A note to editor and reviews regarding update in Supplementary Material:

Dear editor and reviewers,

Regarding the question by Reviewer #1 on the assumption of $Q_{s,ambient}=Q_{s,dry}$ in the f(RH)_water equation derivation, we responded that the $Q_{s,ambient}/Q_{s,dry}$ ratio was on average 1.40. We recalculated this ratio, considering variations in refractive index and using a broader range of particle sizes in the distribution, and found the ratio to be on average 1.06 for the SOAS study, and with a relative bias in f(RH)_water of 10%. This is discussed in the main body of the manuscript, and detailed in the Supplementary Material Section 2 accordingly.

1	ParticleFine particle water and pH in the southeastern United States	Style Definition: Heading 3: Font: Italic
2	Hongyu Guo ¹ , Lu Xu ² , Aikaterini Bougiatioti ^{2,8} , Kate M. Cerully ^{2*} , Shannon L. Capps ⁴ , James R.	
3	Hite ⁴ Hite Jr. ¹ , Annmarie G. Carlton ⁵ , Shan-Hu Lee ⁶ , Michael H. Bergin ^{1,3} , Nga L. Ng ^{1,2} , Athanasios	
4	Nenes ^{1,2,7, \dagger} , and Rodney J. Weber ^{1, \dagger}	
5	¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA	
6	² School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA	
7	³ School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA	
8	⁴ Office of Research and Development, United States Environmental Protection Agency, Research	
9	Triangle Park, NC, USA	
10	⁵ Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA	
11	⁶ College of Public Health, Kent State University, Kent, Ohio, USA	
12	⁷ Foundation for Research and Technology, Hellas, Greece	
13	⁸ National Technical University of Athens, Athens, Greece	
14	*Now at TSI, Inc., Shoreview, MN, USA	Formatted: Superscript
15	[§] Now at Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA	

- 16 [†]Corresponding Author: R. Weber and A. Nenes, (<u>rodney.weber@eas.gatech.edu</u>;
- 17 <u>athanasios.nenes@gatech.edu</u>)

18 Abstract

19	Particle water and pH are predicted using thermodynamic modeling (with ISORROPIA-II),
20	meteorological observations (RH, T), and gas/particle composition- and thermodynamic modeling
21	(ISORROPIA-II). A comprehensive uncertainty analysis is included, and the model is validated-with
22	ammonia partitioning. The method is applied to predict. We investigate mass concentrations of particle
23	water and related particle pH for ambient fine mode aerosols sampled in a relatively remote Alabama
24	forest during the Southern Oxidant and Aerosol Study (SOAS) in summer, and at various sites in the
25	southeastern US; during different seasons, as part of the Southeastern Center for Air Pollution and
26	Epidemiology (SCAPE) study. Particle water and pH are closely linked; pH is a measure of the particle
27	H^+ aqueous concentration; and so depends on both the presence of ions and amount of particle liquid
28	water. Levels of particle water, in-turn, are determined through water uptake by both the ionic species and
29	organic compounds. Particle ion balances, often used to infer pH, do not consider either the dissociation
30	state of individual ions, nor particle liquid water levels and so do not necessarily correlate with particle
31	pH. Thermodynamic calculations based on measured ion concentrations can predict both pH and liquid
32	water, but do not considermay be biased since contributions of organic species to liquid water and so may
33	also be biased.are not considered. In this study, contributions of both the inorganic and organic fractions
34	to aerosol liquid water were considered and predictions were in good agreement with measured liquid
35	water based on differences in ambient and dry light scattering coefficients (prediction vs. measurement:
36	slope = 0.91, intercept = 0.4546 µg m ⁻³ , $\mathbb{R}\mathbb{R}^2 = 0.8775$). ISORROPIA-II predictions were
37	evaluated confirmed by reproducing the observed gas particle partitioning of NH3-good agreement
38	between predicted and measured ammonia concentrations (slope = 1.07, intercept = -0.12 μ g m ⁻³ , R ² =
39	0.76). Based on this study, organic species on average contributed 35% to the total water, with a
40	substantially higher contribution (6350%) at night. However, not The mean pH predicted in the Alabama
41	forest (SOAS) was 0.94 ±0.59 (median 0.93)-Not including contributions of organic water hashad a
42	minor effect on pH (changes pH by 0.15 to 0.23 units), suggesting that predicted pH without
43	consideration of organic water could be sufficient for the purposes of aqueous SOA chemistry. The mean
44	pH predicted in the Alabama forest (SOAS) was 0.94 ±0.59 (median 0.93).)- pH diurnal trends followed
45	liquid water and were driven mainly by variability in RH; induring SOAS nighttime pH was near 1.5-and
46	during day, while daytime pH was near 0.5. pH ranged from 0.5 to 2 in summer and 1 to 3 in the winter at
47	other sites. The systematically low <u>pH</u> levels of predicted pH in the southeast may have important
48	ramifications, such as significantly influencing acid-catalyzed reactions, gas-aerosol partitioning, and
49	mobilization of redox metals and minerals. Particle ion balances or molar ratios, often used to infer pH,

Page 2 of 57

50 51	do not consider the dissociation state of individual ions or particle liquid water levels and so do not necessarily correlate with particle pH.
52	Keyword
53	Particle acidity, pH, particle water, LWC, f(RH), SOA, SOAS, SCAPE
54	
55	1 Introduction
56	The concentration of the hydronium ion (H^+) in aqueous aerosols, or pH, is an important aerosol property
57	that drives many processes related to particle composition and gas-aerosol partitioning (Jang et al., 2002;
58	Meskhidze et al., 2003; Gao et al., 2004; Iinuma et al., 2004; Tolocka et al., 2004; Edney et al., 2005;
59	Czoschke and Jang, 2006; Kleindienst et al., 2006; Surratt et al., 2007; Eddingsaas et al., 2010; Surratt et
60	al., 2010)(Jang et al., 2002; Meskhidze et al., 2003; Gao et al., 2004; Iinuma et al., 2004; Tolocka et al.,
61	2004; Edney et al., 2005; Czoschke and Jang, 2006; Kleindienst et al., 2006; Surratt et al., 2007;
62	Eddingsaas et al., 2010; Surratt et al., 2010). Despite its importance, measuringMeasurement of pH is not
63	conserved during aerosol sampling because dilution makes its measurement highly challenging. For this
64	reason, and so indirect proxies are often used to represent particle acidity. The most common is an ion
65	balance; the charge balance of measurable cations and anions (excluding the hydronium ion). Although
66	correlated with an acidic (net negative balance) or alkaline (net positive balance) aerosol (Surratt et al.,
67	2007; Tanner et al., 2009; Pathak et al., 2011; Yin et al., 2014)(Surratt et al., 2007; Tanner et al., 2009;
68	Pathak et al., 2011; Yin et al., 2014), an ion balance cannot be used as a proxy formeasure of the aerosol
69	concentration of H^+ in air (i.e., moles H^+ per volume of air, denoted hereafter as H^+_{air}). This is due to two
70	factors, first, an ion balance assumes all ions are completely dissociated, but multiple forms are possible,
71	depending on pH (e.g., sulfate can be in the form, of H_2SO_4 , HSO_4^- , or SO_4^{2-}). A comparison between an
72	ion balance predicted H_{atr}^+ to that from the full analysis discussed below, for this data set, is shown in the
73	Supplementary material. Secondly, pH depends on the particle liquid water content (LWC)-(), as pH is the
74	concentration of H^+ in an aqueous solution), which <u>LWC</u> can vary considerably over the course of a day
75	and between seasons and influencesignificantly influencing pH (Seinfeld and Pandis, 2006)(Seinfeld and
76	Pandis, 2006). Aerosol thermodynamic models, such as ISORROPIA-II (Nenes et al., 1998; Fountoukis
77	and Nenes, 2007)(Nenes et al., 1998; Fountoukis and Nenes, 2007) and AIM (Clegg et al., 1998)(Clegg et
78	al., 1998), are able to calculate LWC and particle pH, based on measurements or model
79	predictionsconcentrations of various aerosol species, temperature (T), and relative humidity (RH) and
80	offer a more rigorous approach to obtain the aerosol pH (Pye et al., 2013)(Pye et al., 2013). ISORROPIA-

81	II calculates the composition and phase state of an NH_4 - <u>SO4</u> - <u>+SO4</u> - <u>-NO3ClNa-Ca-+-Ca²⁺-K</u> - <u>Mg-+</u> -
82	Mg^{2+} -water inorganic aerosol in thermodynamic equilibrium with water vapor and gas phase precursors.
83	The model has been tested with ambient data to predict acidic or basic compounds, such as $NH_{3(g)}$,
84	$NH_{4(p)}^{+}$, and $NO_{3(p)}^{-}$ (Meskhidze et al., 2003Meskhidze et al., 2003; Nowak et al., 2006Nowak et al., 2006;
85	Fountoukis et al., 2009 Fountoukis et al., 2009; Hennigan et al., 2014).
0.6	
86	LWC is a function of RH, particle concentration and composition, and predicted to beis the most
87	abundant particle-phase species in the atmosphere, at least 2-3 times the total aerosol dry mass on a global
88	average (Pilinis et al., 1995; Liao and Seinfeld, 2005)(Pilinis et al., 1995; Liao and Seinfeld, 2005). At 90%
89	RH, the scattering cross-section of an ammonium sulfate particle can be increased increased by a factor of
90	five or more above that of the dry particle, due to large increases in size from uptake of water (Malm,
91	2001). water uptake (Malm and Day, 2001). Because of this, LWC is the most important contributor to
92	direct radiative cooling by aerosols (Pilinis et al., 1995)(Pilinis et al., 1995), currently thought to be -0.45
93	Wm ⁻² (-0.95 Wm ⁻² to +0.05 Wm ⁻²) (IPCC, 2013) (IPCC, 2013). LWC plays a large role in secondary
94	aerosol formation for inorganic and possibly organic species by providing a large aqueous surface for
95	increased gas uptake and a liquid phase where aqueous phase chemical reactions can result in products of
96	lower vapor pressures than the absorbed gases-(Ervens et al., 2011; Nguyen et al., 2013). In the eastern
97	US, it has been suggested that the potential for organic gases to partition to LWC is greater than the
98	potential to partition to particle-phase organic matter (Carlton and Turpin, 2013)(Carlton and Turpin,
99	2013), and partitioning of water soluble organic carbon (WSOC) into the particle phase becomes stronger
100	as RH (i.e., LWC) increases (Hennigan et al., 2008)(Hennigan et al., 2008). Thus LWC enhances particle
101	scattering effects directly by increasing particle cross sections (Nemesure et al., 1995) and indirectly by
102	promoting secondary aerosol formation (Nemesure et al., 1995)(Ervens et al., 2011; Nguyen et al., 2013).
102	
103	The behavior of inorganic salts under variable RH is well established both experimentally and
104	theoretically. It is known that dry inorganic salts (or mixtures thereof) exhibit a phase change, called
105	deliquescence, when exposed to RH above a characteristic value. During deliquescence, the dry aerosol
106	spontaneously transforms (at least partially) into an aqueous solution (Tang, 1976; Wexler and Seinfeld,
107	1991; Tang and Munkelwitz, 1993)(Tang, 1976; Wexler and Seinfeld, 1991; Tang and Munkelwitz, 1993).
108	In contrast, due to its chemical complexity that evolves with atmospheric aging, the relationship of
109	organics to LWC is not well characterized, and requires a parameterized approach. Despite the abundance
110	and importance of LWC, it is not routinely measured. Thus, actual ambient particle total mass
111	concentration is not well characterized, and requires a parameterized approach (Petters and Kreidenweis,
112	2007). Relationships between volatility, oxidation level and hygroscopicity are not always straightforward
113	and still remain to be fully understood (Frosch et al., 2011; Villani et al., 2013; Cerully et al., 2014;

Field Code Changed

Page 4 of 57

114 Hildebrandt Ruiz et al., 2014). Despite the abundance and importance of LWC, it is not routinely 115 measured. Thus typically, particle total mass concentration (that includes liquid water) is often not 116 characterized. In general, LWC is measured by perturbing the in-situ RH. The loss of particle volume 117 when RH is lowered is assumed to be solely due to evaporated water. Approaches for LWC 118 measurements are classified into single particle size probes and bulk size quantification (Sorooshian et al., 2008)(Sorooshian et al., 2008). Single size particle probes provide more information, i.e., size resolved 119 120 hygroscopic growth, and usually tend to be slow due to whole size range scanning. In contrast, bulk size 121 measurements quantify the total water amount directly. The LWC measurement presented in this paper by 122 nephelometers is a bulk measurement. 123 As part of the Southern Oxidant and Aerosol Study (SOAS), we made detailed measurements of particle 124 organic and inorganic composition (Xu et al., 2014), aerosol hygroscopicity (Xu et al., 2015), aerosol 125 hygroscopicity (Cerully et al., 2014) (Cerully et al., 2014), and indirect measurements of particle LWC. 126 These data are used to first determine the particle water mass concentrations, which are then utilized in a 127 thermodynamic model for predicting pH. This paper provides The fine particle LWC and pH data, which 128 from this analysis are used in our other studies of secondary aerosol formation as part of SOAS and discussed in companion papers to this work (Cerully et al., 2014; Xu et al., 2014) (Cerully et al., 2014; Xu 129 et al., 2015). In this analysis we use bulk properties and do not consider variability in parameters with 130 particle size. Particle phase separations are also not considered, although they have been measured in bulk 131 extracts of aerosols from the southeast (You et al., 2012). With ambient RHs typically higher than 60%, 132 133 formation of non-crystalline organic coatings over an aqueous core are possible, but glassy states are not 134 expected. Good agreement between measured particle water and ammonia partitioning to predictions using the bulk properties (discussed below) suggests these assumptions are reasonable. 135

136 2 DateData collection

137 2.1 Measurement sites

138 Aerosol measurements were conducted at the SEARCH Centerville Site (CTR; 32.90289 N, 139 87.24968 W, altitude: 126 m), located in Brent, Alabama, as part of the SOAS (Southern Oxidant and 140 Aerosol Study)-study (http://soas2013.rutgers.edu). SOAS ground measurements were made from June 1st 141 to July 15th in the summer of 2013. CTR is a rural site within a large forested region dominated by biogenic VOCs emission volatile organic compound (VOC) emissions, with minor local anthropogenic 142 emissions and some plumes transported plumes (sulfur, CO from other locations (coal-fired electrical 143 144 generating units, urban emissions, biomass burning, mineral dust). It is representative of background 145 conditions in the southeastern US and chosen to investigate biogenic secondary organic aerosol (SOA)

Page 5 of 57

146	formation and its interaction with anthropogenic pollution transported from long range transportother
147	locations.
148	Additional measurements were also made at various sampling sites in and around the metropolitan
149	Atlanta region from May 2012 to December 2012 as part of a large health study; the Southeastern Center
150	for Air Pollution and Epidemiology (SCAPE). A map of all the five sites is shown in Figure 1. The
151	SCAPE measurement sites include:
152	1) A road-side (RS) site (33.775602 N, 84.390957 W), situated within 5m from the interstate
153	highway (I75/85) in midtown Atlanta and chosen to capture fresh traffic emissions;
154	2) A near-road site (GIT site, 33.779125 N, 84.395797 W), located on the rooftop of the Ford
155	Environmental Science and Technology (EST) building at Georgia Institute of Technology (GIT),
156	Atlanta, roughly 30 to 40 m above ground level, 840 m from the RS site;
157	3) Jefferson Street (JST) (33.777501 N, 84.416667 W), a central SEARCH site representative of the
158	Atlanta urban environment, located approximately 2000 m west of the GIT site;
159	4) Yorkville (YRK) (33.928528 N, 85.045483 W), the rural SEARCH pair of JST, situated in an
160	agricultural region approximately 70 km west from the JST, GIT and RS sites.
161	More information on the SEARCH sites can be found inelsewhere (Hansen et al., 2003; Hansen et al.,
162	2006)(Hansen et al., 2003; Hansen et al., 2006). We first focus on the SOAS campaign data, where the
163	widestwide range of instrumentation was deployed (http://soas2013.rutgers.edu), to develop a
164	comprehensive method of predicting LWC and pH _a as well as assessing their uncertainties. The approach
165	is then applied to the SCAPE site data to provide a broader spatial and temporal assessment of $PM_{2.5}$ -
166	particle water and pH in the southeastern US.
167	2.2 Instrumentation
168	<u>2.2a</u> PILS-IC÷
169	$PM_{2.5}$ or PM_1 (particles with aerodynamic diameters < 2.5 or 1.0 μ m at ambient conditions) water soluble
170	ions were measured by a Particle-Into-Liquid-Sampler coupled withto an Ion Chromatograph (PILS-IC;
171	Metrohm 761 Compact IC). Similar setups are described in previous field studies (Orsini et al., 2003; Liu
172	et al., 2012)(Orsini et al., 2003; Liu et al., 2012). Metrosep A Supp-5, 150/4.0 anion column and C 4,
173	150/4.0 cation column (Metrohm USA, Riverside, FL) were used to separate the PILS liquid sample
174	anions (sulfate, nitrate, chloride, oxalate, acetate, formate) and cations (ammonium, sodium, potassium,
175	calcium, magnesium) at a 20 min duty cycle. The PILS sample <u>ambient</u> air flow rate was 16.8 \pm 0.4 L
176	min ⁻¹ . URG (Chapel Hill, NC) cyclones were used to provide PM cut sizes of PM _{2.5} for the 1 st half of field

Page 6 of 57

study (June 1 to June 22) and PM₁ for the latter half (June 23 to July 15). Honeycomb acid (phosphoric
acid)- and base (sodium carbonate)-coated denuders removed interfering gases before entering the PILS.
The sample inlet was ~7 m above ground level and ~4 m long. The sampling line was insulated inside the
trailer (typical indoor T was 25 °C) and less than 1m in length to minimize possible changes in aerosol
composition prior to measurement. Periodic 1-hour_hr blank measurements were made every day by
placing a HEPA filter (Pall corpCorp.) on the cyclone inlet. All data were blank corrected. The PILS IC
was only deployed for the SOAS study.

184 2.2b AMS:

185 A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne Research Inc., hereafter referred to as "AMS") provided real time, quantitative measurements of the non-refractory 186 187 components of submicron aerosols (DeCarlo et al., 2006; Canagaratna et al., 2007)(DeCarlo et al., 2006; Canagaratna et al., 2007). In brief, particles were first dried (RH < 20%) and then immediately sampled 188 189 through an aerodynamic lens into the high vacuum region of the mass spectrometer, then transmitted into 190 a detection chamber where particles impact on a hot surface (600 $^{\circ}$ C). Non-refractory species are flash 191 vaporized and then ionized withby 70 eV electron impact ionization. The generated ions are extracted into 192 the time-of-flight mass spectrometer. Further details on the AMS setup and data processing can be found 193 in Xu et al. (20142015).

194 <u>2.2c</u> CCNc÷

The particle hygroscopic parameter, κ (Petters and Kreidenweis, 2007)(Petters and Kreidenweis, 2007), 195 196 used to infer the hygroscopic properties (liquid water associated with organics), was obtained from sizeresolved CCN measurements obtained with from a Droplet Measurement Technologies Continuous-Flow 197 198 Streamwise Thermal Gradient Cloud Condensation Nuclei counter (CFSTGC, referred to hereafter as 199 CCNc) (Roberts and Nenes, 2005; Lance et al., 2006) (Roberts and Nenes, 2005; Lance et al., 2006). The 200 CCNc exposes aerosols to a known supersaturation, then counts the activated particles that grow rapidly 201 to droplet size. Theory can be used to parameterize the water phase properties (here, expressed by κ ; (Petters and Kreidenweis (2007)Petters and Kreidenweis (2007)) of the organic aerosol, based on the size 202 203 of particles that form CCN and their composition. A URG (Chapel Hill, NC) PM1 cyclone was installed 204 for both AMS and CCNc. The details of the CCNc setup and data analysis procedure can be found in Cerully et al. (2014)Cerully et al. (2014). 205

Field Code Changed Field Code Changed

Page 7 of 57

206 2.2d Ambient vs Dry Nephelometers:

207 $PM_{2.5}$ (URG cyclones) aerosol light scattering coefficients (σ_{sp}) were measured online with two different \leftarrow 208 nephelometers (Radiance Research M903) to infer LWC. Both were operated at nominally 3 L min⁻¹ controlled by critical orifices and vacuum pumps located some distance away from the instruments. 209 210 Particle dry scattering was measured with a nephelometer located in the air-conditioned sampling trailer 211 operated with a nation dryer upstream, which that maintained an RH of 31.5 ± 1.9 % (study mean \pm SD, n = 12,464 based on 5-min averages). The other was situated in a small white 3-sided wooden shelter (one 212 213 side covered by a loose tarp) located a distance away from all building buildings to provide a scattering 214 measurement at ambient T and RH. Both PM2.5 cut cyclones were located in ambient conditions, and 215 <u>both</u> nephelometers were calibrated by CO_2 prior to the SOAS field campaign. Typical uncertainty is 3% 216 for scattering coefficients (Mitchell et al., 2009)(Mitchell et al., 2009). In addition, the nephelometer RH 217 sensors were calibrated by placing the sensors in a closed container above aqueous saturated salt solutions 218 that had reached equilibrium (measurements made in a thermally insulated container after a period of a 219 few hours). Solution temperatures were monitored. Details on the calibration results are provided in the 220 Supplementary material.Material Section 1. Recorded RH was corrected by the resulting calibration 221 results. 222 2.3 Determining LWC from nephelometers 223 Particle water was inferred from the ratio of wetambient and dry PM2PM2 5 (URG evelones) scattering 224 coefficients (σ_{sp}) measured by the two nephelometers (defined here as aerosol hygroscopic growth factor, 225 $f(RH) = \frac{\sigma_{sp(wet)}}{\sigma_{sp(ambient)}} / \sigma_{sp(dry)}$, where $\frac{\sigma_{sp(wet)}}{\sigma_{sp(ambient)}} \sigma_{sp(dry)}$ are particle scattering 226 coefficients inat ambient and dry RH conditions, respectively) following the method developed by other

investigators (Carrico et al., 1998; Kotchenruther and Hobbs, 1998; Carrico et al., 2000; Malm, 2001;
Sheridan et al., 2002; Magi and Hobbs, 2003; Kim et al., 2006)(Carrico et al., 1998; Kotchenruther and
Hobbs, 1998; Carrico et al., 2000; Malm and Day, 2001; Sheridan et al., 2002; Magi and Hobbs, 2003;
Kim et al., 2006). A difference between ambient and dry scattering coefficients is assumed to be caused
solely by loss of water. Detailed derivations are provided in the Supplementary material Material. *f*(*RH*)

232 is related to the measured-particle scattering efficiencies $(\frac{Q}{Q_s})$ and average particle diameter $(\overline{D_p})$ by;

$$\overline{D_{p,wet}}D_{p,ambient} = \overline{D_{p,dry}} \int \frac{f(RH)Q_{wet}/Q_{dry}}{f(RH)Q_{s,dry}} \int f(RH)\overline{Q_{s,dry}}$$
(1)

233 $Q_{wet}, \overline{Q_{s,ambient_2}} \xrightarrow{D_{p,wet}} are \overline{D_{p,ambient_are the average}}$ scattering efficiency and average particle diameter 234 under ambient conditions, while $Q_{dry}, \overline{Q_{s,dry_2}} \xrightarrow{D_{p,dry}}$ represent the dry conditions. The method is 235 based on the fact that for fine particles, particle light scattering is most effective by being mostly due to Formatted: Space After: 0 pt

Formatted: Font: Bold, Italic

Formatted: Space Before: 6 pt, After: 6 pt

236	particles in the accumulation mode and can be related to scattering efficiencies and the diameter of	
237	average surface, for both wet <u>ambient</u> and dry particle size distributions. Assuming that $\frac{Q_{wet}}{Q_{s,ambient}} =$	
238	$\overline{Q_{s,dry}}$ (see Supplementary Material Section 2 for justification and $\overline{Q_{dry}}$ are of similar	
239	magnitude, uncertainty analysis), it follows then that;	
	$\overline{D_{p,wet}}D_{p,amblent} = \overline{D_{p,dry}}\sqrt{f(RH)} $ (2)	
240	Since the LWC is equal to the difference between wetambient and dry particle volume, we get;	
	$\frac{LWC = [f(RH)^{1.5} - 1]m/\rho_{p}f(RH)_water = [f(RH)^{1.5} - 1]m_p\rho_w/\rho_p $ (3)	
241	where $m_{\rm where} m_p$ and ρ_p are dry particle mass and density, respectively: ρ_w is water density (constant	
242	1 g cm ⁻³ is applied). For SOAS, dry PM _{2.5} mass concentrations were measured continuously by a TEOM	
243	(tapered element oscillating microbalance, 1400a, Thermo Fisher Scientific Inc., operated by	
244	Atmospheric Research & Analysis Inc.) were used., referred to hereafter as ARA). Particle density, ρ_p ,	
245	was computed from the particle composition, including AMS total organics, ammonium, and sulfate,	
246	which accounted for 90% of the measured $PM_{2.5}$ (TEOM) dry mass (SOAS study mean). A typical	
247	organic density 1.4 g cm ⁻³ is assumed (Turpin and Lim, 2001; King et al., 2007; Engelhart et al., 2008;	
248	Kuwata et al., 2012; Cerully et al., 2014)(Turpin and Lim, 2001; King et al., 2007; Engelhart et al., 2008;	
249	Kuwata et al., 2012; Cerully et al., 2014), and the density of ammonium sulfate is assumed to be 1.77 g	
250	cm^{-3} (Sloane et al., 1991; Stein et al., 1994)(Sloane et al., 1991; Stein et al., 1994). Particle density, ρ_p ,	
251	was calculated to be 1.49 \pm 0.04 g cm ⁻³ (n = 4,393) using mass fractions (ϵ):	
	ρ_p (4	
	$=\frac{1}{\frac{1}{\varepsilon(NH_{4}+SO_{4})/1.77+\varepsilon(Organics)/1.4}}\frac{1}{\varepsilon(NH_{4}^{+}+SO_{4}^{2-})/1.77+\varepsilon(Organics)/1.4}}(g\ cm^{-3})$	
252	The time-resolved composition data shows that dry particle density did not have a significant diurnal	
253	variability (±2.7%, SD/mean). (Note, SO4 stands for sulfate in all its possible forms, from free to	
254	completely dissociated, the same applies to all other ions, e.g., NH4, NO3, etc.), Supplementary Material	
255	Figure S2). In the following we refer to the particle water calculated by this method as $f(RH)$ _water. The	
256	uncertainty of $f(RH)$ _water is estimated to be $\frac{23\%}{23\%}$, mainly caused by $\frac{Q_{wat}}{Q_{ary}}$ (~20%), m (10%),	
257	$\sigma_{sp(wet)}$ 15%, mainly caused by the calculation of $\overline{Q_{s,amblent}}/\overline{Q_{s,dry}}$ (LWC error of 10% from assuming	
258	$\overline{Q_{s,ambient}/Q_{s,dry}} = 1$, see Supplementary Material), $m_p(10\%)$, $\sigma_{sp(ambient)} / \sigma_{sp(dry)}$ (4.2%)	
259	(uncertainty for a single σ_{sp} measurement is 3%, Mitchell et al. (2009)Mitchell et al. (2009), and ρ_p	
260	(2.7%), and ρ_p (2.7%). Note that LWC error depends on RH, and for SOAS average composition	
261	aerosol could increase to 21% for RH > 90% (Supplementary Material Figure S6).	

Page 9 of 57

262 3 Modeling Methods: Predicting LWC prediction and pH from aerosol composition

263 In most studies, such as SCAPE, particle water was not measured and must be determined based on aerosol composition. Both inorganic and organic components contribute to uptake of water vapor, 264 establishing equilibrium for the ambient RH and T conditions. Thus, LWC is controlled by 265 266 meteorological conditions and also by aerosol concentration and composition. Thermodynamic models, 267 such as ISORROPIA-II, have been extensively used to predict LWC due to inorganic aerosol components 268 (Fountoukis and Nenes, 2007) (Fountoukis and Nenes, 2007). Contributions to LWC by organic 269 components are typically based on an aerosol hygroscopicity parameter, κ , which is determined by CCN 270 data. Here we refer to particle water associated with inorganics and organics as W_i and W_o , respectively. 271 Total particle water $(W_i + W_o)$ is taken as the sum of water associated with individual aerosol chemical 272 components (sum of ions and lumped organics); based on Zdanovskii-Stokes-Robinson (ZSR) 273 relationship (Zdanovskii, 1936; Stokes and Robinson, 1966), with the assumption that the particles are 274 internally mixed.

275 3.1 LWC from inorganic species

- 276 W_{\pm} was Particle water associated with inorganic species (W_i) were predicted by ISORROPIA-II (Nenes et
- 277 al., 1998; Fountoukis and Nenes, 2007)(Nenes et al., 1998; Fountoukis and Nenes, 2007). ISORROPIA-II
- 278 calculates the composition and phase state of $\frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}$
- 279 K-Mg_water inorganic aerosol in thermodynamic equilibrium with gas phase precursors. Chemical and
- 280 meteorological data are necessary inputs. For our analysis at CTR, the inputs to ISORROPIA-II are the
- 281 inorganic ions measured by the IC or AMS, RH measured by the outside Nephelometernephelometer, and
- 282 temperature from the SEARCH site (ARA) meteorological data.

283 3.2 LWC from organic fraction

To determine the contributions to particle water by W_o , in SOAS the organic hygroscopicity parameter (κ_{org}) was measured<u>calculated</u> based on the observed CCN activities of the organic fraction (Cerully et al., 2014)(Cerully et al., 2014) and in. In the following analysis diurnal three-hour running averages are used in the calculation. (Diurnal plot is included in the Supplementary material<u>Material</u> as Figure 5)S7). W_o is calculated using the following equation (Petters and Kreidenweis, 2007)(Petters and Kreidenweis, 2007).

$$W_{o} = \frac{m_{s}}{\rho_{s}} \frac{\kappa_{org}}{(\frac{1}{RH} - 1)} W_{o} = \frac{m_{org}\rho_{w}}{\rho_{org}} \frac{\kappa_{org}}{(1/RH} - 1)$$
(5)

Formatted: Font: Not Italic

Page 10 of 57

290 where m_g is the organic mass concentration from AMS (Xu et al., 2014), and a typical organic density (ρ_g)

291 of 1.4 g cm⁻³-Where m_{org} is the organic mass concentration from AMS (Xu et al., 2015), ρ_w is water

292 density, and a typical organic density (ρ_{org}) of 1.4 g cm⁻³ is used (Turpin and Lim, 2001; King et al.,

293 2007; Engelhart et al., 2008; Kuwata et al., 2012; Cerully et al., 2014)(Turpin and Lim, 2001; King et al.,

294 <u>2007; Engelhart et al., 2008; Kuwata et al., 2012; Cerully et al., 2014)</u>.

295 3.3 pH prediction

The thermodynamic model, ISORROPIA-II (Fountoukis and Nenes, 2007) (Fountoukis and Nenes, 2007), is used to predict particle pH, based on calculated calculates the equilibrium particle hydronium ion concentration in the aerosol.per volume air (H_{air}^+) , which along with the LWC is then used to predict particle pH. To correct for the LWC associated with the organic aerosol (not considered in ISORROPIA-II), we recalculate pH by considering the predicted particle hydronium ion concentration per volume air $(H_{air}^+) H_{air}^+$ and total predicted water (W_i and W_o). The modeled concentrations are µg m⁻³ air for H_{air}^+ and LWC. The pH is then,

$$pH = -\log_{10} H_{aq}^{+} = -\log_{10} \frac{1000H_{air}^{+}}{W_i + W_o}$$
(6)

303 where <u>Where</u> H_{aq}^+ (mol L⁻¹) is hydronium concentration in <u>an</u> aqueous solution.

304 ISORROPIA-II has been tested in previous field campaigns where a suite of both gas and particle components were measured (Nowak et al., 2006; Fountoukis et al., 2009)(Nowak et al., 2006; Fountoukis 305 306 et al., 2009). The model was able to predict the equilibrium partitioning of ammonia (Nowak et al., 2006) (Nowak et al., 2006) in Atlanta and nitric acid (Fountoukis et al., 2009) (Fountoukis et al., 2009) in 307 308 Mexico City within measurement uncertainty. For instance, $NH_{3(g)}$, $NH_{4(p)7}^{-}$, $HNO_{3(g)}$, and $NO_{3(p)}^{-}$ were within 10%, 20%, 80%, and 20% of measurements (Fountoukis et al., 2009)(Fountoukis et al., 2009). In 309 310 this study, ISORROPIA-II was run in the "Forward mode" for metastable aerosol. Forward mode 311 calculates the equilibrium partitioning given the total concentration of various species (gas + particle) 312 together with RH and T as input. Reverse mode involves predicting the thermodynamic composition 313 based only on the aerosol composition. Here, we use the Forward mode with just aerosol phase data input 314 because it is less sensitive to measurement error than the Reverse mode (Hennigan et al., 2014).(Hennigan 315 et al., 2014). The W_i prediction staysremains the same (Reverse vs Forward: slope = 0.993, intercept = -0.005, and $R^2 = 0.99$) no matter which approach is used. Gas phase input does have an important impact 316 317 on the H_{air} calculation. ISORROPIA-II was tested with ammonia partitioning. Discussed, which is 318 discussed in more detail below, here. Here it is noted that we found that further constraining ISORROPIA-II with measured NH_{3(g)} (You et al., 2014)(You et al., 2014)</sub> resulted in a pH increase of 0.8 319

320at CTR and that the predicted $NH_{3(g)}$ matched the measured $NH_{3(g)}$ well (slope = 1.07, intercept = -0.12_ug321 m^{-3} , $R^2 = 0.76$). This also confirms that ISORROPIA-II predicts the pH in the ambient aerosol with322goodreasonable accuracy, as inputting the total (gas + aerosol) ammonium results in predictions that agree323with those observed. This is also in agreement with findings of Hennigan et al. (2014) Hennigan et al.324(2014) and Fountoukis et al. (2009) Fountoukis et al. (2009), both of325reproduced the partitioning of ammonia and inorganic nitrate in Mexico City during the MILARGO326campaign.

327 3.4 Assumptions

In the following analysis we use bulk properties and do not consider variability in parameters with 328 329 particle size. Particulate organic and inorganic species are assumed to be internally mixed in the liquid 330 phase due to the high RH (73.8 $\pm 16.1\%$) typical of this study and because a large fraction of the ambient aerosol organic component is from isoprene SOA (Xu et al., 2015), which are liquids at $RH \ge 60\%$ (Song 331 332 et al., 2015). Particle liquid phase separations are not considered, although they have been measured in 333 bulk extracts of aerosols from the southeast (You et al., 2012). It is reported that liquid-liquid phase 334 separation can occur when the O:C ratio of the organic material is ≤ 0.5 . More experiments showed that it 335 is possible to have phase separation for $O:C \le 0.7$, but not for $O:C \ge 0.8$ (Bertram et al., 2011; Song et al., 336 2012; You et al., 2013). SOAS average O:C = $0.75 (\pm 0.12)$ is in the transition between these two regimes. According to Figure 2 in Bertram et al. (2011), at RH typically > 60% and organic:sulfate mass ratio >1, 337 it is not possible to have phase separation, which is the case for our sampling sites. Based on our basic 338 339 assumption of no liquid-liquid phase separation, pH is considered to be homogeneous in a single particle. 340 However, separated phases would likely have different pHs if liquid-liquid phase separation occurs. In that case, pH should be calculated based on the amounts of water and H_{air}^+ in each phase. Gas-particle 341 342 phase partitioning will change according, due to these separated phases. There are models that are set up 343 to calculate these thermodynamics (e.g., AIOMFAC), but none is yet able to address the compositional 344 complexity of ambient SOA. (Zuend et al., 2010; Zuend and Seinfeld, 2012) Although it is often true that 345 non-ideal interactions between organic and inorganic species exist, good agreement between measured 346 particle water and ammonia partitioning to predictions using the bulk properties (discussed below) 347 suggests these assumptions are reasonable.

Page 12 of 57

348	4 Results
510	i itesuites

349	4.1 SummaryOverall summary of meteorology and PM composition at SOAS and SCAPE sites
350	For the SOAS study period, mean T and RH were 24.7 ± 3.3 °C and 73.8 ± 16.1 % (mean \pm SD),
351	respectively. This resulted in a $f(RH)$ water level of 4.52 \pm 3.75 µg m ⁻³ , with a maximum value of 28.41
352	μ g m ⁻³ . In comparison, SOAS mean dry PM _{2.5} mass was 7.72 ± 4.61 μ g m ⁻³ , implying that the fine
353	aerosols were roughly composed of 37% water, on average. Mean T and RH for SCAPE sites are listed in
354	Table 3. Summer T means were all above 21°C, including CTR. RH means were all high (> 60%) for
355	summer and winter, which is typical for the southeastern US.
356	Of the sites in the southeastern US discussed in this paper, CTR was the least influenced by
357	anthropogenic emissions having the lowest black carbon (BC) concentrations (measured by a MAAP,
358	Thermo Scientific, model 5012). At CTR, the mean BC = $0.26 \pm 0.21 \ \mu g \ m^{-3} \ (\pm SD)$, whereas mean BC
359	concentrations at the other rural site (YRK) was 0.36 μ g m ⁻³ . The representative Atlanta site (JST) BC
360	was on average 0.71 μg m 3, and higher for sites closer to roadways, 0.96 μg m 3 (GIT) and 1.96 μg m 3
361	(RS).
362	For the SOAS study period, mean T and RH were $24.7 \pm 3.3 ^{\circ}$ C, $73.8 \pm 16.1 ^{\circ}$ (mean \pm SD), respectively.
363	This resulted in $f(RH)$ _water level of $4.52 \pm 3.75 \ \mu g \ m^2$, with a maximum value of $28.41 \ \mu g \ m^2$. In
364	comparison, SOAS mean dry PM _{2.5} mass was 7.72 \pm 4.61 µg m ⁻³ , implying that the fine aerosols were
365	composed of roughly 37% water on average. Mean T and RH for SCAPE sites are listed in Table 3.
366	Summer T-means were all above 21°C, including CTR. RH-means were all high (> 60%) for summer and
367	winter, which is typical for the southeastern US.
368	A more comprehensive suite of ions will provide a better prediction of W_i . However, in the southeastern
369	US, inorganic ions are currently dominated by sulfate and ammonium. During SOAS, the PILS-IC
370	provided a more comprehensive and accurate measurement of water-soluble ions than AMS, which
371	measured only non-refractory sulfate, ammonium, nitrate, and chloride. Refractory, but water soluble ions,
372	such as sodium and associated chloride, and crustal elements including calcium, potassium, and
373	magnesium were present in PM ₁ , but in very low concentrations. Contributions of these ions are more
374	important in $PM_{2.5}$ than for PM_1 , which tend to reduce aerosol acidity. For instance, Na^{\pm} has a
375	significantly higher mean in $PM_{2.5}$ at 0.056 µg m ⁻³ (1 st half of SOAS study) than 0.001 µg m ⁻³ in PM_1 (2 nd
376	half of SOAS study) at CTR.). Four, one day-long, dust events (06/12, 06/13, 06/16, and 06/21) in the
377	SOAS data set have been excluded from this analysis as assumptions relating to internal mixing of PM _{2.5}

Page 13 of 57

378	components are less valid in these cases. Excluding these days, the mean Na ^{\pm} in PM _{2.5} drops to 0.024 µg
379	m ⁻³ .
200	If the fraction of the refrectory ions (e.g. No $C_0^+ K M_0^+ C_0^{2+} M_0^{2+})$ is negligible compared to the
201	If the fraction of the ferractory fons (e.g., $Na, \underline{Ca}, \underline{Ng}, \underline{Ca}, \underline{Ng}$) is negligible compared to the
202	SO_4 , NH_4 (Note, SO_4 stands for sufface in an its possible forms, from free to completely dissociated),
382	$\underline{M_{4}}^{-}$, and NO_{37}^{-} the AMS data sufficiently constraints particle composition for thermodynamic
383	calculations; this apparently is the case for most of the time in the southeast (Supplementary
384	material Material Section 54). For PM ₁ SO ₄ and NH ₄₇ , AMS and PILS-IC were in good agreement
385	(sulfate <u>SO</u> ₄ slopes within 20 %, $R^2 = 0.90$; ammonium <u>NH</u> ₄ [±] within 1%, $R^2 = 0.81$). Similar agreement
386	was also found for AMS $PM_1 SO_4$ and NH_4^{\pm} versus PILS-IC $PM_{2.5} SO_4$ and NH_4 . (see Figure 2 for
387	comparison of complete data set). These data indicate little SO_4 and NH_4^{\pm} between the 1.0 and 2.5 μm
388	size range (PM _{2.5} – PM ₁). Because of the agreement between these dominant ions, ISORROPIA-II-
389	predicted W_i for all ions measured with the PILS-IC throughout the study (includes both PM ₁ and PM _{2.5})
390	agreed with W_i based on AMS inorganic species (i.e., only ammonium and sulfate) having an orthogonal
391	slope of 1.18, Figure 2c.
202	4.2 Populto from the SOAS Contraville site
392	4.2 <u>Results from the SOAS Centrevine site</u>
393	4.2a LWC, pH and ion balances at Centreville
394	The diurnal variation of LWC contributed by W_i and W_o , along with total measured water, ambient T, RH,
395	and solar radiation at CTR is shown in Figure 3. Predicted and measured LWC trends were in good
396	overall agreement, although the largest discrepancy was observed during the daytime when the LWC
397	level was low and more difficult to measure and accurately predict. Nighttime RH median values were
398	between 85% and 90% and resulted in significant water uptake that reached a peak just after sunrise near
399	7:30 am (local time). The dramatic peak in LWC starting at roughly 5:00 am, reaching a maximum
400	between 7:30 and 8:00 am is likely due to RH increasing above 90%, at which point uptake of water
401	rapidly increases with increasing RH. The similar rapid hygroscopic growth before suprise was also
402	observed at GIT RS and IST (Nov) (Figure 11). After suprise, rising temperatures led to a rapid drop in
403	RH resulting in rapid loss of particle water LWC reached lowest levels in the afternoon $\sim 2 \text{ µg m}^{-3}$ only
404	20% of the peak value W varied more than W diurnally: W max/min ratio was 13.1 compared to 4.1 for
405	W_i .
406	At CTR, the aerosol was highly acidic, with predicted mean $pH = 0.94 \pm 0.59 (\pm SD)$. The minimum and
407	maximum pH ware 0.04 and 2.22 respectively, and pH varied by approximately 1 on average throughout
	maximum privere -0.94 and 2.25 respectively, and privated by approximately 1 on average unoughout

409	<u>max/min ratio was 5, whereas H_{air}^+ diurnal variation was significantly less (Figure 4b), indicating that the</u>
410	diurnal pattern in pH was mainly driven by particle water dilution. This is further demonstrated in Figure
411	<u>4d, which shows the diurnal variation in the NH_4^+/SO_4^{2-} molar ratio (the main ions driving pH), with only</u>
412	slightly lower ratios during the day. The study mean (\pm SD) NH ₄ ⁺ /SO ₄ ²⁻ molar ratio was 1.4 (\pm 0.5). As
413	LWC is mainly controlled by RH and temperature, the pH diurnal variation was thus largely driven by
414	meteorological conditions, not aerosol composition.
415	
415	In part, because of the diurnal variation of LWC, a simple for balance of NH_4/SO_4 motar ratio of per
416	volume air concentration of aerosol hydronium ion (H_{air}) alone cannot be used as a proxy for pH in the
417	particle. Figure 5a shows a weak inverse correlation ($R^2 = 0.36$) between ion balance and pH. An ion
418	balance of an aerosol is usually calculated as follows (in unit of nmol equivalence m ⁻), for a NH_4 -Na ⁺ -
419	SO_4^2 - NO_3 - Cl - water inorganic aerosol.
	$Ion \ Balance = \frac{[SO_4^{2^-}]}{48} + \frac{[NO_3^{-}]}{62} + \frac{[Cl^{-}]}{35.5} - \frac{[NH_4^{+}]}{18} - \frac{[Na^{+}]}{23} $ (7)
420	<u>Where $[SO_4^{2-}]$, $[NO_3^{-}]$, $[Cl^{-}]$, $[NH_4^{+}]$, and $[Na^{+}]$ are concentrations of these ions in units of g m⁻³. An ion</u>
421	balance is also a bad indicator of pH because it poorly predicts the aerosol concentration of H_{air}^+ . An ion
422	balance assumes all ions are completely dissociated, but multiple forms are possible, depending on pH
423	(e.g., sulfate can be in the form of H_2SO_4 , HSO_4^- , or SO_4^{-2}). For example, if aerosol sulfate remains in the
424	free form of H ₂ SO ₄ , it doesn't add protons. Thus, an ion balance usually overestimates protons and is only
425	moderately correlated with H ⁺ _{air} (Figure 5b).
426	LWC uncertainty:
427	In estimating the water uncertainty, we consider W_i and W_o separately. The uncertainty of W_i is estimated
428	by propagating the measurement uncertainty of ions and RH through the ISORROPIA-II thermodynamic
429	model by finite perturbations about the model base state. Uncertainties of ions were estimated by
430	difference between IC-ions and AMS-ions, as well as PILS-IC measurement uncertainty (Table 2). Na [±] is
431	excluded because it is not measured by the AMS. PILS-IC instrumental uncertainty is estimated to be 15%
432	from the variability in standards (variability is calibration slopes), blanks, sample airflow rate, and liquid
433	flow rate (one standard deviation). SD). The total ion uncertainties are listed in Table 2. SO ₄ has a higher
434	uncertainty, at 25%, than the rest, which are at 15%. These combined uncertainties lead to an W_i
435	uncertainty of 25% (Figure 3), which is the same as the SO ₄ uncertainty, since as the most hygroscopic
436	ion it controls W ₁ uptake. Although the AMS data set does not include Na and crustal elements, it is still
437	generally capable of predicting W_t as it measures the most hygroscopic and abundant ions SO ₄ , NH ₄ , and

Formatted: Heading 3

Page 15 of 57

455 parameters are estimated to be 26% (details can be found in Supplementary Material Section 3), 10%,

456 20%, and 5% (from above), respectively. In summary, the overall uncertainty of W_0 is 35%.

457 The total uncertainty of LWC can be expressed as a sum of W_i and W_o uncertainties, where $\mathbf{e}_i \varepsilon_i$ is the 458 mass fraction. ε_{W_o} was found to be 36% and ε_{W_i} was 64%.

$$\frac{\delta_{LWC}}{LWC} = \sqrt{\left(\varepsilon_{W_{\overline{t}}} \frac{\delta_{W_{\overline{t}}}}{W_{\overline{t}}}\right)^2 + \left(\varepsilon_{W_{\overline{w}}} \frac{\delta_{W_{\overline{w}}}}{W_{\overline{s}}}\right)^2}{LWC}} = \sqrt{\left(\varepsilon_{W_l} \frac{\delta_{W_l}}{W_l}\right)^2 + \left(\varepsilon_{W_o} \frac{\delta_{W_o}}{W_o}\right)^2} \tag{7)(8)}$$

Given the above, $\frac{\delta_{LWC}}{LWC}$ is 43%. This method of assessing predicted LWC uncertainty can be applied to SCAPE sites as well. The specific predicted LWC at SCAPE sites were calculated and are listed in Table 3. W_i uncertainty associated with ions is the same as noted above, 25%, because it is estimated by PILS-IC and AMS differences. Similar uncertainties in W_i at the SCAPE sites are expected if RH uncertainties are similar at all sites.

Page 16 of 57

464 4.3-pH uncertainty:

465 As pH is based on H_{air}^+ and LWC, the uncertainty of pH can be estimated from these two parameters. We 466 applied the adjoint model of ISORROPIA, ANISORROPIA (Capps et al., 2012)(Capps et al., 2012), to 467 quantify the sensitivity of predicted $H^{\pm}H_{air}^+$ to the input aerosol species at the conditions of the 468 thermodynamic calculations. pH uncertainty resulted resulting from aerosol composition is then 469 determined by propagating the input parameter uncertainties, using ANISORROPIA sensitivities, to the 470 corresponding $H^{\pm}H_{air}^+$ and pH uncertainty.

471 We now assess how pH of PM_{2.5} is affected by using an incomplete measurement of ionic species by 472 comparing the pH predicted based on the more complete suite of ions measured by the PILS-IC versus the 473 AMS, during SOAS. Sensitivities of aerosol species to $H^+H^+_{air}$ were calculated by ANISORROPIA with 474 PILS-IC data and presented as partial derivatives (Table 2). Higher sensitivity values imply the inorganic ion is more important for ion balance. In the SOAS study, $H^{\pm}H^{+}_{air}$ is most sensitive to SO₄, and then 475 476 NH_{47+} as they were the major ions. Uncertainties of ions were estimated by the difference between IC-477 ions and AMS-ions, as well as PILS-IC measurement uncertainty. Since Na[±] is not measured by AMS, we cannot estimate the difference between PILS-IC and AMS. The loadings and sensitivities of NO3= and CI= 478

479 were very low, so they are assumed not to contribute much to $\frac{\delta_{\mu\pm}}{\mu\pm} \frac{\delta_{\mu}}{H_{air}}$. Given this, $\frac{\frac{\delta_{\mu\pm}}{\mu\pm} \delta_{\mu}}{H_{air}}$ is determined 480 by;

$$\frac{\delta_{H^{\pm}}}{\Psi^{\pm}} = \sqrt[2]{\left(\frac{\partial H^{\pm}}{\partial SO_{\mp}} \frac{\delta_{SO_{\mp}}}{SO_{\mp}}\right)^{2}} + \left(\frac{\partial H^{\pm}}{\partial NH_{\mp}} \frac{\delta_{NH_{\mp}}}{NH_{\mp}}\right)^{2} + \left(\frac{\partial H^{\pm}}{\partial Na} \frac{\delta_{Na}}{Na}\right)^{2}}{\frac{\delta_{H_{air}}}{H_{air}}} = \sqrt[2]{\left(\frac{\partial H_{air}}{\partial SO_{4}} \frac{\delta_{SO_{4}}}{SO_{4}}\right)^{2}} + \left(\frac{\partial H_{air}}{\partial NH_{4}^{+}} \frac{\delta_{NH_{4}^{+}}}{NH_{4}^{+}}\right)^{2} + \left(\frac{\partial H_{air}}{\partial Na^{+}} \frac{\delta_{Na^{+}}}{Na^{+}}\right)^{2}}$$
(8)(9)

Based on the input for Equation 89 (Table 2), $\frac{\delta_{H^{\pm}}}{H^{\pm}} \frac{\delta_{H^{+}_{air}}}{H^{+}_{air}}$ is estimated as 14%. LWC is most sensitive to RH 481 482 fluctuations, so it is considered the main driver of LWC uncertainty in the pH calculation. As discussed, we artificially adjusted RH by $\pm 5\%$ and $\pm 10\%$ (10% is considered an extreme condition). $\frac{H^{\pm}}{H_{air}}$, W_i , W_o , 483 484 as well as pH were all recalculated using 90%, 95%, 105%, and 110% of the actual measured RH. RH+5% 485 and RH-5% lead to 12% and 6% variation in pH based on orthogonal regression slopes, respectively (Figure 58). RH-10% results in only 10% variation, however, RH+10% results in a 45% variation, and the 486 coefficient of determination (R²) between pH calculated based on RH+10% and original RH drops to only 487 488 0.78, while for all other cases $R^2 > 0.96$. The disproportionately large effect of the positive uncertainty is 489 caused by the exponential increase of LWC with RH, as RH reaches high levels (>90%). Assuming the

Formatted: Heading 3

Formatted: Font: Not Bold

490 stated manufacturer uncertainty (5%) for our RH uncertainty, pH uncertainty is estimated to be 6%-12%. 491 We take 12% as $\frac{\partial pH}{\partial LWC} \delta_{LWC}$ for further calculations.

492 SO₄ was found to contribute the most to $\frac{\delta_{H^{\pm}}}{H^{\pm}} \frac{\delta_{H^{\pm}_{atr}}}{H^{\pm}_{atr}}$ NH₄[±] and Na[±] followed. SO₄ and NH₄[±] are the two 493 most abundant inorganic components in aerosols and controlling aerosol acidity. Finally, the total pH 494 uncertainty is the combination of LWC and the uncertainty associated with $\frac{H^{\pm}}{H^{\pm}_{air}}$, which is computed 495 from the definition of pH (Equation 6).

$$\frac{\delta pH}{\partial H} = \frac{2}{\sqrt{\left(\frac{\partial pH}{\partial H^{\pm}}\delta_{H^{\pm}}\right)^{2} + \left(\frac{\partial pH}{\partial LWC}\delta_{LWC}\right)^{2}}} \frac{\delta_{pH}}{pH} = \frac{2}{\sqrt{\left(\frac{\partial pH}{\partial H_{air}}\delta_{H^{\pm}_{air}}\right)^{2} + \left(\frac{\partial pH}{\partial LWC}\delta_{LWC}\right)^{2}}} \quad (9)(10)$$

496 where $\frac{\partial pH}{\partial H^{\pm}} \frac{\partial pH}{\partial H^{\dagger}_{atr}}$ can be derived from Equation (6) as

$$\frac{\partial pH}{\partial H^{\pm}}\frac{\partial pH}{\partial H^{\pm}_{air}} = -\frac{1}{2.303}\frac{\frac{1}{H^{\pm}}}{\frac{H^{\pm}}{H^{WC}}}\frac{1}{LWC} = -\frac{1}{2.303}\frac{\frac{1}{H^{\pm}}}{\frac{1}{H^{\pm}_{air}}} \frac{1}{(10)(11)}$$

From Equation 9 and the uncertainties of $\frac{H^{+}H^{+}_{air}}{H^{+}_{air}}$ and LWC (Equation 7 and 8), we estimate the pH 497 uncertainty for the SOAS dataset to be 13% (based on the specific uncertainties considering here). pH 498 uncertainties at SCAPE sites were also assessed via this method. As discussed above, $\frac{\delta_{\mu\pm}}{H^{+}} \frac{\delta_{\mu\pm}}{H^{+}_{abc}}$ was found 499 500 to be 14% for the SOAS study, due to IC and AMS data set differences and PILS-IC instrumental 501 uncertainty. This same uncertainty is applied to SCAPE, where no PILS-IC data were available. Because 502 aerosol compositionscomposition at all sites areis similar, based on filter IC analysis (Supplementary 503 material<u>Material</u> Figure 658), similar sensitivities of $H^+H^+_{air}$ to ions are expected. However, actual 504 uncertainty for each sampling period is possibly higher due to higher loadings of refractory ions at SCAPE sites due to contributions from urban emissions. Refractory ions not measured by the AMS (i.e. 505 Na⁺, K, Ca, Mg), having⁺, Ca²⁺, Mg²⁺), have a minor effect on predicting LWC, but may have an 506 important effect on pH (e.g., result in higher pH) in locations (e.g. pH higher) where they could 507 508 substantially contribute to the overall ion balance. 509 pH uncertainty in different seasons: 4.2b Model validation: Prediction of liquid water 510 Several LWC measurements were made at CTR during SOAS. In addition to f(RH) water (4.52 ± 3.75) ug m⁻³), particle water was quantified with a Semi-volatile Differential Mobility Analyzer (SVDMA). 511

512 With this method, a SOAS study mean particle water concentration of 4.27 \pm 3.69 µg m⁻³ (\pm STD) was

513 obtained (Nguyen et al., 2014). The orthogonal regression between these two measurements (SVDMA

514 <u>water vs f(RH) water) has slope = 0.91, intercept = -0.03, $\mathbb{R}^2 = 0.35$. Differences could be caused by</u>

515	differences in size-resolved composition (particle composition beyond PM ₁ that contributes LWC;
516	SVDMA scans up to 1.1 μ m, while $f(RH)$ water is based on PM _{2.5}), instrument sample heating (i.e., the
517	degree to which the instrument was close to ambient conditions, especially when ambient RH was high,
518	and most sensitive to slight T differences), and differences in RH probe calibrations.
510	CTP predicted total LWC ($W + W$) was 5.00 + 2.76 up m ⁻³ and approximately with $f(BH)$ water. The
519	CTR predicted total LWC, $(W_i + W_0)$, was 5.09 ± 5.70 µg in and agreed went with $f(RR)$ water. The
520	total predicted water was highly correlated and on average within 10% of the measured water, with slope $0.01 \text{ i.t.} = 0.01 \text{ i.t.} = 0.025 \text{ (} $
521	= 0.91, intercept = 0.46, R = 0.75 (see Figure 9). Since excluding refractory ions (Section 4.1) and not
522	considering gas phase species in the ISORROPIA-II calculations do not significantly affect the LWC
523	prediction, its comparison across sites is less uncertain than pH.
524	4.2c Model validation: Prediction of pH
525	ISORROPIA-II calculations of pH at CTR for the SOAS study were evaluated by comparing measured
526	and predicted $NH_{3(g)}$. Although NH_4^+ and $NH_{3(g)}$, along with other aerosol components, are input into the
527	model, comparing ambient NH_{4^+} and $NH_{3(g)}$ to model predictions is not a circular analyses. For each
528	observed data point, the model calculates total ammonia from the NH_{4^+} and $NH_{3(g)}$ input, and then
529	calculates the gas-particle ammonia partitioning assuming equilibrium. There are also other various
530	assumptions/limitations associated with the model. Figure 10 shows the SOAS study time series of
531	measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_4^+))$.
532	Measured and predicted NH _{3(g)} are in good agreement. Periods when almost all ammonia was in the gas
533	phase (ratio near 1) are related to precipitation events (06/10, 06/24, 06/28, 07/03, 07/04) when aerosol
534	concentrations were very low. Not including these events, the study mean (±SD) fraction ammonia in the
535	gas phase was 0.41 (\pm 0.16) (median value is also 0.41). These results provide confidence in
536	ISORROPIA-II calculations of particle pH, and demonstrate the utility of including both measurements of
537	particle and gas phases in these types of studies.
538	When gas and particle data are not available, pH predictions are not as accurate (Hennigan et al., 2014).
539	Running ISORROPIA-II in the forward mode, but with only aerosol concentrations as input, may result in
540	a bias in predicted pH due to repartitioning of ammonia in the model. In the southeast, where pH is
541	largely driven by SO_4 and NH_4^+ , the aerosol NH_4^+ input will be partitioned in the model between gas and
542	particle phases to establish equilibrium. Sulfate repartitioning does not occur since it is non-volatile.
543	Thus, $NH_{4^{+}}$ will be lost from the particle and a lower pH predicted. At CTR ammonia partitioning has
544	been included in all model runs, but as no $NH_{3(g)}$ was available for SCAPE. Assuming the average
545	$\underline{NH_{3(g)}}$ / $\underline{NH_4}^+$ ratio from CTR applies to all SCAPE sites to estimate $\underline{NH_{3(g)}}$ along with measured particle
546	composition at each site, we got pH increases ranging from 0.87 to 1.38. In the following, all pHs

547	reported for SCAPE are corrected for this bias (i.e., pHs are increased by 1 to simplify the correction).
548	Note that ammonia partitioning does not significantly affect the LWC prediction (W_i predicted without
549	<u>$NH_{3(g)}$ vs</u> W_i predicted with $NH_{3(g)}$: slope = 1.00, intercept = -0.01 µg m ⁻³ , R ² = 0.98).
550	4.3 LWC and pH at other sites in the southeast (SCAPE sites)
551	<u>4.3a Seasonal trends</u>
552	The methods developed and verified at CTR are now applied to the SCAPE study where fewer species
553	was measured. LWC predictions at all SCAPE sites are shown in Table 3, providing insights on seasonal
554	trends of LWC in the southeast. The overall summer LWC mean was 5.02 µg m ⁻³ and winter mean 2.22
555	<u>µg m⁻³.</u>
556	At the SCAPE sites, JST, YRK, GIT, and RS, summer mean pHs were between 1 and 1.3, similar to CTR
557	(mean of 0.94). In winter the pHs (mean between 1.8 and 2.2) were higher by ~ 1 unit. Although LWC
558	was higher in summer, which tends to dilute H_{air}^+ and increase pH, summer pH was lower due to higher
559	ion (i.e., sulfate) concentrations (Table 3). Similar diurnal pH patterns were seen at all sites in all seasons
560	and follow the diurnal variations of particle water (Figure 11). Overall the pH in the southeast is very low,
561	between 1 and 2 (mean), in both rural and urban environments. pH values in summer at various sites were
562	similar (1 to 1.3), suggesting a fairly homogeneous distribution of acidity due to spatially uniform sulfate
563	in the southeastern US (Zhang et al., 2012). In winter the diurnal range in pH was roughly 2 units, while
564	the diurnal range in summer was smaller, with pH varying by roughly 1.
565	Recall at CTR, 10% RH uncertainty can result in a pH prediction error of up to 45% due to the high RHs
566	observed during the study. We estimated pH uncertainty from W_i and W_o by + 10% RH for each SCAPE
567	site. As Table 3 shows, the pH uncertainty associated with RH is much lower in winter (only 1-3%) than
568	summer (20-40%), although RH averages were similar, e.g., JST in May (67 \pm 19%) and Nov (63 \pm 19%),
569	with even higher RH in winter at YRK. Total pH uncertainty at all SCAPE sites are calculated by the
570	same method as CTR. Table 3 shows that higher RH and T result in larger pH uncertainty. In summer, pH
571	uncertainty is mainly caused by RH; while in winter, it can be attributed mostly to uncertainty in ion
572	concentrations. pH predicted for the SCAPE sites likely has a systematic bias of roughly 1 because NH _{3(g)}
573	is not included in the ISORROPIA-II calculation (recall including NH _{3(g)} increased the CTR pH by 0.8).
574	At JST, YRK, GIT, and RS sites, summer mean pH were between 0 and 0.3. Adding 1 pH unit of
575	systematic bias makes pH at these southeastern sites between 1 and 1.3, which is consistent with the CTR
576	pH of 0.94 \pm 0.59 (\pm SD). NH _{3(g)} does not significantly affect the LWC prediction (W ₄ predicted without
577	$NH_{3(g)}$ vs W_t predicted with $NH_{3(g)}$: slope = 1.00, intercept = -0.01 µg m ⁻³ , R ² = 0.98).

Page 20 of 57

4.4 LWC comparison to predictions and seasonal and diurnal trends in the southeast
<u>4.3b The role of</u> W _o
Several LWC measurements were made at CTR during SOAS. In addition to $f(RH)$ _water (4.52 ± 3.75
µg m⁻²), particle water was quantified with a Semi-volatile Differential Mobility Analyzer (SVDMA).
With this method, a SOAS study mean particle water concentration of 4.27 \pm 3.69 µg m ³ (±SD) was
obtained (Nguyen et al., 2014). The orthogonal regression between these two measurements (SVDMA
water vs $f(RH)$ _water) has slope = 0.91, intercept = -0.03, r = 0.59. Differences could be caused by
differences in size resolved composition (particle composition beyond PM ₄ that contributes LWC;
SVDMA scans up to 1.1 μ m, while $f(RH)$ _water is based on PM _{2.5}), instrument sample heating (i.e., the
degree to which the instrument was close to ambient conditions, especially when ambient RH was high,
hence most sensitive to slight T differences), and differences in RH probe calibrations.
The particle water predicted from the sum of W_t and W_{ϕ} agreed well with $f(RH)$ _water. That is, the total
predicted water was highly correlated and on average within 10% of the measured water, with slope =
0.91, intercept = 0.46 , r = 0.87 (see Figure 6).
Since excluding refractory ions (Section 4.1) and not considering gas phase species in the ISORROPIA-II
ealeulations do not significantly affect the LWC prediction, its comparison across sites is less uncertain
than pH. CTR total LWC is predicted to be 5.09 \pm 3.76 µg m ⁻³ . LWC predictions at all the other-sites are
shown in Table 3, providing insights on seasonal trends of LWC in the southeast. The overall summer
LWC mean was 5.02 µg m⁻² and winter mean 2.22 µg m⁻³.
The diurnal variation of LWC contributed by W4 and W4, along with total measured water, ambient T, RH,
and solar radiation at CTR is shown in Figure-7. Predicted and measured LWC trends are in good overall
agreement, although the largest discrepancy was observed during the daytime when LWC level was low
and more difficult to measure and accurately predict. Nighttime RH median values were between 85%
and 90% and resulted in significant water uptake that reached a peak just after sunrise near 7:30 am (local
time). The dramatic peak in LWC starting at roughly 5:00 am, reaching a maximum between 7:30 and
8:00 am is likely due to RH increasing above 90%, at which point uptake of water rapidly increases with
increasing RH. The similar rapid hygroscopic growths before sunrise were also observed at GIT, RS, and
JST (Nov). After sunrise, rising temperatures lead to a rapid drop in RH, resulting in rapid loss of particle
water. LWC reached lowest levels in the afternoon -2 μ g m ² , only 20% of the peak value. W_{σ} varied
more than $W_{\vec{t}}$; W_{σ} diurnal variation ratio (max/min) was 13.1 compared to 4.1 for $W_{\vec{t}}$.

Page 21 of 57

608	W_o was significant, accounting for on average 29-39% of the total PM _{2.5} particle water for all our sites
609	(Figure $\frac{\$12}{2}$ and Table 3). Note that, W_o at SCAPE sites were calculated by in-situ AMS
610	measurementmeasurements at each SCAPE site and measured the mean κ_{org} mean (0.126) measured at
611	CTR, due to lack of CCNc. Note that ε_{W_o} could be higher or lower at each site depending on the type of
612	organics presented and the related $\kappa_{org.}$ Figure 812 shows that W_o is related to the organic mass fraction.
613	W_o is comparable to W_i at night. In contrast, it was only 33% of W_i during the daytime (Figure 73). The
614	significant fraction, even during daytime, indicates organic aerosol components will have a considerable
615	contribution to aerosol radiative forcing. Although organics are less hygroscopic than ammonium sulfate,
616	a large fraction of the $PM_{2.5}$ (~70%) was organic, making W_o contributions important. Of the organic
617	factors associated with W_o , Cerully et al. (2014)Cerully et al. (2014) showed that MO-OOA (more-
618	oxidized oxygenated organic aerosol, also referred to as LVOOA, low-volatile oxygenated organic
619	aerosol) and Isoprene-OA (isoprene derived organic aerosol) were twice as hygroscopic as LO-OOA
620	(less-oxidized oxygenated organic aerosol, also referred to as SVOOA, semi-volatile oxygenated organic
621	aerosol). The LWC associated with MO-OOA and Isoprene-OA account for ~60% and ~30% of total W_o
622	in the daytime, respectively.
623	4.5 Ammonia partitioning, model validation and pH bias when gas/particle data not included
624	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing
624 625	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted NH _{3(g)} . Although NH ₄ and NH _{3(g)} , along with other aerosol components, are input
624 625 626	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For
624 625 626 627	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then
624 625 626 627 628	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted NH _{3(g)} . Although NH ₄ and NH _{3(g)} , along with other aerosol components, are input into the model, comparing ambient NH ₄ and NH _{3(g)} to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH ₄ and NH _{3(g)} input, and then calculates the gas particle ammonia partitioning assuming equilibrium and the other various
624 625 626 627 628 629	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted NH _{3(g)} . Although NH ₄ and NH _{3(g)} , along with other aerosol components, are input into the model, comparing ambient NH ₄ and NH _{3(g)} to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH ₄ and NH _{3(g)} input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of
624 625 626 627 628 629 630	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(p)})$.
624 625 626 627 628 629 630 631	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH,
624 625 626 627 628 629 630 631 632	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH
624 625 626 627 628 629 630 631 632 633	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly
624 625 626 627 628 629 630 631 632 633 634	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{4(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} + (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_0 is on average 29% to 39% of total water at all sites, as a result pH increases by
624 625 626 627 628 629 630 631 632 633 634 635	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} + (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_0 is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units when W_0 is included. Independent of the pH range, a 29% to 39% W_0 fraction always
624 625 626 627 628 629 630 631 632 633 634 635 636	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)}/(NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_0 is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units when W_0 is included. Independent of the pH range, a 29% to 39% W_0 fraction always increases pH by 0.15 to 0.23 due to the logarithmic nature of pH. The effect of W_0 on pH can be simply
624 625 626 627 628 629 630 631 632 633 634 635 636 637	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 -and $NH_{3(g)}$ input, and then calculates the gas-particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)}/(NH_{3(g)}+NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_0 is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units when W_0 is included. Independent of the pH range, a 29% to 39% W_0 fraction always increases pH by 0.15 to 0.23 due to the logarithmic nature of pH. The effect of W_0 on pH can be simply denoted as $\log_{10}(1 - \varepsilon_{W_0})$. For example, when ε_{W_0} is 90%, it shifts pH up by 1 unit. pH based on W_i is
624 625 626 627 628 629 630 631 632 633 634 635 636 636 637 638	As noted earlier, ISORROPIA-II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_0 is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units when W_0 is included. Independent of the pH range, a 29% to 39% W_0 fraction always increases pH by 0.15 to 0.23 due to the logarithmic nature of pH. The effect of W_0 on pH can be simply denoted as $log_{10}(1 - \varepsilon_{W_0})$. For example, when ε_{W_0} is 90%, it shifts pH up by 1 unit. pH based on W_i is highly correlated with pH for total water ($W_i + W_0$) (Slope = 0.94, intercept = -0.14, R^2 = 0.97). This
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639	As noted earlier, ISORROPIA II calculations at CTR for the SOAS study were evaluated by comparing measured and predicted $NH_{3(g)}$. Although NH_4 and $NH_{3(g)}$, along with other aerosol components, are input into the model, comparing ambient NH_4 and $NH_{3(g)}$ to model predictions is not a circular analyses. For each observed data point, the model calculates total ammonia from the NH_4 and $NH_{3(g)}$ input, and then calculates the gas particle ammonia partitioning assuming equilibrium and the other various assumptions/limitations associated with the model. Figure 9 shows the SOAS study time series of measured and predicted $NH_{3(g)}$ and the fraction of ammonia in the gas phase $(NH_{3(g)} + (NH_{3(g)} + NH_{4(p)})$. Diurnal changes in the gas fraction can be seen and are likely due to diurnal changes in particle pH, discussed below. The effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by W_i alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure 13). W_o is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units when W_o is included. Independent of the pH range, a 29% to 39% W_o fraction always increases pH by 0.15 to 0.23 due to the logarithmic nature of pH. The effect of W_o on pH can be simply denoted as $\log_{10}(1 - \varepsilon_{W_o})$. For example, when ε_{W_o} is 90%, it shifts pH up by 1 unit. pH based on W_i is highly correlated with pH for total water ($W_i + W_o$) (Slope = 0.94, intercept = -0.14, R ² = 0.97). This indicates that if organic mass and κ_{org} are not available, ISORROPIA-II run with only ion data will give

640	<u>a reasonable estimate of pH, since both H_{air}^+ and W_i are outputs of ISORROPIA-II, while W_o is predicted</u>
641	based on organic mass and κ_{org} . Accurate temperature and RH are still necessary inputs, especially when
642	<u>RH is high.</u>
643	4.4 Overall implications of low pH
644	Highly acidic aerosols throughout the southeast during all seasons-Periods when almost all ammonia was
645	in the gas phase (ratio near 1) are related to precipitation events (06/10, 06/24, 06/28, 07/03, 07/04) when
646	acrosol concentrations were very low. Not including these events, the study mean (\pm SD) fraction
647	ammonia in the gas phase was 0.41 (± 0.16) (median value is also 0.41). These results provide confidence
648	in ISORROPIA-II calculations of particle pH, and demonstrate the utility of including both-measurements
649	of particle and gas phases in these types of studies.
650	When gas and particle data are not available, pH predictions are likely not as accurate (Hennigan et al.,
651	2014)Running ISORROPIA II in the forward mode, but with only aerosol concentrations as input, may
652	result in a bias in predieted pH due to repartitioning of ammonia in the model. In the southeast, where pH
653	is largely driven by SO₄-and NH₄, the aerosol NH₄ input will be partitioned in the model between gas and
654	particle phases to establish equilibrium. Sulfate repartitioning does not occur since it is non volatile.
655	Thus NH4 will be lost from the particle and a lower pH predicted. At CTR ammonia partitioning has been
656	included in all model runs, but as no NH _{3(g)} was available for SCAPE, the pH is likely biased at these sites
657	by roughly -1. In the following, all pHs reported for SCAPE are corrected for this bias (i.e., pH increased
658	by 1). Note that ammonia partitioning does not significantly affect the LWC prediction (Wr predicted
659	without $\text{NH}_{3(g)}$ vs W ₄ predicted with $\text{NH}_{3(g)}$ slope = 1.00, intercept = -0.01 µg m ⁻³ , R ² = 0.98).
660	4.6 pH diurnal, seasonal, and spatial trends in the southeast
661	At CTR, the acrosol was highly acidic, with predicted mean pH = 0.94 \pm 0.59 (\pm SD). The minimum and
662	maximum pH were -0.94 and 2.23 respectively, and pH varied by approximately 1 on average throughout
663	the day (Figure 10). That is, the H_{attr}^+ /LWC ratio increased by a factor of 10 from night to day. LWC
664	max/min-ratio was 5, whereas H^+ diurnal variation was significantly less (Figure 10), indicating that the
665	diurnal pattern in pH was driven mainly by particle water dilution. This is further demonstrated in Figure
666	11, which shows the diurnal variation in the NH_4/SO_4 molar ratio (the main ions driving pH), with only
667	slightly lower ratios during the day. The study mean (\pm SD) NH ₄ /SO ₄ molar ratio was 1.4 (\pm 0.5). As
668	LWC is mainly controlled by RH and temperature, the pH diurnal variation was thus largely driven by
669	meteorological conditions, not acrosol compositionBecause of this, a simple ion balance or per volume
670	air concentration of aerosol hydronium ion (H_{atr}^+) alone cannot be used as a proxy for pH in the particle.

Page 23 of 57

671	At the SCAPE sites, JST, YRK, GIT, and RS, summer mean pHs were between 1 and 1.3, similar to CTR
672	(mean of 0.94). In winter the pHs (mean between 1.8 and 2.2) were higher by - 1 unit. Although LWC
673	was higher in summer, which tends to dilute H^+ and increase pH, summer pH was lower due to higher
674	ion (i.e., sulfate) concentrations (Table 3). Similar diurnal pH patterns were seen at all sites in all seasons
675	and follow the diurnal variations of particle water (Figure 12). Overall the pH in the southeast is very low,
676	between 1 and 2 (mean), in both rural and urban environments. pH values in summer at various sites were
677	similar (1 to 1.3), suggesting a fairly homogeneous distribution of acidity due to spatially uniform sulfate
678	in the southeastern US-(Zhang et al., 2012). In winter the diurnal range in pH was roughly 2, while the
679	diurnal range in summer was smaller, with pH varying by roughly 1.
680	These acidic aerosols in the southeast will affect a variety of processes. For example, aerosol acidity
681	strongly shifts the partitioning of $HNO_{3(g)}$ to the gas phase resulting in low nitrate aerosol levels in the
682	southeast during summer (the higher summertime temperature also plays a secondary role). Aerosol
683	acidity also impacts the gas-particle partitioning of semi-volatile organic acids. (Note, organic acids are
684	not considered in our model, under these acidic conditions $(pH = 1)$ their contributions to the ion
685	balance H_{air}^+ (hence pH) are expected to be negligible. Because the p K_a (p $K_a = -\log_{10} K_a$, K_a referred as
686	acid dissociation constant) of trace organic acids are > 2 (e.g., pK_a of formic acid, one of the strongest
687	organic acids, is 3.75, Bacarella et al. (1955)), low pH prevents dissociation of the organic acids. Since
688	H^+ is involved in aqueous phase reactions, low pH can affect reaction rates by providing more protons.
689	Investigators have found that isopreneIsoprene-OA formation is acid-catalyzed and sulfuric acid
690	participates in the reaction as a proton donor in chamber studies (Surratt et al., 2007)(Surratt et al., 2007).
691	However, aerosol acidity mayappears not to be thea limiting factor of isoprene for Isoprene-OA formation
692	in the southeastern US, owning to the consistently very low pH (Karambelas et al., 2014; Xu et al.,
693	2014)(Karambelas et al., 2014; Xu et al., 2015). Finally, low pH can affect the solubility of trace metals
694	found in the insoluble fraction of aerosol (e.g., mineral dust) such as Fe and Cu, which possibly increases
695	the toxicity of the redox metals (Ghio et al., 2012; Verma et al., 2014)(Ghio et al., 2012; Verma et al.,
696	2014) and may also have a long term effect on nutrient distributions in the region (Meskhidze et al., 2003;
697	Meskhidze et al., 2005Meskhidze et al., 2003; Meskhidze et al., 2005; Nenes et al., 2011Nenes et al.,
698	<u>2011;</u> Ito and Xu, 2014).
699	Finally, the effect of aerosol sources of particle water on pH can also be delineated. pH calculated just by
700	W_{f} alone will be affected by an underestimation of particle water, resulting in a slightly lower pH (Figure
701	13). W_{σ} is on average 29% to 39% of total water at all sites, as a result pH increases by 0.15 to 0.23 units
702	when W_{ϕ} is included. pH based on W_{i} is highly correlated with pH for total water ($W_{i} + W_{\phi}$) ($\mathbb{R}^{2} = 0.97$,
703	Figure 14). This indicates that if organic mass and $\kappa_{\sigma rg}$ are not available, ISORROPIA-II run with only

Field Code Changed

Page 24 of 57

704	ion data will give a reasonable estimate of pH, since both H_{dff}^+ and W_{f} are outputs of ISORROPIA-II,
705	while W_{ϕ} is predicted based on organic mass and $\kappa_{\sigma r \phi}$. Accurate temperature and RH are still necessary
706	inputs, especially when RH is high.
707	5 Conclusions
708	Because particle pH is important and difficult to measure directly, by combining several models we
709	present a comprehensive prediction method to calculate pH and include an uncertainty analysis.
710	ISORROPIA-II is applied to calculate the concentration of H^+ and W_t from inorganic aerosol
711	measurement, and CCN activity is used to predict Wg. The adjoint model of ISORROPIA,
712	ANISORROPIA, is applied to determine sensitivities, which are used for propagating the measurement
713	uncertainties to pH.
714	$\frac{W_{e}}{W_{e}}$ Particle pH is important and difficult to measure directly. However, the commonly used pH proxies of
715	ion balances and NH_{4}^{+}/SO_{4}^{2-} molar ratios don't necessarily correlate with pH. Therefore, predicting pH is
716	the best method to analyze particle acidity. By combining several models we present a comprehensive
717	prediction method to calculate pH and include an uncertainty analysis. ISORROPIA-II is applied to
718	<u>calculate the concentration of H_{air}^+ and W_i from inorganic aerosol measurements, and CCN activity is</u>
719	used to predict W_o . The adjoint model of ISORROPIA, ANISORROPIA, is applied to determine
720	sensitivities, which are used for propagating the measurement uncertainties to pH. We find that W_0 should
721	be included when predicting particle LWC when organic loadings are high (such as in the southeastern
722	US). However, the pH prediction is not highly sensitive to W_o , unless W_o mass fraction to the total
723	particle water is close to 1. Thus, in most cases particle pH can be predicted fairly accurately with just
724	measurements of inorganic species and ISORROPIA-II. However, constraining ISORROPIA-II with gas
725	phase species, such as $NH_{3(g)}$, as done in this work (or $HNO_{3(g)}$), is highly recommended, along with
726	running ISORROPIA-II in the forward mode. ISORROPIA-II does not consider organic acids, but at the
727	low pHs of this study, they do not contribute protons (Bacarella et al., 1955). However, for pH approaches
728	7, the dissociation of organic acids cannot be neglected. Finally, the model was validated through
729	comparing predicted to measured liquid water ($W_i + W_o$ to $f(RH)$ water) and predicted to measured
730	$NH_{3(g)}$ concentrations.
731	On average, for the SOAS and SCAPE field studies, particle water associated with the PM _{2.5} organic
732	<u>species (W_o)</u> accounted for a significant fraction of total LWC, <u>at with</u> a mean of 35% (±3% SD) for
733	SOAS and SCAPE field studies, indicating the importance of organic hygroscopic properties to aerosol

734 scatteringaqueous phase chemistry and direct radiative forcing in the southeast US. Although organics are

Page 25 of 57

735 less hygroscopic than sulfate and ammonium, the larger mass fraction of organics than inorganics 736 promotes W_o uptake. Predicted LWC was compared to LWC determined from ambient versus dry light 737 scattering coefficients and a TEOM measuring measurement of dry PM2.5 mass. In SOAS, measured <u>LWC</u> the sum of W_i and W_0 was highly correlated and in close agreement with the sum of W_i and W_0 738 739 measured LWC (slope = 0.91, $\mathbf{FR}^2 = 0.8775$). LWC showed a clear diurnal pattern, with a continuous increase at night (median nighttime LWC of 10 µg m⁻³ at 7:30 am) reaching a distinct peak when RH 740 reached a maximum near 90% just after sunrise atduring the period of lowest ambient daily temperature, 741 742 followed by a rapid decrease and lower values during the day (median of 2 μ g m⁻³ at 2:30 pm).

743 In the southeastern US, pH normally varies varied from 0.5 to 2 in the summer and 1 to 3 in the winter, 744 indicating that the aerosol iswas highly acidic throughout the year. The minimum and maximum pH were 745 -0.94 and 2.2 at CTR, respectively and varied from a nighttime average of 1.5 at night to daytime average of 0.6-on average in the day, mostly attributable to diurnal variation in RH and temperature. Mean 746 ammonium to sulfate NH_4^+/SO_4^2 molar ratios were 1.4 ±0.5 (SD) and roughly half the ammonia was in 747 748 the gas phase $(NH_{3(g)} / (NH_{3(g)} + NH_{4(m)})^{+}) = 41 \pm 16\%$, mean \pm SD). pH throughout at other sites in the 749 southeast (CTR excludedSCAPE study) was estimated based on a limited data set at an estimated 750 uncertainty of 9-49% and a systematic bias of -1 ifsince NH_{3(g)} is not included in the thermodynamic 751 model run in the forward mode. pH can still be predicted with only aerosol measurements, but an 752 adjustment of 1-unit pH increase adjustment is recommended for the southeastern US. pH has a diurnal 753 trend that follows LWC, higher (less acidic) at night and lower (more acidic) during the day. pH was also 754 generally higher in the winter (\sim 2) than summer (\sim 1). These low pHs have significant implications on for 755 gas-aerosol partitioning, acid-catalyzed reactions including isoprene-OA formation, and trace metal mobilization. 756

757 6 Acknowledgements

758 This work was supported by the NSF under grant number 1242258 as part of the SOAS campaign. GIT 759 SOAS Researchers were also supported by a US EPA STAR grant R835410 and NOAA CPO Award 760 NA10OAR4310102. Measurements at other sites in the southeast were part of the EPA-supported SCAPE 761 Clean Air Center, made possible through US EPA grant R834799. The content of this publication are 762 solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA. 763 Further, US EPA does not endorse the purchase of any commercial products or services mentioned in the 764 publication. SLC was supported by an appointment to the Research Participation Program at the Office of 765 Research and Development, US EPA, administered by ORISE. SHL acknowledges funding support from 766 NSF (AGS-1241498). AB acknowledges support within the framework of the Action -Supporting

Page 26 of 57

767 768

769	Social Fund (ESF) and the Greek State. We wish to thank the Southeastern Aerosol Research and
770	Characterization (SEARCH) personnel for their many contributions supporting the field deployments.
771	References
772	Bacarella, A. L., Grunwald, E., Marshall, H. P., and Purlee, E. L.: The Potentiometric Measurement of
773	Acid Dissociation Constants and pH in the System Methanol-Water. pK_a Values for Carboxylic
774	Acids and Anilinium Ions, J Org Chem, 20, 747-762, 10.1021/Jo01124a007, 1955.
775	Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A.,
776	You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation,
777	efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and
778	water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental
779	ratio of the organic component, Atmospheric Chemistry and Physics, 11, 10995-11006,
780	10.5194/acp-11-10995-2011, 2011.
781	Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B.,
782	Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway,
783	M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and
784	microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer,
785	Mass spectrometry reviews, 26, 185-222, 10.1002/mas.20115, 2007.
786	Capps, S. L., Henze, D. K., Hakami, A., Russell, A. G., and Nenes, A.: ANISORROPIA: the adjoint of

Postdoctoral Researchers-of the Operational Program "Education and Lifelong Learning" (Action's

Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European

- Capps, S. L., Henze, D. K., Hakami, A., Russell, A. G., and Nenes, A.: ANISORROPIA: the adjoint of
 the aerosol thermodynamic model ISORROPIA, Atmospheric Chemistry and Physics, 12, 527 543, 10.5194/acp-12-527-2012, 2012.
- Carlton, A. G., and Turpin, B. J.: Particle partitioning potential of organic compounds is highest in the
 Eastern US and driven by anthropogenic water, Atmospheric Chemistry and Physics, 13, 10203 10214, 10.5194/acp-13-10203-2013, 2013.
- Carrico, C. M., Rood, M. J., and Ogren, J. A.: Aerosol light scattering properties at Cape Grim, Tasmania,
 during the First Aerosol Characterization Experiment (ACE 1), Journal of Geophysical Research,
 103, 16565, 10.1029/98jd00685, 1998.
- Carrico, C. M., Rood, M. J., Ogren, J. A., Neususs, C., Wiedensohler, A., and Heintzenberg, J.: Aerosol
 optical properties at Sagres, Portugal during ACE-2, Tellus B, 52, 694-715, DOI 10.1034/j.1600 0889.2000.00049.x, 2000.
- Cerully, K. M., Bougiatioti, A., Hite Jr, J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On
 the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble
 aerosol in the Southeastern United States, Atmospheric Chemistry and Physics Discussions, 14,
 30835-30877, 10.5194/acpd-14-30835-2014, 2014.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H⁺-NH₄⁺-SO₄²⁻ NO₃⁻-H₂O at tropospheric temperatures, J Phys Chem A, 102, 2137-2154, Doi 10.1021/Jp973042r,
 1998.
- Czoschke, N. M., and Jang, M.: Acidity effects on the formation of α-pinene ozone SOA in the presence
 of inorganic seed, Atmospheric Environment, 40, 4370-4380, 10.1016/j.atmosenv.2006.03.030,
 2006.
- BeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M.,
 Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable,
 high-resolution, time-of-flight aerosol mass spectrometer, Analytical chemistry, 78, 8281-8289,
 10.1021/ac061249n, 2006.

Page 27 of 57

- Eddingsaas, N. C., VanderVelde, D. G., and Wennberg, P. O.: Kinetics and Products of the Acid Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols, J Phys Chem A,
 114, 8106-8113, Doi 10.1021/Jp103907c, 2010.
- Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., and Claeys,
 M.: Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from
 laboratory irradiated isoprene/NO_x/SO₂/air mixtures and their detection in ambient PM_{2.5} samples
 collected in the eastern United States, Atmospheric Environment, 39, 5281-5289,
 10.1016/j.atmosenv.2005.05.031, 2005.
- Engelhart, G. J., Asa-Awuku, A., Nenes, A., and Pandis, S. N.: CCN activity and droplet growth kinetics
 of fresh and aged monoterpene secondary organic aerosol, Atmospheric Chemistry and Physics, 8,
 3937-3949, 2008.
- Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmospheric Chemistry and Physics Discussions, 11, 22301-22383, 10.5194/acpd-11-22301-2011, 2011.
- Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium
 model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmospheric Chemistry and
 Physics, 7, 4639-4659, 2007.
- Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken, T., Fischer, M., Matias, E., Moya, M.,
 Farmer, D., and Cohen, R. C.: Thermodynamic characterization of Mexico City aerosol during
 MILAGRO 2006, Atmospheric Chemistry and Physics, 9, 2141-2156, 2009.
- 832 Frosch, M., Bilde, M., DeCarlo, P. F., Jur ányi, Z., Tritscher, T., Dommen, J., Donahue, N. M., Gysel, M.,
 833 Weingartner, E., and Baltensperger, U.: Relating cloud condensation nuclei activity and oxidation
 834 level of α-pinene secondary organic aerosols, Journal of Geophysical Research: Atmospheres.
 835 116, 10.1029/2011jd016401, 2011.
- Gao, S., Keywood, M., Ng, N. L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R. C., and Seinfeld,
 J. H.: Low-molecular-weight and oligomeric components in secondary organic aerosol from the
 ozonolysis of cycloalkenes and alpha-pinene, J Phys Chem A, 108, 10147-10164, Doi
 10.1021/Jp047466e, 2004.
- Ghio, A. J., Carraway, M. S., and Madden, M. C.: Composition of air pollution particles and oxidative
 stress in cells, tissues, and living systems, Journal of toxicology and environmental health. Part B,
 Critical reviews, 15, 1-21, 10.1080/10937404.2012.632359, 2012.
- Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G. M., and Blanchard,
 C. L.: The Southeastern Aerosol Research and Characterization Study: Part 1—Overview, Journal
 of the Air & Waste Management Association, 53, 1460-1471, 10.1080/10473289.2003.10466318,
 2003.
- Hansen, D. A., Edgerton, E., Hartsell, B., Jansen, J., Burge, H., Koutrakis, P., Rogers, C., Suh, H., Chow,
 J., Zielinska, B., McMurry, P., Mulholland, J., Russell, A., and Rasmussen, R.: Air Quality
 Measurements for the Aerosol Research and Inhalation Epidemiology Study, Journal of the Air &
 Waste Management Association, 56, 1445-1458, 10.1080/10473289.2006.10464549, 2006.
- Hennigan, C. J., Bergin, M. H., Dibb, J. E., and Weber, R. J.: Enhanced secondary organic aerosol
 formation due to water uptake by fine particles, Geophysical Research Letters, 35, L18801,
 10.1029/2008g1035046, 2008.
- Hennigan, C. J., Nenes, A., and X, X.: In preparation, will edit this reference later as soon as Chris get the paper done!,Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmospheric Chemistry and Physics Discussions, 14, 27579-27618, 10.5194/acpd-14-27579-2014, 2014.
- Hildebrandt Ruiz, L., Paciga, A. L., Cerully, K., Nenes, A., Donahue, N. M., and Pandis, S. N.: Aging of secondary organic aerosol from small aromatic VOCs: changes in chemical composition, mass yield, volatility and hygroscopicity, Atmospheric Chemistry and Physics Discussions, 14, 31441-31481, 10.5194/acpd-14-31441-2014, 2014.

Page 28 of 57

- 862 Iinuma, Y., Böge, O., Gnauk, T., and Herrmann, H.: Aerosol-chamber study of the α-pinene/O₃ reaction:
 863 influence of particle acidity on aerosol yields and products, Atmospheric Environment, 38, 761 864 773, 10.1016/j.atmosenv.2003.10.015, 2004.
- IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University
 Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
- Ito, A., and Xu, L.: Response of acid mobilization of iron-containing mineral dust to improvement of air
 quality projected in the future, Atmospheric Chemistry and Physics, 14, 3441-3459, 10.5194/acp 14-3441-2014, 2014.
- Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol production
 by acid-catalyzed particle-phase reactions, Science, 298, 814-817, 10.1126/science.1075798,
 2002.
- Karambelas, A., Pye, H. O. T., Budisulistiorini, S. H., Surratt, J. D., and Pinder, R. W.: Contribution of
 Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements,
 Environmental Science & Technology Letters, 1, 278-283, 10.1021/ez5001353, 2014.
- Kim, J., Yoon, S.-C., Jefferson, A., and Kim, S.-W.: Aerosol hygroscopic properties during Asian dust,
 pollution, and biomass burning episodes at Gosan, Korea in April 2001, Atmospheric
 Environment, 40, 1550-1560, 10.1016/j.atmosenv.2005.10.044, 2006.
- King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Cloud condensation nucleus
 activity of secondary organic aerosol particles mixed with sulfate, Geophysical Research Letters,
 34, L24806, 10.1029/2007gl030390, 2007.
- Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.: Secondary organic
 carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NO_x
 and SO₂, Environmental science & technology, 40, 3807-3812, Doi 10.1021/Es052446r, 2006.
- Kotchenruther, R. A., and Hobbs, P. V.: Humidification factors of aerosols from biomass burning in
 Brazil, Journal of Geophysical Research, 103, 32081, 10.1029/98jd00340, 1998.
- Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of organic
 material composed of carbon, hydrogen, and oxygen, Environmental science & technology, 46,
 787-794, 10.1021/es202525q, 2012.
- Lance, S., Nenes, A., Medina, J., and Smith, J. N.: Mapping the Operation of the DMT Continuous Flow
 CCN Counter, Aerosol Science and Technology, 40, 242-254, 10.1080/02786820500543290,
 2006.
- Liao, H., and Seinfeld, J. H.: Global impacts of gas-phase chemistry-aerosol interactions on direct
 radiative forcing by anthropogenic aerosols and ozone, J Geophys Res-Atmos, 110, D18208 Doi
 10.1029/2005jd005907, 2005.
- Liu, J., Zhang, X., Parker, E. T., Veres, P. R., Roberts, J. M., de Gouw, J. A., Hayes, P. L., Jimenez, J. L.,
 Murphy, J. G., Ellis, R. A., Huey, L. G., and Weber, R. J.: On the gas-particle partitioning of
 soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle
 phase formic acid, Journal of Geophysical Research, 117, D00V21, 10.1029/2012jd017912, 2012.
- Magi, B. I., and Hobbs, P. V.: Effects of humidity on aerosols in southern Africa during the biomass
 burning season, Journal of Geophysical Research, 108, 8495, Doi 10.1029/2002jd002144, 2003.
- 903Malm, C.-W. C., and Day, D., E.-D.: Estimates of aerosol species scattering characteristics as a function904of relative humidity, Atmospheric Environment, 2001.35, 2845-2860, DOI: 10.1016/S1352-9052310(01)00077-2, 2001.
- Meskhidze, N., Chameides, W. L., Nenes, A., and Chen, G.: Iron mobilization in mineral dust: Can
 anthropogenic SO₂ emissions affect ocean productivity?, Geophysical Research Letters, 30, 2085
 Doi 10.1029/2003gl018035, 2003.
- Meskhidze, N., Chameides, W. L., and Nenes, A.: Dust and pollution: A recipe for enhanced ocean
 fertilization?, Journal of Geophysical Research, 110, D03301, 10.1029/2004jd005082, 2005.

Page 29 of 57

911	Mitchell, R. M., Campbell, S. K., Qin, Y., and Gras, J. L.: Performance Characteristics of Integrating
912	Nephelometers in the Australian Outback, Journal of Atmospheric and Oceanic Technology, 26,
913	984-995, 10.1175/2008itecha1187.1, 2009.
914	Nemesure, S., Wagener, R., and Schwartz, S. E.: Direct shortwave forcing of climate by the
915	anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity. J
916	Geonbys Res-Atmos 100 26105-26116 Doi 10 1029/95id02897 1995
917	Nones A Pandic S N and Pilinis C · ISORROPIA · A new thermodynamic equilibrium model for
018	multiphase multicomponent inorganic acrosols. Aquat Geochem 4, 123-152 Doi
010	10 1022/A 100060400281 1008
020	10.1025/A.100200-005261, 1226.
920	Nenes, A., Kion, M. D., Minaiopoulos, N., Van Cappelien, P., Sin, Z., Bouglatiou, A., Zaringas, P., and
921	He may a through the calculation of line at a erosols: a source of bloavariable phosphorus for the second starting of the second
922	2011 contract and physics, 11, 6265-6272, 10.5194/acp-11-6265-2011,
923	
924	Nguyen, T. K. Y., Petters B., Coggon, M. D., Suda, S.M., Flagan, R. C., and Carlton, A. G.:
925	FrendsSeinfeld, J. H.: Reactive uptake and photo-Fenton oxidation of glycolaldehyde in particle
926	phaseaerosol liquid water during the Southern Oxidant and Aerosol Study, Atmospheric
927	Chemistry and Physics Discussions, 14, 7469-7516, Environmental science & technology, 47,
928	<u>4307-4316</u> , 10. 5194/acpd-14-7469-2014, 2014 <u>1021/es400538j, 2013</u> .
929	<u>Nguyen, T. K. V., Petters, M. D., Suda, S. R., Guo, H., Weber, R. J., and Carlton, A. G.: Trends in</u>
930	particle-phase liquid water during the Southern Oxidant and Aerosol Study, Atmospheric
931	Chemistry and Physics, 14, 10911-10930, 10.5194/acp-14-10911-2014, 2014.
932	Nowak, J. B., Huey, L. G., Russell, A. G., Tian, D., Neuman, J. A., Orsini, D., Sjostedt, S. J., Sullivan, A.
933	P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E., and Fehsenfeld, F. C.: Analysis of urban
934	gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time
935	Characterization Experiment (ANARChE), Journal of Geophysical Research, 111, D17308,
936	10.1029/2006jd007113, 2006.
937	Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., and Weber, R. J.: Refinements to the
938	particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble
939	aerosol composition, Atmospheric Environment, 37, 1243-1259, 10.1016/s1352-2310(02)01015-
940	4,2003.
941	Pathak, R. K., Wang, T., Ho, K. F., and Lee, S. C.: Characteristics of summertime PM ₂₅ organic and
942	elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble
943	organic carbon (WSOC), Atmospheric Environment, 45, 318-325.
944	10.1016/i atmoseny 2010.10.021, 2011.
945	Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hydroscopic growth and
946	cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961-1971, 2007.
947	Pilinis C. Pandis S. N. and Seinfeld I. H. Sensitivity of Direct Climate Forcing by Atmospheric
948	Aerosols to Aerosol-Size and Composition I Geophys Res-Atmos 100 18739-18754 Doi
949	10 1029/95id02119 1995
950	Pye H O Pinder R W Pilotic I R Xie V Cannes S I Lin V H Surratt I D Zhang Z Gold
951	A Luecken D I Hutzell W T Iaoui M Offenberg I H Kleindienst T E Lewandowski
052	$M_{\rm c}$ and Edney, E. O.: Enovide pathways improve model predictions of icontrane markers and
952	M., and Edney, E. O.: Epothe pairways improve model predictions of isophetic markets and
933	1064 10 1001/cs4021065 2012
934	Those, 10.1021/554021001, 2015.
933	Roberts, G. C., and Nenes, A.: A Continuous-Flow Streamwise Internat-Gradient CCN Chamber for
930	Autospheric Measurements, Aerosol Science and Technology, 39, 206-221,
95/	10.1000/02/808290913988, 2003.
958	Semieu, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: from Air Pollution to Climate
959	Change 2nd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

Page 30 of 57

960	Sheridan, P. J., Jefferson, A., and Ogren, J. A.: Spatial variability of submicrometer aerosol radiative
961	properties over the Indian Ocean during INDOEX, Journal of Geophysical Research, 107, 8011,
962	Doi 10.1029/2000jd000166, 2002.
963	Sloane, C. S., Watson, J., Chow, J., Pritchett, L., and Richards, L. W.: Size-Segregated Fine Particle
964	Measurements by Chemical-Species and Their Impact on Visibility Impairment in Denver,
965	Atmospheric Environment. Part A. General Topics, 25, 1013-1024, Doi 10.1016/0960-
966	1686(91)90143-U, 1991.
967	Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and
968	morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles.
969	Atmospheric Chemistry and Physics, 12, 2691-2712, 10.5194/acp-12-2691-2012, 2012.
970	Song, M., Liu, P. F., Hanna, S. J., Martin, S. T., and Bertram, A. K.: Relative humidity-dependent
971	viscosities of isoprene-derived secondary organic material and atmospheric implications for
972	isoprene-dominant forests, Atmos. Chem. Phys. Discuss., 15, 1131-1169, 10.5194/acpd-15-1131-
973	2015, 2015.
974	Sorooshian, A., Hersey, S., Brechtel, F. J., Corless, A., Flagan, R. C., and Seinfeld, J. H.: Rapid, Size-
975	Resolved Aerosol Hygroscopic Growth Measurements: Differential Aerosol Sizing and
976	Hygroscopicity Spectrometer Probe (DASH-SP), Aerosol Science and Technology, 42, 445-464,
977	10.1080/02786820802178506, 2008.
978	Stein, S. W., Turpin, B. J., Cai, X. P., Huang, C. P. F., and Mcmurry, P. H.: Measurements of Relative
979	Humidity-Dependent Bounce and Density for Atmospheric Particles Using the DMA-Impactor
980	Technique, Atmospheric Environment, 28, 1739-1746, Doi 10.1016/1352-2310(94)90136-8,
981	1994.
982	Stokes, R. H., and Robinson, R. A.: Interactions in Aqueous Nonelectrolyte Solutions .I. Solute-Solvent
983	Equilibria, Journal of Physical Chemistry, 70, 2126-2130, Doi 10.1021/J100879a010, 1966.
984	Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and
985	Seinfeld, J. H.: Effect of acidity on secondary organic aerosol formation from isoprene,
986	Environmental science & technology, 41, 5363-5369, 2007.
987	Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan,
988	R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic
989	aerosol formation from isoprene, Proceedings of the National Academy of Sciences of the United
990	States of America, 107, 6640-6645, 10.10/3/pnas.0911114107, 2010.
991	Tang, I. N.: Phase transformation and growth of aerosol particles composed of mixed salts, Journal of
992	Aerosol Science, /, 361-3/1, Doi 10.1016/0021-8502(/6)90022-7, 19/6.
993	Tang, I. N., and Munkelwitz, H. R.: Composition and Temperature-Dependence of the Deliquescence
994	Properties of Hygroscopic Aerosols, Atmospheric Environment. Part A. General Topics, 27, 467-
995	4/3, Doi 10.1016/0900-1686(93)90204-C, 1993.
996	Tanner, R. L., Olszyna, K. J., Edgerton, E. S., Knipping, E., and Shaw, S. L.: Searching for evidence of
997	acid-catalyzed enhancement of secondary organic aerosol formation using ambient aerosol data,
998	Atmospheric Environment, 43, 3440-3444, 10.1016/j.atmosenv.2009.03.045, 2009.
999	Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., and Johnston, M. V.: Formation of
1000	and a secondary organic aerosol, Environmental science & technology, 58, 1428-1454,
1001	2004.
1002	Turpin, B. J., and Lim, HJ.: Species Contributions to PM2.5 Mass Concentrations: Revisiting Common
1003	Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 55, 602-610,
1004	10.1000/02/00020119443, 2001. Varma V. Eana T. Cua H. King L. Datas I.T. Daltier D.E. Edgarton E. Durrell, A. L. and Weber
1005	vernia, v., rang, 1., Guo, H., King, L., Bates, J. 1., Petter, K. E., Edgerton, E., Kussell, A. J., and Weber,
1000	K. J., Keactive oxygen species associated with water-soluble PM _{2.5} in the southeastern United
1007	States: spatiotemporal trends and source apportionment, Atmospheric Chemistry and Physics
1008	Discussions, 14, 19023-19072, 10.3194/acpa-14-19023-2014, 2014.

Page 31 of 57

1009	Villani, P., Sellegri, K., Monier, M., and Laj, P.: Influence of semi-volatile species on particle	
1010	hygroscopic growth, Atmospheric Environment, 79, 129-137, 10.1016/j.atmosenv.2013.05.069,	
1011	2013.	
1012	Wexler, A. S., and Seinfeld, J. H.: Second-generation inorganic aerosol model, Atmospheric Environment.	
1013	Part A. General Topics, 25, 2731-2748, Doi 10.1016/0960-1686(91)90203-J, 1991.	
1014	Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz,	
1015	G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J-	
1016	D., Baumann, K., Lee, SH., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of Anthropogenic	
1017	Emissions anthropogenic emissions on Aerosol Formation aerosol formation from	
1018	Isopreneisoprene and Monoterpenesmonoterpenes in the Southeasternsoutheastern United States,	
1019	P. Natl. Acad. Sci., 2014Proceedings of the National Academy of Sciences, 112, 37-42.	
1020	<u>10.1073/pnas.1417609112, 2015</u> .	
1021	Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F., and Xu, L.: Characteristics of water-soluble inorganic ions	
1022	in PM _{2.5} and PM _{2.5-10} in the coastal urban agglomeration along the Western Taiwan Strait Region,	
1023	China, Environmental science and pollution research international, 21, 5141-5156,	
1024	10.1007/s11356-013-2134-7, 2014.	
1025	You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N., Kamal, S., Smith, M. L.,	
1026	Zhang, X., Weber, R. J., Shilling, J. E., Dabdub, D., Martin, S. T., and Bertram, A. K.: Images	
1027	reveal that atmospheric particles can undergo liquid-liquid phase separations, Proceedings of the	
1028	National Academy of Sciences of the United States of America, 109, 13188-13193,	
1029	10.1073/pnas.1206414109, 2012.	
1030	You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid-liquid phase separation in particles containing	
1031	organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium	
1032	chloride, Atmospheric Chemistry and Physics, 13, 11723-11734, 10.5194/acp-13-11723-2013,	
1033	<u>2013.</u>	
1034	You, Y., Kanawade, V. P., de Gouw, J. A., Guenther, A. B., Madronich, S., Sierra-Hern ández, M. R.,	
1035	Lawler, M., Smith, J. N., Takahama, S., Ruggeri, G., Koss, A., Olson, K., Baumann, K., Weber,	
1036	R. J., Nenes, A., Guo, H., Edgerton, E. S., Porcelli, L., Brune, W. H., Goldstein, A. H., and Lee, S.	
1037	H.: Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer	
1038	(CIMS), Atmospheric Chemistry and Physics Discussions, 14, 16411-16450, 10.5194/acpd-14-	
1039	16411-2014, 2014.	
1040	Zdanovskii, A. B.: Trudy Solyanoi Laboratorii Akad, Nauk SSSR, 2, 1936.	
1041	Znang, X., Liu, Z., Hecobian, A., Zheng, M., Frank, N. H., Edgerton, E. S., and Weber, R. J.: Spatial and +	Formatted: Space After: 0 pt
1042	seasonal variations of time particle water-soluble organic carbon (WSOC) over the solutieastern	
1045	Duvided States: implications for secondary organic aerosol formation, Atmospheric Chemistry and Divide 12, 6502, 6607, 10,5104(org. 12, 6502, 2012, 2012)	
1044	Physics, 12, 0395-0007, 10.3194/acp-12-0395-2012, 2012.	
1045	zuend, A. Watcohn, C., Feler, T., and Semield, J. H., Computation of indud-indude equinormal and prinse	
1040	Atmospheric Chemistry and Physics 10, 7795,7820, 10,5104/acp, 10,7795,2010, 2010	
1047	Zuend A. and Sainfald I. H.: Modeling the gas particle partitioning of secondary organic persol: the	
1040	Zuelle, A., and Scheld, J. H., Hodeling the gas-particle partitioning of secondary or gaine actosni in- importance of liquid-liquid phase separation. Atmospheric Chemistry and Physics 12, 3857-382	
1050	In 5194/arp-12-3857-2012 2012	
1050	10.515 Hug 12 5057 2012, 2012.	
1051	←	Formatted: Line spacing: single
1052		
105-		
1053		

Page 32 of 57

1054 Table. 1. Deployment status of instruments at various sites. All the listed instruments or probes were1055 operated at CTR for SOAS.

Site	Period (mm yyyy)	PILS-IC	AMS	CCNc	Nephelometer	TEOM	RH&T
JST	May&Nov 2012	NO	YES	NO	NO	YES	YES
YRK	Jul&Dec 2012	NO	YES	NO	NO	YES	YES
GIT	Jul-Aug 2012	NO	YES	NO	NO	YES	YES
RS	SepSept 2012	NO	YES	NO	NO	YES	YES
CTR	Jun-Jul 2013	YES	YES	YES	YES	YES	YES

1057	Table. 2. Sensitivity of $H^{+}H^{+}_{air}$ to ions from ANISORROPIA (2 nd row) and contribution of to uncertainty.							
1058	Uncertainties of inorganic ions $\left(\frac{\delta_{lon}}{lon}\right)$ are calculated based on a combination of PILS-IC instrumental							
1059	relative uncertainties (IC uncertainty, referred to as $\frac{\delta_{ion,IC}}{Ion}$, all estimated to be 15%) and the difference							
1060	between P	ILS-IC and AMS ($\frac{\delta_{Ion,IC-AMS}}{Ion}$, defined as	s the (slope – 1) in I	Figure <u>42a & 2b</u>) (3 rd	¹ row), where		
1061	$\frac{\delta_{lon}}{lon} = \sqrt{\frac{(\delta_{lon,lC})^2 + (\delta_{lon,lC-AMS})^2}{lon}} \sqrt{\frac{(\delta_{lon,lC})^2}{lon}^2 + \frac{(\delta_{lon,lC-AMS})^2}{lon}^2} (4^{\text{th}} \text{ row}).$ Contribution of uncertainty is the							
1062	ratio of ion uncertainty over $\frac{H^+}{H^+}H^+_{air}$ uncertainty $\left(\frac{\delta_{H^\pm}}{H^\pm}\frac{\delta_{H^+_{air}}}{H^+_{air}}\right)$, calculated to be 14% in Equation 8) (5 th row).							
	PILS- IC ion	SO_4	$\mathrm{NH_4}_{4}^{\pm}$	Na [±]	NO3	CI	Formatted: S	
I	ration, $\mu g m^{-3}$ (mean ± SD)	1.73 ±1.21	0.46 ± 0.34	0.03 ± 0.07	0.08 ± 0.08	0.02 ± 0.03	Formatted: S	
	H+H _{air} Sensitiv ity	$\begin{array}{c c} \frac{\partial H^{+}}{\partial SO_{4}} & \frac{\partial H_{air}^{+}}{\partial SO_{4}} \\ \hline \end{array}$	$\begin{array}{ c c c c }\hline \partial H^+ & \partial H^+_{air} \\\hline \partial NH_4 & \partial NH_4^+ \\\hline \end{array}$	$\frac{\partial H^+}{\partial Na} \left \frac{\partial H^+_{air}}{\partial Na^+} \right $	$\begin{array}{c c} \frac{\partial H^+}{\partial NO_3} & \frac{\partial H^+_{air}}{\partial NO_3^-} \\ \hline \end{array}$	$\begin{array}{c c} \frac{\partial H^+}{\partial Cl} & \frac{\partial H^+_{air}}{\partial Cl^-} \\ \hline \end{array}$		
	(mean \pm SD)	0.51 ± 0.34	0.32 ± 0.31	$0.19\ \pm 0.27$	0.002 ± 0.007	0.000 ± 0		
	$\frac{\delta_{Ion,IC-AN}}{Ion}$	$\frac{\delta_{SO_4,IC-AMS}}{SO_4}$ 20.5%	$\frac{\frac{\delta_{NH_4,IC-AMS}}{NH_4}}{\frac{1.5\%}{N}} \frac{\delta_{NH_4^+,IC}}{Nh}$	$\frac{\frac{\delta_{Na,IC-AMS}}{Na}}{Na}\frac{\delta_{Na^+,I}}{N}$ N/A*	$\frac{\frac{\partial_{NO_3,IC-AMS}}{NO_3}}{NO_3} \frac{\delta_{NO_3,IC}}{NO_5}}{NO_5}$	$\frac{\frac{\delta_{cl,lC-AMS}}{Cl}}{\frac{Cl}{Cl}} \frac{\delta_{Cl^-,lC}}{Cl}$		
	$\frac{\delta_{lon}}{lon}$	$rac{\delta_{SO_4}}{SO_4}$	$\frac{\delta_{NH_4}}{NH_4}\delta_{NH_4^+}$	$\frac{\delta_{Na}}{Na}\frac{\delta_{Na^+}}{Na^+}$	$\frac{\delta_{NO_3}}{NO_3} \frac{\delta_{NO_3}}{NO_3}$	$\frac{\delta_{cl}}{Cl} \delta_{cl}$		
	1011	25.4%	15.1%	15%	15%	15%		
	Contrib ution to $\frac{H^+}{H^+}H^+_{air}$ uncertai	$\frac{\left \frac{\partial H^{\pm}}{\partial SO_{4}}\right \cdot \frac{\delta_{SO_{4}}}{SO_{4}}}{\frac{\partial H}{\partial S}}$ $\frac{\delta_{H^{\pm}}}{H^{\pm}}$	$\frac{\left \frac{\partial H^{\pm}}{\partial NH_{4}}\right \cdot \frac{\delta_{NH_{4}}}{NH_{4}}}{\frac{\delta_{H^{\pm}}}{H^{\pm}}} \left \frac{\partial H}{\partial N}\right $	$\frac{\left \frac{\partial H^{+}}{\partial Na}\right }{\left \frac{\partial Na}{H^{\pm}}\right } \frac{\left \frac{\partial H_{c}}{\partial Na}\right }{\left \frac{\partial Nc}{H^{\pm}}\right } \frac{\left \frac{\partial H_{c}}{\partial Nc}\right }{\left \frac{\partial H_{c}}{H^{\pm}}\right }$	$\frac{\left \frac{\partial H^{\pm}}{\partial NO_3}\right \frac{\delta_{NO_3}}{NO_3}}{\frac{\delta_{H^{\pm}}}{H^{\pm}}}$	$\frac{\frac{\partial H^{\pm}}{\partial Cl}}{\frac{\partial Cl}{H^{\pm}}} = \frac{\frac{\partial H}{\partial Cl}}{\frac{\partial H}{\partial C}}$		
	nty	0.93	0.35	0.20	0.002	0.000		
1063	* Na [±] is no	ot measured by AM	S.					

 Formatted: Superscript

 Formatted: Superscript

 Formatted: Superscript

 Formatted: Superscript

1064 ** $\frac{\partial H^{+}}{\partial N O_{3}} \left| \frac{\partial H_{air}^{+}}{\partial N O_{3}} \right|$ and $\frac{\partial H^{+}}{\partial cl} \left| \frac{\partial H_{air}^{+}}{\partial cl} \right|$ are less than 1% of the other $H^{+}H_{air}^{+}$ sensitivities, and the loadings of

1065 NO₃² and Cl² are less than 5% of the total inorganic ion mass. As a result, their contributions to $\frac{H^{+}}{H_{air}}H_{air}^{+}$

1066 uncertainty are negligible.

Page 34 of 57

1067

Page 35 of 57

1068 1069

Table. 3. Water and pH prediction for SCAPE sites. Means and SDs are listed, if not specified. Total ion
concentration is counted as the sum of AMS inorganics (3 rd row). $\epsilon(W_{\Theta})\epsilon_{W_{O}}$ is the mass fraction of W_{O} (5 th

1070 row).

	JST 05/2012	YRK 07/2012	GIT 08/2012	RS 09/2012	JST 11/2012	YRK 12/2012
RH, %	67 ± 19	66 ±21	71 ±17	72 ± 20	63 ±19	73 ±21
Т, ℃	23.1 ± 4.3	$27.7~\pm4.4$	26.3 ± 3.5	$21.4~{\pm}3.8$	$11.5~\pm4.8$	9.8 ± 5.2
Total ion concentration , μg m ⁻³	4.1 ±2.1	4.5 ±2.2	5.3 ±2.6	4.1 ±2.7	3.6 ±2.1	2.3 ±1.8
$rac{\delta_{pH}}{pH}$ from 1.10RH	22.3%	21.4%	48.3%	22.1%	2.5%	1.4%
Total $\frac{\delta_{pH}}{pH}$	23.9%	23.0%	49.0%	23.7%	8.8%	8.6%
$\varepsilon(W_{\theta}), \varepsilon_{W_{0}}, \%$	34 ±11	37 ±8	33 ± 10	38 ±11	39 ±16	$29~{\pm}15$
LWC, µg m ⁻³	5.98 ± 6.28	8.14 ±8.47	8.41 ± 7.67	7.81 ±9.23	5.88 ± 8.69	3.24 ± 3.46
pH*	1.3 ± 0.7	1.1 ± 0.6	1.1 ± 0.4	1.3 ± 0.7	$2.2~{\pm}0.9$	$1.8~{\pm}1.0$
LWC, µg m ⁻³ (median)	3.74 ±6.28	5.29 ±8.47	6.06 ±7.67	4.31 ±9.23	2.14 ±8.69	2.02 ± 3.46
pH* (median)	1.2 ±0.7	1.0 ±0.6	1.0 ±0.4	1.2 ±0.7	2.3 ±0.9	1.8 ±1.0

1071 * A bias correction of 1 pH unit is applied due to not considering ammonia partitioning. See Section 4.2c

1072 for details.

1078

1081 Fig. 2. Comparisons of PM₁ AMS sulfate, ammonium to PM₁ and PM_{2.5} PILS-IC (i.e. complete SOAS

1082 study) and predicted W_i . Orthogonal distance regression (ODR) fits were applied.

Particle water and Fine particle pH in the southeastern United States

1083

Formatted: None

Formatted: Font: Not Bold

1087 <u>radiation. Median hourly averages are shown and standard errors are plotted as error bars.</u>

(d). Mean and median values are shown, together with 25% and 75% quantiles marked as non-filled

Particle water and Fine particle pH in the southeastern United States

1091

1093

1094

circles.

Fig. 5. Comparison of ion balance to pH (a) and to H_{air}^+ (b) at CTR (SOAS). An ODR fit was applied.

Page 41 of 57

1102 **Fig. 6.** W_i based on artificially perturbed ion data at upper and lower uncertainty limits- is compared to W_i

1103 <u>at base level.</u> The slopes indicate <u>the W_i uncertainty caused by ions.</u>

1107Fig. 47. W_i based on artificially perturbed RH at upper and lower uncertainty limits compared to W_i at1108base level. 1.10RH (i.e., RH increased by 10%) is not plotted because it results in much larger W_i than the1109rest. Slopes and R² indicate corresponding W_i uncertainty caused by variability (uncertainty) in RH.

1110

1114 **Fig. 58.** pH predictions by <u>perturbed perturbing</u> RH <u>compared to pH at base level</u>. W_i , W_o , and H_{air}^+ were

1115 recalculated based on $\pm 5\%$ and $\pm 10\%$ original RH to investigate pH uncertainty. The slopes and R²

1116 indicate pH uncertainty caused by RH.

1122 averaged data at CTR (SOAS). An ODR fit was applied. Error bars for selected points are shown.

Page 46 of 57

1133 Fig. 8. W₄ fraction plotted with organic mass fraction at CTR (SOAS). Overall study mean and standard

1134 deviation is also shown. $\varepsilon_{organic} = 61 \pm 14\%$ and $\varepsilon_{w_{eff}} = 36 \pm 14\%$.

1135

Page 48 of 57

 H_{air}^+

Fig. 11. CTR (SOAS) diurnal patterns of PILS-IC NH4 and SO4, and the molar ratio. Median hourly 1149

1150 averages and standard error bars at local hours are plotted.

1152

1153 Fig. 12. LWC and pH diurnal variation at SCAPE sites: comparison between summer and winter. Median
1154 hourly averages and standard error bars at local hour are plotted. A bias correction of 1 pH unit is applied
1155 due to not considering ammonia partitioning.

Page 53 of 57

1159 W_0 mass fraction (ε_{W_0}) plotted versus organic mass fraction at CTR (SOAS). Overall study mean and

1160 <u>standard deviation is also shown.</u> $\varepsilon_{org} = 61 \pm 14\%$ and $\varepsilon_{W_o} = 36 \pm 14\%$.

1162

1163 **Fig. 13.** CTR (SOAS) pH diurnal profiles based on total predicted water and W_i , respectively. Median

1164 hourly averages and standard error bars at local hour are plotted.

1167 **Fig. 14.** Comparison between pH based on W_t and pH based on total predicted water at CTR (SOAS). An

1168 ODR fit was applied.

Page 57 of 57