

1 **Re-evaluating the reactive uptake of HOBr in the troposphere with**
2 **implications for the marine boundary layer and volcanic plumes**

4 **Tjarda J. Roberts¹, Line Jourdain¹, Paul T. Griffiths², and Michel Pirre¹**

5
6 [1] {LPC2E, UMR 7328, CNRS-Université d'Orléans, 3A Avenue de la Recherche
7 Scientifique, 45071 Orleans, Cedex 2, France}

8 [2] {Centre for Atmospheric Science, Cambridge University, Chemistry Department,
9 Lensfield Road, Cambridge, CB2 1EW, UK}

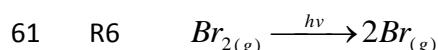
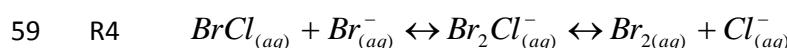
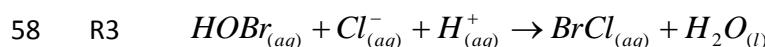
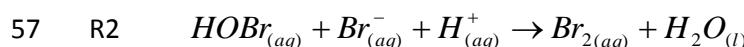
10
11 Correspondence to: T. J. Roberts (Tjarda.Roberts@cnrs-orleans.fr)

14 **Abstract**

15 The reactive uptake of HOBr onto halogen-rich aerosols promotes conversion of $\text{Br}^-_{(\text{aq})}$ into gaseous
16 reactive bromine (incl. BrO) with impacts on tropospheric oxidants and mercury deposition.
17 However, experimental data quantifying HOBr reactive uptake on tropospheric aerosols is limited,
18 and reported values vary in magnitude. This study introduces a new evaluation of HOBr reactive
19 uptake coefficients in the context of the general acid assisted mechanism. We emphasise that the
20 termolecular kinetic approach assumed in numerical model studies of tropospheric reactive bromine
21 chemistry to date is strictly only valid for a specific pH range and, according to the general acid
22 assisted mechanism for HOBr, the reaction kinetics becomes bimolecular and independent of pH at
23 high acidity.

24 This study reconciles for the first time the different reactive uptake coefficients reported from
25 laboratory experiments. The re-evaluation confirms HOBr reactive uptake is rapid on moderately
26 acidified sea-salt aerosol (and slow on alkaline aerosol), but predicts very low reactive uptake
27 coefficients on highly-acidified submicron particles. This is due to acid-saturated kinetics combined
28 with low halide concentrations induced by both acid-displacement reactions and the dilution effects
29 of $\text{H}_2\text{SO}_4_{(\text{aq})}$. A mechanism is thereby proposed for reported Br-enhancement (relative to Na) in
30 H_2SO_4 -rich submicron particles in the marine environment. Further, the fact that HOBr reactive
31 uptake on H_2SO_4 -acidified supra-micron particles is driven by $\text{HOBr}+\text{Br}^-$ (rather than $\text{HOBr}+\text{Cl}^-$)
32 indicates self-limitation via decreasing γ_{HOBr} once aerosol Br^- is converted into reactive bromine.

33 First predictions of HOBr reactive uptake on sulphate particles in halogen-rich volcanic plumes are
34 also presented. High (accommodation limited) $\text{HOBr}+\text{Br}^-$ uptake coefficient in concentrated (> 1
35 $\mu\text{mol/mol SO}_2$) plume environments supports potential for rapid BrO formation in plumes
36 throughout the troposphere. However, reduced HOBr reactive uptake may reduce the rate of BrO
37 cycling in dilute plumes in the lower troposphere.





38 In summary, our re-evaluation of HOBr kinetics provides a new framework for interpretation of
39 experimental data and suggests the reactive uptake of HOBr on H_2SO_4 -acidified particles is
40 substantially over-estimated in current numerical models of BrO chemistry in the troposphere.

41

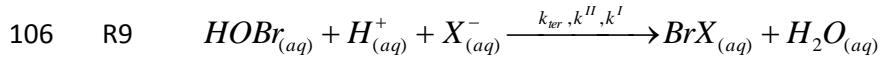
42 **1. Introduction**

43 The reactive uptake of HOBr onto halogen-containing aerosols to release Br₂ enables propagation of
44 the chain reaction leading to autocatalytic BrO formation, the so-called ‘bromine explosion’, (Vogt et
45 al., 1996), first proposed following the discovery of ozone depletion events in the polar boundary
46 layer (Barrie et al. 1988). Rapid and substantial (10’s ppbv) ozone depletion occurs upon the
47 formation of just 10’s pptv BrO due to cycling between Br and BrO, with further Br-mediated impacts
48 on environmental mercury in the conversion of Hg⁰ to more reactive and easily deposited form Hg^{II}
49 (Schroeder et al., 1998). Tropospheric BrO chemistry has since been recognised outside the polar
50 regions, with BrO identified above salt pans (Hebestreit et al., 1999), in the marine boundary layer
51 (Read et al. 2008), and is suggested to have a significant impact on the chemistry of the free
52 troposphere (e.g. von Glasow et al., 2004). In particular, recent evidence of rapid BrO formation in
53 acidic volcanic plumes (10’s pptv to ppbv on a timescale of minutes) has highlighted volcanic halogen
54 emissions as a source of reactive bromine entering the troposphere (Bobrowski et al., 2003).

55

64

65 Key to reactive halogen formation is the cycle R1-R8 which results in autocatalytic formation of BrO.
66 Accommodation of HOBr_(g) to aerosol (R1), followed by reaction with Br⁻_(aq) or Cl⁻_(aq) and H⁺_(aq) results
67 in a di-halogen product (R2,R3). The reaction of HOBr with Cl⁻_(aq) (R3) is typically considered the
68 dominant reaction pathway (albeit an assumption that may not apply in highly acidified aerosol as


69 we show in this study) given sea-salt aerosol contains $[\text{Br}_{(\text{aq})}] \ll [\text{Cl}_{(\text{aq})}]$ by a factor of 700 (or greater
70 once reactive bromine formation has commenced), and the termolecular rate constants for R2 and
71 R3 are of comparable magnitudes (Liu and Margarem, 2001, Beckwith et al., 1996). However, Br_2 is
72 commonly the observed product, as confirmed by laboratory experiments by Fickert et al. (1999).
73 The product conversion from BrCl to Br_2 is explained by aqueous-phase equilibria (R4) that
74 interconvert BrCl into Br_2 (via Br_2Cl^-) before gaseous release (R5). According to equilibrium constants
75 reported by Wang et al. (1994), conversion of BrCl to Br_2 is favoured at room temperature in aerosol
76 provided $\text{Br}^-_{(\text{aq})}:\text{Cl}^-_{(\text{aq})} > \sim 10^{-4}$, as for example in sea-salt aerosol where $\text{Br}^-_{(\text{aq})}:\text{Cl}^-_{(\text{aq})} \approx 1.5 \cdot 10^{-3}$. The
77 dihalogen species then partition into the gas-phase, R5. The exsolution of dihalogens from the
78 aerosol to the gas-phase also limits the occurrence of reverse reactions that might reform HOBr .
79 Once in the gas-phase, Br_2 is photolysed to produce 2 Br radicals, R6, which may react with ozone to
80 form BrO , R7. HOBr is reformed via the reaction of BrO with HO_2 , (R8), whereupon it may react again
81 with halogen-containing aerosol to further propagate the cycle, each time doubling the
82 concentration of reactive bromine.

83

84 Numerical models have been developed to better understand the formation of BrO and evaluate
85 impacts on atmospheric oxidants throughout the troposphere and on mercury cycling in the
86 environment. Models capture the salient features of BrO formation and impacts (e.g. on ozone
87 depletion and Hg deposition events) in the different tropospheric environments (for reviews by
88 Simpson et al. 2007 and Saiz-Lopez A. and von Glasow R., 2012). Nevertheless, a number of
89 uncertainties remain. For example, models tend to overestimate Br_x cycling in the marine
90 environment (Sander et al., 2003; Smoydzin and von Glasow, 2007; Keene et al., 2009). Models
91 predict a depletion in the inorganic bromine content of all acidified marine aerosols, as consequence
92 of HOBr reactive uptake to form Br_2 and its release into the gas-phase. However, an aerosol bromine
93 deficit is only observed in the slightly acidified supramicron fraction, whilst aerosol bromine is found
94 to be enhanced (relative to that expected based on $\text{Br}:\text{Na}$ ratios in sea-salt, using sodium as a sea-
95 salt tracer) in the highly acidified sub-micrometer fraction. This phenomenon has not been
96 explained to date (Sander et al., 2003). Numerical models have also attempted to simulate reactive
97 halogen chemistry in volcanic plume environments. Models initialised with a high-temperature
98 source region, are able to reproduce the rapid formation of BrO in the near-source plume
99 (Bobrowski et al. , 2007a, Roberts et al., 2009, Von Glasow 2010), as well as ozone depletion (Kelly et
100 al., 2013), but a source of model uncertainty is the representation of heterogeneous halogen

101 chemistry on volcanic aerosol, which may differ from that reported from experiments on sea-salt
102 aerosol.

103 All these studies rely on laboratory experiments to quantify rate constants of the reactions, with a
104 key process in the formation of reactive bromine being the reaction of HOBr_(aq) with halide ion X⁻_(aq)
105 (Cl⁻_(aq) or Br⁻_(aq)) and H⁺_(aq), R2,R3, which can be written generically as R9.

107 Experimental studies (e.g. Fickert et al., 1999) show the reaction of HOBr_(aq) is promoted when
108 alkaline sea-salt aerosols becomes acidified, either by natural (e.g. methane sulphonic acid) or
109 anthropogenic (e.g. sulphuric acid) sources of acidity. However, laboratory experiments have
110 reported uptake coefficients on acidified sea-salt aerosol, >0.2 (Abbatt and Wachewsky, 1998) and
111 10⁻² (Pratte and Rossi, 2006), a discrepancy that has not been explained to date. In addition, no
112 experiments have been performed to quantify uptake of HOBr on volcanic aerosol under
113 tropospheric conditions.

114 Numerical model studies of reactive bromine chemistry currently implement R9 using three-body
115 reaction kinetics, i.e. assumed the reaction rate is directly proportional to H⁺_(aq) concentration (e.g.
116 von Glasow, 2002), or using uptake coefficients calculated on this assumption (IUPAC evaluations,
117 e.g. Ammann et al., 2013). We highlight, however, that earlier literature on the general acid-assisted
118 mechanism for this and similar reactions (e.g. Eigen and Kustin, 1962, Nagy et al., 1988) identify that
119 the pH dependence of the reaction rate is more complex, with acid-saturation of the kinetics at high
120 acidity.

121 This study re-evaluates HOBr reactive uptake in the context of the general acid assisted mechanism
122 for the first time. The plan of the paper is as follows. In Section 2 the method for calculating the
123 reactive uptake coefficient is recalled with the approach based on the general acid assisted
124 mechanism explained. The data used to evaluate the new uptake coefficient calculations are
125 presented. In Section 3 pH-dependent second-order rate constants (k^{II}) are derived for both
126 HOBr+Br⁻ and HOBr+Cl⁻ in the context of the general assisted mechanism, using reported literature
127 data for the underlying rate constants, and a thermodynamic model to predict aerosol composition
128 under experimental conditions. Using the new parameterisation for k^{II}, reactive uptake coefficients
129 for HOBr + Br⁻ and HOBr + Cl⁻ are calculated and compared to reported laboratory data for HCl-
130 acidified sea-salt aerosol (Wachewsky and Abbatt, 1998) and H₂SO₄-acidified sea-salt aerosol (Pratte
131 and Rossi, 2006). We provide new quantification of HOBr+Br⁻ and HOBr+Cl⁻ uptake coefficients on
132 H₂SO₄-acidified sea-salt aerosol in the marine environment, and sulphuric acid aerosol in volcanic

133 plumes dispersing into the troposphere. In section 4, reactive uptake coefficients are calculated for
 134 HOBr on H_2SO_4 -acidified sea-salt aerosol in the marine environment, and on sulphuric acid aerosol in
 135 volcanic plumes entering the troposphere, and implications discussed for BrO chemistry in these
 136 environments.

137

138 **2. Method and experimental data**

139 **2.1 Quantifying the reactive uptake coefficient, γ_{HOBr}**

140 The reactive uptake of $\text{HOBr}_{(g)}$ can be quantified by E1 (with further modification required for large
 141 particles due to the limitation of gas-phase diffusion) in terms of the reactive uptake coefficient,
 142 γ_{HOBr} , where v_{HOBr} is the mean molecular velocity of $\text{HOBr}_{(g)}$, cm s^{-1} , and Area , is the surface area
 143 density of the aqueous phase, cm^2/cm^3 .

144 γ_{HOBr} is a fractional number that quantifies the likelihood of reaction given a collision of $\text{HOBr}_{(g)}$ with
 145 a particle, and can be calculated following the resistor-model framework (E2) that describes the
 146 accommodation to the aerosol, and the reaction and diffusion in or across the aerosol particle. γ_{HOBr}
 147 is a function of several parameters, including accommodation coefficient, α_{HOBr} , the solubility of
 148 HOBr , H^* , the aqueous-phase diffusion rate, D , the gas constant R , Temperature, T , the mean
 149 molecular velocity, v_{HOBr} , and the first-order rate constant for the reaction of $\text{HOBr}_{(aq)}$, k^I . The
 150 parameter l is a function of D and k^I , $l = (D/k^I)^{0.5}$.

151 E1
$$-\frac{d[\text{HOBr}_{(g)}]}{dt} = \gamma_{\text{HOBr}} \cdot \frac{v_{\text{HOBr}}}{4} \cdot [\text{HOBr}_{(g)}] \cdot \text{Area}$$

152 E2
$$\frac{1}{\gamma_{\text{HOBr}}} = \frac{1}{\alpha_{\text{HOBr}}} + \frac{v_{\text{HOBr}}}{4 \cdot H_{\text{HOBr}}^* \cdot R \cdot T \cdot \sqrt{D_{l,\text{HOBr}} \cdot k^I}} \cdot \frac{1}{\coth\left[\frac{r}{l}\right] - \frac{l}{r}}$$

153 E3
$$-\frac{d[\text{HOBr}_{(aq)}]}{dt} = k^I \cdot [\text{HOBr}_{(aq)}]$$

154 E4
$$k^I = k_{ter} \cdot [X_{(aq)}^-] \cdot [H_{(aq)}^+]$$

155 E5
$$k^I = k'' \cdot [X_{(aq)}^-]$$

156 To date, numerical models have adopted two approaches to simulate the reactive uptake of HOBr.
 157 Detailed process models (e.g. MISTRA; von Glasow et al. (2002), MECCA; Sander et al. (2011)) tend
 158 to model HOBr gas-aerosol partitioning to and from the aerosol directly, with the reaction of HOBr

159 inside the aerosol simulated using E3 and termolecular kinetics (E4). On the other hand, global
160 models (e.g. in studies by von Glasow et al., (2004), Yang et al., (2005), Breider et al., (2010), Parella
161 et al. (2012)) tend to simulate HOBr reactive uptake as one step, E1, quantified by the uptake
162 coefficient, γ_{HOBr} . The IUPAC evaluation recommends uptake coefficient to be calculated using E2
163 and the termolecular approach to HOBr kinetics, E4. In global models, a fixed uptake coefficient,
164 γ_{HOBr} , is typically used for computational reasons.

165 However, as we highlight in this study, the termolecular kinetics approach (E4) is only valid within a
166 limited pH range. Here we instead use E2 and the reaction kinetics of $\text{HOBr}_{(\text{aq})}$ in terms of a second-
167 order rate constant, E5, where k^{II} is a variable function of pH according to the general acid assisted
168 reaction mechanism for $\text{HOX}+\text{Y}^-(+\text{H}^+)$ constrained by available laboratory data. Details on the
169 mechanism and derivation of k^{II} are given in Section 1 of Supplementary material and Section 3.1).
170 Despite being well-documented (Eigen and Kustin, 1962; Kumar and Margarem, 1987; Nagy et al.
171 1988; Gerritsen and Margarem, 1990, Wang and Margarem, 1994) this mechanism has not been
172 implemented in any numerical model studies of reactive halogen chemistry to date.

173 To calculate reactive uptake coefficients (E2), we also need to determine the aerosol composition,
174 specifically halide concentration, $[\text{X}_{(\text{aq})}]$ and the acidity. Indeed, $[\text{X}_{(\text{aq})}^-]$ is needed for E5 and
175 subsequently E2, and the acidity is also needed to determine k^{II} in the context of the general
176 assisted mechanism (see the expression in Section 3.1) and subsequently E5 and E2. This was
177 achieved using the E-AIM (Extended- Aerosol Inorganic model) and Henry's constants (for more
178 details see Section 3 of Supplementary Material). Given high ionic strength of the solutions studied,
179 concentrations were converted to activities using activity coefficients provided by E-AIM.

180 Finally, we assume in E2 an accommodation coefficient of 0.6 (Wachsmuth et al., 2002), with
181 solubility and diffusion coefficients for HOBr in water and sulphuric acid derived from Frenzel et al.
182 (1998), Iraci et al. (2005), and Klassen et al (1998). A radius of 0.1 or 1 um was assumed, reflecting
183 the presence of both sub- and supra-micron particles in volcanic and marine environments. Further
184 details are provided in Section 2 of Supplementary Materials.

185 We compare our new approach to reported estimates of HOBr reactive uptake coefficients from
186 laboratory experiments as outlined below.

187

188 **2.2 Reported experimental studies on the reactive uptake of HOBr onto liquid aerosol**

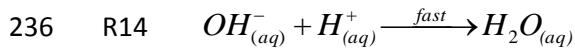
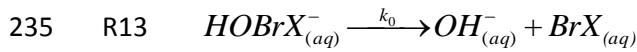
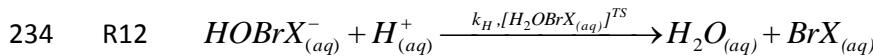
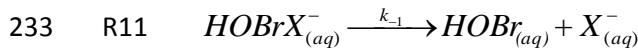
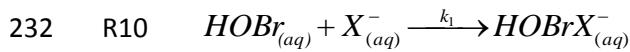
189 A number of laboratory experiments (Table 1) have quantified the reactive uptake of HOBr onto
190 acidified sea-salt aerosol under tropospheric conditions (as well as on solid particles, not considered

191 here). The accommodation coefficient for HOBr onto super-saturated $\text{NaBr}_{(\text{aq})}$ aerosol was
192 determined by Wachsmuth et al. (2002) to be $\alpha_{\text{HOBr}} = 0.6 \pm 0.2$ at 298 K.

193 Experiments using acidified sea-salt particles made by nebulizing a 5 M NaCl and 0.5 M HCl solution
194 under conditions representative of the troposphere found the reactive uptake coefficient for the
195 reaction (HOBr+Cl⁻) to be very high ($\gamma_{\text{HOBr}} > 0.2$) on deliquesced aerosol (RH > 75%, T = 298 K),
196 (Abbatt and Waschewsky, 1998). Conversely, experiments by Pratte and Rossi (2006) on H_2SO_4 -
197 acidified sea-salt aerosol with H_2SO_4 :NaCl molar ratio = 1.45:1 at 296 K measured a substantially
198 lower HOBr uptake coefficient, $\gamma_{\text{HOBr}} \sim 10^{-2}$, with a dependence on relative humidity ($\gamma_{\text{HOBr}} \sim 10^{-3}$
199 below 70% RH). This large (10^1 - 10^2) discrepancy has not been resolved to date. Uptake of HOBr on
200 pure sulfate aerosol at 296 K is found to be low ($\gamma_{\text{HOBr}} \sim 10^{-3}$), Pratte and Rossi (2006).

201 Aqueous-phase rate constants for the reaction of HOBr+X⁻+H⁺ have also been reported: for HOBr+Br⁻
202 (aq), Eigen and Kustin (1952) and Beckwith et al. (1996) report termolecular rate constants of $k_{\text{ter}} =$
203 $1.6 \cdot 10^{10} \text{ M}^{-2} \text{ s}^{-2}$ over a pH range of 2.7-3.6 and 1.9-2.4 at 298 K, respectively. For HOBr+Cl⁻(aq), Liu and
204 Margarem (2001) report a three-body rate constant of $2.3 \cdot 10^{10} \text{ M}^{-2} \text{ s}^{-2}$ in buffered aerosol at pH = 6.4
205 and 298K. Pratte and Rossi (2006) derived first-order rate constants for the reaction of HOBr_(aq) from
206 their uptake experiments, finding $k^1 \sim 10^3 \text{ s}^{-1}$.

207 The IUPAC subcommittee for gas kinetic data evaluation currently recommends an uptake
208 coefficient parameterisation utilising accommodation coefficient $\alpha_{\text{HOBr}} = 0.6$ (Wachsmuth et al.,
209 2002), and first-order rate constant $k^1 = k_{\text{ter}} \cdot [\text{H}^+_{(\text{aq})}] \cdot [\text{X}^-_{(\text{aq})}]$, with $k_{\text{ter}} = 2.3 \cdot 10^{10} \text{ M}^{-2} \text{ s}^{-1}$ (Liu and
210 Margarem, 2001) for HOBr+Cl⁻ and $k_{\text{ter}} = 1.6 \cdot 10^{10} \text{ M}^{-2} \text{ s}^{-1}$ (Beckwith et al., 1996) for HOBr+Br⁻.
211 Assuming a Cl⁻(aq) concentration of 5.3 M typical of sea-water and low uptake coefficients in alkaline
212 sea-salt aerosol (IUPAC evaluation, see website, e.g. Ammann et al., 2013), this parameterisation
213 yields a high uptake coefficient, $\gamma_{\text{HOBr}} \sim 0.6$, on acidified sea-salt aerosol, and is in agreement with
214 $\gamma_{\text{HOBr}} \geq 0.2$ reported by Abbatt and Waschewsky (1998) while overestimating the uptake coefficient
215 as reported by Pratte and Rossi (2006) by a factor of ~ 20 .






216 Here we present new uptake calculations based on the general acid assisted mechanism rather than
217 termolecular kinetics in an attempt to consolidate these contrasting reported uptake coefficients
218 within a single framework for the first time, and explain differences between model predictions and
219 field observations of reactive bromine in the marine environment, as well as making first predictions
220 of HOBr reactive uptake coefficients in volcanic plumes.

221
222

223 **3 Results**

224 **3.1 The second-order rate constant for aqueous-phase reaction of HOBr with halide ions**

225 In the general acid-assisted mechanism - whereby the rate of reaction of $\text{HOBr}_{(aq)}$ (needed in E2)
226 follows a second-order kinetics – an equilibrium is established between $\text{HOBrX}_{(aq)}^-$ and HOBr
227 according to the rate constants of R10 and R11, k_1 and k_{-1} (Eigen and Kustin, 1962). The formation of
228 products, R12, involves a transition-state, $[\text{H}_2\text{OBrX}_{(aq)}]^{TS}$ that is stabilised by proton-donation to the
229 oxygen, with overall rate constant k_H . Moreover, formation of products can also occur at low acid
230 concentrations via a slower pathway, R13, followed by fast reaction R14, with overall rate constant
231 k_0 .

237 According to R10-R14, the rate of reaction of $\text{HOBr}_{(aq)}$ can be quantified in terms of a 2nd order rate
238 constant (following E3 and E5) where k'' is a function of pH, as described by equation E6, whose
239 derivation is provided in Supplementary Material.

240 E6
$$k'' = \frac{k_1 \cdot (k_0 + k_H \cdot [\text{H}_{(aq)}^+])}{k_{-1} + k_0 + k_H \cdot [\text{H}_{(aq)}^+]}$$

241 In the limits of high and low acidity (E7 and E8), k'' is independent of aerosol acidity. For a mid-range
242 acidity ($k_H \cdot [\text{H}_{(aq)}^+] \ll k_{-1} + k_0$), k'' becomes linearly dependent on $[\text{H}_{(aq)}^+]$ i.e. is acid-dependent (E9). In
243 this mid-acidity regime (only), the acid-dependence is equal to the three-body or termolecular rate
244 constant, $k_1 \cdot k_H / (k_{-1} + k_0) = k_{\text{ter}}$.

245 E7
$$k'' = k_1 \text{ at high acidity (the limit as } \text{H}_{(aq)}^+ \text{ tends to infinity)}$$

246 E8
$$k'' = \frac{k_1 \cdot k_0}{k_{-1} + k_0} \text{ at very low acidity (the limit as } \text{H}_{(aq)}^+ \text{ tends to zero)}$$

247 E9
$$k'' = \frac{k_1 \cdot k_0}{k_{-1} + k_0} + \frac{k_1 \cdot k_H \cdot [H_{(aq)}^+]}{k_{-1} + k_0}$$

248 Equations E6-E9 describe k'' in terms of four underlying rate constants (k_1 , k_{-1} , k_0 , k_H) and the aerosol
249 acidity. However, quantifying these underlying rate constants using published data is somewhat
250 challenging given the limited experimental data. This is now attempted below.

251

252 **3.2 Estimating the underlying rate constants (k_1 , k_{-1} , k_0 , k_H) for HOBr+Br⁻ and HOBr+Cl⁻**

253 A number of aqueous-phase rate constants for the reaction of HOBr+X⁻+H⁺ have been reported: For
254 HOBr+Br⁻_(aq), Eigen and Kustin (1952) and Beckwith et al. (1996) report termolecular rate constants
255 of $k_{ter} = 1.6 \cdot 10^{10} \text{ M}^2 \text{ s}^{-2}$ over a pH range of 2.7-3.6 and 1.9-2.4 at 298 K, respectively. These
256 experiments quantified the rate of reaction in the termolecular regime only, although Eigen and
257 Kustin (1962) used a consideration of relative stability constants (e.g. for equilibrium molarity of
258 ternary compounds X₃⁻ or X₂OH⁻ relative to X⁻, X₂ or XOH) across the halogen series: HOCl+Cl,
259 HOBr+Br and HOI+I to attempt to estimate underlying rate constants.

260 Using the reported experimental data, k'' parameterisations (in terms of the underlying rate
261 constants (k_1 , k_{-1} , k_0 and k_H) and acidity according to E6 derived above) are estimated as follows.

262

263 **3.2.1 HOBr+Br⁻**

264 For HOBr+Br⁻, Eigen and Kustin (1962), proposed order of magnitude estimates of $k_1 = 5 \cdot 10^9 \text{ M}^{-1} \text{ s}^{-1}$,
265 $k_{-1} = 5 \cdot 10^9 \text{ s}^{-1}$, $k_H = 2 \cdot 10^{10} \text{ M}^{-1} \text{ s}^{-1}$, and $k_0 = 10^4 \text{ s}^{-1}$. However, in Figure 4 of Beckwith et al. (1996), there
266 are indications of acid-saturation in their k'' rate constant data for HOBr+Br⁻, seen as curvature in the
267 plots of observed k'' versus acidity. This is also seen in their Figure 5 where $k''_{observed} \geq 2.3 \cdot 10^8 \text{ M}^{-1} \text{ s}^{-1}$.
268 We therefore suggest acid-saturation of the reaction between HOBr and Br⁻ may limit k'' to $\sim 5 \cdot 10^8$
269 $\text{M}^{-1} \text{ s}^{-1}$. We also adjust k_{-1} to $k_{-1} \sim 5 \cdot 10^8 \text{ s}^{-1}$ on the basis of the reported stability constant $k_1/k_{-1} \sim 1 \text{ M}^{-1}$
270 (Eigen and Kustin, 1962). While, any evidence for acid-saturation lays within the reported error bars
271 for the data points this adjustment does not affect our general conclusions about $\gamma_{HOBr+Br}$ in this
272 study.

273

274 **3.2.1 HOBr+Cl⁻**

275 For HOBr+Cl⁻_(aq), Liu and Margarem (2001) report a three-body rate constant of 2.3·10¹⁰ M⁻² s⁻² in
276 buffered aerosol at pH = 6.4 and 298K. Pratte and Rossi (2006) also derived estimates for first-order
277 rate constants for reaction of HOBr_(aq) from their uptake coefficient experiments. We re-evaluate
278 these data below to improve quantification of the reaction kinetics of HOBr+Cl⁻.

279 For HOBr+Cl⁻, the underlying rate constants (k₁, k₋₁, k_H, k₀) are estimated as follows. The rate
280 constant k₁ is derived from the estimation of k^{II} at acid saturation (E7). For this, we estimated k^{II} at
281 pH -1 to 0 from experiments of Pratte and Rossi (2006), Table 2. These new estimates of k^{II} are
282 derived from first order k^I rate constants for the reaction of HOBr_(aq), reported by Pratte and Rossi
283 (2006), where [Cl⁻_(aq)] is calculated by the E-AIM model from experimental conditions, E-AIM predicts
284 chloride concentrations are reduced under the experimental conditions as consequence of acid-
285 displacement of HCl_(g) (see further discussion in Supplementary Material). We find k^{II} ~10⁴ M⁻¹ s⁻¹
286 over pH -1 to 0, see Table 2 for details. We note that in their reporting of k^I rate constants from their
287 uptake experiments, Pratte and Rossi, (2006) assumed an accommodation coefficient of either α_{HOBr}
288 = 0.2 or α_{HOBr} = 0.02. Given that experiments on NaBr_(aq) aerosol have identified an accommodation
289 coefficient for HOBr on NaBr_(aq) particles of 0.6 (Wachsmuth et al. 2002), the k^{II} data derived
290 assuming α_{HOBr} =0.2 are likely more representative. Nevertheless, either case yields estimate for k^{II} ~
291 10⁴ M s⁻¹ over pH = 0 to-1. A second estimate for k^{II} is made from the reported three-body rate
292 constant of 2.3·10¹⁰ M⁻² s⁻² at pH = 6.4, by setting k^{II} = k_{ter}·[H⁺_(aq)]. This yields k^{II} = 9·10³ M⁻¹ s⁻¹ at pH
293 6.4.

294 Thus, collectively these two datasets at pH = 6.4 and 0 to -1 suggest that k^{II} is acid saturated at ~10⁴
295 M s⁻¹ at pH ≤ 6. Based on this value for k^{II} at acid saturation (where k^{II} = k₁) we set k₁ = 1.2·10⁴ M s⁻¹,
296 as an average estimate, which is less than k₁ for HOBr+Br⁻, and which is consistent with the greater
297 nucleophile strength of Br⁻ compared to Cl⁻. We fix k_H = 2·10¹⁰ M⁻¹ s⁻¹, equal to that estimated by
298 Eigen and Kustin (1961) for HOBr+Br⁻, noting this reaction likely close to the diffusion limit. Our value
299 of k^{II} for HOBr+Cl⁻ at low acidity (=(k₁·k₀)/(k₀+k₋₁)) is a similar order of magnitude to the k^{II} estimate
300 for HOCl+Cl⁻ (≤ 0.16 M⁻¹ s⁻¹, see Gerritsen and Margarem, 1989) or perhaps slightly higher (because
301 the less electronegative Br of HOBr may be more susceptible to nucleophilic attach than HOCl), but
302 is substantially less than the k^{II} estimate for HOBr+Br⁻ (10⁴ M⁻¹ s⁻¹, Eigen and Kustin, 1962) at low
303 acidity, and consistent with Cl⁻ being a weaker nucleophile than Br⁻. Overall, a value for the low
304 acidity k^{II} rate constant; (k₀·k₁)/(k₁+k₋₁) = 10¹ M⁻¹ s⁻¹ seems reasonable.

305 A similar analysis based on the three-body rate constant of 2.3·10¹⁰ M⁻² s⁻¹ (Liu and Magarem, 2002).
306 yields k₀ = 2·10¹ s⁻¹ and k₋₁ = 1.1·10⁴ s⁻¹. These estimates for the underlying rate constants for

307 HOBr+Cl⁻ are rather uncertain, nevertheless the most important result is the occurrence of acid-
308 saturation of k^{\parallel} for HOBr+Cl⁻, which the experimental data limits k^{\parallel} to $\sim 10^4$ M s⁻¹ at pH ≤ 6 .

309

310 **3.3 A new parameterisation for the k^{\parallel} for HOBr+Br⁻ and HOBr+Cl⁻**

311 The underlying rate constants (k_1 , k_{-1} , k_H , k_0) for reaction of HOBr+Br⁻ and HOBr+Cl⁻ estimated above
312 are summarized in Table 3. Our parameterisation for k^{\parallel} based on these data, with k^{\parallel} defined by
313 equation E6 is shown in Figure 1 as a function of aerosol acidity, alongside the experimental values
314 for k^{\parallel} derived from the reported experimental data from Eigen and Kustin (1962), Beckwith et al.
315 (1996), Liu and Margarem (2001) and Pratte and Rossi (2006) (see Table 2). As expected, the k^{\parallel}
316 parameterisations for HOBr+Br⁻ and HOBr+Cl⁻ exhibit three distinct regimes: k^{\parallel} is independent of
317 acidity at high pH. k^{\parallel} is dependent on acidity for a medium pH range, where the rate constant $k^{\parallel} =$
318 $k_{\text{ter}} \cdot [\text{H}^+_{\text{(aq)}}]$, and in this regime the rate constant is termolecular. At high acidity, k^{\parallel} becomes acid-
319 independent ($k^{\parallel} = k_1$), yielding an acid-saturated k^{\parallel} that is lower for HOBr+Cl⁻ than HOBr+Br⁻ given
320 the weaker nucleophile strength.

321 Also shown in Figure 1 is the termolecular approach to HOBr kinetics assumed to date, which
322 predicts acid-dependent k^{\parallel} over all parameter space. Clearly, the termolecular assumption for HOBr
323 kinetics is only valid in the termolecular regime, between pH 1-6 for HOBr+Br⁻, and > pH 6 for
324 HOBr+Cl⁻. At high acidity, the termolecular approach overestimates the rate constant compared to
325 the k^{\parallel} parameterisation by several orders of magnitude. The disagreement is greatest for HOBr+Cl⁻,
326 where the termolecular approach overestimates the k^{\parallel} rate constant by a factor of 10^3 at pH = 3
327 and 10^6 at pH = 0. Of interest is the effect of our revised parameterisation on the HOBr reactive
328 uptake coefficient. Below we compare the reactive uptake coefficients of HOBr calculated our
329 revised k^{\parallel} parameterisation to experimental uptake coefficients reported under laboratory
330 conditions. In section 5 we present calculations of the HOBr reactive uptake coefficient for marine
331 and volcanic plume conditions and discuss implications for reactive halogen chemistry in these
332 environments.

333

334 **3.4 Comparison of our model with experimental uptake coefficient data**

335 As discussed in the introduction, discrepancies exist in the reported reactive uptake coefficients for
336 HOBr on acidified sea-salt aerosol. Abbatt and Waschewsky (1998) observed a strong pH
337 dependence of the uptake onto sodium chloride aerosol, being $1.5 \cdot 10^{-3}$ for neutral, unbuffered
338 sodium chloride aerosol, rising to > 0.2 for aerosols acidified to pH 0.3 by the addition of HCl, i.e.

339 close to the accommodation coefficient ($\alpha = 0.6 \pm 0.2$, Wachsmuth et al., 2002). The role of H^+
340 species in the reactive uptake process was further demonstrated by the high uptake coefficient of $>$
341 0.2 on aerosols buffered to pH 7 by a $\text{NaH}_2\text{PO}_4 / \text{Na}_2\text{HPO}_4$ buffer. In contrast, Pratte and Rossi (2006)
342 measured reactive uptake coefficients on H_2SO_4 -acidified sea-salt aerosol to be $\sim 10^{-2}$ at $\text{H}_2\text{SO}_4:\text{NaCl} =$
343 1.45:1, with an RH-dependence (finding $\gamma_{\text{HOBr}} \sim 10^{-3}$ at RH $< 70\%$).

344 We have calculated the reactive uptake coefficients for HOBr for the conditions of these two
345 laboratory experiments using our new parameterisation for k^{II} and the E-AIM model to determine
346 aerosol composition.

347 Below we show that the origin for this wide discrepancy between measured HOBr uptake onto
348 acidified bromide aerosol and chloride aerosol lies partly in the difference in reactivity of HOBr
349 towards Br^- and Cl^- , but also in differences in aerosol composition in the two studies: HCl-acidified
350 sea-salt aerosol retains high $\text{Cl}^-_{(\text{aq})}$ concentrations, whereas H_2SO_4 -acidified sea-salt aerosol
351 undergoes HCl-displacement, lowering $\text{Cl}^-_{(\text{aq})}$ concentrations. This acid-displacement of HCl leads to a
352 lowering of the reactive uptake coefficient for HOBr on H_2SO_4 -acidified aerosol.

353

354 **3.4.1 High uptake coefficient on HCl-acidified sea-salt aerosol**

355 On HCl-acidified $\text{NaCl}_{(\text{aq})}$ aerosol, Abbatt and Wachewsky (1998) measured the uptake coefficient of
356 HOBr to be > 0.2 . We calculate the uptake coefficient for $\text{HOBr} + \text{Cl}^-$ under these experimental
357 conditions for which a chloride concentration of 6.6 M is predicted according to E-AIM (see details in
358 Section 3.1.1 of Supplementary Material and Table 4). For particles of 1 μm radius at 298 K, both our
359 new parameterisation for k^{II} and the termolecular approach to $\text{HOBr} + \text{Cl}^-$ kinetics yield high uptake
360 coefficient, $\gamma_{\text{HOBr} + \text{Cl}^-} \sim 0.6$, thus are consistent with the experimental findings, see Table 4.

361

362 **3.4.2 Low uptake coefficient on H_2SO_4 -acidified sea-salt aerosol with RH dependence**

363 On H_2SO_4 -acidified sea-salt aerosol, Pratte and Rossi (2006) measured the uptake coefficient of HOBr
364 to be $\sim 10^{-2}$ at $\text{H}_2\text{SO}_4:\text{NaCl} = 1.45:1$, with an RH-dependence (finding $\gamma_{\text{HOBr}} \sim 10^{-3}$ at RH $< 70\%$). Using
365 our parameterisation, we calculate the uptake coefficient for $\text{HOBr} + \text{Cl}^-$ under these experimental
366 conditions, at 298 K, and with variable RH (see details in Section 3.1.2 of Supplementary Material
367 and Table 4). We assume a solubility of HOBr in sulphuric acid of 363 M atm^{-1} at 296 K (following
368 Pratte and Rossi, 2006 based on Iraci et al. 2005), and calculate a HOBr diffusion coefficient in
369 sulphuric acid of $5.5 \cdot 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ and $1.0 \cdot 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ at 50 and 80 % RH (48 and 29 wt% H_2SO_4)

370 respectively. E-AIM predicts the aerosol $\text{Cl}^{-\text{(aq)}}$ concentrations to be 0.004 M L^{-1} and 0.08 M L^{-1} at 50
371 and 80 % RH respectively, see Table 4.

372 The new parameterisation for k^{II} yields uptake coefficients for $\text{HOBr}+\text{Cl}^-$ of $4.4 \cdot 10^{-3}$ at 50% RH and
373 $7.6 \cdot 10^{-2}$ at 80% RH, in broad agreement to the low uptake coefficients reported by Pratte and Rossi
374 (2006); 1.0 ± 10^{-2} at $\text{RH} \geq 76\%$. Such agreement is to some extent not surprising, given the usage of k^{I}
375 reported at $\text{RH} = 77\text{--}90\%$ from the same Pratte and Rossi (2006) experiments to derive an estimate
376 for k^{II} at acid saturation (see Section 3 and Figure 1). Nevertheless, the uptake calculations confirm
377 and provide a first explanation for the RH dependence of the uptake coefficient as reported by
378 Pratte and Rossi (2006). The model indicates that the underlying cause of this trend is greater $[\text{Cl}^{-\text{(aq)}}]$
379 at higher RH, given higher solubility of HCl at the lower wt% H_2SO_4 at high RH. This is further shown
380 by Figure 2 that compares the modelled and observed RH dependence of the uptake coefficient of
381 HOBr across all reported data from 40 – 90 % RH, demonstrating broad agreement in the trend
382 (noting discrepancies may result from impurities within the sea-salt solution or uncertainties within
383 the parameterisations used in the uptake model). These findings are in contrast to the termolecular
384 approach to k^{I} that yields an uptake coefficient of 0.6 at both RH values, substantially overestimating
385 γ_{HOBr} by at least a factor of 20 (see Table 4). This is because the termolecular approach assumes acid-
386 dependent k^{II} across all pH, leading to an extremely high rate constant for the reaction of $\text{HOBr}+\text{Cl}^-$: even though Cl^- concentrations are
387 depleted by acid-displacement, the assumed increased rate constant at low pH overcompensates for
388 this effect.

390 In conclusion, our new k^{II} parameterisation for the kinetics of $\text{HOBr}+\text{X}^-$ yields uptake coefficients in
391 agreement with reported laboratory data, and -for the first time- reconciles differences between
392 reported uptake on HCl-acidified and H_2SO_4 -acidified sea-salt aerosols, within a single framework.

393

394 **4 Implications for BrO chemistry in the marine and volcanic environments**

395 **4.1 Declining uptake coefficients on progressively H_2SO_4 -acidified sea-salt aerosol**

396 Using the revised HOBr reaction kinetics (Figure 1), the $\text{HOBr}+\text{Br}^-$ and $\text{HOBr}+\text{Cl}^-$ reactive uptake
397 coefficients are now re-evaluated for a model sea-salt aerosol that undergoes progressive H_2SO_4 -
398 acidification (Figure 3) and compared to calculations using the termolecular approach. We
399 investigate how the reductions in halide ion concentrations caused by the $\text{H}_2\text{SO}_4\text{(aq)}$ addition (through
400 both acid-displacement reactions that deplete $[\text{Cl}^{-\text{(aq)}}]$, and dilution of $[\text{Br}^{-\text{(aq)}}]$ by $\text{H}_2\text{SO}_4\text{(aq)}$ volume)
401 impact γ_{HOBr} at low pH.

402 A particle radius of 1 or 0.1 μm is assumed in the uptake calculation. Temperature is set to 298 K and
403 RH = 80% (above deliquescence). For aerosol that is alkaline or only weakly acidic (pH 12 to pH 4),
404 uptake coefficients were calculated assuming a fixed sea-salt composition with $[\text{Cl}^-_{(\text{aq})}] = 5.3 \text{ Mol L}^{-1}$
405 and $[\text{Br}^-_{(\text{aq})}] = 0.008 \text{ Mol L}^{-1}$, with pH varied between 4 and 12 (E-AIM was not used given very low
406 degree of H_2SO_4 -acidification). For more strongly acidified sea-salt, across $\text{H}_2\text{SO}_4:\text{Na}$ ratios from 0.05
407 to 400 (pH 4 to -0.87 for the model aerosol conditions), E-AIM was used to determine the extent of
408 acid-displacement of HCl from acidified $\text{NaCl}_{(\text{aq})}$ aerosol, with aerosol $\text{Br}_{(\text{aq})}^-$ determined using an
409 effective Henry's law solubility for HBr (see predicted composition in Supp. Material Section 3.2).

410 Figure 4 shows the calculated reactive uptake for $\text{HOBr}+\text{Br}^-$ and $\text{HOBr}+\text{Cl}^-$ increase with increasing
411 acidity over pH 4-12 for the uptake coefficient for 0.1 and 1 μm radius particles, similar to that
412 previously reported using the termolecular approach. The alkaline to acid transition in γ_{HOBr} reflects
413 the increase in the underlying $\text{HOBr}_{(\text{aq})}$ k^1 rate constant with acidity due to the onset of the acid
414 assisted mechanism, Figure 1 as well as the decrease of HOBr partitioning to BrO^- . $\gamma_{\text{HOBr}+\text{Cl}^-}$ reaches
415 values close to the accommodation limit by pH ≤ 8 (for 1 μm radius particles) or pH ≤ 7 (for 0.1 μm
416 radius particles) while $\gamma_{\text{HOBr}+\text{Br}^-}$ reaches values close to the accommodation limit by pH ≤ 5 (for 1 μm
417 radius particles) or pH ≤ 4 (for 0.1 μm radius particles).

418 In the high acidity regime, the acid-saturation of k^1 can cause γ_{HOBr} to plateau at a level slightly lower
419 than α_{HOBr} (e.g. in $\gamma_{\text{HOBr}+\text{Cl}^-}$ at pH ~ 4), in contrast to the termolecular approach. Overall, for slightly-
420 acidified sea-salt aerosol, reactive uptake of HOBr is driven primarily by $\gamma_{\text{HOBr}+\text{Cl}^-}$. $\gamma_{\text{HOBr}+\text{Br}^-}$ reaches
421 similar values to $\gamma_{\text{HOBr}+\text{Cl}^-}$ at pH ~ 3 -4 for the specific model aerosol conditions of this study.

422 However, as the degree acidification by H_2SO_4 increases, the uptake coefficient for $\text{HOBr}+\text{Cl}^-$ begins
423 to decline at pH < 4 . This is due to acid-displacement reactions that convert $\text{Cl}^-_{(\text{aq})}$ into $\text{HCl}_{(\text{g})}$, thereby
424 lowering $[\text{Cl}^-_{(\text{aq})}]$. This leads to $\gamma_{\text{HOBr}+\text{Cl}^-} < \gamma_{\text{HOBr}+\text{Br}^-}$, i.e. HOBr reactive uptake becomes driven by
425 $\text{HOBr}+\text{Br}^-$ below a pH of ~ 2 for the specific aerosol conditions of this study. As $\text{H}_2\text{SO}_4:\text{Na}$ ratio
426 increases further and pH decreases further, the uptake coefficient for $\text{HOBr}+\text{Br}^-_{(\text{aq})}$ also begins to
427 decline. This is principally due to the dilution of $\text{Br}^-_{(\text{aq})}$ by the additional volume of $\text{H}_2\text{SO}_4_{(\text{aq})}$ that
428 becomes important particularly at very high $\text{H}_2\text{SO}_4:\text{Na}$ (see E-AIM calculations in Supplementary
429 Materials).

430 Notably, the declines in uptake coefficients are greatest for smaller particles, for which there is a
431 greater probability that $\text{HOBr}_{(\text{aq})}$ may diffuse across the particle and be released to the gas phase,
432 without any aqueous-phase reaction occurring.

433 The uptake coefficients are also further reduced if parameterisations for the solubility of HOBr in
434 $\text{H}_2\text{SO}_4\text{(aq)}$ is assumed in the uptake equation rather than that for water. The exact point of transition
435 between these two parameterisations is not well constrained, but it is clear that the $\text{H}_2\text{SO}_4\text{(aq)}$
436 parameterisations become more applicable than water with greater acidification, and must certainly
437 be more relevant at high $\text{H}_2\text{SO}_4\text{:Na}$. The lower solubility of HOBr in $\text{H}_2\text{SO}_4\text{(aq)}$ acts to decrease the
438 uptake coefficient, and is found to have a stronger impact on γ_{HOBr} than the slower rate of diffusion
439 of $\text{HOBr}_{\text{(aq)}}$ in H_2SO_4 .

440 In summary, following a rise over the alkaline-acid transition, our revised HOBr kinetics yields HOBr
441 reactive uptake coefficients that subsequently decline on progressively H_2SO_4 -acidified sea-salt
442 aerosol. For the aerosol concentration assumed, the uptake coefficient on the 0.1 μm radius
443 particles declines to $\gamma_{\text{HOBr+Br}} < 0.03$ at a $\text{H}_2\text{SO}_4\text{:Na}$ ratio of 400:1, indicating that the reactive uptake of
444 HOBr on highly acidified sub-micrometer particles is extremely low, Figure 3. These decreases in
445 uptake coefficient with increasing aerosol acidity are not captured by calculations that assume
446 termolecular kinetics. As stated in the previous section, this is because the termolecular approach
447 assumes the HOBr rate constant is acid-dependent across all pH, and does not consider acid-
448 saturation of the rate constant.

449

450 **4.2 Implications for BrO chemistry in the marine boundary layer**

451 Figure 4 shows clearly that higher acidity does not necessarily lead to faster production of reactive
452 bromine. It is well-known that acidity is required for reactive bromine formation to occur: $\text{H}^{\text{(aq)}}$ is
453 consumed in the reaction, therefore a source of acidity is required to sustain prolonged BrO
454 formation chemistry. Further, under alkaline conditions HOBr dissociates into less reactive OBr^- .
455 However, the γ_{HOBr} dependency on acidity shown here suggests that additional aerosol acidification
456 by $\text{H}_2\text{SO}_4\text{(aq)}$ can act as a limitation to the formation of reactive bromine via HOBr uptake, particularly
457 for small particle sizes.

458 This leads to the following implications for BrO chemistry in the marine environment, where both
459 supra-micron and sub-micron particles are reported, the former typically being moderately acidified
460 perhaps with some Cl⁻ depletion, and the latter being dominated by H_2SO_4 with only a trace quantity
461 of sea-salt (e.g. Keene et al., 2002):

462 Firstly, the reactive uptake of HOBr is driven by reaction with Br^- as $\gamma_{\text{HOBr+Cl}}$ is reduced on H_2SO_4 -
463 acidified (Cl⁻-depleted) sea-salt aerosol. This leads to a negative feedback in the uptake coefficient
464 for HOBr with BrO chemistry evolution over time, as the conversion of $\text{Br}^-_{\text{(aq)}}$ to $\text{Br}_{2\text{(g)}}$ acts to decrease

465 aerosol $[\text{Br}^-_{(\text{aq})}]$, reducing subsequent values of $\gamma_{\text{HOBr+Br}^-}$. This negative feedback for $\gamma_{\text{HOBr+Br}^-}$ will play a
466 much more significant role for overall HOBr reactive uptake according our revised HOBr kinetics than
467 has been assumed by model studies to date based on the termolecular approach (for which $\gamma_{\text{HOBr+Cl}^-} \geq$
468 $\gamma_{\text{HOBr+Cl}^-}$).

469 Secondly, very low reactive uptake coefficients for both HOBr+Br⁻ and HOBr+Cl⁻ are predicted for
470 sub-micron particles at high H₂SO₄:Na ratios (e.g. $\gamma_{\text{HOBr}} < 0.03$, see Figure 4). Such low γ_{HOBr} is
471 proposed as a first explanation for the absence of observable Br⁻_(aq) depletion in sub-micron H₂SO₄⁻
472 dominated particles in the marine environment, in contrast to supra-micron particles where Br⁻_(aq)
473 depletion is observed and interpreted as evidence of HOBr reactive uptake to form reactive bromine
474 (Sander et al., 2003). Indeed, observations find the submicron H₂SO₄-dominated aerosol to be
475 enriched in Br⁻_(aq) relative to expected concentrations based on the particle Na⁺ content (Sander et
476 al., 2003). A plausible explanation is that the release of Br_{2(g)} from the supra-micron particles leads to
477 the continual formation of gas-phase reactive bromine species of which a proportion will ultimately
478 be deposited back to (both types of) marine aerosols as a source of Br⁻_(aq). The net effect is for Br⁻_(aq)
479 concentrations to become enhanced (relative to Na) in the sub-micron aerosol where γ_{HOBr} is low
480 simultaneous to becoming depleted in the supra-micron aerosol where γ_{HOBr} is high. For the former,
481 an upper limit must exist to the extent Br-enrichment can occur whilst maintaining the relatively low
482 $\gamma_{\text{HOBr+Br}^-}$. Importantly, this argumentation is only possible using our new uptake calculations based on
483 k^l calculated using revised HOBr kinetics in terms of k^l , as the termolecular approach predicts high
484 HOBr reactive uptake for both particle types. We encourage our new rate constants calculations for
485 HOBr reactive uptake to be incorporated into numerical models to test and quantify potential
486 submicron aerosol Br⁻ enrichment via this proposed mechanism.

487 We further suggest both of the abovementioned factors may also contribute underlying reasons for
488 the reported over-prediction by numerical models of BrO cycling in the marine environment (Sander
489 et al., 2003; Smoydzin and von Glasow, 2007; Keene et al., 2009). Inclusion of the new HOBr kinetics
490 into such models will allow this hypothesis to be tested and quantified.

491

492 **4.3 Reactive uptake of HOBr on volcanic aerosol**

493 HOBr reactive uptake coefficients are now calculated for the first time onto aerosol in a halogen-rich
494 volcano plume, using the k^l parameterisations for HOBr+Br⁻ and HOBr+Cl⁻. Using the volcanic aerosol
495 composition predicted by E-AIM (based on Etna emission scenario, see section 3.3 of Supplementary
496 Material), uptake coefficients for HOBr+Br⁻ and HOBr+Cl⁻ are calculated across tropospheric

497 temperature and relative humidity, for two plume dilutions (30 and 0.3 $\mu\text{mol}/\text{m}^3$, which are
498 equivalent to $\sim 1 \text{ ppmv}$, and 0.01 ppmv SO_2 at 4 km altitude in US standard atmosphere), and
499 assuming a particle radius of 1 μm , Figure 4. There exists no experimental information regarding the
500 temperature dependence of k^{\parallel} for $\text{HOBr}+\text{X}$. Here it is assumed the variation k^{\parallel} with temperature
501 over 230-300 K is small compared to the temperature dependence of the HOBr and HX solubilities
502 (which vary by several orders of magnitude over the parameter space).

503 High HOBr uptake coefficients are predicted at low tropospheric temperatures: $\gamma_{\text{HOBr}+\text{Br}^-} \approx \gamma_{\text{HOBr}+\text{Cl}^-} \approx$
504 0.6. The uptake coefficient decreases markedly with increasing temperature for $\gamma_{\text{HOBr}+\text{Cl}^-}$ and also
505 decreases for $\gamma_{\text{HOBr}+\text{Br}^-}$ in the most dilute plume scenario. The inverse temperature trend in γ_{HOBr} is
506 caused by a lower solubility of HX in sulphuric acid particles at higher tropospheric temperatures
507 (particularly for HCl), augmented by a similar temperature trend in the solubility of $\text{HOBr}_{(\text{aq})}$. The
508 variation with plume dilution is explained by the fact that lower gas-to-aerosol partitioning yields
509 lower $[\text{X}^-_{(\text{aq})}]$ in the dilute plume scenarios thus a lower $k^{\parallel} = k^{\parallel} \cdot [\text{X}^-_{(\text{aq})}]$ in the uptake equation, hence a
510 reduced γ_{HOBr} . Figure 4 also illustrates a weak dependence of the uptake coefficients on relative
511 humidity. This is due to increasing solubility of the halides with RH or lower wt% H_2SO_4 (potential RH-
512 dependence of HOBr solubility is not considered in the parameterisations, see Supplementary
513 Material). As for the marine aerosol study, reductions in γ_{HOBr} are more pronounced for particles of
514 smaller radii (data not shown), as the probability for diffusion across the particle without reaction is
515 higher. According to Figure 4, $\gamma_{\text{HOBr}+\text{Br}^-}$ is equal to or exceeds $\gamma_{\text{HOBr}+\text{Cl}^-}$ under all temperature and
516 humidity scenarios for the composition of the Etna emission. This is driven by higher k^{\parallel} in the uptake
517 calculation (where $k^{\parallel} = k^{\parallel} \cdot [\text{X}^-]$ with k^{\parallel} a function of pH), due to the greater saturation value k^{\parallel} for
518 $\text{HOBr}+\text{Br}^-$ at high acidity, and the higher solubility of HBr compared to HCl. Again it is important to
519 note that this uptake re-evaluation using revised HOBr kinetics differs from that calculated using the
520 termolecular approach (also shown in Figure 4) which yields high and typically accommodation
521 limited HOBr uptake coefficients throughout the parameter space. Indeed, this is due to the fact that
522 with the termolecular approach ($k^{\parallel} = k_{\text{ter}} \cdot [\text{H}^+_{(\text{aq})}] \cdot [\text{X}^-_{(\text{aq})}]$) the increased value of k_{ter} at high acidity more
523 than compensates for the acidity-driven decreases in X^- , thus yielding high k^{\parallel} and high γ_{HOBr} .

524

525 Figure 4 shows that in concentrated plumes near to the volcanic source, the aqueous-phase halide
526 concentrations are sufficiently high that $\gamma_{\text{HOBr}+\text{Br}^-}$ is accommodation-limited. Rapid formation of BrO is
527 expected to occur. This is consistent with observations of volcanic BrO at numerous volcanoes
528 globally (e.g. Bobrowski et al., 2007b, Boichu et al., 2011, and references therein), including
529 emissions from both low and high altitude volcanoes, explosive eruptions and from passive

530 degassing. However, it is anticipated that the reactive uptake coefficient for HOBr+Br⁻ will be
531 reduced as BrO chemistry progresses causing Br⁻_(aq) concentrations to decline (due to conversion of
532 HBr into reactive bromine). This will likely slow the BrO cycling in the more evolved plume. Plumes
533 will also become more dilute over time due to dispersion. Figure 4 predicts this will lead to a
534 reduction in the HOBr reactive uptake coefficient particularly in plumes confined to the lower
535 troposphere, which may contribute to a slower rate of BrO cycling. For plumes in the mid-upper
536 troposphere, γ_{HOBr} is predicted to remain high.

537 To date, numerical model studies of the impacts of volcanic halogens reactive halogen chemistry in
538 the troposphere have either used a fixed uptake coefficient (Roberts et al., 2009; 2014, Kelly et al.,
539 2013) or the termolecular approach to HOBr kinetics (Bobrowski et al., 2009; von Glasow, 2010).
540 Figure 4 illustrates both of these approaches will lead to modelling inaccuracies, particularly in the
541 downwind plume. Incorporation of more realistic HOBr kinetics in these models, using the
542 parameterisations proposed here, is recommended in order to accurately simulate the reactive
543 bromine chemistry and plume impacts.

544

545 **5 Conclusions**

546 This study introduces a new evaluation of HOBr reactive uptake coefficients on aerosol of different
547 compositions, in the context of the general acid assisted mechanism. We emphasise that the
548 termolecular kinetic approach assumed in numerical model studies of tropospheric reactive bromine
549 chemistry to date is strictly only valid for a specific pH range. Rather, according to the general acid
550 assisted mechanism, the reaction kinetics for HOBr becomes independent of pH at high acidity. By
551 re-evaluation of reported rate constant data from uptake experiments on acidified sea-salt aerosol,
552 and consideration of relative reaction rates according to nucleophile strength, we identify the
553 kinetics of HOBr+Cl⁻ may saturate below pH 6 to yield a second-order rate constant of $k^{\parallel} \sim 10^4 \text{ M s}^{-1}$.
554 The kinetics of HOBr+Br⁻ saturates at $k^{\parallel} \sim 10^8\text{-}10^9 \text{ M s}^{-1}$ at pH < ~1 based on experimental data and
555 kinetics estimates of Eigen and Kustin (1962) and Beckwith et al. (1996).

556 This study reconciles for the first time the different reported uptake reactive coefficient from
557 laboratory experiments. The new k^{\parallel} parameterisation yields uptake coefficients that are consistent
558 with reported uptake experiments: $\gamma_{\text{HOBr}} = 0.6$ on super-saturated NaBr aerosol (Wachsmuth et
559 al. 2002); $\gamma_{\text{HOBr}} > 0.2$ on HCl-acidified sea-salt aerosol (Abbatt and Wachsewsky 1998), $\gamma_{\text{HOBr}} = 10^{-2}$ on
560 H₂SO₄-acidified sea-salt aerosol, with an RH dependence (Pratte and Rossi, 2006). The variation in
561 uptake coefficient across the alkaline-aerosol transition is similar to that previously predicted using

562 the termolecular approach but uptake calculations using our revised kinetics of HOBr show much
563 lower uptake coefficients for HOBr in highly acidified sea-salt aerosol, particularly for small particle
564 radii. This is due to acid-displacement of $\text{HCl}_{(\text{g})}$ at high acidity slowing the rate of reaction of $\text{HOBr} + \text{Cl}^-$
565 , thus lowering $\gamma_{\text{HOBr} + \text{Cl}^-}$, with dilution of $[\text{Br}^-_{(\text{aq})}]$ at very high H_2SO_4 :sea-salt ratios slowing the rate of
566 reaction of $\text{HOBr} + \text{Br}^-$, thus lowering $\gamma_{\text{HOBr} + \text{Br}^-}$. This finding contrasts to the existing termolecular
567 approach to uptake calculations in which the higher rate constant overcompensates for the decrease
568 in halide concentration with increasing acidity. Thus, the termolecular approach, as currently used in
569 numerical models of tropospheric BrO chemistry, may cause HOBr reactive uptake to be
570 substantially over estimated in aerosol at high acidity.

571 Implications for BrO chemistry in the marine boundary layer have been discussed. Firstly, the HOBr
572 uptake coefficient is predicted to be high on slightly acidified supra-micron particles but extremely
573 low on highly-acidified sub-micron particles. A first explanation for the observed Br-enrichment in
574 the sub-micron particles simultaneous to Br-depletion in supra-micron particles is thereby proposed,
575 as reactive bromine release from the supra-micron fraction may deposit and accumulate in the
576 submicron fraction, that does not undergo significant Br- depletion. Secondly, because the $\text{HOBr} + \text{Br}^-$
577 uptake coefficient is a function of $\text{Br}^-_{(\text{aq})}$ concentrations, a negative feedback can occur as the marine
578 BrO chemistry evolves, and supramicron particle $\text{Br}^-_{(\text{aq})}$ concentrations are lowered by the release of
579 reactive bromine. According to our revised HOBr kinetics (yielding $\gamma_{\text{HOBr} + \text{Br}^-} > \gamma_{\text{HOBr} + \text{Cl}^-}$), this negative
580 feedback for $\gamma_{\text{HOBr} + \text{Br}^-}$ exerts a stronger overall influence on the rate of HOBr reactive uptake than
581 previous studies have assumed.

582 Calculations on volcanic aerosol show that uptake is high and accommodation limited in the
583 concentrated near-source plume, enabling BrO formation to rapidly occur. Uptake coefficients are
584 reduced in more dilute plumes, particularly for $\text{HOBr} + \text{Cl}^-$, at high temperatures (typical lower
585 tropospheric altitudes), for small particle radii. The findings suggest that HOBr uptake on sulphate
586 aerosol directly emitted from volcanoes can readily promote BrO cycling in plumes throughout the
587 troposphere but that the rate of BrO cycling may be reduced by low uptake coefficients in the
588 dispersed downwind plume, particularly at lower tropospheric altitudes. Inclusion of our revised
589 HOBr reaction kinetics in numerical models of volcanic plume chemistry (or uptake coefficients
590 derived therefrom) is required to accurately predict the impacts of volcanic halogens on the
591 troposphere.

592

593 **Acknowledgements**

594 TJR and LJ are grateful for funding from LABEX VOLTAIRE (VOLatils- Terre Atmosphère Interactions -
595 Ressources et Environnement) ANR-10-LABX-100-01 (2011-20). PTG acknowledges the ERC for
596 funding.

597

598 **References**

- 599 Abbatt J. P. D. and Waschewsky G. C.G.: Heterogeneous Interactions of HOBr, HNO₃, O₃, and NO₂
600 with Deliquescent NaCl Aerosols at Room Temperature, *J. Phys. Chem. A*, 102, 3719-3725, 1998.
- 601 Ammann, M., Cox, R. A., Crowley, J.N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and
602 Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI –
603 heterogeneous reactions with liquid substrates, *Atmos. Chem. Phys.*, 13, 8045 - 8228, 2013, IUPAC
604 Task Group on Atmospheric Chemical Kinetic Data Evaluation, <http://iupac.pole-ether.fr/index.html>.
- 605 Barrie L. A., Bottenheim J. W., Schnell R. C., Crutzen P. J., Rasmussen R. A.: Ozone destruction and
606 photochemical reactions at polar sunrise in the lower Arctic atmosphere, *Nature*, 334, 138-141,
607 1998.
- 608 Beckwith R. C., Wang T. X., and Margerum D. W.: Equilibrium and Kinetics of Bromine Hydrolysis,
609 *Inorg. Chem.*, 35, 995-1000, 1996.
- 610 Blatchley, E. R., R. W. Johnson, J. E. Alleman and W. F. McCoy : Effective Henry's law constants for
611 free chlorine and free bromine, *Water Research*, 26, 99-106, 1991.
- 612 Bobrowski, N., Honniger, G., Galle, B. and Platt, U.: Detection of bromine monoxide in a volcanic
613 plume. *Nature*, 423, 273-276, doi:10.1038/nature01625, 2003.
- 614 Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W. and Platt, U.:
615 Reactive halogen chemistry in volcanic plumes, *J. Geophys. Res.*, 112, D06311,
616 doi:10.1029/2006JD007206, 2007a.
- 617 Bobrowski, N. and Platt, U.: SO₂/BrO ratios studied in five volcanic plumes. *J. Volcanol. Geoth. Res.*,
618 166, 3-4, 147-160, 10.1016/j.jvolgeores.2007.07.003, 2007b.
- 619 Boichu, M., Oppenheimer C., Roberts T. J., Tsanev V., Kyle P. R.: On bromine, nitrogen oxides and
620 ozone depletion in the tropospheric plume of Erebus volcano (Antarctica), *Atmos. Environ.*, 45, 23,
621 3856-3866, 2011.
- 622 Breider T. J., Chipperfield M. P., Richards N. A. D., Carslaw K. S., Mann G. W., Spracklen D. V.: Impact
623 of BrO on dimethylsulfide in the remote marine boundary layer, *Geophys. Res. Lett.*, 37, L02807,
624 doi:10.1029/2009GL040868., 2010.
- 625 Carslaw K. S., Clegg S. L. and Brimblecombe P.: A thermodynamic model of the system HCl - HNO₃ -
626 H₂SO₄ - H₂O, including solubilities of HBr, from <200 K to 328 K. *J. Phys. Chem.* 99, 11557-11574,
627 1995.

- 628 Clegg S. L., Brimblecombe P. and Wexler A. S., A thermodynamic model of the system H^+ - NH_4^+ - Na^+
629 - SO_4^{2-} - NO_3^- - Cl^- - H_2O at 298.15 K. *J. Phys. Chem. A* 102, 2155-2171, 1998.
- 630 Eigen M. and Kustin K.: The Kinetics of Halogen Hydrolysis, *J. Am. Chem. Soc.*, 1962, 84 (8), pp 1355-
631 1361, DOI: 10.1021/ja00867a005, 1962.
- 632 Fickert S., Adams J. W. and Crowley J. N.: Activation of Br_2 and BrCl via uptake of HOBr onto aqueous
633 salt solutions, *Journal of Geophysical Research*, 104, D19, 23719-23727, 1999.
- 634 Frenzel A., Scheer V., Sikorski R., George Ch., Behnke W., and Zetzsch C.: Heterogeneous
635 Interconversion Reactions of BrNO_2 , ClNO_2 , Br_2 , and Cl_2 ., *J. Phys. Chem. A*, 102, 1329-1337, 1998.
- 636 Gerritsen C.M. and Margarem D. W.: Non-Metal Redox Kinetics: Hypochlorite and Hypochlorous Acid
637 Reactions with Cyanide, *Inorg. Chem.*, 29, 2757-2762, 1990.
- 638 Iraci L. T., Michelsen R. R., Ashbourn S. F. M., Rammer T. A., and Golden D. M.: Uptake of
639 hypobromous acid (HOBr) by aqueous sulfuric acid solutions: low-temperature solubility and
640 reaction, *Atmos. Chem. Phys.*, 5, 1577-1587, 2005.
- 641 Liu Q. and Magarem D. W.: Equilibrium and Kinetics of Bromine, *Environ. Sci. Technol.*, 35, 1127-
642 1133, 2001.
- 643 Keene W.C., Pszenny A.A.P., Maben J.R., and Sander R.: Variation of marine aerosol acidity with
644 particle size, *Geophysical research Letters*, 29, 7, 1101, 10.1029/2001GL013881, 2002.
- 645 Keene W. C., Long M. S., Pszenny A. A. P. Sander R., Maben J. R., Wall A. J., O'Halloran T. L., Kerkweg
646 A., Fischer E. V., and Schrem O.: Latitudinal variation in the multiphase chemical processing of
647 inorganic halogens and related species over the eastern North and South Atlantic Oceans, *Atmos.*
648 *Chem. Phys.*, 9, 7361-7385, 2009.
- 649 Kelly P J., Kern C., Roberts T. J., Lopez T., Werner C., Aiuppa A., Rapid chemical evolution of
650 tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and
651 halogen-containing gases, *Journal of Volcanology and Geothermal Research*, Volume 259, Pages 317-
652 333, 2013.
- 653 Klassen, J. K., Hu, Z. and Williams, L. R.: Diffusion coefficients for HCl and HBr in 30 wt % to 72 wt %
654 sulfuric acid at temperatures between 220 and 300 K, *J. Geophys. Res.* 103, 16197-16202, 1998.
- 655 Kumar K. and Margarem D. W.: Kinetics and Mechanism of General- Acid-Assisted Oxidation of
656 Bromide by Hypochlorite and Hypochlorous Acid, *Inorg. Chem.* 26, 2706-2711, 1987.

- 657 Martin R.S.,² Wheeler J.C., Ilyinskaya E., Braban C.F. and Oppenheimer C: The uptake of halogen
658 (HF, HCl, HBr and HI) and nitric (HNO₃) acids into acidic sulphate particles in quiescent volcanic
659 plumes, *Chemical Geology* 296-297, 19–25, 2012.
- 660 Nagy J.C., Kumar K., Margarem D. W.: Non-Metal Redox Kinetics: Oxidation of Iodide by
661 Hypochlorous Acid and by Nitrogen Trichloride Measured by the Pulsed-Accelerated-Flow Method,
662 *Inorganic Chemistry*, Vol. 27, No. 16, 2773-2780, 1988.
- 663 Nagy P. and Ashby M.T.: Reactive Sulfur Species: Kinetics and Mechanisms of the Oxidation of
664 Cysteine by Hypohalous Acid to Give Cysteine Sulfenic Acid, *J. Am Chem Soc*, 129, 14082-14091,
665 2007.
- 666 Parrella J. P., Jacob D. J., Liang Q., Zhang Y., Mickley L. J., Miller B., Evans, M. J., Yang X., Pyle J. A.,
667 Theys N., and Van Roozendael M.: Tropospheric bromine chemistry: implications for present and
668 pre-industrial ozone and mercury, *Atmos. Chem. Phys.*, 12, 6723-6740, 2012.
- 669 Pratte P. and Rossi M. J.: The heterogeneous kinetics of HOBr and HOCl on acidified sea salt and
670 model aerosol at 40–90% relative humidity and ambient temperature, *Physical Chemistry Chemical
671 Physics*, 8, 3988–4001, 2006.
- 672 Read K. A., Mahajan A. S., Carpenter L. J., Evans M. J., Faria B. V. E., Heard D. E., Hopkins J. R., Lee L.
673 D., Moller S. J., Lewis A. C., Mendes L., McQuaid J. B., Oetjen H., Saiz-Lopez A., Pilling M. J. and Plane
674 J. M. C., Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, *Nature*,
675 453, doi:10.1038/nature07035, 1232-1235, 2008.
- 676 Roberts, T. J., Braban, C. F., Martin, R. S., Oppenheimer, C., Adams, J. W., Cox, R. A., Jones R. L. and
677 Griffiths., P. T, Modelling reactive halogen formation and ozone depletion in volcanic plumes. *Chem.
678 Geol.*, 263, 151-163, 2009.
- 679 Roberts T.J., Martin R.S, Jourdain L.,: Reactive halogen chemistry in Mt Etna's volcanic plume: the
680 influence of total Br, high temperature processing, aerosol loading and plume dispersion, *ACPD*,
681 2014.
- 682 Saiz-Lopez A., and von Glasow R., Reactive halogen chemistry in the troposphere, *Chem Soc Rev*,
683 41, 6448-6472, 2012.
- 684 Sander R., Keen W. C., Pszenny A. A. P., Arimoto R., Ayers G. P., Baboukas E., Cainey J. M., Crutzen P.
685 J., Duce R. A., Hönniger G., Huebert B. J., Maenhaut W., Mihalopoulos N., Turekian V. C., and Van
686 Dingenen R.: Inorganic bromine in the marine boundary layer: a critical review, *Atmos. Chem. Phys.*,
687 3, 1301-1336, 2003.

- 688 Sander R., Baumgaertner A., Gromov S., Harder H., Jöckel P., Kerkweg A., Kubistan D., Regelin E.,
689 Riede H., Sandu A., Taraborelli D., Tost H. and Xie Z.-Q.: The atmospheric chemistry box model
690 CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380, 2011.
- 691 Sander R., Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential
692 Importance in Environmental Chemistry (Version 3), <http://www.henrys-law.org> accessed November
693 2013, 1999.
- 694 Schmodzin L. and von Glasow R.: Do organic surface films on sea salt aerosols influence atmospheric
695 chemistry? – a model study, Atmos. Chem. Phys., 7, 5555–5567, doi:10.5194/acp-7-5555-2007, 2007.
- 696 Schroeder W.H., Anlauf K. G., Barrie L. A., Lu J. Y., Steffen A., Schneeberger D. R. and Berg T.: Arctic
697 springtime depletion of mercury, Nature, 394, 331–332, doi:10.1038/28530, 1998.
- 698 Schweizer F., Mirabel P. and George C., Uptake of hydrogen halides by water droplets, J. Phys Chem
699 A., 104, 72–76, 2000.
- 700 Seinfeld, John H. ; Pandis, Spyros N. Atmospheric Chemistry and Physics - From Air Pollution to
701 Climate Change (2nd Edition). John Wiley & Sons, accessed November 2013, 2006
- 702 Simpson W.R., von Glasow, R., Riedel K., Anderson P., Ariya P., Bottenheim J., Burrows J., Carpenter
703 L. J., Friess U., Goodsite M. E., Heard D., Hutterh M., Jacobi H.-W., Kaleschke L., Neff B., Plance J.,
704 Platt U., Richter A., Roscoe H., Sander R., Shepson P., Sodeau J., Steffen A., Wagner T., and Wolff E.:
705 Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418,
706 2007.
- 707 Vogt R., Crutzen P. J., and Sander R.: A mechanism for halogen release from sea-salt aerosol in the
708 remote marine boundary layer, Nature, 383, 327–330, 1996.
- 709 Von Glasow R. and Sander R.: Variation of sea salt aerosol pH with relative humidity, Geophysical
710 Research Letters, 28, 2, 247–250, 2001.
- 711 Von Glasow R., Sander R., Bott, A., Crutzen P. J.: Modeling halogen chemistry in the marine boundary
712 layer 1. Cloud-free MBL, Journal of Geophysical Research 107, D17, 4341,
713 doi:10.1029/2001JD000942, 2002.
- 714 Von Glasow R., von Kuhlmann R., Lawrence M. G., Platt U., and Crutzen P. J.: Impact of reactive
715 bromine chemistry in the troposphere, Atmos. Chem. Phys., 4, 2481–2497, 2004.
- 716 Von Glasow, R.: Atmospheric Chemistry in Volcanic Plumes, PNAS, 107, 15, 6594–6599, 2010.

- 717 Wachsmuth M., Gäggeler H. W., von Glasow R., Ammann M. : Accommodation coefficient of HOBr
718 on deliquescent sodium bromide aerosol particles, *Atmos. Chem. Phys.*, 2, 121–131, 2002.
- 719 Wang T. X. and Margarem D. W.: Kinetics of Reversible Chlorine Hydrolysis: Temperature
720 Dependence and General-Acid/ Base-Assisted Mechanisms, *Inorg. Chem.*, 33, 1050-1055, 1994.
- 721 Wexler A. S. and Clegg S. L.: Atmospheric aerosol models for systems including the ions H^+ , NH_4^+ , Na^+ ,
722 SO_4^{2-} , NO_3^- , Cl^- , Br^- and H_2O . *J. Geophys. Res.* 107, No. D14, 4207-4220, 2002.
- 723 Wilson, T.R.S.: Salinity and the major elements of sea water. In: Riley, J.P., Skirrow, G. (Eds.),
724 Chemical Oceanography (1, 2 Edition). Academic, Orlando FL, 365 – 413, 1975.
- 725 Yang, X., Cox R. A., Warwick N. J., Pyle J. A., Carver G. D., O'Connor F. M., and Savage N. H.:
726 Tropospheric bromine chemistry and its impacts on ozone: A model study, *J. Geophys. Res.*, 110,
727 D23311, doi:10.1029/2005JD006244., 2005.
- 728

Table 1. Summary of experimental data reported on HOBr uptake coefficient and HOBr_(aq) reaction kinetics under tropospheric conditions.

Aerosol or Solution	Temperature K	k_{ter} M ⁻² s ⁻¹	k^I s ⁻¹	k^{II} M ⁻¹ s ⁻¹	γ_{HOBr}	α_{HOBr}	Ref.
HOBr + Cl⁻_(aq)							
HCl-acidified NaCl aerosol with HCl:NaCl = 0.1:1	298	-	-	-	> 0.2	-	^a
H ₂ SO ₄ -acidified sea-salt aerosol with H ₂ SO ₄ :NaCl = 1.45:1	296	-	10 ³	-	10 ⁻³ -10 ⁻²	-	^b
BrCl _(aq) solution, pH = 6.4	298	2.3·10 ¹⁰	-	-	-	-	^c
HOBr+Br⁻_(aq)							
HOBr uptake onto supersaturated NaBr _(aq) , Br ⁻ _(aq) > 0.2 M, at very low [HOBr _(g)]	296 ± 2	-	-	-	-	0.6	^d
Br _{2(aq)} solution, pH = 2.7-3.8	298	1.6·10 ¹⁰	-	-	-	-	^e
Br _{2(aq)} solution, pH = 1.9-2.4	298	1.6(±0.2)·10 ¹⁰	-	-	-	-	^f

^aAbbatt and Waschewsky (1998)

^bPratte and Rossi (2006)

^cLiu and Margarem (2002)

^dWachsmuth et al. (2002)

^eEigen and Kustin (1962)

^fBeckwith et al. (1996)

Table 2. Extraction of second-order rate constant values, k^{II} from reported experimental data. For HOBr+Br⁻, k^{II} is derived from reported termolecular rate constants using $k^{\text{II}} = k_{\text{ter}} \cdot [\text{H}^+_{\text{(aq)}}]$. For HOBr+Cl⁻ k^{II} is derived from a reported termolecular rate constant using $k^{\text{II}} = k_{\text{ter}} \cdot [\text{H}^+_{\text{(aq)}}]$ and from reported first-order rate constant data, k^{I} using $k^{\text{II}} = k^{\text{I}} / [\text{Cl}^-_{\text{(aq)}}]$. Molarity and Activity of Cl⁻_(aq) and H⁺_(aq) were calculated using the E-AIM model at 298.15 K. See Methods.

Experiment	T K	RH %	wt% H ₂ SO ₄	pH	Cl ⁻ _(aq) Activity M	k_{ter} M ⁻² s ⁻¹	k^{I} s ⁻¹	k^{II} M ⁻¹ s ⁻¹	Ref.	
HOBr+Br⁻										
Br _{2(aq)}	293	-	-	2.7-3.6	-	$1.6 \cdot 10^{10}$	-	$4 \cdot 10^6 - 3.2 \cdot 10^7$	a	
Br _{2(aq)}	298	-	-	1.9-2.4	-	$1.6 (\pm 0.2) \cdot 10^{10}$	-	$6.1 \cdot 10^7 - 1.9 \cdot 10^8$	b	
HOBr+Cl⁻										
BrCl _(aq)	298	-	-	6.4	2.0	$2.3 \cdot 10^{10}$	-	$8.8 \cdot 10^3$	c	
							($\alpha = 0.2^*$)	($\alpha = 0.02^*$)		
H ₂ SO ₄ :NaCl (1.45:1)	296	77	31.7	-0.84	0.056		922	$1.6 \cdot 10^4$	$3.3 \cdot 10^4$	d
	296	79	30.00	-0.75	0.069		1050	$1.5 \cdot 10^4$	$3.6 \cdot 10^4$	
	296	80	29.1	-0.71	0.076		1140	$1.5 \cdot 10^4$	$3.9 \cdot 10^4$	
	296	85	24.2	-0.48	0.127		800	$6.3 \cdot 10^3$	$1.2 \cdot 10^4$	
	296	90	17.7	-0.21	0.209		995	$4.8 \cdot 10^3$	$1.1 \cdot 10^4$	
H ₂ SO ₄ :NaCl (1.45:1) NSS	296	77	31.7	-0.84	0.056		1960	$3.5 \cdot 10^4$	$7.8 \cdot 10^5$	d
H ₂ SO ₄ :NaCl (1.45:1) RSS	296	77	31.7	-0.84	0.056		545	$9.6 \cdot 10^3$	$1.4 \cdot 10^4$	d
	296	79	30.00	-0.75	0.069		720	$1.0 \cdot 10^4$	$1.8 \cdot 10^4$	
	296	80	29.1	-0.71	0.076		1090	$1.4 \cdot 10^4$	$3.4 \cdot 10^4$	
	296	85	24.2	-0.48	0.127		815	$6.4 \cdot 10^3$	$1.2 \cdot 10^4$	
	296	90	17.7	-0.21	0.209		710	$3.4 \cdot 10^3$	$5.8 \cdot 10^3$	

^aTermolecular rate constant reported by Eigen and Kustin (1962)

^bTermolecular rate constant reported by Beckwith et al. (1996)

^cTermolecular rate constant reported by Liu and Magarem (2001) for buffered aerosol containing Cl⁻_(aq) at pH = 6.4 at T = 298 K.

^dFirst-order rate constant, $k^{\text{I}}_{\text{rxn}}$ data reported by Pratte and Rossi (2005) for aerosol mixture at H₂SO₄:NaCl = 1.45, for laboratory sea-salt, natural sea-salt (nss) or recrystallised sea-salt (rss). Pratte and Rossi (2006) assumed two different accommodation coefficients ($\alpha = 0.2$, $\alpha = 0.02$) in the derivation of $k^{\text{I}}_{\text{rxn}}$ values from their uptake experiments, the former being closest to $\alpha = 0.6$ reported on NaBr_(aq) aerosol by Wachsmuth et al. (2002).

Table 3. Underlying rate constant data (k_1 , k_{-1} , k_0 , k_H) used in k'' parameterisations of Figure 1.

	HOBr+Br	HOBr+Cl
k_1 , $M^{-1} s^{-1}$	$5 \cdot 10^8$ ^{b,a}	$1.2 \cdot 10^4$ ^c
k_{-1} , s^{-1}	$5 \cdot 10^8$ ^{b,a}	$1.1 \cdot 10^4$ ^c
k_0 , s^{-1}	10^4 ^a	$2 \cdot 10^1$ ^c
k_H , $M^{-1} s^{-1}$	$2 \cdot 10^{10}$ ^a	$2 \cdot 10^{10}$ ^c

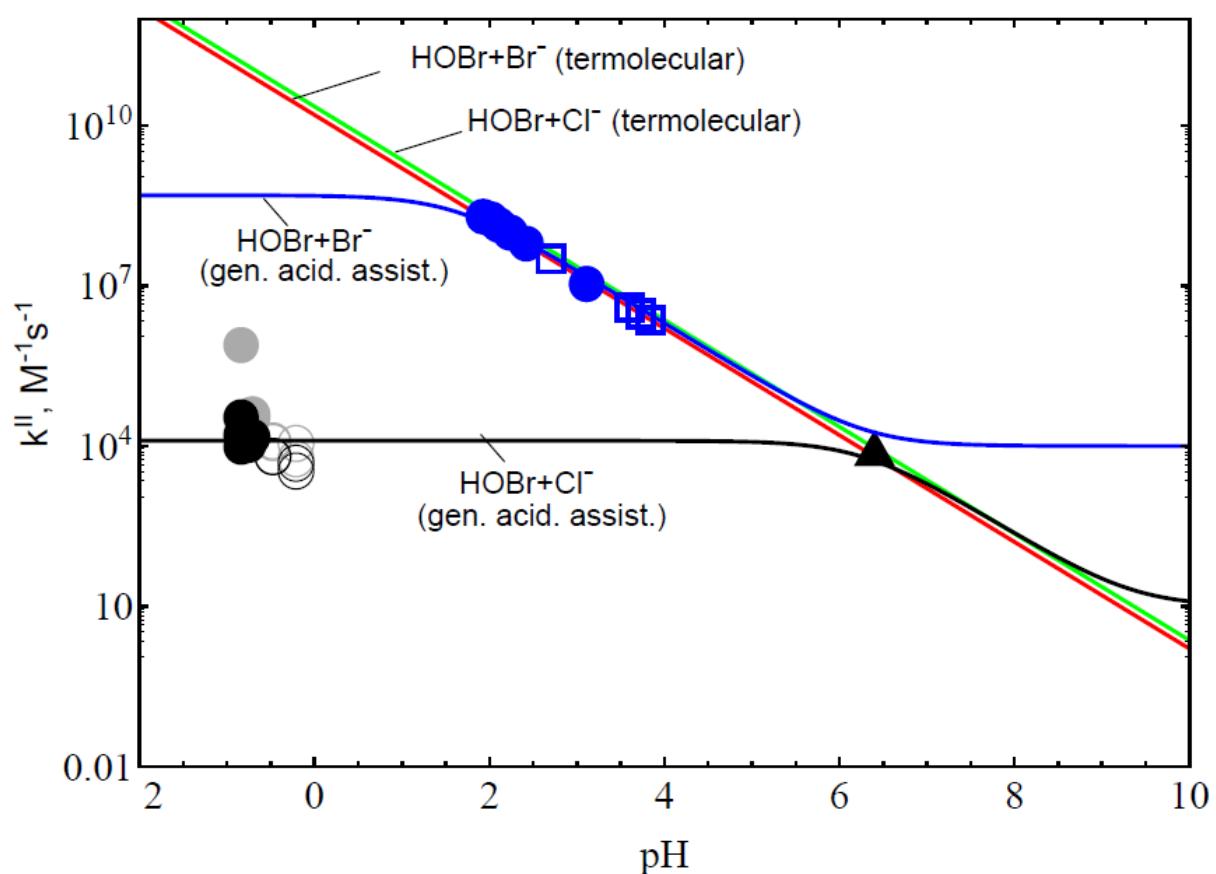
a: estimated in this study

b: derived from Eigen and Kustin (1962)

c: derived from Kumar and Margerum (1987)

Table 4 Predicted uptake coefficients compared to reported uptake on experimental aerosol

* Br^- concentration prior to aerosol dehumidifying (reported reduction in volume during dehumidifying indicates actual concentration may be a factor of ~ 3 higher)

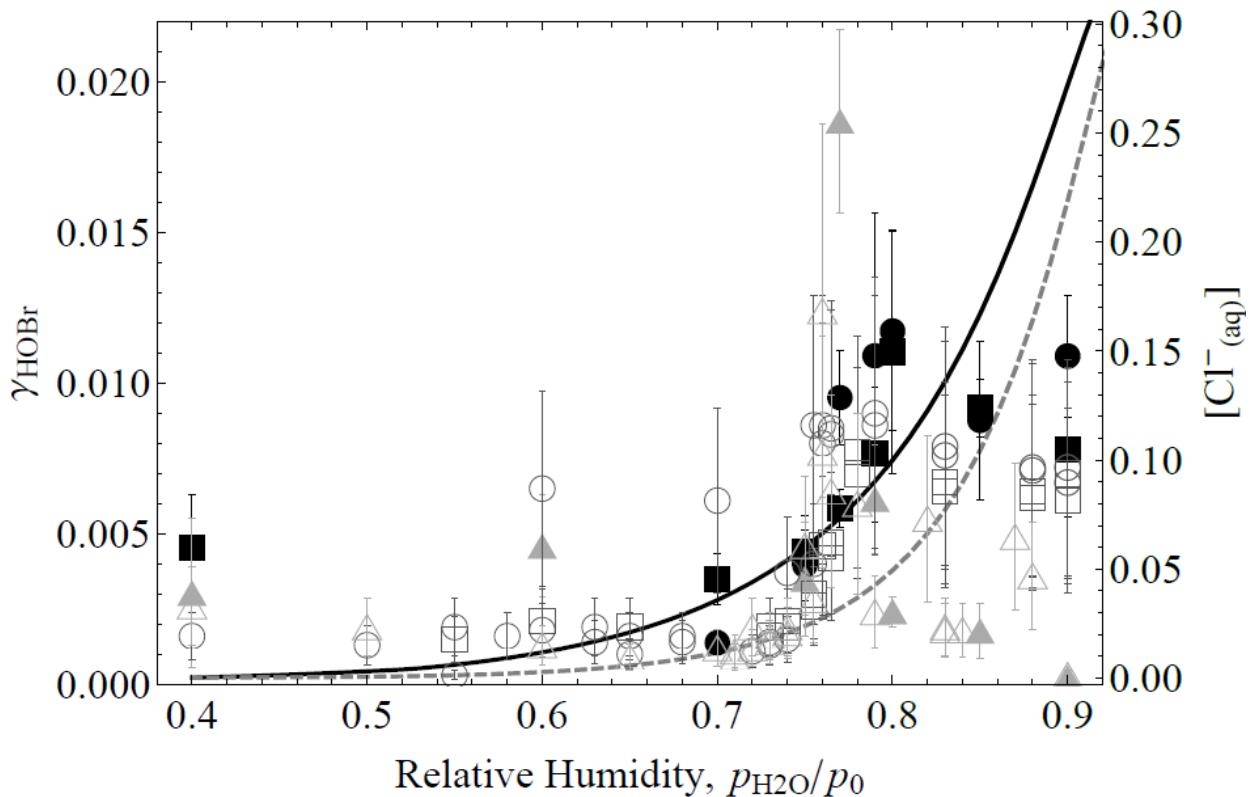

**(reported modal radius, although particles $>0.2 \mu\text{m}$ exist within the size spectrum)

Experimental aerosol:	NaBr aerosol (Wachsmuth et al., 2002) supersaturated $\text{NaBr}_{(\text{aq})}$	HCl-acidified NaCl aerosol (Abbatt and Waschewsky, 1998) HCl/NaCl = 0.1:1	H_2SO_4 -acidified sea-salt aerosol (Pratte and Rossi, 2006) $\text{H}_2\text{SO}_4/\text{NaCl} = 1.45:1$
γ_{HOBr} : observed	0.6 ± 0.2	> 0.2	$(0.1-0.3) \cdot 10^{-2}$ at RH 40 to 70 %
<u>Uptake Model Parameters:</u>			
Temperature	298.15	298.15	298.15
α (accommodation coefficient)	0.6	0.6	0.6
Na concentration ($\mu\text{mol}/\text{m}^3$)	-	0.2	0.8
RH, %	80	76	50
$[\text{Br}^-_{(\text{aq})}]$, M	$> 0.2^*$	-	-
$[\text{Cl}^-_{(\text{aq})}]$, M (E-AIM)	-	6.6	$4.4 \cdot 10^{-3}$
$[\text{H}^+_{(\text{aq})}]$, M (E-AIM)	$\sim 2 \cdot 10^{-6}$	2.3	83
pH	~ 6	-0.3	-1.9
k^{II} , $\text{M}^{-1} \text{s}^{-1}$	$3 \cdot 10^4$	10^4	10^4
k_{ter} , $\text{M}^{-2} \text{s}^{-1}$	$1.6 \cdot 10^{10}$	$2.3 \cdot 10^{10}$	$2.3 \cdot 10^{10}$
Particle radius, μm	$> 0.03^{**}$	1.	~ 0.17
wt% H_2SO_4	-	-	48
HOBr solubility, M atm^{-1}	$6.1 \cdot 10^3$	$6.1 \cdot 10^3$	364
HOBr Diffusion constant, $\text{cm}^2 \text{s}^{-1}$	$1.42 \cdot 10^{-5}$	$1.42 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$
γ_{HOBr} : old approach (where $k^{\text{I}} = k_{\text{ter}} \cdot [X^-_{(\text{aq})}] \cdot [\text{H}^+_{(\text{aq})}]$)	$0.1 < \gamma_{\text{HOBr}} \leq 0.6$	0.6	0.6
γ_{HOBr} : new approach (where $k^{\text{I}} = k^{\text{II}} \cdot [X^-_{(\text{aq})}]$)	$0.1 < \gamma_{\text{HOBr}} \leq 0.6$	0.6	$2 \cdot 10^{-4}$
			$7 \cdot 10^{-3}$

1 **Figure 1**

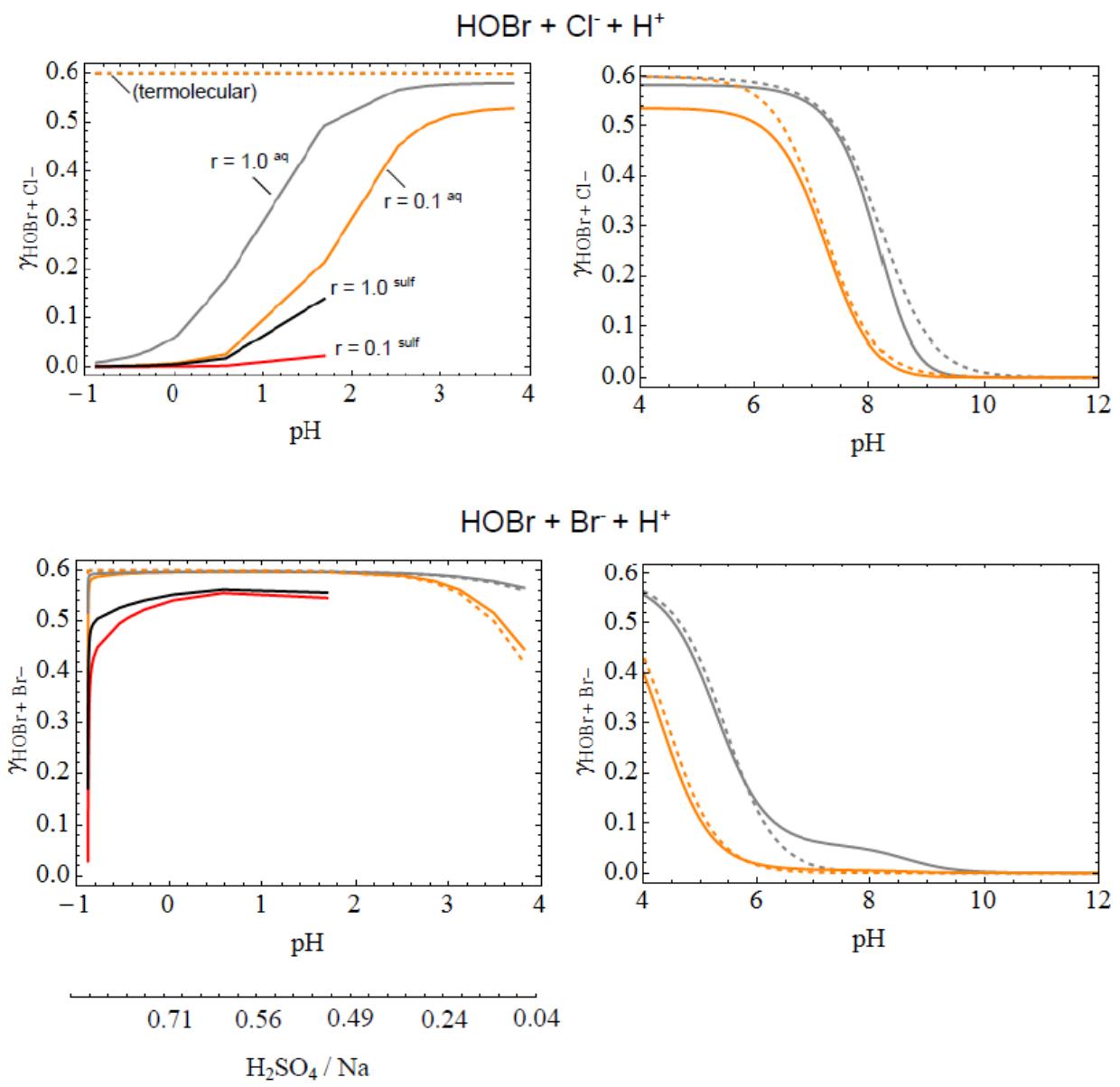
2 Second order rate constants for the reaction of HOBr with Br^- and Cl^- as a function of pH.
3 Experimental estimates for k^{II} for $\text{HOBr}+\text{Br}^-$ derived from data from Eigen and Kustin (1962) and
4 Beckwith et al. (1996), (blue squares and circles respectively) are shown alongside model estimate
5 (blue line) according to the acid-assisted mechanism. The red line denotes the k^{II} rate constant
6 assuming termolecular kinetics across all pH. Experimental estimates for k^{II} for $\text{HOBr}+\text{Cl}^-$ derived
7 from data from Liu and Margarem (2001) at pH = 6.4 (black triangle) and Pratte and Rossi (2006) at
8 pH -1 to 0 (black and grey disks for data at RH = 77-80%, open circles for RH = 85-90%), are shown
9 alongside model estimate (black line) according to the general acid-assisted mechanism. The green
10 line denotes the k^{II} rate constant assuming termolecular kinetics across all pH.

11

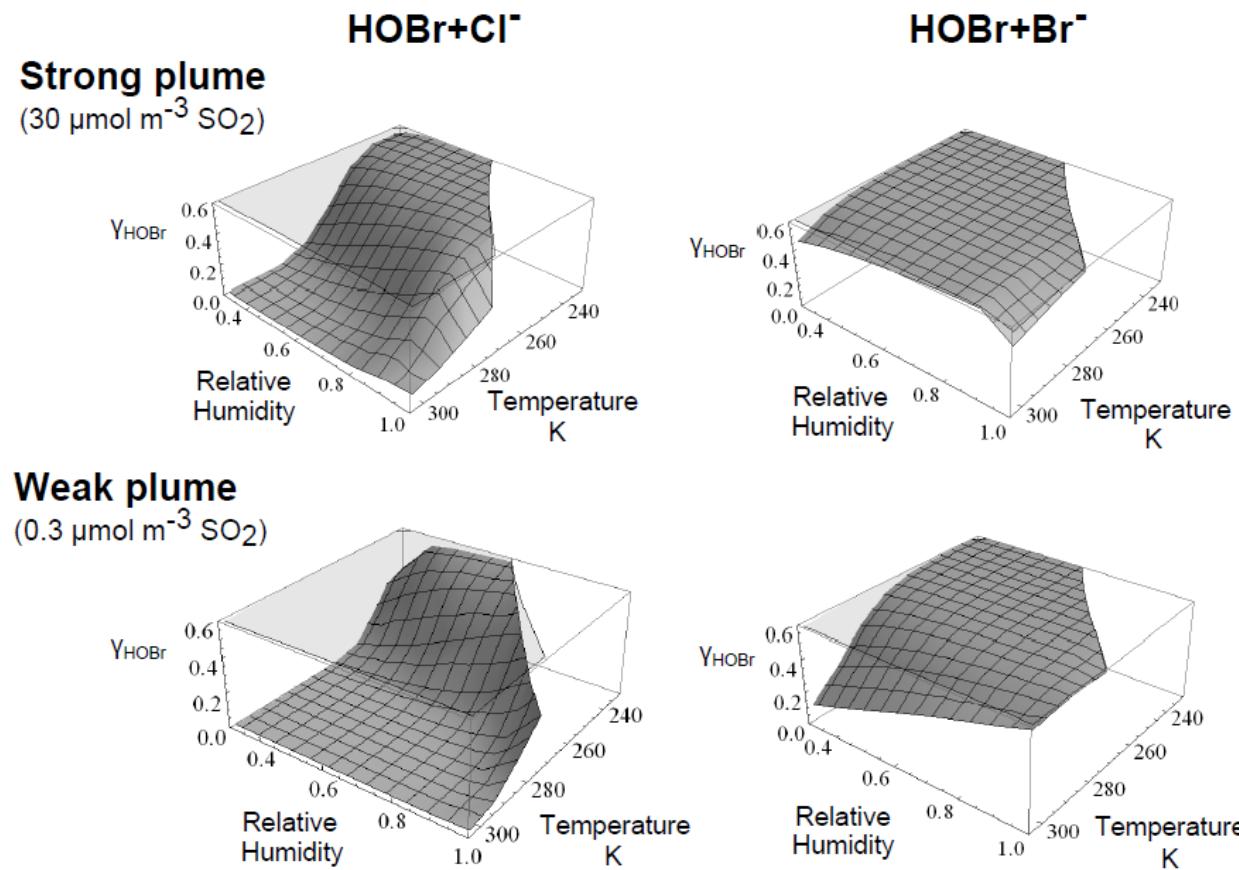


12

13


14 **Figure 2**

15 Dependence of reactive uptake coefficient for HOBr on relative humidity (RH) in the experiments of
 16 Pratte and Rossi (2006) on H_2SO_4 -acidified sea-salt aerosol ($\text{H}_2\text{SO}_4:\text{NaCl} = 1.45:1$) at 296 K, on
 17 acidified sea-salt (circles), recrystallized sea-salt (squares) and natural sea-salt (triangles), under two
 18 experimental set-ups: (i) the observed rate of $\text{HOBr}_{(g)}$ decay for a measured aerosol size distribution,
 19 with effective radius ranging over 165-183 nm (filled shapes), and (ii) a survey type mode with HOBr
 20 depletion monitored as a function of RH (unfilled shapes, with reported error estimated at 30-50%)
 21 over a constant reaction time. Also shown is the modelled uptake coefficient for HOBr (black line),
 22 and the $\text{Cl}^-_{(aq)}$ molarity (dotted line) as used within the uptake calculation.


26 **Figure 3**

27 Variation in the HOBr uptake coefficient with pH, for reaction of HOBr with (upper) Cl⁻ and (lower) Br⁻ on H₂SO₄-acidified sea-salt aerosol. Grey and orange lines denote uptake onto 1 and 0.1 μm radius particles, respectively. Black and red lines denote uptake onto 1 and 0.1 μm radius particles calculated using H* and D_I parameterisations for sulfuric acid (rather than water), shown only for H₂SO₄:Na ratios greater than 0.5. Relative humidity is set to 80% and Na concentration 1.3·10⁻⁷ moles/m³ (equivalent to a PM10 of 10 $\mu\text{g}/\text{m}^3$ in the marine environment, Seinfeld and Pandis, 2006). For comparison, uptake coefficients calculated assuming termolecular kinetics are also shown (dashed lines).

38 **Figure 4**

39 HOBr+Cl⁻ and HOBr+Br⁻ reactive uptake coefficients onto volcanic sulphate aerosol particles of 1 μm radius, calculated using our revised HOBr kinetics.
 40 Calculations are performed for a typical Arc or subduction zone volcanic plume composition containing a (SO₂):HCl:H₂SO₄:HBr molar ratio mixture of
 41 1:0.5:0.01:0.00075. The plume strength is 30, or 0.3 $\mu\text{mol}/\text{m}^3$, equivalent to approximately 1 or 0.01 ppmv SO₂ at 4 km altitude (US standard atmosphere).
 42 Conversely, uptake coefficients calculated using the termolecular approach yield high accommodation-limited values across all parameter space (light grey).

