estimated from the phase partitioning of certain semi-volatile 13 

compounds, such as HNO3/NO3
-, NH3/NH4

+, and HCl/Cl- (e.g., Keene et al., 2004; Meskhidze et 14 

al., 2003).  The H+ concentration in aqueous particles can be calculated assuming that the system 15 

is in equilibrium (using NH3/NH4
+ as an example): 16 

NH3 (g)  ↔  NH3 (aq)  KH      (R1) 17 

NH3 (aq) + H2O  ↔  NH4
+ + OH-  Kb     (R2) 18 

Under this approach, both the gas-phase and aerosol ionic components are measured, and the 19 

liquid H+ concentration can be calculated after combining the equilibrium expressions from 20 

reactions 1 and 2: 21 

{𝐻𝐻+} =  𝐾𝐾𝑤𝑤{𝑁𝑁𝐻𝐻4+}
𝐾𝐾𝐻𝐻𝐾𝐾𝑏𝑏𝑝𝑝𝑁𝑁𝐻𝐻3

         (6) 22 
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where {H+} is the activity of H+ in atmospheric particles, KH is the temperature-dependent 1 

Henry’s law constant, Kb is the temperature-dependent base dissociation constant, Kw is the 2 

temperature-dependent water dissociation constant, pNH3 is the gas-phase partial pressure of 3 

ammonia, and {NH4
+} is the activity of aqueous aerosol ammonium.  The aerosol liquid water 4 

content is required to derive {NH4
+} (e.g., to convert from µg m-3 to mol L-1).  The H+ and NH4

+ 5 

activity coefficients can also be calculated from thermodynamic equilibrium models in order to 6 

convert concentrations to activities, although the simplifying assumption of γ = 1 is sometimes 7 

employed, with satisfactory results (Fountoukis and Nenes, 2007).     8 

2.5 Evaluation Dataset 9 

We evaluate the above methods using ground-based data collected during the MILAGRO 10 

campaign at the T1 site in Mexico City (Molina et al., 2010).  The measurements spanned 10 11 

March - 1 April 2006 (Table 1).  Inorganic PM2.5 composition (Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, 12 

NO3
-, and SO4

2-) was measured with a Particle-into-Liquid Sampler coupled to a dual ion 13 

chromatograph (Hennigan et al., 2008).  Six-minute integrated measurements were conducted 14 

every 15 min. Given that PM2.5 composition only was measured, no size-acidity dependence 15 

could be elucidated (Keene et al., 2002).  Ammonia was measured with a quantum cascade laser 16 

spectrometer with 1-min sample time resolution (Aerodyne Research, Inc.).  Nitric acid was 17 

measured with 5-min time resolution via thermal dissociation-laser induced fluorescence of 18 

nitrogen oxides (Day et al., 2002; Farmer et al., 2011).  All chloride was assumed to reside in the 19 

particle phase (i.e., gas-phase HCl was effectively zero), which was determined to be a valid 20 

assumption given the high concentration of gas-phase NH3 (Fountoukis et al., 2009).   21 

The chemical measurements, along with ambient temperature and RH, were used as 22 

inputs into ISORROPIA-II and E-AIM.  Fountoukis et al. (2009) evaluated the equilibrium 23 
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partitioning of semi-volatile compounds at T1 using ISORROPIA-II.  We do not duplicate that 1 

effort here: instead, we focus solely on particle acidity and the comparison across the different 2 

proxy methods described above.  For the ‘reverse’ model runs, the 1-min met data were averaged 3 

on the aerosol sampling times and were used in conjunction with the aerosol concentrations as 4 

model inputs.  Given the differences in sample timing, the ‘forward’ model runs used as inputs 5 

the total gas + aerosol concentrations and met data averaged onto common 10-min sample times.  6 

Output from the reverse model runs was used for the present analysis only if the following 7 

criteria were met for a given sample: 1) NH4
+, NO3

-, and SO4
2- aerosol measurements were 8 

operational, 2) RH > 40%, and 3) modeled aerosol liquid water > 0.  Output from the forward 9 

model runs was used for the present analysis only if the above criteria were met, and both the 10 

NH3 and HNO3 measurements were operational for a given sampling interval.  These constraints 11 

explain the differences in sample numbers between the forward and reverse simulations and 12 

between E-AIM and ISORROPIA (Table 2).  ISORROPIA-II model runs were performed in 13 

‘metastable’ mode where the aerosol is only in the aqueous phase and can be supersaturated 14 

(http://isorropia.eas.gatech.edu/).  ISORROPIA treats the Na+-NH4
+-K+-Ca2+-Mg2+-Cl--NO3

--15 

SO4
2- system.  For conditions of excess cations, ISORROPIA-II assumes that bicarbonate 16 

(HCO3
-) and carbonate (CO3

2-) account for the deficit and a pH limit of 7 is imposed.  Model 17 

version AIM-IV was used for RH conditions greater than 60% (n = 348, Table 2) and model 18 

version AIM-II was used for RH conditions between 40-60% (n = 112, Table 2) 19 

(http://www.aim.env.uea.ac.uk/aim/aim.php).  AIM-IV treats the Na+-NH4
+-Cl--NO3

--SO4
2- 20 

system while AIM-II treats NH4+-NO3
--SO4

2-.  For AIM, measured cations not treated by the 21 

model were accounted for as equivalent sodium (Na*) in AIM-IV and equivalent ammonium 22 

(NH4
*) in AIM-II.  Cl- was accounted for as equivalent sulfate (SO4*) in AIM-II.   Ion balance is 23 
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required for all simulations in E-AIM: any cation deficit was balanced using H+ while any anion 1 

deficit was balanced using OH- since these are also required model inputs.  E-AIM assumes that 2 

OH- balances any excess cations, rather than carbonate, and thus has regions of higher predicted 3 

aerosol pH compared with ISORROPIA.  4 

E-AIM model runs were performed in solid + liquid mode where salts precipitate once 5 

the aqueous solution becomes saturated.  Overall, strong similarities between E-AIM and 6 

ISORROPIA suggest that the choice of metastable vs. stable (solid + liquid) mode did not 7 

appreciably affect the predicted aerosol pH levels.  Given the importance of aerosol liquid water, 8 

data below 40% RH were excluded from the analysis.  During the MILAGRO study, this was 9 

approximately 50% of the total measurement period.  Further, points above 40% RH with 10 

modeled aerosol liquid water content of zero were excluded from the analysis since a pH cannot 11 

be derived for these samples.  This was the cause of differences in sample numbers between the 12 

E-AIM and ISORROPIA simulations (Table 2).     13 

3 Results and Discussion 14 

3.1 Thermodynamic Equilibrium Models    15 

Thermodynamic equilibrium models are frequently used to estimate aerosol acidity.   Prior 16 

studies have observed and discussed large differences in aerosol acidity predicted by different 17 

models (Ansari and Pandis, 1999; Yao et al., 2006); we do not revisit this analysis, but instead 18 

seek to understand some of the limitations and uncertainties of using thermodynamic equilibrium 19 

models to predict aerosol pH.  Figure 1 shows that a large source of uncertainty is tied to the 20 

availability of gas-phase data and whether the model is run in the forward (gas + aerosol inputs) 21 

or reverse (aerosol inputs only) mode.  Note that the number of forward mode predictions was 22 
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less than the reverse mode predictions due to availability of coincident aerosol and gas-phase 1 

measurements.  For ISORROPIA and E-AIM, the median differences between the models run in 2 

forward and reverse modes were 3.5 and 3.1 pH units, respectively.  This finding is consistent 3 

with a modeling study of aerosol pH in Hong Kong, as well (Yao et al., 2006).  Other 4 

parameters, such as aerosol liquid water, have much closer agreement between the forward and 5 

reverse modes (not shown), given that it is largely driven by total aerosol mass and thus, is much 6 

less sensitive to gas-phase species.   7 

The large differences in the forward-reverse mode predictions of aerosol pH seen in Fig. 8 

1 come about for several reasons.  Upon specification of the aerosol species and surrounding RH 9 

and T, thermodynamic models first determine the aerosol pH and liquid water content (assuming 10 

that a liquid phase can exist), followed by computing the concentration of gas-phase semi-11 

volatile compounds in equilibrium with the aerosol (e.g., NH3, HNO3 and HCl).  The aerosol pH 12 

is largely driven by electroneutrality in the aqueous phase, as any imbalance between charges 13 

from cations and anions needs to be balanced by H+ and OH-: 14 

[𝐻𝐻+] + ∑ [𝑋𝑋+] = 𝑛𝑛+ [𝑂𝑂𝐻𝐻−] + ∑ [𝑌𝑌−] 𝑛𝑛− , or [ 𝐻𝐻+] +  𝐼𝐼𝑏𝑏 − [𝑂𝑂𝐻𝐻−] = 0  (7) 15 

where 𝐼𝐼𝑏𝑏 = ∑ [𝑋𝑋+]𝑛𝑛+ − ∑ [𝑌𝑌−] 𝑛𝑛− , is the ion balance parameter, n+ and n-are the number of 16 

positively and negatively charged ionic species, respectively, and [X+] is the concentration of a 17 

species in the aqueous phase, in gram equivalents (geq).  In the case where the aerosol is acidic 18 

(i.e., pH < 7 or  𝐼𝐼𝑏𝑏 < −�𝐾𝐾𝑤𝑤
2  , with 𝐾𝐾𝑤𝑤 = [𝑂𝑂𝐻𝐻−][𝐻𝐻+] ) then [𝑂𝑂𝐻𝐻−] contributes negligibly to 𝐼𝐼𝑏𝑏, 19 

and [𝐻𝐻+] ≅ −𝐼𝐼𝑏𝑏. Similarly, when the aerosol is alkaline (i.e., pH > 7 or 𝐼𝐼𝑏𝑏 > �𝐾𝐾𝑤𝑤
2  ) then [𝐻𝐻+] 20 

contributes negligibly to 𝐼𝐼𝑏𝑏, [𝑂𝑂𝐻𝐻−] ≅ 𝐼𝐼𝑏𝑏 and [𝐻𝐻+] = 𝐾𝐾𝑤𝑤 [𝑂𝑂𝐻𝐻−]⁄ . 21 
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Given the above, one can construct a diagram that relates aerosol pH to 𝐼𝐼𝑏𝑏; this is shown in Fig. 1 

2.  It is noteworthy that pH changes considerably over a narrow range of 𝐼𝐼𝑏𝑏, when the value of Ib 2 

is close to zero.  For acidic and very alkaline aerosol, uncertainty in Ib – shown as the (a) and (c) 3 

regions of Fig. 2 – may introduce a 0.5-1.0 pH unit bias in predicted pH.  In region (b) however, 4 

a small uncertainty in 𝐼𝐼𝑏𝑏 leads to shifts in pH that spans effectively 10 pH units (or more).  This 5 

uncertainty may come from either uncertainty in the measurements, themselves, or from 6 

approximations such as the exclusion of minor species (e.g., crustal elements) from the analysis.  7 

The data used in Fig. 2 are hypothetical – values of Ib ranging from -1 to 1 at a constant aerosol 8 

loading were input under conditions of constant T and RH to generate the predicted pH.  9 

However, Fig. 3 shows that for the MILAGRO dataset, the predicted aerosol pH (reverse mode) 10 

is extremely sensitive to minor uncertainties in the measurement inputs, and thus, to uncertainties 11 

in Ib.  Fig. 3 shows the sensitivity in predicted aerosol pH under the reverse mode calculation to 12 

+/-10% changes in the aerosol NH4
+ concentration.  The aerosol pH differed by more than 1.0 13 

pH units for 18% of the data when NH4
+ increased by 10%.  Likewise, aerosol pH differed by 14 

more than 1.0 pH units for 12% of the data when NH4
+ decreased by 10%.  Similar sensitivities 15 

were also observed for +/- 10% changes in aerosol NO3
- and SO4

2- inputs.  Using gas + aerosol 16 

inputs strongly constrains the effects of measurement errors and therefore is thought to give a 17 

more accurate representation of aerosol partitioning and composition (Fountoukis et al., 2009; 18 

Guo et al., 2014).  Our results support this thought, and indicate that reverse mode calculations of 19 

aerosol H+ and pH should likely be avoided for the interpretation of experimental data.  The 20 

exception to this recommendation would be a system that contains very low concentrations of 21 

semi-volatiles.  Without accompanying gas-phase data to constrain the thermodynamic models, 22 

an alternate approach that may yield a more accurate representation of aerosol pH is the use of 23 
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aerosol concentrations as input in forward mode calculations.  In the southeastern US, Guo et al. 1 

(2014) report that this approach led to biases in aerosol pH of ~1 pH unit, which is considerably 2 

lower than the bias observed in Fig. 1, if we assume that the forward mode predictions are 3 

accurate (see more discussion on this point below).   4 

3.2 Phase Partitioning 5 

Figure 4 shows aerosol pH predicted by ammonia phase partitioning vs. aerosol pH predicted by 6 

E-AIM and ISORROPIA run in the forward and reverse modes.  To predict aerosol pH from the 7 

NH3/NH4
+ phase equilibrium (Eq. 6), aerosol liquid water was taken from the forward model 8 

output of ISORROPIA.  The temperature-dependent KH and Kb are from Chameides (1984), 9 

while the temperature-dependent Kw is from Stumm and Morgan (1996).  We have used liquid 10 

concentrations, not activities in the application of Equation 6 (i.e., activity coefficients for H+ 11 

and NH4
+ are assumed to be unity), following the approach of Keene et al. (2004).  The 12 

implications of these assumptions are discussed below.  The best agreement between the phase 13 

partitioning approach and the models was found for both forward model applications (Figs. 4a 14 

and c).  A slope of 0.98 and high R2 value (0.80) indicate excellent agreement between E-AIM 15 

and the phase partitioning approach (Fig. 4a).  The median difference between these methods 16 

was only 0.4 pH units.   Likewise, good agreement was observed between ISORROPIA-II in the 17 

forward mode and the phase partitioning pH (Fig. 4c, slope = 0.98 and R2 = 0.47). 18 

Differences between the NH3/NH4
+ phase partitioning predictions and either 19 

thermodynamic model are possibly due to differences in equilibrium constants and/or differences 20 

in the activity coefficients, although the former is more likely.  That is evident from the strong 21 

agreement seen in Fig. 4a; since E-AIM employs activity coefficient calculations for all species, 22 

our calculation using concentrations instead of activities does not appear to systematically bias 23 
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the phase partitioning pH predictions.  A detailed characterization of uncertainties and 1 

sensitivities of the various methods to differences in equilibrium constants and activity 2 

coefficients is beyond the scope of this study, but should be explored in the future. 3 

The above results were contrasted by very poor agreement between the reverse models 4 

and phase partitioning predictions of aerosol pH (Figs. 4b and d).  The median difference 5 

between aerosol pH predicted by NH3 phase partitioning and E-AIM run in the reverse mode was 6 

3.5 pH units (n = 72).  Similarly, the median difference between aerosol pH predicted by NH3 7 

phase partitioning and ISORROPIA-II run in reverse mode was 3.1 pH units (n = 72).  These 8 

large differences are consistent with the large differences observed between the forward and 9 

reverse predictions of pH (Fig. 1).  These results are also consistent with large discrepancies (of 10 

order 1-4 pH units) in aerosol pH between E-AIM run in the reverse mode and the phase 11 

partitioning approach for a study in Hong Kong (Yao et al., 2006).  As discussed above, gas + 12 

aerosol inputs constrain the effects of measurement uncertainty on thermodynamic models, and 13 

thus, the large differences observed in Fig. 4b and d provide further support that the reverse 14 

model applications are challenged to accurately predict aerosol pH.  For the MILAGRO data set, 15 

approximately half of all reverse model runs predicted pH values less than 0 (44% for E-AIM, 16 

51% for ISORROPIA).  This is inconsistent with the observed aerosol ammonium fraction (NH4
+ 17 

/ (NH3 + NH4
+)), which was only 0.2, on average, over the study period.  Under conditions 18 

typical of the MILAGRO study (293 K, 10 µg m-3 aerosol liquid water, total NH3 of 10-30 µg m-19 

3), if the aerosol pH is less than 0, thermodynamic calculations predict that essentially all of the 20 

NH3 will partition to the particle phase at equilibrium.  The fact that gas-phase NH3 was 21 

abundant (Table 1) suggests either: 1) the system is not at equilibrium, or 2) aerosol pH > 0.  22 

Fountoukis et al. (2009) found that the equilibration timescales for NH3/ NH4
+ (approximately 10 23 

15 
 



min) were on par with the measurement integration timescales during MILAGRO, strongly 1 

suggesting that the assumption of equilibrium is valid.  This further supports the conclusion 2 

above that the reverse mode models vastly overstate the acidity (underestimate pH) of the 3 

Mexico City aerosol.   4 

These results suggest that the two best proxy methods for estimating aerosol pH are: 1) 5 

thermodynamic equilibrium models run using gas + aerosol inputs, and 2) the phase partitioning 6 

of ammonia.  Under certain conditions, the phase partitioning of HNO3/NO3
- gives similar results 7 

to that of ammonia (Young et al., 2013), so this is another feasible approach.  It should be noted 8 

that Young et al. (2013) caution against the use of HCl/Cl- partitioning to estimate pH on the 9 

basis of large (order of magnitude) uncertainty in the Henry’s law constant for HCl.  It should 10 

also be noted that Keene et al. (2004) observed relatively poor agreement between pH predicted 11 

by ammonia and nitric acid phase partitioning.  This may be due to the explicit treatment of 12 

activity coefficients (as was done by Young et al. (2013)), or to differences in other factors such 13 

as relative ammonia levels, since this can introduce major differences in thermodynamic model 14 

predictions (Ansari and Pandis, 1999).  Other limitations of the phase partitioning approach 15 

should be considered, depending on the environment.  This includes long equilibration 16 

timescales for coarse particles, and the presence of insoluble or partially soluble salts (Jacobson, 17 

1999; Fridlind and Jacobson, 2000; Meng and Seinfeld, 1996). 18 

3.3 Ion Balance vs. Aerosol pH 19 

Figure 5a shows a probability distribution for the ion balance during MILAGRO.  All of the 20 

measured inorganic species (Section 2.5) were included in the calculation according to Equation 21 

2 but dissociated organic acids were not included since they were not measured.  Approximately 22 

75% of the paired cation-anion measurements had a cation deficit and would thus be inferred as 23 
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acidic according to the ion balance.  Figure 5b shows the aerosol pH predicted by E-AIM 1 

(reverse mode) vs. the inorganic ion balance.  The data follow the traditional titration curve 2 

shape, with those points having a negative ion balance (anions > cations) all having predicted pH 3 

below 3.0 and points having a positive ion balance (cations > anions) all having predicted pH 4 

above 7.8.     5 

The ion balance proxy method assumes that conditions of high aerosol H+ loading (in 6 

nmol m-3) correspond to an aerosol distribution with a low (acidic) pH (e.g., Guo et al., 2012; 7 

Feng et al., 2012; Zhang et al., 2012a).  Figure 6 shows the relationship between predicted 8 

aerosol pH and the H+ concentration inferred from the ion balance.  An anion deficit in the ion 9 

balance is assumed to be due to OH- (Equation 2) - implying extremely low H+ levels - so only 10 

data with a negative ion balance were included in this analysis (n = 340).  Figure 6 shows no 11 

correlation at all between the H+ loading and the predicted aerosol pH using either the forward 12 

(Fig. 6a) or reverse models (Fig. 6b).  Note the differences in pH predicted by the forward and 13 

reverse models, as observed in Fig. 1.  Numerous points in the lowest H+ quartile have pH levels 14 

below the median pH of the upper H+ quartile (Fig. 6b).  Similarly, for a given H+ loading, a 15 

wide pH range of ~2-3 pH units is typically predicted.  This wide pH range is observed across all 16 

H+ loadings, even at the high and low ends, because aerosol liquid water content and the H+ 17 

activity coefficient can differ dramatically for a given H+ level.  The ion balance method is 18 

insensitive to either of these factors that are critical in determining aerosol pH (equation 1).  19 

Pathak et al. (2009) found a similar disconnect between H+ inferred from the ion balance and 20 

predicted aerosol pH for measurements in four cities across China.   21 

A further problem with the ion balance is that it is unable to distinguish between free and 22 

undissociated H+ (e.g., protons associated with bisulfate (HSO4
-)) (Keene et al., 2004).  This 23 
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limitation becomes very important when the solution pH approaches the pKa of any major ion 1 

that is associated with acidity, including HNO3, HCl, and NH3.  The pKa of HSO4
- is 1.99 2 

(Stumm and Morgan, 1996), and at pH levels below 3, the bisulfate/sulfate equilibrium begins to 3 

shift appreciably towards the protonated form, implying that the ion balance overestimates H+.  4 

This is illustrated in Fig. 7a and 7b, which show the H+ levels inferred from the ion balance 5 

compared to the H+ loadings predicted by E-AIM and ISORROPIA (both run in reverse mode), 6 

respectively.  Although the thermodynamic models use electroneutrality to derive H+, they 7 

account for partial dissociation, which explains why the ion balance gives H+ levels that are ~45-8 

65% higher than the models.  The discrepancy in pH predicted by the forward and reverse mode 9 

thermodynamic calculations (Fig. 1 and Fig. 6) also implies large differences in the predicted 10 

aerosol H+ loadings.  Figure 7c and d shows H+ levels inferred from the ion balance compared to 11 

H+ levels predicted by E-AIM and ISORROPIA, both run in forward mode.  The forward mode 12 

thermodynamic calculations predict H+ levels that are orders of magnitude lower than either the 13 

ion balance or reverse mode calculations, consistent with the large differences in predicted pH 14 

shown in Fig. 1.  This is also consistent with large discrepancies in H+ levels in Pittsburgh, PA 15 

predicted by forward (Takahama et al., 2006) and reverse (Zhang et al., 2007) thermodynamic 16 

equilibrium model simulations. Although the measurement periods for these studies did not 17 

overlap, the similar NH4
+ and SO4

2- concentrations suggest that the large differences in aerosol 18 

H+ were likely due to differences in the forward and reverse model simulations, not in the actual 19 

pH levels of the aerosol. 20 

Finally, another major limitation in estimating the aerosol H+ loading from the ion 21 

balance is high uncertainty in H+ that comes about from the propagation of measurement error.   22 

Figure 8a shows the relative ion balance uncertainty (%) vs. the ion balance loading (nmol m-3).  23 
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Note that the points with a negative ion balance (orange trace in Fig. 8a) are inferred as the H+ 1 

loading, and so this trace also represents the uncertainty in H+ from the ion balance.  The ion 2 

balance uncertainty was calculated using a standard propagation of error technique (Harris, 3 

1999):  4 

𝑢𝑢𝐼𝐼𝐼𝐼 = (𝑢𝑢𝑁𝑁𝑁𝑁+2 +  𝑢𝑢𝑁𝑁𝐻𝐻4+2 + 𝑢𝑢𝑀𝑀𝑀𝑀2+2 + 𝑢𝑢𝐶𝐶𝑁𝑁2+2 + 𝑢𝑢𝐾𝐾+2 + 𝑢𝑢𝐶𝐶𝐶𝐶−2 + 𝑢𝑢𝑁𝑁𝑁𝑁3−2 + 𝑢𝑢𝑆𝑆𝑁𝑁42−2 )1 2�   (8) 5 

where 𝑢𝑢𝐼𝐼𝐼𝐼 is the absolute uncertainty in the ion balance (in neq m-3), and the terms on the right 6 

hand side represent the absolute uncertainties in each inorganic species in neq m-3 (Na+, NH4
+, 7 

Mg2+, Ca2+, K+, Cl-, NO3
-, and SO4

2-), calculated assuming 10% relative uncertainty for each 8 

species.  Figure 8a shows that the relative ion balance (and [H+]) uncertainty (𝑢𝑢𝐼𝐼𝐼𝐼/[ion balance]) 9 

grows with decreasing ion balance (or [H+]), as one would expect.  A frequency distribution of 10 

the ion balance uncertainty from the MILAGRO study shows that approximately 40% of the ion 11 

balance (and [H+]) calculations had an associated uncertainty higher than 50%, and more than 12 

20% of the ion balance (and [H+]) calculations had an associated uncertainty higher than 100% 13 

(Fig. 8b).       14 

These results demonstrate numerous problems with the ion balance and strongly suggest 15 

that it is inadequate to represent the pH of atmospheric particles.  The ion balance may provide a 16 

qualitative indication of acidic conditions when anions far exceed cations, but the variable effects 17 

of liquid water, the buffering action of HSO4
-/SO4

2-, and the effect of species activity coefficients 18 

in concentrated particles precludes its use for any quantitative means.  Even when all ionic 19 

components – including the dissociated ions of organic acids – are accounted for and measured 20 

with good precision, the ion balance is unlikely to qualitatively distinguish alkaline particles 21 

from mildly acidic particles due to the propagation of uncertainties in the aerosol composition 22 

measurements.  This recommendation against the use of the ion balance as a proxy for aerosol 23 
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pH is supported by prior work (Keene and Savoie, 1998; Winkler, 1986; Guo et al., 2014).  The 1 

H+ concentration derived from the ion balance is often just a surrogate for sulfate, especially in 2 

environments where sulfate is the dominant inorganic species (Pathak et al., 2009; Zhang et al., 3 

2007).  It is possible – likely even – to simultaneously have particles with a low concentration of 4 

H+ (in nmol m-3) that are highly acidic (low pH).  Studies that infer the effects of particle acidity 5 

on atmospheric chemical processes using the inorganic ion balance are likely flawed.  For 6 

example, correlations between SOA and aerosol H+ concentrations (from the ion balance) have 7 

been interpreted as evidence for acid-catalyzed SOA formation  (Feng et al., 2012; Guo et al., 8 

2012; Budisulistiorini et al., 2013; Pathak et al., 2011; Nguyen et al., 2014; Zhang et al., 2012a).  9 

These studies may have misinterpreted their data, since sulfate may actually be a limiting factor 10 

in isoprene and monoterpene SOA formation (Xu et al., 2015).  H+ derived from the ion balance 11 

is a surrogate for sulfate and many factors lead to correlations between sulfate and SOA in 12 

regional pollution (Sun et al., 2011; Zhang et al., 2012b). 13 

3.4 Molar Ratio vs. pH 14 

Similar to applications of the ion balance, the molar ratio is frequently used as a proxy for 15 

aerosol pH.  Molar ratios that yield a charge balance (i.e., equivalence ratios of unity or greater) 16 

are assumed for fully neutralized aerosol while decreasing cation/anion ratios are assumed to 17 

represent decreasing aerosol pH (He et al., 2012; Kerminen et al., 2001; Huang et al., 2013).  The 18 

data and assumptions that underlie the molar ratio method are the same as those used to calculate 19 

the ion balance.  Thus, many of the same limitations apply to the molar ratio method.  The 20 

exclusion of minor ionic species, including crustal elements and dissociated organic acids, can 21 

significantly bias the results (Cao et al., 2013; Jacobson, 1999; Trebs et al., 2005; Ziemba et al., 22 

2007; Moya et al., 2002).  The propagation of analytical uncertainty can also create problems 23 
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with the signal-to-noise ratio for many samples that will challenge the interpretations of the 1 

molar ratio.  Finally, the molar ratio does not account for the effects of aerosol water or species 2 

activities on particle acidity.  Given the similar assumptions and limitations, it should be 3 

unsurprising that [H+] from the ion balance was highly correlated with the cation/anion molar 4 

ratio (R2 = 0.66, not shown) for the MILAGRO dataset.  Similar to the ion balance results, no 5 

correlation was observed between the molar ratio and forward-mode predicted aerosol pH (Fig. 6 

9).  Zhang et al. (2007) and Behera et al. (2014) demonstrated similar problems translating the 7 

molar ratio into aerosol pH for studies in Pittsburgh and Singapore, respectively.  Even under the 8 

limiting case when 1) crustal elements were low (where NH4
+, Cl-, NO3

-, and SO4
2- together 9 

accounted for greater than 95% of inorganic aerosol ion mass) and 2) the aerosol regime was 10 

inferred to be highly acidic (samples with NH4
+/(Cl- + NO3

- + 2*SO4
2-) molar ratios less than 11 

0.75), there was no correlation between the molar ratio and predicted pH (Fig. 10).     12 

These results indicate that the molar ratio is not a suitable proxy to infer the acidity of 13 

atmospheric particles.  This applies to all variations of the molar ratio (Equations 3, 4, or 5).  14 

When the majority of inorganic species (> 95%) are accounted for, the molar ratio is able to 15 

distinguish alkaline particles from acidic particles with good reliability; however, it is unable to 16 

provide any measure – even qualitative – of the degree of aerosol acidity.  The lack of 17 

relationship between the molar ratio and predicted aerosol pH strongly suggests problems with 18 

studies that have used the molar ratio as a proxy for pH.  For example, studies that have 19 

attempted to characterize the occurrence of acid-catalyzed SOA formation in the atmosphere 20 

may have incorrectly interpreted the aerosol acidity using a molar ratio approach (e.g., Tanner et 21 

al., 2009; Peltier et al., 2007; Zhang et al., 2007; Froyd et al., 2010).   22 
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4 Conclusions 1 

We have carried out an analysis of proxy methods used to estimate the pH of atmospheric 2 

particles.  The ion balance method, which is used to infer the aerosol H+ loading, showed no 3 

correlation with aerosol pH predicted by multiple independent metrics.  This indicates that 4 

conditions of increasing H+ loading do not necessarily correspond to decreasing (i.e., more 5 

acidic) aerosol pH.  Likewise, the cation/anion molar ratio (and related metrics) showed no 6 

relationship with different predictions of aerosol pH.  When species accounting for greater than 7 

95% of inorganic aerosol mass were included in the analysis, the molar ratio appears to reliably 8 

distinguish acidic from alkaline particles; however, the molar ratio should not be treated as a 9 

surrogate for aerosol pH.  The molar ratio actually showed a strong relationship with the ion 10 

balance.  A major reason for the inability of these methods to represent aerosol pH is that both 11 

neglect the effects of aerosol water and partial dissolution of ions and acids on pH, in accordance 12 

with previously published studies (Keene and Savoie, 1998; Winkler, 1986).  Further, the ion 13 

balance and molar ratio can also be severely limited by signal-to-noise ratio due to analytical 14 

uncertainties. These results strongly discourage the use of the ion balance or molar ratio for pH 15 

or H+ inference. 16 

These results also suggest that thermodynamic equilibrium models require both gas + 17 

aerosol inputs for accurate predictions of H+ and pH.  Two independent models - E-AIM and 18 

ISORROPIA - performed similarly and predict much lower pH (more acidic particles) in the 19 

reverse modes using aerosol inputs only.  The aerosol pH levels predicted by both reverse 20 

models do not agree with either the pH predictions using gas + aerosol inputs or the phase 21 

partitioning of ammonia.  The models in reverse mode predict highly acidic particles for 22 

extended periods of time (i.e., pH < 0), despite high concentrations of gas-phase ammonia and 23 
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relatively short equilibration timescales.  Further, the models in reverse mode are highly 1 

sensitive to uncertainty in the measurement inputs: small deviations in major aerosol species on 2 

the order of common aerosol measurement uncertainties can induce changes in predicted pH that 3 

exceed 10 pH units.  This recommendation is consistent with other studies that show much better 4 

model performance when aerosol + gas inputs are used (Fountoukis et al., 2009; Guo et al., 5 

2014).   6 

Thermodynamic equilibrium models in forward mode had very good agreement with pH 7 

predicted by the phase partitioning of ammonia.  These methods are largely, but not completely 8 

independent, as the aerosol liquid water required for the phase partitioning calculation is 9 

obtained from the same thermodynamic models.  In addition, the use of activity coefficients from 10 

thermodynamic models as inputs in the phase partitioning calculations would further couple the 11 

two methods (here we have avoided this by using concentrations instead of activities).  12 

Thermodynamic equilibrium models are generally quite skilled in predicting aerosol liquid water 13 

(Khlystov et al., 2005), so this likely introduces minimal uncertainty to the present analysis.  In 14 

regions where organics are high, their contribution to aerosol liquid water (and hence, pH) 15 

should be investigated (Guo et al., 2014).  The fact that these largely independent methods 16 

agreed so closely provides the basis for the recommendation of their use to estimate the pH of 17 

atmospheric particles.  As with the application of thermodynamic equilibrium models, the phase 18 

partitioning approach makes the implicit assumption that the gas/particle system is at 19 

equilibrium.  This appears to be a good assumption for the Mexico City data set (Fountoukis et 20 

al., 2009), but it can be a poor assumption when coarse particles are abundant, such as in the 21 

marine environment (Fridlind and Jacobson, 2000).  The phase partitioning approach is also 22 

likely limited in ammonia-poor environments where all or most of the ammonia resides in the 23 
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aerosol phase.  In such environments, the phase partitioning of nitric acid may be a good 1 

alternative if both nitric acid and aerosol nitrate concentrations are high enough (Young et al., 2 

2013; Meskhidze et al., 2003).  Uncertainty in the Henry’s law constant of other compounds, 3 

especially HCl, may limit the application of the phase partitioning approach beyond NH3/NH4
+ 4 

and HNO3/NO3
- (Young et al., 2013). 5 

Our recommendation for the use of the phase partitioning approach and forward 6 

equilibrium model calculations to best predict aerosol pH contradicts the recommendations in a 7 

similar study (Yao et al., 2006).  Both our study (from Mexico City) and the Yao et al. (2006) 8 

study (Hong Kong) agree that E-AIM run in the reverse mode yields predicted aerosol pH levels 9 

significantly lower than the phase partitioning or forward model predictions.  We differ on our 10 

interpretation of the results: Yao et al. (2006) conclude that the phase partitioning approach and 11 

forward model calculations erroneously assume that the gas-aerosol system has reached 12 

equilibrium, even though their analysis is based upon 12- and 24-h PM2.5 measurements.  This 13 

sampling time should far-exceed the equilibration time for sub-micron particles, which is on the 14 

order of seconds-to-minutes (Meng and Seinfeld, 1996).  In addition, our comparisons in Fig. 4a 15 

and 4c only include the subset of data where RH exceeds 60%, a region in which the 16 

thermodynamic predictions – and assumption of equilibrium – become more accurate (Moya et 17 

al., 2002).  Fountoukis et al. (2009) examined the equilibrium assumption for PM2.5 during 18 

MILAGRO and found it to be valid.  Thus, we believe that the forward thermodynamic models 19 

and phase partitioning approach are far more accurate in their predictions of pH than the reverse 20 

models run in closed mode without the additional constraint of gas-phase data.   21 

These recommendations should be evaluated in other environments with different 22 

chemical characteristics and meteorology than was observed during MILAGRO.  In particular, 23 
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the recommendations should be evaluated in ammonia poor environments, since thermodynamic 1 

equilibrium models often diverge in their predictions under such conditions (Ansari and Pandis, 2 

1999).  Despite their uncertainties, thermodynamic models and phase partitioning provide the 3 

best methods to estimate the pH of fine atmospheric particles.  Other widely used metrics – ion 4 

balance and ion ratios – are misleading and should be avoided beyond the establishment of 5 

general alkalinity or acidity.  Hence, conclusions that are sensitive to aerosol pH but that are 6 

based upon the ion balance or molar ratio may need revision.    7 
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Tables 1 

Table 1: Overview of MILAGRO measurements used as modeling inputs 2 
 3 
Measurement Overview 4 

Species 
Measurement 
dates (2006) 

Study 
n 

Mean 
Concentration ± 

1σ (µg m-3) 
5th percentile 

(µg m-3) 
95th percentile 

(µg m-3) 
Na+ 10 Mar – 1 Apr  998 0.31 ± 0.14 0.18 0.45 
NH4

+ 10 Mar – 1 Apr 1159 1.69 ± 1.36 0.25 4.43 
Ca2+ 10 Mar – 1 Apr 1654 0.53 ± 0.57 0.02a 1.64 
Mg2+ 10 Mar – 1 Apr 1051 0.15 ± 0.07 0.08 0.28 
Cl- 10 Mar – 1 Apr 1603 0.27 ± 0.69 0.02a 1.23 
NO3

- 10 Mar – 1 Apr 1634 2.93 ± 2.66 0.37 8.20 
SO4

2- 10 Mar – 1 Apr 1652 3.74 ± 2.30 1.63 8.05 
*NH3  21 Mar – 31 Mar 9594 25.2 ± 15.3 7.9 56.1 
*HNO3 17 Mar – 30 Mar 430 2.43 ± 1.48 0.71 5.11 
*concentrations in ppb 5 
aThis value represents the measurement LOD 6 
 7 
Table 2: Overview of modeling outputs and criteria 8 
 9 
Modeling Overview 10 

Model n 
Average [H+] 

(nmol m-3) 
Median [H+] 
(nmol m-3) 

Average 
pH 

Median 
pH 

ISORROPIA-II, Reverse1 438 19.39 10.34 1.98 -0.02 
E-AIM, Reverse1 460 15.77 6.56 2.36 0.14 
ISORROPIA-II, Forward2 89 0.008 0.005 3.31 3.38 
E-AIM, Forward2 39 0.015 0.012 3.24 3.32 
1Output limited to samples meeting these criteria: 1) NH4

+, NO3
-, and SO4

2- > 0; 2) RH ≥ 40%; 11 
and 3) modeled aerosol liquid water content > 0. 12 
2Output limited to samples meeting these criteria: 1) NH4

+, NO3
-, SO4

2-, NH3, and HNO3 > 0; 2) 13 
RH ≥ 40%; and 3) modeled aerosol liquid water content > 0. 14 
 15 
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 1 

Fig. 1. Comparison of pH predicted using the reverse and forward modes of ISORROPIA and E-2 

AIM. 3 
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 1 

Fig. 2. Aerosol pH as a function of the parameter Ib (see Eq. 7 for explanation). The data used 2 

here are hypothetical – values of Ib ranging from -1 to 1 at a constant aerosol loading were input 3 

under conditions of constant T and RH to demonstrate the extreme sensitivity of aerosol pH at Ib 4 

values near 0.0 (region ‘b’). 5 
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 1 

Fig. 3. Sensitivity of aerosol pH predicted with E-AIM (reverse mode) to small changes in the 2 

input aerosol NH4
+ concentration. 3 
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 1 

Fig. 4. Aerosol pH predicted by the phase partitioning of ammonia compared to pH predicted by 2 

(a) E-AIM in the forward mode, (b) E-AIM in the reverse mode, (c) ISORROPIA in the forward 3 

mode, and (d) ISORROPIA in the reverse mode.  4 
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 1 

Fig. 5. (a) Frequency distribution of the aerosol ion balance during MILAGRO, and (b) aerosol 2 

pH predicted by E-AIM in the reverse mode vs. the ion balance.  The dashed lines at 0 serve as a 3 

visual reference for neutral particles. 4 
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Fig. 6. (a) aerosol pH predicted by ISORROPIA in the forward mode vs. the H+ concentration 1 

derived from the ion balance, and (b) aerosol pH predicted by E-AIM in the reverse mode vs. the 2 

H+ concentration derived from the ion balance. Only points with a cation charge deficit 3 

(Σ(anions) > Σ(cations)) are included in the analysis.  The horizontal black bars represent the 4 

medians corresponding to the values in the legend. 5 

 6 

Fig. 7. H+ levels inferred from the ion balance compared to H+ levels predicted by (a) E-AIM in 7 

the reverse mode, (b) ISORROPIA in the reverse mode, (c) E-AIM in the forward mode, and (d) 8 

ISORROPIA in the forward mode.  Note the log scale for the x-axes in (c) and (d). 9 
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 1 

Fig. 8. (a) Relative ion balance uncertainty (%) as a function of the ion balance level.  Note that 2 

the orange trace represents [H+], and so this trace also represents the uncertainty in [H+] from the 3 

ion balance. (b) Frequency distribution in the relative ion balance uncertainty.  4 

 5 
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 1 

Fig. 9. Aerosol pH predicted by the forward mode equilibrium models compared to the 2 

Σ(cations)/Σ(anions) charge ratio. 3 
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 1 

Fig. 10. Predicted aerosol pH vs. the NH4
+/(Cl- + NO3

- + 2*SO4
2-) molar ratio, using only data 2 

where the ratio is less than 0.75 (region inferred as highly acidic) and where Σ(NH4
+ + Cl- + 3 

NO3
- + SO4

2-) accounts for greater than 95% of measured inorganic aerosol mass (i.e., with low 4 

crustal concentrations).  5 

 6 
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