

1 **Emission trends and mitigation options for air pollutants in**
2 **East Asia**

3 **S. X. Wang^{1,2}, B. Zhao¹, S. Y. Cai¹, Z. Klimont³, C. P. Nielsen⁴, T. Morikawa⁵, J. H.**
4 **Woo⁶, Y. Kim⁶, X. Fu¹, J. Y. Xu¹, J. M. Hao^{1,2}, K. B. He^{1,2}**

5 [1] State Key Joint Laboratory of Environment Simulation and Pollution Control, School of
6 Environment, Tsinghua University, Beijing 100084, China

7 [2] State Environmental Protection Key Laboratory of Sources and Control of Air Pollution
8 Complex, Beijing 100084, China

9 [3] International Institute for Applied System Analysis, Laxenburg, Austria

10 [4] Harvard China Project, School of Engineering and Applied Sciences, Harvard University, 29
11 Oxford St, Cambridge, MA 02138, USA

12 [5] Japan Automobile Research Institute, Tsukuba, Japan

13 [6] Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea

14 Correspondence to: S. X. Wang (shxwang@tsinghua.edu.cn)

15

16 **Abstract.**

17 Emissions of air pollutants in East Asia play an important role in the regional and global
18 atmospheric environment. In this study we evaluated the recent emission trends of sulfur dioxide
19 (SO_2), nitrogen oxides (NO_x), particulate matter (PM), and non-methane volatile organic
20 compounds (NMVOC) in East Asia, and projected their future emissions up to 2030 with six
21 emission scenarios. The results will provide future emission projections for the modeling
22 community of the model inter-comparison program for Asia (MICS-Asia). During 2005-2010,
23 the emissions of SO_2 and $\text{PM}_{2.5}$ in East Asia decreased by 15% and 12%, respectively, mainly
24 attributable to the large-scale deployment of flue gas desulfurization (FGD) at China's power
25 plants, and the promotion of highly efficient PM removal technologies in China's power plants
26 and cement industry. During this period, the emissions of NO_x and NMVOC increased by 25%
27 and 15%, driven by rapid increase in the emissions from China due to inadequate control
28 strategies. In contrast, the NO_x and NMVOC emissions in East Asia except China decreased by

1 13-17%, mainly due to the implementation of stringent vehicle emission standards in Japan and
2 South Korea. Under current regulations and current levels of implementation, NO_x, SO₂, and
3 NMVOC emissions in East Asia are projected to increase by about one quarter over 2010 levels
4 by 2030, while PM_{2.5} emissions are expected to decrease by 7%. Assuming enforcement of new
5 energy-saving policies, emissions of NO_x, SO₂, PM_{2.5} and NMVOC in East Asia are expected to
6 decrease by 28%, 36%, 28%, and 15%, respectively, compared with the baseline case. The
7 implementation of “progressive” end-of-pipe control measures would lead to another one-third
8 reduction of the baseline emissions of NO_x, and about one-quarter reduction of SO₂, PM_{2.5}, and
9 NMVOC. Assuming the full application of technically feasible energy-saving policies and end-
10 of-pipe control technologies, the emissions of NO_x, SO₂, and PM_{2.5} in East Asia would account
11 for only about one quarter, and NMVOC for one third, of the levels of the baseline projection.
12 Compared with previous projections, this study projects larger reductions in NO_x and SO₂
13 emissions by considering aggressive governmental plans and standards scheduled to be
14 implemented in the next decade, and quantifies the significant effects of detailed progressive
15 control measures on NMVOC emissions up to 2030.

16

17 **1 Introduction**

18 Air pollutant emissions in East Asia contribute a large share of the global emissions. #[Cofala et al.](#)
19 ([2012](#)) reported that East Asia contributes about 36%, 29%, and 36% to global emissions of
20 sulfur dioxide (SO₂), nitrogen oxides (NO_x), and particulate matter less than or equal to 2.5 μm
21 (PM_{2.5}), respectively, much more than those of the United States (U.S.) and Europe. Moreover,
22 both emission calculations and satellite observations indicate that NO_x emissions in China have
23 experienced rapid increase during 1995-2010, with annual average growth rates ranging between
24 5.5%-7% ([Zhao et al., 2013c](#); [Zhang et al., 2007](#); [Zhang et al., 2012a](#)). As a result, emissions in
25 East Asia have greatly degraded regional air quality and visibility ([Wang and Hao, 2012](#); [Zhang](#)
26 [et al., 2012c](#)) and damaged human health ([WB and SEPA, 2007](#)). They also affect air quality and
27 climate forcing beyond the region through the outflow that travels across Pacific ([Liu et al., 2003](#)).
28 In light of this situation, the control of emissions in East Asia is very important for the
29 improvement of regional and global atmospheric environment.

With the objectives of air quality improvement and mitigation of climate change, the countries of East Asia, e.g., China, Japan, and South Korea, have taken substantial measures to improve energy efficiency and reduce emissions of air pollutants. These measures have often been stringent and have been rapidly enhanced. During 2006-2010, China set a target to reduce energy use per unit of Gross Domestic Product (GDP) and national SO₂ emissions by 20% and 10%, respectively ([The State Council of the People's Republic of China, 2006](#)). During 2011–2015, China plans additional 16%, 10%, and 8% reductions for energy use per unit GDP, NO_x emissions, and SO₂ emissions, respectively ([The State Council of the People's Republic of China, 2011](#)). Japan has taken measures to meet its commitments under the Kyoto Protocol, which require that annual CO₂ emissions during 2008-2012 should be 6% lower than those of 1990 ([IEA, 2008](#)). The vehicle emission standards in China, Japan, and South Korea have also been updated repeatedly in the past decade. A number of studies have investigated the recent emission trends in East Asia (or a specific country therein) and the effects of typical control policies. For example, reductions in China's SO₂ emissions since 2005 both by observations from satellites ([Li et al., 2010](#)), and by bottom-up emission estimations ([Lu et al., 2010; Lu et al., 2011; Klimont et al., 2013](#)). Some studies also estimated the trends of the emissions of NO_x ([Zhang et al., 2012a; Lin et al., 2010b; Zhao et al., 2013c](#)) and particulate matter (PM) ([Lin et al., 2010a; Lu et al., 2011](#)). [Kurokawa et al. \(2013\)](#), [Zhao et al. \(2013d\)](#), and [Zhao et al. \(2013a\)](#) estimated the recent emission trends of multiple air pollutants. Future emissions were also predicted by previous studies ([Streets and Waldhoff, 2000; Klimont et al., 2001; Cofala et al., 2007; Ohara et al., 2007; Klimont et al., 2009; Xing et al., 2011; Cofala et al., 2012; Zhao et al., 2013c](#)). However, most of these projections were based on emissions for 2005 or earlier and did not consider more recent, sometimes dramatic, changes. The latest projections include [Cofala et al. \(2012\)](#) and [Zhao et al. \(2013c\)](#). [Cofala et al. \(2012\)](#) projected global emissions of SO₂, NO_x, and PM_{2.5} for four energy scenarios developed by [IEA \(2012a\)](#), but did not envisage further end-of-pipe mitigation measures in the future. [Zhao et al. \(2013c\)](#) developed six NO_x emission scenarios up to 2030 based on a 2010 emission inventory, and quantified the effects of various control policies, but did not analyze other air pollutants.

Although there have been a number of studies of recent and future emission trends in East Asia, they are inadequate for development of broadly effective air quality and climate mitigation

1 policies. First, future control measures must be developed while taking full account of the latest
2 policies, and a comprehensive and up-to-date review for the entire region is currently lacking in
3 the literature. As described above, the base years of most projections were 2005 or earlier, and
4 therefore they underestimated China's economic growth over the last decade, especially from
5 2006 to 2010. These early projections also did not anticipate new emission control policies
6 announced in 2011 under China's 12th Five Year Plan (for the period of 2011-2015; [The State](#)
7 [Council of the People's Republic of China, 2011](#)), nor a number of emission standards released
8 after 2010, both of which may fundamentally alter the future emission pathways. The most recent
9 projections ([Cofala et al., 2012](#); [Zhao et al., 2013c](#)) considered only a specific pollutant or a
10 specific set of control measures, providing only partial insight into the future trends of all major
11 air pollutants. Second, the attainment of stringent ambient air quality standards (e.g., China's
12 standard of 35 $\mu\text{g m}^{-3}$ for the annual average PM_{2.5} concentration, released in 2012) requires
13 simultaneous reductions of multiple pollutants including SO₂, NO_x, PM_{2.5}, and non-methane
14 volatile organic compounds (NMVOC) ([Wang and Hao, 2012](#)). Therefore it is essential to
15 consider a full range of relevant pollutants and scenarios at different stringency levels from the
16 business-as-usual case to the maximum feasible reduction case, so that cost-effective emission
17 controls can balance measures over all pollutants and control levels. Third, most studies focused
18 on either end-of-pipe or energy-saving measures; their roles in integrated policies that
19 simultaneously tackle multiple pollutants and climate forcers have been insufficiently studied.
20 Considering the above, a comprehensive projection of emissions of multiple pollutants that
21 incorporates the latest available base-year data, control measures scheduled for implementation,
22 and other potential energy-saving and end-of-pipe measures at different stringency levels will
23 contribute to both air pollution research and future decision making.

24 This study aims to evaluate the emission trends and mitigation options for multiple air
25 pollutants in East Asia. The results will provide future emission projections for the modeling
26 community of the model inter-comparison program for Asia (MICS-Asia), which aims to have a
27 common understanding of the model performance and uncertainties in Asia.

28 In Sect. 2, we review major control policies in East Asia over the last decade and evaluate
29 their impact on air pollutant emissions during 2005-2010. Compared with previous studies of
30 emission trends, we are particularly devoted to presenting a comprehensive review of the recent

1 mitigation measures in this region, and illuminating the driving forces underlying the emission
2 trends. In Sect. 3, we project future emissions of SO₂, NO_x, NMVOC, and PM up to 2030 for six
3 emission scenarios (see Table 1), considering both energy-saving and end-of-pipe measures. In
4 Sect. 4, we compare our results with other emission estimates as well as observations. In this
5 study, the domain of East Asia consists of seven countries/regions, i.e., mainland China (People's
6 Republic of China except Hong Kong, Macao, and Taiwan), Japan, South Korea, North Korea,
7 Mongolia, Hong Kong & Macao, and Taiwan. In the following text, China is short for mainland
8 China. We focus on Japan, South Korea, and especially China, the key energy consumers in the
9 region that dominate the emissions of air pollutants. Japan and Korea have relatively long
10 histories of air pollution policies, while China has been enhancing its emission regulations in the
11 last decade at an accelerating rate, has very ambitious future goals, and contributes the largest
12 share of regional emissions. Therefore, developments in China are given special attention.

13 **2 Recent control measures and emission trends**

14 Recent control measures not only serve as the major driving forces of recent emission trends, but
15 also lay the foundation for the development of future control policies. Control measures
16 contributing to reductions of air pollutant emissions include energy-saving measures, e.g., energy
17 efficiency improvements, co-generation of heat and power, fuel substitution, and end-of-pipe
18 control measures such as installations of dust collectors and flue gas desulfurization systems. A
19 careful mix of measures to simultaneously address energy conservation, air pollution control and
20 climate change mitigation is considerably cheaper than tackling each issue separately ([Wang and](#)
21 [Hao, 2012](#)). In this section we review both recent energy-saving and end-of-pipe measures in
22 East Asia, and then quantify their effects on recent emission changes.

23 **2.1 Energy-saving measures**

24 Japan, South Korea, and China have released a number of policies addressing energy
25 conservation and climate change mitigation. Under the Kyoto Protocol, Japan committed to
26 reduction of its greenhouse gas (GHG) emissions by 6% during 2008-2012 from the base year of
27 1990. In the “New National Energy Strategy” formulated in May 2006, the Japanese government
28 set a long-term target to improve energy intensity of GDP by an additional 30% by 2030 ([IEA,](#)
29 [2008](#)). The government of South Korea has made a commitment to reduce its GHG emissions by

1 30% compared to its business-as-usual projection by 2020 (IEA, 2012b). The Chinese
2 government has set a target to reduce CO₂ emissions per unit GDP by 40%-45% in 2020
3 compared with 2005 levels (Wang and Hao, 2012). Total energy consumption in East Asia
4 increased by 31% during 2005-2010. China experienced the fastest increase, 43%, driven by its
5 rapid GDP growth rate, while Japan's energy consumption decreased during these five years due
6 to a lower GDP growth rate and stringent energy-saving policies. The growth rate of South
7 Korean energy consumption was intermediate between those of China and Japan, at 19%.

8 2.1.1 Power plants

9 The energy consumption of China's power sector increased sharply by 35% during 2005-2010,
10 due to the rapid increase in the demand for electricity (NBS, 2007, 2011a), while those of Japan
11 and South Korea remained relatively stable (<http://www.iea.org/statistics/>).

12 Up to 75% of China's power generation is coal-fired (Zhao et al., 2013c). In contrast, the
13 installed capacity in Japan is highly diversified, with coal, oil, natural gas, nuclear, and hydro
14 contributing about 27%, 8%, 27%, 26%, and 8% of total electricity generation in 2010,
15 respectively (<http://www.iea.org/statistics/>). In South Korea, fossil fuels accounted for 69% of the
16 total electricity generated, followed by nuclear at 30%, in 2010 (<http://www.iea.org/statistics/>).
17 While nuclear power has played central roles in Japan's and South Korea's low-carbon strategies,
18 its share of Japanese power generation dropped dramatically to less than 10% in 2011 due to the
19 Fukushima accident in March of that year (<http://www.iea.org/statistics/>), making the future of
20 nuclear power in Japan quite uncertain. In South Korea, by contrast, nuclear power generation is
21 expected to keep increasing in the next decade, with five reactors under construction and six
22 more announced (IEA, 2012b). Given China's coal-intensive power generation mix, its
23 government has been promoting the development of cleaner electricity through subsidy policies.
24 By 2010, its capacities of hydro, natural gas-fired, wind, and solar power generation had
25 increased dramatically to 213 GW, 27 GW, 31 GW, and 0.24 GW, respectively, or 1.82, 2.25,
26 23.8, and 3.43 times those of 2005 (China Electric Power Yearbook Committee, 2006, 2011).

27 China has also undertaken major efforts to improve the efficiency of coal-fired power
28 generation. Its government forced the closure of 77 GW of small and inefficient coal-fired units
29 during 2006-2010 (NDRC, 2011), with an additional 20 GW of small units scheduled for early

1 retirement during 2011-2015 ([The State Council of the People's Republic of China, 2012](#)). At the
2 same time, the capacities of most new units built after 2005 have been ≥ 300 MW, driving their
3 capacity share from 50% in 2005 to 73% in 2010 ([The State Council of the People's Republic of](#)
4 [China, 2012](#)). The share of advanced supercritical and ultra-supercritical units, moreover, rose to
5 over 13% ([Li et al., 2012](#)). As a result of these changes, the coal consumption per unit electricity
6 supplied by thermal power plants decreased from 370 gce/kWh to 333 gce/kWh during the same
7 period ([The State Council of the People's Republic of China, 2012](#)).

8 2.1.2 Industrial sector

9 During 2005-2010, the energy consumption of China's industrial sector increased dramatically, at
10 an annual average rate of 9.0% (cf. 7.4% for total energy consumption), due largely to the rapid
11 increase of energy-intensive products, e.g., cement and steel ([NBS, 2007, 2011a](#)). However,
12 driven by a target to reduce energy intensity per unit GDP by 20% from 2005 to 2010, China
13 mandated widespread replacement of outmoded production technologies with more energy-
14 efficient ones. For example, the share of cement produced by precalciner kilns increased from
15 45% in 2005 to about 80% in 2010. During the same period, the proportion of large units (≥ 4000
16 t/d) of all precalciner kilns increased from 33% to 60% ([Zhao et al., 2013c; Zhao et al., 2013d](#)).
17 The share of coke produced in machinery coking ovens (versus indigenous ovens) increased from
18 82% in 2005 to 87% in 2010 ([NBS, 2007, 2011; Huo et al., 2012](#)); the share of blast furnaces
19 larger than 1000 m^3 increased from 48% to 61% over the same time period ([The State Council of](#)
20 [the People's Republic of China, 2012](#)). In effect, the average energy intensity of cement and crude
21 steel production decreased by 29% and 12%, respectively, from 2005 to 2010 ([The State Council](#)
22 [of the People's Republic of China, 2012](#)).

23 While China's industrial sector has grown swiftly but only recently undertaken aggressive
24 energy efficiency improvements, Japan's industrial sector has played a central role in national
25 energy conservation for several decades ([IEA, 2008](#)). Major policies have included compulsory
26 submission of energy-saving plans for large energy consumers, frequent on-site inspections, and
27 subsidies to assist small companies to introduce energy-efficient equipment ([IEA, 2008; Energy](#)
28 [Conservation Center of Japan, 2011](#)). These measures decreased the average energy consumption
29 per ton of production of cement and crude steel by 6.3% and 5.6%, respectively, from 2000 to

1 2010 (Wang, 2010). Japan's industrial energy use as a proportion of total energy use has declined
2 from 26% in 2000 to 18% in 2010 (IEA, 2002, 2012c), and the share of coal and petroleum
3 products of total energy consumption has decreased from 64% to 56% during 2000-2010 (IEA,
4 2002, 2012c).

5 Industrial energy consumption in South Korea increased steadily in recent years, in part
6 because its energy intensity (energy consumption per unit GDP) did not notably improve from
7 the 1990s to 2006 (IEA, 2006). In 2008, South Korea set new targets for national energy intensity
8 in its “Strategy for Green Growth”: from 0.328 toe/US\$1000 in 2007 to 0.290 toe/US\$1000 in
9 2013, and 0.233 toe/US\$1000 in 2020. Enforcement of these policies is expected to occur mainly
10 through “voluntary agreements” between the government and large companies (IEA, 2006, 2012b;
11 UNEP, 2010).

12 2.1.3 Residential sector

13 Residential energy consumption in China and South Korea increased steadily during 2005-2010,
14 driven by increases in total building area (NBS, 2007, 2008a, b, 2009, 2011a, b;
15 <http://www.iea.org/statistics/>). During the same period, Japan's residential energy consumption
16 decreased slightly, attributed to the stable demand for building space and aggressive energy-
17 saving policies (IEA, 2008; <http://www.iea.org/statistics/>).

18 By the end of 2006, 96% of China's new buildings complied with the energy-saving design
19 standard released in 1996 (THUBERC, 2009); this was succeeded by a more stringent standard in
20 2010 (The State Council of the People's Republic of China, 2012). The energy efficiency
21 standards in Japan's building codes, first released in 1980 and strengthened in 1992 and 1999,
22 have all been voluntary. As of 2005, 30% of new houses and 85% of new buildings larger than
23 2000 m² complied with the voluntary standards (IEA, 2008). In Korea, energy efficiency codes
24 for buildings had long been relatively weak until a strong, performance-based design code
25 applicable to large commercial buildings was issued in 2011 (IEA, 2006, 2012b).

26 Japan is a world leader in the energy efficiency of residential and commercial appliances. The
27 “Top Runner program,” which set energy-efficiency targets for appliances based on the most
28 energy-efficient products on the market, has been successfully enforced. For example, the
29 efficiency of air conditioners and refrigerators increased by 68% (over 1997-2004) and 55%

1 (1998-2004), respectively, both exceeding the targets of 66% and 31% (IEA, 2008; Energy
2 Conservation Center of Japan, 2011). Similar programs have recently been promoted in South
3 Korea and China (UNEP, 2010).

4 China has been promoting clean energy in the residential sector. Direct combustion of
5 biomass in rural areas has been gradually replaced with commercial fuels in the last decade, and
6 its share in rural cooking decreased from 38% in 2005 to 31% in 2010. The production of biogas
7 for residential use and ownership of solar water heaters both doubled during 2005-2010 due to
8 subsidy policies.

9 2.1.4 Transportation sector

10 During 2005-2010, the energy consumption of China's transportation sector grew at an annual
11 average rate of 10%, attributed to explosive growth of the vehicle population (NBS, 2007, 2011a).
12 In contrast, the transportation energy consumption in South Korea was stable and that of Japan
13 declined (<http://www.iea.org/statistics/>).

14 The reduction in Japan's vehicle energy consumption is largely due to its fuel-efficiency
15 standards, which are among the most aggressive in the world. For passenger vehicles, there was a
16 consistent improvement in the average fuel economy from 13.5 km/L in 2000 to 17.8 km/L in
17 2009 (Energy Conservation Center of Japan, 2011). Japan was also the first country in the world
18 to implement fuel efficiency standards for heavy-duty (freight) vehicles, which decreased from
19 851 kcal/t-km in 2000 to 722 kcal/t-km in 2008 (Institute of Energy Economics of Japan, 2010).
20 China has also implemented fuel-efficiency standards for light-duty vehicles since 2004, leading
21 to an increase in the efficiency of new gasoline passenger cars from 11.0 km/L in 2005 to 13.5
22 km/L in 2010 (Zhao et al., 2013c). An updated standard (14.3 km/L by 2015) for passenger cars
23 was issued in 2011. In 2006, the South Korean government introduced its first mandatory fuel-
24 economy standards, requiring car manufacturers to meet average fuel economy standards of 12.4
25 km/L for vehicles with engines of less than 1500 cubic centimeters (IEA, 2006). In July 2009, a
26 new fuel-economy standard of 17 km/L was announced (IEA, 2012b).

27 China has also launched several initiatives to promote electric vehicles, and their population
28 reached 12,000 by 2010 (Yang, 2012). The most recent development plan for new-energy

1 vehicles (issued in 2012) aimed to increase the population of electric vehicles to 0.5 million and 5
2 million in 2015 and 2020, respectively, through a series of subsidy policies.

3 **2.2 End-of-pipe control measures**

4 **2.2.1 Power plants**

5 Due to their relatively large scales of energy use and emissions, power plants are usually subject
6 to the most stringent control measures of all sectors. The penetrations of major control
7 technologies in the power sectors of China, Japan, and South Korea are summarized in Table 2.

8 In 2006, China set a target to reduce national SO₂ emissions by 10% by 2010 over 2005 levels
9 ([Wang and Hao, 2012](#)). By 2010, over 83% of coal-fired power plants (about 88% of pulverized
10 coal combustion plants, representing 560 GW) had installed flue gas desulfurization (FGD) ([MEP,](#)
11 [2011](#)). The recently released 12th Five-Year Plan aims at another 8% reduction in total SO₂
12 emissions by 2015, which would require nearly all coal-fired power plants to be equipped with
13 high-efficiency FGD facilities (i.e., with at least 95% removal efficiency).

14 Low-NO_X combustion technology (mainly Low-NO_X Burners, LNB) was the major NO_X
15 control technology in China's coal-fired power plants by 2010. The penetration of flue gas
16 denitrification (Selective Catalytic Reduction, SCR, and/or Selective Non-Catalytic Reduction,
17 SNCR) was only 1.1% in 2005 and 12.8% in 2010 ([MEP, 2011](#)). In the 12th Five-Year Plan, the
18 Chinese government aims to reduce national NO_X emissions by 10% from 2010 to 2015, and the
19 key measure to meet this target is large-scale deployment of SCR/SNCR facilities. The NO_X
20 emission control policies are described in more detail in our previous paper ([Zhao et al., 2013c](#)).

21 The emission control of primary particulate matter in China's power sector has achieved
22 noticeable progress in the last decade. Since 2003, all new and rebuilt units have had to attain the
23 in-stack concentration standard for PM of 50 mg/m³ (GB13223-2003). As a result, over 92% of
24 pulverized coal units had installed electrostatic precipitators (ESP) by 2005. In addition, fabric
25 filters (FF) have been put into commercial use in recent years, and their penetration increased to
26 7% by 2010 ([Zhao et al., 2013a](#)). Furthermore, the rapid deployment of wet-FGD also helped to
27 reduce PM emissions due to its ancillary benefit on PM removal ([Zhao et al., 2010](#)). In 2011,
28 China's Ministry of Environmental Protection (MEP) announced a revised in-stack concentration

1 standard for PM of 20 mg/m³ for environmentally sensitive regions and 30 mg/m³ for other
2 regions.

3 In Japan, application of best-available technologies to control SO₂, NO_x, and PM is required
4 for most power generation units across the country. The penetrations of wet-FGD, LNB+SCR
5 and high-efficiency dedusters (HEDs, e.g., FF, and electrostatic-fabric integrated precipitator) are
6 all over 90%, having increased slightly during 2005-2010 (Klimont et al., 2009).

7 In South Korea, FGD systems have been installed at most power generation units; the
8 penetration increased slightly, from 95% to 97%, during 2005-2010. For NO_x, SCR has been the
9 dominant control technology, with its share increasing from 56% in 2005 to 68% in 2010. About
10 one third of coal-fired power generation units had been equipped with HED systems by 2010, and
11 the rest was equipped with ESP equipment (NIER, 2010; NIER 2013; Clean Air Policy
12 Supporting System, CAPSS, <http://airemiss.nier.go.kr/>).

13 2.2.2 Industrial sector

14 The penetrations of control technologies for industrial boilers and industrial processes are
15 presented in Table 3, Table 4 and Table S1.

16 In China, SO₂ and NO_x control technologies have been rarely installed in the industry sector.
17 In recent years, FGD units to control SO₂ have been installed at a small number of coal-fired
18 boilers and sintering plants in selected regions. The application of NO_x-control technologies is
19 described in more detail in our previous paper (Zhao et al., 2013c). In contrast with SO₂ and NO_x,
20 China has been controlling PM emissions from industrial sources since late 1980s; the emission
21 standards for industrial sources, however, were updated only gradually until 2010 (see details in
22 Lei et al., 2011). The 11th Five-Year Plan promoted high-efficiency FF in some high-emission
23 industries. Most industrial boilers were historically equipped with wet scrubbers (WET) and
24 cyclone dust collectors (CYC), while penetration of high-efficiency FF began recently (Lei et al.,
25 2011; Zhao et al., 2013a). Blast furnaces in China are usually equipped with washing towers and
26 double venturi scrubbers, which have approximately the same removal efficiency as the
27 combination of ESP and WET. ESP and FF had gradually become the major control technologies
28 applied at cement plants, sintering plants, and basic oxygen furnaces by 2010, while large

1 numbers of electric arc furnaces and coking ovens were still equipped with WET (Lei et al., 2011;
2 Zhao et al., 2013a).

3 The only control measures for NMVOC emissions in China's industry sector are associated
4 with fossil-fuel exploitation and distribution. Emission standards for gasoline distribution
5 released in 2007 require: (1) installation of vapor-recovery systems and modified loading
6 techniques (Stage IA control) for loading and unloading operations; (2) improvement in the
7 service station tank (Stage IB control) and installation of a vapor-balancing system between a
8 vehicle and service station tank (Stage II control); (3) installation of internal floating covers (IFC)
9 or secondary seals for newly-built or retrofitted storage tanks. These standards were scheduled to
10 be implemented in relatively large cities of "key regions" (areas defined by the government as
11 environmentally sensitive, including the Greater Beijing region, the Yangtze River Delta, and the
12 Pearl River Delta) from 2008-2010 onwards, and in relatively large cities in other provinces from
13 2012-2015 onwards. We estimated that vapor-recycling systems had been installed at about 15%
14 of all gasoline storage and distribution operations by 2010 (see Table 4 for details).

15 In Japan, industrial emissions are limited strictly by the Air Pollution Control Act. The
16 thresholds have changed only very slightly since 1995, but are still among the most stringent in
17 the world (Ministry of the Environment of Japan, 2013). Under such strict regulations, the vast
18 majority of blast furnaces, basic oxygen furnaces, electric arc furnaces, and cement kilns are
19 controlled with HEDs. The PM control portfolio for industrial boilers, sintering plants, glass
20 production plants, and coke ovens is typically a mix of ESPs and HEDs. Effective SO₂ removal
21 technologies (70-80% removal efficiency) are applied in various industries, including sintering,
22 cement production, coke ovens, sulfuric acid production, and a number of lesser production
23 processes (Gains-Asia model of the International Institute for Applied System Analysis, IIASA,
24 <http://gains.iiasa.ac.at/models/>). The average efficiency of such removal equipment increased
25 gradually as old facilities were retired. The dominant controls for NO_x emissions as of 2010 were
26 low-NO_x combustion technologies; flue gas denitrification has not been widespread due to
27 relatively high cost.

28 Emission standards for industrial sources in South Korea are generally less stringent than
29 those of Japan but more stringent than those of China (Ministry of Environment of South Korea,
30 2013). In contrast with Japan, the PM control portfolio for cement kilns is an equal mix of ESPs

1 and HEDs; ESPs still dominate PM removal for industrial boilers and sintering machines, and
2 HEDs are not widely applied. FGD systems were widely applied at some high-emitting sources
3 such as industrial boilers and sintering plants by 2010, with penetrations of 85% and 100%,
4 respectively (NIER, 2013; NIER 2010). Similar to Japan, the dominant control measures for NO_x
5 emissions were low-NO_x combustion technologies by 2010.

6 2.2.3 Residential sector

7 There are only limited regulations in the three countries addressing residential sources. In Japan,
8 about half of residential and commercial boilers are equipped with HEDs, driven by stringent
9 regulations of local government. In South Korea and China, dominant control technologies are
10 CYC and WET (Table 3).

11 Compared with boilers, emissions from small stoves are more difficult to control. In Japan,
12 small incinerators dwindled rapidly in the last decade due to a 2000 regulation designed to
13 mitigate dioxin pollution (Ministry of the Environment of Japan, 2013; Wakamatsu et al., 2013).
14 A previous study found briquette stoves have lower emission factors for SO₂ and PM (Lei et al.,
15 2011). We estimate briquette use accounted for 6-7% of total residential coal consumption in
16 China during 2005-2010 (NBS, 2007, 2008a, b, 2009, 2011a, b). Emissions from small stoves can
17 be further reduced by switching to new technologies, e.g., those using catalyst or non-catalyst
18 inserts and/or primary and secondary air deflectors. These types of improved stoves have been
19 spreading gradually in Japan and Korea (see Table 3).

20 2.2.4 Transportation sector

21 China has issued a series of emission standards for new vehicles and engines based on the
22 European Union (EU) “Euro” Standards since 2000; the implementation years and penetrations
23 of major emission standards are shown in Figure 1 and Table 5. At the national level, Euro I, II,
24 and III standards began to be put into effect in 2000, 2004, and 2007, respectively. The Euro IV
25 standard for light-duty vehicles was implemented in 2011. The Euro IV standard for heavy-duty
26 diesel vehicles was originally planned for implementation in 2010, but was postponed until July
27 2013 by the MEP due largely to an insufficient supply of low-sulfur fuel (Wu et al., 2012).
28 Megacities including Beijing and Shanghai are subject to greater pressure for regulating vehicle
29 emissions, and are therefore 2-3 years ahead of the national regulation. Recently, the Beijing

1 Environmental Protection Bureau announced enforcement of Euro V in 2012 and Euro VI in
2 2016. Aside from regulations for new vehicles, emission reductions are also achieved with
3 control of in-use vehicle emissions and improvement of fuel quality ([Wang and Hao, 2012](#)).

4 Japan's emission standards for new vehicles have been among the most stringent in the world.
5 Since the introduction of the first regulation in 1981, the standards have been repeatedly
6 strengthened. For light-duty vehicles, the prevailing emission standard for NO_x and NMVOC
7 during 2005-2010 (under the "New Long-term Regulation") was comparable to that in U.S. (Tier
8 II), and more stringent than that of the EU (Euro IV) before Euro V took effect in the second half
9 of 2009. A more recent "Post New Long-term Regulation" released in 2009 added a limit for PM
10 comparable to U.S. Tier II, while maintaining the prior limits for other pollutants. For heavy-duty
11 vehicles, Japan's NO_x emission regulations before 2005 had been stricter than those of Europe
12 and the U.S. ([Japan Automobile Manufacturers Association, 2011](#)). During 2005-2010, Japan's
13 prevailing standard was comparable to Euro V (issued in 2008), and between the 2004 and 2007
14 standards of the U.S. Since the early 2010s, European, U.S. and Japanese regulatory standards for
15 NO_x and PM emissions for diesel vehicles have been roughly similar ([Ministry of the](#)
16 [Environment of Japan, 2013; Delphi Company, 2013a, b](#)).

17 South Korea has gradually intensified its vehicle emission standards to the level of advanced
18 countries. In December of 2003, Korea issued new vehicle emission standards corresponding to
19 the level of Ultra-Low Emission Vehicles (ULEV) for gasoline vehicles and the levels of Euro IV
20 for diesel vehicles, taking effect in 2007. Since January 2013, South Korea has adopted
21 California's Non-methane Organic Gases (NMOG) Fleet Average System (FAS) for gasoline-
22 fueled vehicles, which has been in place in California since 2009 (<http://transportpolicy.net/>). For
23 diesel vehicles, Euro V was introduced starting from September 2009, and Euro VI standard will
24 be in place by 2014 ([Ministry of Environment of South Korea, 2013; Delphi Company, 2013a, b](#)).
25 The penetrations of vehicle emission standards in Japan and South Korea are given in Table 5.

26 2.2.5 Solvent use

27 The Chinese government has released standards to limit the solvent content of some products,
28 including wood paint, interior wall paint, adhesives for shoe production, decorative adhesives,
29 and printing inks. Driven by these standards, the solvent content of some products declined, and

1 the penetration of low-solvent products increased during 2005-2010. Table 6 and Table S2 show
2 the penetrations of major control measures for solvent use; Table S3 shows the changes in the
3 emission factors of typical sources (especially regulated ones) during 2005-2010. Despite the
4 existing standards, most emissions from solvent use remain uncontrolled in China.

5 In 2004, Japan's Ministry of Environment set a target to reduce NMVOC emissions by 30%
6 from 2000 levels by 2010 using both regulations (10%) and voluntary efforts (20%), with a focus
7 on emissions from solvent use ([Ministry of the Environment of Japan, 2013](#)). The actual
8 reductions are estimated to be higher, but the O₃ and PM concentrations have not declined as
9 expected ([Wakamatsu et al., 2013](#)).

10 South Korea issued concentration limits for stack emissions of NMVOC for coating plants
11 and more recently for gravure printing facilities. For outdoor application of paints, the
12 government reached agreement with producers regarding the development of low solvent
13 products as well as improved application methods to minimize NMVOC emissions ([Ministry of](#)
14 [Environment of South Korea, 2013](#)).

15 **2.3 Effect of control measures on recent emission trends**

16 The historical emissions of China are estimated using a model structure developed in our
17 previous paper ([Zhao et al., 2013c](#)). The emissions from each sector in each province were
18 calculated from data on activities (e.g., energy consumption or industrial production),
19 technology-based uncontrolled emission factors, and penetrations and removal efficiencies of
20 control technologies. The data sources for China are also described in [Zhao et al. \(2013b\)](#).

21 The historical emissions of Japan are consistent with the JATOP Emission Inventory-Data
22 Base (JEI-DB), developed by the Japan Petroleum Energy Center (JPEC) ([JPEC, 2012a, b, c](#)).
23 Special attention was paid to on-road vehicle emissions. The basic estimation method is to
24 multiply the traffic volume (considering the vehicle type mix) and emission factors for vehicle
25 types. JPEC adjusts that value with correction factors to take account of accumulated mileage,
26 temperature, and humidity. It also includes data from original research on start emission factors,
27 evaporation emission factors, the ratio of high-emission vehicles, and vehicle usage profile from
28 a questionnaire-based survey ([JPEC, 2012c](#)). The emissions from other sources were calculated
29 using local statistical information and emission factors, similar to the methodology for the

1 estimation of China's emissions (JPEC, 2012a).

2 The historical emissions of South Korea were calculated by the National Institute of
3 Environmental Research (NIER), and the data sources are described in its research reports and a
4 web-based database (NIER, 2010; NIER 2013; CAPSS, <http://airemiss.nier.go.kr/>). Note that
5 continuous emissions monitoring systems (CEMSs) were installed at most large point sources
6 starting in 2002, allowing CEMS-based emission estimation for 2007-2010, while earlier years
7 were calculated using emission factors. This methodological change produced emission
8 discontinuities in 2007, leading us to replace pre-2007 emissions from those stacks with values
9 extrapolated from 2007-2010 CEMS-based estimates, taking account of changes of control
10 measures.

11 The emissions for North Korea, Mongolia, Hong Kong & Macao, and Taiwan are adopted
12 directly from the Gains-Asia model of IIASA (<http://gains.iiasa.ac.at/models/>).

13 The national energy consumption and air pollutant emissions are summarized in Table 7 and
14 Table 8, respectively. The sectoral emissions in China are given in Figure 2, and those in Japan
15 and South Korea are shown in Figure 3. The provincial emissions in China are shown in Table S4.

16 2.3.1 NO_x

17 The total NO_x emissions in East Asia were 29.7 Mt in 2010 and the growth rate was 25% during
18 2005-2010. This trend was dominated by the increase in emissions from China, which
19 contributed 82-88% of total NO_x emissions in East Asia.

20 During this period, NO_x emissions in China increased by 34%, driven by the rapid increase of
21 industry and transportation. The emissions from power plants stopped growing by 2010 due to
22 the application of LNBs and penetration of non-fossil energy sources in the sector. But emissions
23 from industry and transportation continued to grow rapidly due to swiftly expanding industrial
24 energy consumption and vehicle populations.

25 NO_x emissions from the rest of East Asia decreased by 13% during the five years, mainly
26 attributed to a 21% reduction in emissions from Japan due chiefly to the implementation of tight
27 emission standards for new vehicles. The emissions of South Korea decreased slightly, by 5%,
28 for the same reason.

1 2.3.2 SO_2

2 The total SO_2 emissions in East Asia decreased by 15%, from 30.4 Mt in 2005 to 25.9 Mt in 2010,
3 with both China and the rest of East Asia experiencing the same 15% rate of decline and Chinese
4 emissions accounting for as much as 94% of the regional total.

5 The decline in China's SO_2 emissions is mainly attributable to the widespread deployment of
6 FGD at power plants, even as emissions from China's industrial sector continued to rise during
7 this period; this is consistent with the recent estimates by [Zhang et al. \(2012b\)](#), [Lu et al. \(2011\)](#),
8 [Klimont et al. \(2013\)](#).

9 SO_2 emissions of Japan decreased by 20%, mainly attributed to the increasing penetration of
10 higher-efficiency desulfurization technologies in the industrial sector, and the replacement of coal
11 and oil with cleaner energy sources. South Korea's SO_2 emissions remained roughly constant,
12 because the reduction of the emissions from power plants (due to the deployment of FGDs) was
13 offset by the increasing emissions from industrial sources.

14 2.3.3 PM_{10} and $\text{PM}_{2.5}$

15 In 2010, the total PM_{10} and $\text{PM}_{2.5}$ emissions in East Asia were 16.8 Mt and 12.5 Mt, respectively,
16 decreasing 15% and 12% from 2005 levels. This trend was also dominated by emission trends in
17 China, as its PM_{10} and $\text{PM}_{2.5}$ emissions represent about 94% of those of East Asia.

18 China's PM_{10} and $\text{PM}_{2.5}$ emissions decreased by 15% and 12%, respectively, during the five
19 years. We estimate that emissions of power plants and the cement industry experienced the
20 greatest decrease (43%-47% during 2005-2010), a result of the rapid evolution of end-of-pipe
21 controls (see Table 2 and Table 4). The emissions of industrial boilers and steel industry
22 increased by 14%-32%, while the emissions of other sectors remained relatively stable.

23 PM_{10} and $\text{PM}_{2.5}$ emissions decreased by 7% and 9% in the rest of East Asia. The reduction
24 rate was as large as 19%-28% in Japan, with the transportation sector contributing 70% of this
25 decline. Emissions from South Korea increased somewhat due to the increase in industrial fuel
26 consumption and the relatively stable energy intensity of the industrial sector (see Sect. 2.1.2).

1 2.3.4 NMVOC

2 The total NMVOC emissions in East Asia were 25.9 Mt in 2010, reflecting 15% growth over
3 2005 levels, an integrated effect of a 21% increase in emissions from China (contributing 84-88%
4 of the total emissions) and a 17% reduction in emissions from other countries.

5 In China, the NMVOC emissions from transportation and residential combustion decreased
6 due to improved vehicle emission standards and the replacement of biomass with cleaner energy
7 sources. However, these reductions were more than offset by the dramatic increase of emissions
8 from industrial processes (+46%) and solvent use (+102%).

9 Japan's NMVOC emissions decreased by 30%, mainly attributed to the government's efforts
10 to reduce the emissions from solvent use and the implementation of stringent vehicle emission
11 standards. In South Korea, although the enhancement of vehicle emission standards lowered
12 NMVOC emissions from transportation, the emissions from solvent use increased even more
13 rapidly, leading to a 15% increase in total NMVOC emissions.

14 **2.4 Uncertainty analysis**

15 A Monte Carlo uncertainty analysis was performed on the emission inventories of East Asia for
16 2005-2010, following the methodology described in [Bo et al. \(2008\)](#) and [Wei et al. \(2008, 2011a\)](#).
17 The probability distribution of the activity data and emission factors were determined using the
18 method and data used in [Wei et al. \(2008, 2011a\)](#) as a starting point. We re-evaluated the
19 uncertainties of the emission factors taking account of new field measurements in recent years.
20 Specifically, we assumed that the uncertainties of the activity data and emission factors had
21 lognormal distributions. The uncertainties of activity levels were rated from level I to level V,
22 corresponding to coefficients of variation (CVs, defined as the ratio of the standard deviation to
23 the mean of a probability distribution, indicating the extent of variability in relation to the mean
24 of the population) of $\pm 30\%$, $\pm 80\%$, $\pm 100\%$, $\pm 150\%$, and $\pm 300\%$, respectively. For example, the
25 activity levels derived directly from statistics were rated as level I, and those calculated using
26 nonstatistical data and empirical conversion factors were rated as level V. The uncertainties of
27 emission factors were also rated from level I to level V, with the corresponding CVs of $\pm 50\%$,
28 $\pm 80\%$, $\pm 150\%$, $\pm 300\%$, and $\pm 500\%$, respectively. The emission factors for the sources with stable
29 emission rates and over 10 local field measurements were rated as level I, while a rating of level

1 V was assigned when the emission factors for similar sources were applied due to the lack of
2 measurements. With the determined probability distribution of the activity data and emission
3 factors of each source, the Monte Carlo method was used to propagate these uncertainties into an
4 uncertainty for the total inventory. Table S5 shows the calculated uncertainties by sector.

5 During 2005-2010, the average 90% confidence interval of the total NO_x emissions is [-31%,
6 44%]. The CV is $\pm 25\%$ on average. The uncertainties of emissions vary with emission sectors
7 (see Table S5), attributable to the different magnitudes of uncertainties associated with activity
8 levels and emission factors. Biomass open burning has the largest CV ($\pm 177\%$) because both the
9 activity levels and the emission factors are quite uncertain. The transportation sector has the
10 second highest uncertainty (CV= $\pm 66\%$), as its fuel consumption is calculated from vehicle
11 population, annual average mileage travelled, and fuel economy, rather than from energy
12 statistics.

13 The average 90% confidence interval and CV of the total SO₂ emissions are [-29%, 45%] and
14 $\pm 28\%$, respectively, during 2005-2010. Similar to that of NO_x emissions, the SO₂ emissions
15 from biomass open burning have the highest uncertainty (CV= $\pm 179\%$). The uncertainties of the
16 industrial, residential, and transportation sectors are quite close to each other, with CVs in the
17 range of $\pm 48\%- \pm 51\%$.

18 During 2005-2010, the average 90% confidence interval and CV of the total PM_{2.5} emissions
19 are [-39%, 49%] and $\pm 39\%$, respectively. Biomass open burning is the sector subject to the
20 highest uncertainty (CV= $\pm 216\%$). The residential sector has the second highest uncertainty due
21 to the relatively few emission factor measurements for coal stoves and biomass stoves, the
22 dominant PM_{2.5} emission sources of this sector.

23 The average 90% confidence interval and CV of the total NMVOC emissions are [-42%, 67%]
24 and $\pm 42\%$, respectively. The “other sectors”, which include biomass open burning (contributing
25 over 80% of NMVOC emissions in this category), waste treatment, cooking, and smoking, have
26 the highest uncertainty (CV= $\pm 184\%$). This is followed by solvent use (CV= $\pm 78\%$), for which
27 the activity levels are not directly available from official statistics and emission factor
28 measurements are lacking. The CVs for the industrial, residential, and transportation sectors are
29 all within the range of $\pm 57\%- \pm 65\%$.

1 It can be seen that NMVOC is the pollutant subject to the highest uncertainty, followed by
2 PM_{2.5}. The high uncertainty of NMVOC emissions is mainly attributable to the lack of local
3 measurements for many industrial and solvent use sources. The higher uncertainties of PM_{2.5}
4 emissions compared with NO_x and SO₂ result from the larger uncertainties in the emission
5 factors (e.g., uncertainties in the emission factors of industrial fugitive dust and in the removal
6 efficiencies of dust collectors), and a relatively large share of emissions from small-scale
7 emission sources (e.g., coal stoves and biomass stoves).

8 **3 Future emission scenarios for air pollutants**

9 To quantify the effects of various measures on future air pollutant emissions, in this study we
10 developed emission scenarios for SO₂, NO_x, PM, and NMVOC based on energy-saving policies
11 and end-of-pipe control strategies. The scenarios are developed with the same model structure as
12 that for the estimation of historical emissions developed in our previous paper ([Zhao et al.,
2013c](#)). The energy service demand is estimated based on driving forces (e.g., GDP and
14 population). The future technology distribution and energy efficiencies are assumed and the
15 energy consumption is calculated accordingly. Both historical and future emissions are derived
16 from energy consumption, emission factors, and assumptions on the penetration of control
17 technologies. For details, see [Zhao et al. \(2013c\)](#).

18 We developed two energy scenarios, a business-as-usual scenario (BAU) and an alternative
19 policy scenario (PC). The BAU scenario is based on current regulations and implementation
20 status (as of the end of 2010). In the PC scenario, we assume the introduction and strict
21 enforcement of new energy-saving policies, including ones leading to a more energy-conserving
22 lifestyle, structural adjustment, and energy efficiency improvement. Energy-conserving lifestyle
23 is defined by a slower growth of energy service demand that would result from less building area,
24 a smaller vehicle population, and reduced consumption of energy-intensive industrial products,
25 electricity, and heat. Structural adjustment includes promotion of clean and renewable fuels and
26 energy-efficient technologies. Examples include renewable energy sources and CHP for power
27 plants and heat supply, arc furnaces and large precalciner kilns for the industrial sector, biogas
28 stoves and heat pumps for the residential sector, and electric and biofuel vehicles for the

1 transportation sector. Energy efficiency improvement refers to the improvement of the energy
2 efficiencies of individual technologies.

3 We developed three end-of-pipe control strategies for each energy scenario, including
4 baseline (abbreviated as [0]), progressive [1], and maximum feasible control [2], thereby
5 constituting six emission scenarios (BAU[0], BAU[1], BAU[2], PC[0], PC[1], and PC[2]). The
6 baseline control strategy [0] assumes that all current pollution control regulations (as of the end
7 of 2010) and the current implementation status would be followed during 2011-2030. Control
8 strategy [1] assumes that new pollution control policies would be released and implemented in
9 China, representing a progressive approach towards future environmental policies. For other
10 countries, we assume the same controls as strategy [0]. Control strategy [2] assumes that
11 technically feasible control technologies would be fully applied by 2030, regardless of the
12 economic cost. The definition of the energy scenarios and emission scenarios are summarized in
13 Table 1.

14 In this paper we focus on the development of energy scenarios and emission scenarios for
15 China. The scenarios for other countries are adapted from those developed by IIASA in a project
16 funded by United Nations Environment Programme (UNEP) and World Meteorological
17 Organization (WMO) ([Shindell et al., 2012](#); [UNEP and WMO, 2011](#)). Both the energy
18 consumption and air pollutant emissions were calculated with a 5-year time step, although the
19 parameters and results are presented for selected years only. Detailed assumptions of the energy
20 scenarios and emission scenarios are documented below.

21 **3.1 Development of energy scenarios**

22 For countries other than China, our BAU and PC scenarios are consistent with the energy
23 pathways of the reference and 450-pmm scenarios in [Shindell et al. \(2012\)](#), and [UNEP and WMO](#)
24 ([2011](#)), which were based on the reference and 450-pmm scenarios presented in the World Energy
25 Outlook 2009 ([IEA, 2009](#)), respectively. While the reference scenario is based on current energy
26 and climate-related policies, the 450-pmm scenario explores the global energy consumption if
27 countries take coordinated action to restrict the global temperature increase to 2°C. The details of
28 energy scenarios are described in [Shindell et al. \(2012\)](#), [UNEP and WMO \(2011\)](#) and [IEA \(2009\)](#).

1 For China, we have developed two energy scenarios that are consistent with our previous
2 paper (Zhao et al., 2013c). Presented below is a brief description of the assumptions and results
3 of the energy scenarios; see Zhao et al. (2013c) for detailed information. Note that because that
4 paper focused on the emission trends of NO_x, it did not project activity data in terms of fossil fuel
5 distribution (included in the industrial sector for this study) nor the use of solvents. These two
6 projections are incorporated below.

7 We assume that the annual average GDP growth rate will decrease gradually from 8.0%
8 during 2011-2015 to 5.5% during 2026-2030. The national population is projected to increase
9 from 1.34 billion in 2010 to 1.44 billion in 2020 and 1.47 billion in 2030, and the urbanization
10 rate (proportion of people in urban areas) is assumed to increase from 49.95% in 2010 to 58%
11 and 63% in 2020 and 2030, respectively.

12 The total electricity production is projected to be 10%-12% lower in the PC scenario than that
13 of the BAU scenario. The PC scenario considers aggressive development plans for clean and
14 renewable energy power generation; therefore, the proportion of electricity production from coal-
15 fired power plants is expected to decrease to 57% in 2030 in the PC scenario, contrasted with
16 73% in the BAU scenario.

17 We applied an elasticity coefficient method for the estimation of future production of
18 industrial products, the governing equation of which is as follows:

$$19 \quad Y_{t1} = Y_{t0} \left(\frac{dv_{t1}}{dv_{t0}} \right)^\delta \quad (1)$$

20 where, $t0$, $t1$ are time periods, e.g., $t0 = 2010$, and $t1 = 2030$; Y is the yield of a specific
21 industrial product; dv is the driving force, namely sectoral value added or population; and δ is
22 the product-specific elasticity coefficient. The values of δ are determined through (1) historical
23 trends during 1995-2010; (2) the experience of developed countries; and (3) projections of
24 industrial associations. Generally speaking, production of most energy-intensive commodities
25 used in construction of infrastructure are expected to increase until 2020, and then to stabilize or
26 even decline after 2020, whereas products associated with household consumption are expected
27 to increase through 2030, although at a declining rate. We projected lower production of
28 industrial products in the PC scenario than those of the BAU scenario because of more energy-

1 conserving lifestyles. The penetrations of less energy-intensive technologies are assumed to be
2 higher in the PC scenario than the BAU scenario.

3 For the residential sector, China's building area per capita in the PC scenario is expected to be
4 3-4 m² lower than that of the BAU scenario in both urban and rural areas. The heating energy
5 demand per unit area is somewhat lower in our PC scenario because of the implementation of
6 new energy-conservation standards in the design of buildings. Replacement of coal and direct
7 biomass burning with clean fuels are assumed in both urban and rural areas, with faster progress
8 in the PC scenario.

9 The vehicle population per 1000 persons is projected at 380 and 325 in the BAU and PC
10 scenarios, respectively. The PC scenario also assumes aggressive promotion of electric vehicles,
11 and a progressive implementation of new fuel efficiency standards, resulting in 33% and 57%
12 improvement in the fuel economy of new passenger cars and new heavy-duty vehicles by 2030.

13 The increase of fossil fuels stored and distributed is expected to be consistent with the
14 increase of total fuel consumption in the future. The gasoline or diesel sold at service stations is
15 expected to have the same growth rate as fuel consumption in the transportation sector. Therefore,
16 the activity levels of fossil fuel distribution are derived from the projections of fuel consumption.

17 The activity data for the solvent use sector are the consumption of products containing
18 solvents. The forecast approach, which is consistent with [Wei et al. \(2011b\)](#), is illustrated as
19 follows:

$$20 A_{t1} = \sum_j \left(A_{t0,j} \times \frac{Y_{t1,j}}{Y_{t0,j}} \right) \quad (2)$$

21 where, $t0$, $t1$ are time periods, e.g., $t0 = 2010$, and $t1 = 2030$; j represents the industries using a
22 specific solvent product; A_{t1} is the consumption of this solvent product in the year $t1$; $A_{t0,j}$ is the
23 consumption of this solvent product in industry j in the year $t0$; $Y_{t0,j}$ and $Y_{t1,j}$ are the yields of
24 the major products (e.g., crude steel for the iron and steel industry) for industry j in the year $t0$
25 and $t1$, respectively. The yields of industrial products were projected using the elasticity
26 coefficient method as described above.

27 Table 7 shows current and future energy consumption in East Asia. Total energy consumption
28 in East Asia was 123 EJ in 2005 and 161 EJ in 2010. The energy consumption of China accounts

1 for 69-76% of the total energy amount during 2005-2010, followed by 13-18% for Japan, and
2 about 7% for South Korea. By 2030, the total energy consumption is projected to increase to 243
3 EJ under the BAU scenario and to 195 EJ under the PC scenario, 51% and 21% higher than that
4 of 2010.

5 Of all the countries, China is expected to experience the fastest growth rate in energy
6 consumption. By 2030, China's energy consumption is projected to increase by 64% and 27%
7 from the 2010 level in BAU and PC scenarios, respectively. Industry fuel consumption is expected
8 to increase notably slower than the total fuel use in both scenarios, resulting from the structural
9 economic adjustment. In contrast, the energy consumption of transportation is projected to
10 increase dramatically by 200% and 101% in the BAU and PC scenarios, respectively, measured
11 in 2030 against the 2010 levels, driven by the swift increase in vehicle population. The growth
12 rate of energy consumption in other sectors is close to that of the total amount. Because of the
13 energy-saving measures, the energy consumption of power plants, industry, residential, and
14 transportation sectors in the PC scenario are 18%, 19%, 27%, and 33% lower than the BAU
15 scenario, respectively. Coal continues to dominate China's energy mix, but the proportion
16 decreases from 68% in 2010 to 60% and 52% in 2030 under the BAU and PC scenarios,
17 respectively. In contrast, the shares of natural gas and "other renewable energy and nuclear
18 energy" are estimated to increase from 3.4% and 7.5% in 2010 to 5.5% and 8.9% in 2030 under
19 the BAU scenario, and 9.3% and 15.8% under the PC scenario, respectively.

20 By 2030, the energy consumption of East Asia other than China is projected to increase
21 slightly by 12% and 2% over the 2010 level in the BAU and PC scenarios, respectively. Under
22 current policies, Japan's energy consumption is projected to increase very slightly by 2% from
23 2010 to 2030, because of slow economic growth rate and a trend towards higher energy
24 efficiency resulting from current legislation. Under implementation of low-carbon policies
25 intended to limit CO₂ concentrations to 450 ppm, Japan's energy consumption would be reduced
26 by 6% by 2030 over the 2010 level. This reduction is mainly attributed to the decline in energy
27 consumption of the transportation sector, resulting from improved fuel economy and reduced
28 mileage travelled. By 2030, South Korea's energy consumption is expected to increase by 26%
29 and 15% over the 2010 level under the two energy scenarios, respectively. Similar to China, there
30 are also evident trends towards clean and renewable energy in Japan and South Korea. For

1 example, from 2010 to 2030, the shares of coal and petroleum products in Japan's energy
2 consumption are expected to decrease from 22% and 40% to 20% and 31% under the BAU
3 scenario, respectively, and to 12% and 29% under the PC scenario. In contrast, the proportion of
4 renewable energy would increase from 16% in 2010 to 23% and 33% in 2030 under the BAU and
5 PC scenarios, respectively.

6 **3.2 Development of emission control scenarios**

7 For the countries other than China, our control strategies [0] and [2] are consistent with the
8 control strategies of the reference scenario and the maximum feasible reduction scenario in
9 [UNEP and WMO \(2011\)](#), respectively. While control strategy [1] assumes that new pollution
10 control policies would be implemented progressively in China, it has the same assumptions as
11 control strategy [0] for the other countries for the following reasons: (1) China accounts for 88%,
12 94%, 94%, 95%, and 88% of the total NO_x, SO₂, PM₁₀, PM_{2.5}, and NMVOC emissions in East
13 Asia in 2010; (2) Japan and South Korea already have stringent environmental policies in the
14 base year, and the progressive control strategy for countries other than China will have negligible
15 effect on the regional outcomes. The major assumptions underlying control strategies [0] and [2]
16 are straightforward: [0] assumes current regulations and implementation status, while [2] assumes
17 full application of best-available technologies in the world. Therefore, in the following text, we
18 will focus on the assumptions for China and omit details for other countries. The penetrations of
19 major control technologies in China, Japan, and South Korea are summarized in Table 2 through
20 Table 5.

21 **3.2.1 Power plants**

22 As documented in Sect. 2.2.1, the recently released 12th Five-Year Plan set specific targets and
23 proposed detailed technological roadmaps for the reduction of SO₂ and NO_x emissions from
24 power plants. The government did not set a total PM emission target, but rather a strict in-stack
25 PM concentration standard in 2011 (30 mg m⁻³ for the entire country except for 20 mg m⁻³ in key
26 regions, as defined in Sect. 2.2.2). Power plants burning coal with low ash content could attain
27 the 30 mg m⁻³ threshold by installing ESP and wet-FGD simultaneously. For units burning coal
28 with high ash content, or when the 20 mg m⁻³ threshold applies, HEDs (including FFs and

1 electrostatic-fabric integrated precipitators) would be the only commercially available control
2 technology.

3 The BAU[0]/PC[0] scenarios consider only the control policies released before the end of
4 2010. In other words, NO_x and PM emissions are mainly controlled with LNB and ESP,
5 respectively. The penetration of FGD would increase quite slowly. The BAU[1]/PC[1] scenarios
6 are based on the 12th Five-Year Plan (including the 2011 emission standard for 2011-2015) and
7 the assumption that high-efficiency control technologies will continue to spread gradually after
8 2015. The penetration of FGD in coal-fired units is assumed to approach 100% by 2015. All
9 newly built thermal power plants will be equipped with low-NO_x combustion technologies and
10 flue gas denitrification (SCR or SNCR) from 2011 onwards. Existing thermal power plants will
11 be upgraded with low-NO_x combustion technologies, and large units (≥ 300 MW) will be
12 upgraded with SCR or SNCR during 2011-2015. SCR and SNCR will gradually penetrate to
13 smaller units after 2015. More ambitious measures will be required in the key regions. For PM,
14 HED will spread much more rapidly, with its share in coal-fired units approaching 35% and 50%
15 in 2020 and 2030, respectively. In the BAU[2]/PC[2] scenarios, the best-available technologies
16 (i.e., FGD for SO₂, LNB+SCR for NO_x, and HED for PM) are assumed to be fully applied by
17 2030. Table 2 gives the national average penetration of control technologies. Note that the
18 penetrations in the key regions are usually larger than those of other regions.

19 3.2.2 Industrial sector

20 The latest national emission standard for industrial boilers was released in 2001 (GB13271-2001),
21 although several provinces including Beijing and Guangdong have recently issued local standards.
22 As the BAU[0]/PC[0] scenarios are based only on current regulations, i.e., nearly no measures
23 implemented to control SO₂ and NO_x emissions, and WET remains dominant control technology
24 for PM emissions. The BAU[1]/PC[1] scenarios are based on the 12th Five-Year Plan during
25 2011-2015; progressive control measures would be enforced after 2015 as an extension of the
26 12th Five-Year Plan. For SO₂, FGDs are assumed to be widely deployed, penetrating 20%, 40%,
27 and 80% of the total capacity by 2015, 2020, and 2030, respectively. For NO_x, LNB will be
28 required at newly built industrial boilers, and existing boilers in the key regions will begin to be
29 retrofitted with LNB during 2011-2015. The vast majority of existing boilers are expected to be

1 equipped with LNB by 2020. For PM, ESP and HED will be gradually deployed to replace the
2 less-efficient WET. In the BAU[2]/PC[2] scenarios, the most efficient removal technologies,
3 including FGD, LNB+SCR, and HED, will be fully applied.

4 The emissions from industry processes (i.e., other than boilers) were mainly regulated by the
5 “Emission Standard for Industrial Kilns and Furnaces” before 2010. Standards for specific
6 industries were only issued for cement plants (GB4915-2004) and coking ovens (GB16171-1996).
7 However, new emission standards for a variety of industries were rapidly issued during 2010-
8 2012, which may significantly alter their future emission pathways.

9 A series of new emission standards for the iron and steel industry were released in 2012,
10 including the standards for sintering, iron production, steel production, steel rolling, and other
11 processes. Sintering is the main source of SO₂ and NO_x emissions in the iron and steel industry,
12 and also an important source of PM emissions. Installation of wet-FGDs is required in order to
13 attain the SO₂ concentration standard, and the 12th Five-Year Plan also requires large-scale
14 deployment of FGD. The threshold for NO_x concentration can be attained without additional
15 control technologies, but the 12th Five-Year Plan requires newly built sintering facilities to be
16 equipped with SCR or SNCR. Most sintering plants can meet the PM threshold with
17 simultaneous installation of FGD and ESP, but HED is required for those in key regions and
18 those with poor raw material quality. The BAU[0]/PC[0] scenarios assume only the continuation
19 of the control regulations as of 2010. The BAU[1]/PC[1] scenarios are developed on the basis of
20 the 2012 standard and the 12th Five-Year Plan. FGD would be installed at most sintering facilities
21 and SCR or SNCR at newly built ones during 2011-2015; the penetrations would increase
22 gradually afterwards. While ESP remains the dominant PM-removal technology, HED is
23 assumed to be deployed gradually. FGD, SCR, and HED would be fully applied in the
24 BAU[2]/PC[2] scenarios. Blast furnaces (for pig iron production) in China are usually equipped
25 with washing towers and double venturi scrubbers, which currently remain the best-available
26 technologies. The 2012 emission standard for steel production (with basic oxygen furnaces and
27 electric arc furnaces being the major technologies) implies that low-efficient WET should be
28 phased out, and HED needs to be installed for newly built facilities. While the BAU[0]/PC[0]
29 scenarios assume the emission standard before 2010, the BAU[1]/PC[1] scenarios assume the

1 retirement of WET and gradual promotion of HED, according to the 2012 emission standard. The
2 BAU[2]/PC[2] scenarios assume full utilization of HED.

3 Current emission standards for the cement industry were released in 2004. The SO₂ and NO_x
4 standards can be met without additional control measures, and the PM standard can be met with
5 both ESP and HED. Therefore, we assume the control technology mix of 2010 would remain the
6 same as in the BAU[0]/PC[0] scenarios. In 2012, MEP published a draft new emission standard
7 for public comment. As cement clinker can absorb most SO₂ produced due to its basic chemistry,
8 even the strengthened SO₂ limit may be attained under favorable technical conditions. The
9 attainment of the NO_x limit requires upgrading with low-NO_x combustion technology for
10 existing kilns (or installation of SNCR as an alternative), and simultaneous utilization of low-
11 NO_x combustion technology and SNCR/SCR for new kilns. The BAU[1]/PC[1] scenarios are
12 based on the 2012 draft standard and the 12th Five-Year Plan. Newly built precalciner kilns
13 (mostly ≥ 4000 t/d) are required to be equipped with SCR/SNCR, and existing precalciner kilns
14 should be retrofitted with low-NO_x combustion technology during 2011-2015. SCR/SNCR is
15 assumed to continue to spread gradually after 2015. HED would be deployed gradually to meet
16 the strengthened PM threshold for new kilns. The BAU[2]/PC[2] scenarios assume full
17 application of desulfurization facilities, LNB+SCR, and HED.

18 As for coke ovens, we assume no control measures for SO₂ and NO_x emissions, and
19 continuous application of WET for PM emissions in the BAU[0]/PC[0] scenarios. In the
20 BAU[1]/PC[1] scenarios, we assume the installation of FGD in the coal-charging process or coke
21 oven gas exhaust for newly built plants (contributing about 50% and 30% of emissions,
22 respectively) to meet the requirement of a new standard issued in 2012 (GB16171-2012). In
23 addition, new plants are assumed to be equipped with HED, also required by the new standard.
24 The BAU[2]/PC[2] scenarios assume full application of the best desulfurization, denitrification,
25 and PM removal facilities available.

26 As for glass production, the BAU[0]/PC[0] scenarios assume no control measures for SO₂
27 and NO_x emissions, and the current mix of PM removal technologies. The BAU[1]/PC[1]
28 scenarios are designed according to the new emission standard released in 2011, though enforced
29 leniently because of difficulty in implementation. FGD, as well as end-of-pipe NO_x control
30 technologies (typically oxy-fuel combustion technology, OXFL, or SCR), would be applied

1 gradually at both existing and new plants. Outdated PM removal technologies, e.g. WET, would
2 be phased out. For the brick industry, emissions from about 30% of plants remain uncontrolled in
3 2010. A draft new emission standard in 2009 calls for a PM removal efficiency of over 60% at
4 existing plants, and over 80% at new plants. In the BAU[1]/PC[1] scenarios, PM emissions from
5 brick plants are assumed to be controlled according to the standard, though enforced leniently due
6 to inspection difficulty.

7 To attain the new emission standard for the nitric acid industry (GB26131-2010), the dual-
8 pressure process would be equipped with absorption technologies (ABSP) or SCR, while other
9 processes need to adopt both ABSP and SCR. The BAU[0]/PC[0], BAU[1]/PC[1] and
10 BAU[2]/PC[2] scenarios assume the technology mix of 2010, lenient enforcement of the new
11 standard, and stringent enforcement of the new standard, respectively.

12 In the BAU[0]/PC[0] scenarios, we assume the emission standards for gasoline distribution
13 (GB20950, GB20951, and GB20952) would continue to be enforced in the future. In the
14 BAU[1]/PC[1] scenarios, the enforcement of Stage IA, Stage IB, and Stage II controls would be
15 extended to all of China, and IFC would be applied for both newly built and existing storage
16 tanks. In addition, similar control technologies would be applied for crude oil distribution. As a
17 result, the application rate of IFC, Stage IA, and Stage IB+Stage II control measures in gasoline
18 storage and distribution would approach 75% and 100% by 2020 and 2030, respectively. The
19 application rate in crude oil distribution would be 25% and 50% by 2020 and 2030, respectively
20 (see Table 4). For the BAU[2]/PC[2] scenarios, these control measures would be fully applied by
21 2030.

22 For other industries with NMVOC emissions, nearly no control measures are assumed for the
23 BAU[0]/PC[0] scenarios. In the BAU[1]/PC[1] scenarios, we assume that new NMVOC emission
24 standards (similar to or slightly less stringent than the EU Directives 1999/13/EC and
25 2004/42/EC, depending on specific industry) will be released and implemented in key regions as
26 of 2015, and in other provinces as of 2020. Afterwards, the emission standards will become more
27 stringent gradually (see Table 4). In terms of technologies, we assume application of basic
28 management techniques (e.g., leakage detection and repair for refineries and improved solvent
29 management in paint production) where they are applicable. End-of-pipe controls (condensation,

1 adsorption, absorption, and incineration) are adopted when high removal rate is required. The
2 penetration of selected control measures assumed for key sources are summarized in Table 4.

3 **3.2.3 Residential sector**

4 Emission control policies have seldom been proposed for the residential sector in China. In the
5 BAU[0]/PC[0] scenarios, we assume no control measures except for the continued application of
6 CYC and WET for residential boilers. In BAU[1]/PC[1], HED and low-sulfur derived coal are
7 assumed to be deployed gradually, both penetrating 20% and 40% of the total capacity by 2020
8 and 2030, respectively. In addition, we assume gradual adoption of advanced coal stoves and
9 advanced biomass stoves (e.g., those with more efficient combustion or catalytic devices) where
10 applicable, which reduce emissions of PM and NMVOC. The BAU[2]/PC[2] scenarios assume
11 the application of best-available technology without considering economic cost.

12 **3.2.4 Transportation sector**

13 In the BAU[0]/PC[0] scenarios, only the existing standards (released before the end of 2010) are
14 considered. In the BAU[1]/PC[1] scenarios, all of the current standards in Europe are assumed to
15 be implemented in China gradually, and the time intervals between the releases of standard stages
16 would be a little shorter than those of Europe. The implementation timeline of the emission
17 standards is given in Figure 1. The removal efficiencies of the future emission standards are from
18 the GAINS-Asia model of IIASA ([Amann et al., 2008](#); [Amann et al., 2011](#)). The BAU[2]/PC[2]
19 scenarios assume the same implementation timeline for new standards as the BAU[1]/PC[1]
20 scenariod. In addition, old vehicles with high emissions are phased out at a faster pace through
21 compulsory measures and economic subsidies. The proportions of vehicles subject to different
22 emission standards are summarizd in Table 5.

23 **3.2.5 Solvent use and biomass open burning**

24 For emissions from solvent use, the BAU[0]/PC[0] scenarios consider only several national
25 standards limiting the NMVOCs content of some solvent products (see Sect. 2.2.5). Major
26 assumptions for the BAU[1]/PC[1] scenarios are consistent with the NMVOC emission sources
27 in the industrial sector, i.e., implementation of the EU Directives 1999/13/EC and 2004/42/EC as
28 of 2015-2020, followed by gradually strengthened regulations afterwards. Potential mitigation
29 measures to attain the European standards differ greatly for different emissions sources because

1 of various spraying technologies and chemical properties of the solvent used. However, similar to
2 the industrial sources, these measures can be categorized into two kinds: use of environmentally
3 friendly substitutes (e.g., water-based or UV products) or end-of-pipe control technologies.
4 Substitution measures are assumed where applicable, while end-of-pipe control technologies
5 would be mainly installed in newly built factories. The penetration of selected control measures
6 assumed for key sources are summarized in Table 6.

7 We assume a ban of biomass open burning in the BAU[2]/PC[2] scenarios.

8 **3.3 Future emission trends and effects of control measures**

9 The air pollutant emissions in each scenario are estimated based on the assumptions in Sect. 3.1
10 and Sect. 3.2. Table 8 shows the national air pollutant emissions in East Asia under each scenario.
11 Figure 2 shows the emissions by sector in China, and Figure 3 shows the emissions by sector in
12 Japan and South Korea. Table S4 shows the provincial emissions in China.

13 **3.3.1 NO_x**

14 Under current regulations and implementation status (the BAU[0] scenario), NO_x emissions in
15 East Asia are projected to increase by 28% in 2030 from the 2010 levels. The implementation of
16 assumed energy-saving measures (reflected by the difference between the BAU[0] and the PC[0]
17 scenarios) and progressive end-of-pipe control measures (reflected by the difference between the
18 PC[0] and the PC[1] scenarios) are expected to reduce NO_x emissions by 28% and 36%,
19 respectively, from the baseline projection (the BAU[0] scenario). With the full enforcement of
20 technically feasible control measures (the PC[2] scenario), the remaining emissions account for
21 only 21% of the baseline projection, or 27% of the 2010 levels.

22 China's growth potential under current regulations (36%) is significantly larger than the
23 average of East Asia (28%), resulting from a great increase in energy consumption and weak
24 existing control measures. The share of China in East Asia's NO_x emissions would increase to
25 93% under the baseline projection. The enforcement of energy-saving measures (the PC[0]
26 scenario) leads to a 29% reduction from the baseline projection. With the implementation of the
27 12th Five Year Plan and slowly strengthened end-of-pipe control policies after 2015 (reflected by
28 the difference between the PC[0] and the PC[1] scenarios), China's NO_x emissions could be
29 reduced by nearly 40% (compared to the baseline projection). The most effective control

1 measures are the installation of SCR and SNCR and the application of stringent vehicle standards,
2 which together achieve nearly 80% of this reduction. The full application of technically feasible
3 control measures (the PC[2] scenario) could reduce China's NO_x emissions to 20% of the
4 baseline projection, or 28% of the 2010 levels. It should be noted that the NO_x emissions are
5 projected at 22.9 Mt in 2015 under the BAU[1] scenario, 12.2% lower than that of 2010. This
6 implies that if the control policies in the 12th Five-Year Plan can be implemented successfully (as
7 assumed in the BAU[1] scenario), the national target to reduce the NO_x emissions by 10% during
8 2011-2015 would be achieved.

9 Under current regulations and implementation status, the NO_x emissions in East Asia other
10 than China are expected to decrease by 27%, with especially rapid decline in Japan (47%) and
11 South Korea (34%). The decrease is mainly attributable to the continuously increasing proportion
12 of vehicles subject to stringent emission standards. With the enforcement of energy-saving
13 policies intended to limit global temperature increase to 2°C (reflected by the difference between
14 the BAU[0] and the PC[0] scenarios), NO_x emissions in East Asia outside of China, and of the
15 two major energy consumers therein (Japan and South Korea), are all expected to decline by
16 15%-17% in 2030 compared with the baseline projection. These policies are most effective in the
17 power sector, due to negligible emissions from renewable and nuclear power generation
18 compared with traditional coal-fired power. The full application of technically feasible control
19 measures (the PC[2] scenario) would reduce the NO_x emissions in East Asia except China, and
20 Japan and South Korea individually to only 30%, 46% and 30% of the baseline projection, or
21 22%, 24% and 20% of the 2010 levels, respectively.

22 3.3.2 SO₂

23 The SO₂ emissions in East Asia are predicted to grow 24% from 2010 to 2030 under current
24 regulations and implementation status (the BAU[0] scenario). The enforcement of advanced
25 energy-saving measures (the PC[0] scenario) could lead to a substantial 36% reduction in SO₂
26 emissions from the baseline projection, exceeding the effect of progressively implemented end-
27 of-pipe control measures, 25% (reflected by the difference between the PC[0] and the PC[1]
28 scenarios). FGD facilities had been intensively deployed by 2010 in most industrial sources of
29 Japan and in the power plants of China and South Korea. Therefore, the reduction potential

1 through the installation of end-of-pipe control technologies will likely decline in the future,
2 spotlighting the importance of energy-saving measures for further reduction of SO₂ emissions.
3 With the full application of best-available technologies (the PC[2] scenario), the remaining SO₂
4 emissions in East Asia would account for only 27% of the baseline projection, or 34% of the
5 2010 levels.

6 Similar to NO_X, China's SO₂ emissions have a larger growth potential than the average of
7 East Asia during 2010-2030 under the current policy and implementation status. Implementation
8 of new energy-saving measures (reflected by the difference between the BAU[0] and the PC[0]
9 scenarios) and progressive end-of-pipe control measures (reflected by the difference between the
10 PC[0] and the PC[1] scenarios) could lead to 36% and 26% reductions of China's SO₂ emissions,
11 respectively (compared with the baseline projection). Consistent with the total emissions in East
12 Asia, the contribution of energy-saving measures clearly exceeds the planned end-of-pipe control
13 policies. As the power sector had largely been equipped with FGD facilities by the base year,
14 industrial boilers and industrial process contribute 82% of the SO₂ emission reduction achieved
15 through progressive end-of-pipe control policies. Assuming the full enforcement of technically
16 feasible control measures (PC[2]), SO₂ emissions are estimated to reach only 27% of the baseline
17 projection, or 34% of the 2010 levels.

18 We also note that China's SO₂ emissions are projected to be 21.7 Mt in 2015 under the
19 BAU[1] scenario, 11.1% lower than those of 2010. This implies that if the control policies in the
20 12th Five-Year Plan could be implemented successfully (as assumed in the BAU[1] scenario), the
21 national target to reduce the SO₂ emissions by 8% during 2011-2015 would be achieved.

22 The SO₂ emissions in East Asia outside of China, including Japan and South Korea
23 individually, are expected to stay relatively stable until 2030 under current regulations. The
24 implementation of new energy-saving polices (the PC[0] scenario) could lead to a 9-18%
25 reduction in SO₂ emissions from the levels of the baseline projection. The reduction is mainly
26 achieved thorough the promotion of nuclear and renewable power generation and replacement
27 with cleaner fuels in the industrial sector. Under the full application of technically feasible
28 reduction measures (the PC[2] scenario), the SO₂ emissions in East Asia except China, and Japan
29 and South Korea individually would be reduced to 33%, 52% and 39% of the baseline projection,
30 respectively.

1 3.3.3 PM_{10} and $\text{PM}_{2.5}$

2 PM_{10} and $\text{PM}_{2.5}$ emissions in East Asia are projected to remain relatively stable up to 2030 under
3 the current policies (the BAU[0] scenario), resulting from growth in energy consumption offset
4 by reduction from existing control policies (in particular, vehicle emission standards). New
5 energy-saving policies (reflected by the difference between the BAU[0] and the PC[0] scenarios)
6 and progressive end-of-pipe control measures (reflected by the difference between the PC[0] and
7 the PC[1] scenarios) result in about 28% and 23% reduction in $\text{PM}_{10}/\text{PM}_{2.5}$ emissions from the
8 levels of baseline projection, respectively. Full application of best-available technologies (the
9 PC[2] scenario) could reduce PM_{10} and $\text{PM}_{2.5}$ emissions to about one quarter of the levels of the
10 baseline projection or the base year.

11 China's future PM_{10} and $\text{PM}_{2.5}$ emission trends under the studied scenarios are quite similar
12 to those of East Asia as a whole. Similar to SO_2 , the effects of advanced energy-saving policies
13 (resulting in about 29% reduction of $\text{PM}_{2.5}$ emissions from the baseline projection) exceeds the
14 planned end-of-pipe control measures (about a 25% reduction). With the energy-saving measures
15 applied, the reduction in emissions from the residential sector is especially pronounced (nearly
16 60%), resulting from the replacement of coal and biomass with cleaner fuel types. The most
17 effective end-of-pipe control policies are the application of recently released new emission
18 standards for various industrial sources. We estimate that these new industrial standards lead to
19 over 20% reduction of China's total PM_{10} and $\text{PM}_{2.5}$ emissions. If the best-available technologies
20 are fully applied (the PC[2] scenario), the PM_{10} and $\text{PM}_{2.5}$ emissions would be reduced to about
21 one quarter of the levels of baseline projection or the levels of the base year.

22 The total PM_{10} and $\text{PM}_{2.5}$ emissions in East Asia other than China are also expected to remain
23 relatively stable up to 2030 under the current policies. An exception is Japan, whose PM_{10} and
24 $\text{PM}_{2.5}$ emissions are projected to decrease about one quarter by 2030. The major driving force
25 underlying this decline would be an increasing proportion of vehicles regulated by newer
26 emission standards. The implementation of new energy-saving policies (the PC[0] scenario) is
27 expected to reduce the $\text{PM}_{2.5}$ emissions of East Asia other than China, and Japan and South Korea
28 individually by about 20%, 17%, and 5%, respectively, from the baseline projection. With full
29 application of best-available control technologies (the PC[2] scenario), the $\text{PM}_{2.5}$ emissions in

1 East Asia except China, and Japan and South Korea individually would account for about one
2 quarter, one half, and one half of the levels of the baseline projection, respectively.

3 **3.3.4 NMVOC**

4 Under current regulations and implementation status (the BAU[0] scenario), NMVOC emissions
5 in East Asia are projected to increase by 24% by 2030 from the 2010 levels. The implementation
6 of assumed energy-saving measures (reflected by the difference between the BAU[0] and the
7 PC[0] scenarios) and progressive end-of-pipe control measures (reflected by the difference
8 between the PC[0] and the PC[1] scenarios) are expected to reduce NMVOC emissions by 15%
9 and 23%, respectively, from the baseline projection. Up to 62% of the total NMVOC emissions
10 are expected to remain even with the assumed energy-saving measures and progressive end-of-
11 pipe controls enforced together. There remains large potential to reduce NMVOC emissions
12 beyond the progressive control strategies, since the full application of best-available technologies
13 (the PC[2] scenario) could reduce NMVOC emissions to only 35% of the baseline projection.

14 China's NMVOC emissions are estimated to increase by 27% from 2010 to 2030 under the
15 current policy and implementation status. This upward trend is stronger than the East Asia
16 average but weaker than China's NO_x emissions. The emissions from the transportation and
17 residential sectors are expected to decline as a result of existing emission standards for vehicles
18 and the dwindling direct combustion of biomass in the residential sector. By carrying out a series
19 of energy-saving policies (the PC[0] scenario), total emissions are expected to decrease by 16%
20 from the baseline projection. Emissions from the residential sector decrease most notably because
21 of the substitution of biomass with cleaner fuels. Another 26% could be reduced if progressive
22 end-of-pipe control measures are implemented (reflected by the difference between the PC[0] and
23 the PC[1] scenarios), and the most effective measures are the substitution with low-solvent
24 products and end-of-pipe removal technologies such as incineration and adsorption in the
25 industrial sector and the use of solvents. With full implementation of the best-available
26 technologies (the PC[2] scenario), the NMVOC emissions could be reduced to about one third of
27 the levels of the baseline scenario.

28 The emissions in East Asia outside of China are expected to increase by 5% from 2010 to
29 2030 under current regulations. The growth rates in Japan and South Korea are 4% and 9%,

1 respectively. This slight upward trend is an integrated effect of the reduction in transportation
2 emissions due to increased share of low-emission vehicles, and the increase of emissions from
3 solvent use due to inadequate control policies. By 2030, solvent use contributes about 80% of
4 total NMVOC emissions in both Japan and Korea under the baseline projection. As solvent use
5 has little to do with fuel consumption, the implementation of energy-saving policies has very
6 limited effects on the reduction of NMVOC emissions. In contrast, the full application of end-of-
7 pipe control measures (the PC[2] scenario) would reduce the emissions from solvent use
8 dramatically, to about one quarter of the baseline projection.

9 **4 Comparison with other studies and observations**

10 **4.1 Comparison with other studies**

11 In 2010, China contributed 88%, 94%, 94%, 95%, and 88% of the total NO_x, SO₂, PM₁₀, PM_{2.5},
12 and NMVOC emissions in East Asia, respectively. As a developing country, China has
13 substantial potential to reduce air pollutant emissions with the implementation of aggressive
14 control policies, and combined with its sheer size is therefore expected to dominate the emission
15 trends of East Asia in the next 20 years. Many previous studies projecting emissions have
16 focused on China. While some Asian and international studies have incorporated Japan, South
17 Korea, and other countries to produce regional projections, they have seldom disaggregated
18 emissions by country, making it difficult to review their projections. For these reasons, our
19 comparisons with prior literature in this section are limited to comparisons of China's emission
20 trends.

21 There are numerous studies estimating historical emissions of China. Since this study focuses
22 on temporal trends, we exclude in our comparisons the numerous studies estimating emissions for
23 only a single year.

24 As for future projections, early studies (reported before 2005) of China's emissions ([van](#)
25 [Aardenne et al., 1999](#); [Streets and Waldhoff, 2000](#); [Klimont et al., 2001](#); [Klimont et al., 2002](#))
26 were based on the emissions in 1995 or before. They generally substantially underestimated the
27 rapid economic growth during 2000-2010. In addition, none of them anticipated the aggressive
28 control policies in China since 2005. Therefore, these projections deviated greatly from the actual

1 trends. In this study, we only compare emission projections reported since 2005 (or using the
2 base year of 2000 or later) with our projections, which are shown in Figure 4.

3 **4.1.1 NO_x emissions**

4 [Zhao et al. \(2013d\)](#) and [Kurokawa et al. \(2013\)](#) have evaluated recent NO_x emission trends in
5 China. They both presented similar temporal trends to our estimation. The estimated growth rates
6 of China's NO_x emissions are all within the range of 20-23% for the period 2005-2008, and 34-
7 47% for the period of 2005-2010.

8 [Ohara et al. \(2007\)](#) projected NO_x emissions in China through 2020 by using the emissions
9 for 2000 and three scenarios: a “policy failure” scenario, a “best guess” scenario, and an
10 optimistic scenario. The projections of all the three scenarios for 2010 were much lower than our
11 estimates, indicating they underestimated the economic growth during 2000-2010. The three
12 scenarios projected growth rates ranging between 51% and -10% for the period 2010-2020. In
13 contrast, even the progressive control strategy in our study results in a larger decline of NO_x
14 emissions (-26% in the BAU[1] scenario and -39% in the PC[1] scenario) during the same period,
15 due to the implementation of the control measures scheduled in the 12th Five-Year Plan. [Amann](#)
16 [et al. \(2008\)](#) developed three scenarios through 2030 based on the emissions in 2005. The
17 “current legislation” scenario assumed current regulations and enforcement, while the “advanced
18 control technology” scenario assumed across-the-board application of such technologies, largely
19 based on existing German regulations. The optimized scenario was a least-cost optimization that
20 would achieve the same health benefit as the advanced control technology scenario. [Xing et al.](#)
21 [\(2011\)](#) projected NO_x emissions for 2020 with four scenarios based on the emissions of 2005,
22 including one assuming current regulations and implementation status, one assuming
23 improvement of energy efficiency and current environmental regulations, one assuming
24 improvement of energy efficiency and better implementation of environmental regulations, and a
25 final scenario assuming improvement of energy efficiency and strict environmental regulations.
26 These two studies (Amann et al. and Xing et al.) were conducted cooperatively. Similar to [Ohara](#)
27 [et al. \(2007\)](#), their projections for 2010 were also significantly lower than our estimations. As for
28 the growth rates until 2020 or 2030, all the scenarios in these two studies projected a larger
29 increase or smaller decline than our progressive control strategy assuming the enforcement of the

1 12th Five Year Plan, indicating these two studies did not anticipate stringent future control
2 policies. [Cofala et al. \(2012\)](#) projected the NO_x emissions until 2030 based on 2010 emissions
3 and four scenarios envisaging energy-saving measures at different stringency levels. The
4 projected rates of change for 2010-2030 range between 16% and -24%. Since no end-of-pipe
5 control measures beyond the baseline are considered, it is only meaningful to compare these
6 scenarios with our BAU[0] and PC[0] scenarios, which projected the growth rates for the same
7 period at 36% and -3%, respectively. This study predicted a stronger growth potential of China's
8 energy consumption in the future, leading to the larger rate of growth or smaller rate of decline
9 above.

10 4.1.2 SO₂ emissions

11 A number of studies have evaluated China's recent SO₂ emission trends ([Klimont et al., 2013](#); [Lu](#)
12 [et al., 2011](#); [Zhao et al., 2013d](#); [Kurokawa et al., 2013](#)). Although the emission estimates in
13 different studies differ by up to 30% during the period, all of the reviewed studies and our own
14 show declining SO₂ emissions during 2005-2010. This study estimated a slightly stronger decline
15 (13% for 2005-2008, and 15% for 2005-2010) compared with the previous studies (2%-8% for
16 2005-2008, and 2%-12% for 2005-2010).

17 Most of the projections reviewed here have more or less envisaged China's recent SO₂
18 control policies. [Ohara et al. \(2007\)](#) predicted that SO₂ emissions would change by 27%, -11%,
19 and -23% during 2010-2020 in their policy failure, best-guess, and optimistic scenarios,
20 respectively, comparable to our BAU[0], PC[0], and BAU[1] scenarios, respectively. [Amann et al.](#)
21 ([2008](#)) failed to reproduce the declining trend during 2005-2010, but the control policies assumed
22 in its most aggressive scenario (the advanced control technology scenario) resulted in a similar
23 rate of decline as of 2030 as our progressive control strategy. The growth rates projected in all
24 four scenarios of [Xing et al. \(2011\)](#) are higher than our BAU[1] scenario, indicating that their
25 assumptions of future SO₂ control policies are more conservative than our progressive control
26 strategy based on the 12th Five Year Plan. [Cofala et al. \(2012\)](#) predicted SO₂ emissions to
27 decrease by 20%-40% during 2010-2030 under four different energy-saving policy scenarios,
28 while our BAU[0] and PC[0] scenarios predicted rates of change at 26% and -20%, respectively.

1 As described in Sect. 4.1.1, the differences are also attributed to a stronger growth potential of
2 China's energy consumption projected in our study.

3 **4.1.3 PM emissions**

4 [Zhao et al. \(2013d\)](#) and [Kurokawa et al. \(2013\)](#) have evaluated the recent trends of PM₁₀ and
5 PM_{2.5} emissions in China. While [Zhao et al. \(2013d\)](#) and this study both showed a declining trend
6 during 2005-2010, [Kurokawa et al. \(2013\)](#) estimated a significant upward trend after 2005. The
7 discrepancy may be attributed mainly to the uncertainty in the penetration levels of dust
8 collectors at industrial sources.

9 China has been implementing PM control policies for several decades. Therefore, all of the
10 projections reviewed here have assumed the future application of dust collectors to some extent.
11 The PM₁₀ emissions growth rate until 2020 of the least aggressive scenario in [Xing et al. \(2011\)](#)
12 is comparable to our BAU[0], and the most aggressive one is comparable to our PC[1], indicating
13 similar stringency levels of the control policies assumed in these two studies up to 2020. [Amann
et al. \(2008\)](#) predicted a slight increase of PM_{2.5} emissions during 2005-2010, in contrast with a
15 12% decline estimated in our study using statistical data. However, the growth rate for the period
16 2010-2030 in their current legislation scenario is quite close to our BAU[0] scenario; the growth
17 rates in their advanced control technology scenario and optimized scenario are close to our PC[1]
18 one. [Cofala et al. \(2012\)](#) projected the change rate of PM_{2.5} emissions for 2010-2030 between -
19 20% and -34% under four energy scenarios, which are comparable to the projected change rates
20 of our BAU[0] (-8%) and PC[0] (-34%). Finally, it should be noted that our maximum feasible
21 reduction scenario (the PC[2] scenario) projects much lower emissions than any previously
22 developed scenario.

23 **4.1.4 NMVOC emissions**

24 [Kurokawa et al. \(2013\)](#) have estimated the recent trends in China's NMVOC emissions, which
25 showed a slightly stronger upward trend (16% growth during 2005-2008) than this study (9%
26 growth for the same period).

27 Only three studies have projected China's NMVOC emissions since 2005. Compared with
28 our study, [Ohara et al. \(2007\)](#) made similar estimation of NMVOC emissions in 2010, but
29 predicted much higher growth rates for the period 2010-2020 in all three of their scenarios, as

1 they assumed few effective control measures in any scenario. [Xing et al. \(2011\)](#) and [Wei et al. \(2011b\)](#) have considered the effect of recent vehicle emission standards on NMVOC emissions, 2 and assumed relatively simple but progressively strengthened control polices through 2020, and 3 therefore achieved similar growth rates to ours for both baseline and progressive strategies. Given 4 China is still in the initial stage of NMVOC emission controls, and limited new policies are 5 expected to emerge in the next 5-10 years, the emission trends are unlikely to deviate greatly 6 from the baseline through 2020. However, control measures at different levels of stringency 7 might result in dramatically different emissions by 2030. Our study is the first one to quantify the 8 effect of potentially new policies on NMVOC emission trends through 2030 and to quantify the 9 maximum feasible reduction potential using energy-saving policies and end-of-pipe control 10 measures.

12 **4.2 Comparison with observations**

13 SO₂ and NO₂ retrievals from satellite observations are used for comparisons with trends of 14 primary emissions estimated in this work. A more rigorous comparison would involve 15 incorporating the emission inventory into a chemical transport model and comparing the 16 simulated NO₂ or SO₂ column with satellite observations, which will be considered in future 17 research. [Lu et al. \(2011\)](#) retrieved the satellite SO₂ vertical column density (VCD) for Eastern 18 Central China (latitude <45°N, longitude >100°E), in which measurements of the Ozone 19 Monitoring Instrument (OMI) and Scanning Imaging Absorption Spectrometer for Atmospheric 20 Cartography (SCIAMACHY) during 2005-2010 were used. [Fioletov et al. \(2013\)](#) developed a 21 filtering procedure to remove local biases, in particular transient volcanic signals, and applied this 22 method to retrieve the SO₂ VCD over an area of Eastern China during 2005-2010. The data 23 sources include OMI, SCIAMACHY, the Global Ozone Monitoring Experiment-2 (GOME-2) 24 German Aerospace Center (DLR) product, and the GOME-2 Smithsonian Astrophysical 25 Observatory (SAO) product. It should be noted that the data of GOME-2 are only available since 26 2007. The comparison of SO₂ VCDs derived by [Lu et al. \(2011\)](#) and [Fioletov et al. \(2013\)](#) with 27 the estimated SO₂ emissions are shown in Figure 5(a) and Figure 5(b), respectively. It can be 28 seen that the temporal trends of SO₂ VCD retrieved by [Fioletov et al. \(2013\)](#) from all four data 29 sources (OMI, SCIAMACHY, GOME-2 DLR, and GOME-2 SAO) agree well with each other.

1 In addition, the trends of SO_2 VCD retrieved by [Lu et al. \(2011\)](#) agree well with that of [Fioletov et al. \(2013\)](#) during 2005-2009. However, [Lu et al. \(2011\)](#) shows a significant increase in SO_2 VCD between 2009 and 2010 (especially that retrieved from SCIAMACHY), while [Fioletov et al. \(2013\)](#) shows a slight increase. [Fioletov et al. \(2013\)](#) implies that the pronounced increase between 2009 and 2010 arises from time-dependent bias in the retrieval algorithms. When the filtering procedure developed in [Fioletov et al. \(2013\)](#) was applied, the pronounced increase turned into a slight increase. Therefore, we exclude the SO_2 VCD in 2010 in [Lu et al. \(2011\)](#) in the following discussion.

9 As shown in Figure 5(a), during 2005-2009, SO_2 VCD from OMI, SO_2 VCD from
10 SCIAMACHY, and estimated SO_2 emissions decreased by 20%, 21%, and 17%, respectively, in
11 Eastern Central China. Similarly, during 2005-2010, the rate of decline of SO_2 VCD from OMI
12 (16%), SO_2 VCD from SCIAMACHY (8%), and estimated SO_2 emissions (15%) agree fairly
13 well with each other in the studied area of [Fioletov et al. \(2013\)](#). However, SO_2 VCDs from both
14 SCIAMACHY and OMI peak in 2007, while this study shows a monotonic decline in SO_2
15 emissions through 2009. This may be mainly attributable to the uncertainty in the actual removal
16 efficiency and operation status of FGD facilities. Although FGDs have been rapidly introduced
17 since 2005, the actual operation status has been questioned before by both the government and
18 research community ([Xu et al., 2009](#)). In response to this situation, the Chinese government
19 began to require the installation of continuous emission monitoring systems (CEMSs) together
20 with FGDs since July 2007 ([SEPA, 2007](#)). Therefore, the average removal efficiency should have
21 improved subsequently, contributing to the rapid decline in SO_2 during 2007-2009. Despite the
22 inconsistency above, the estimated overall change rate in SO_2 emissions from 2005 to 2010
23 agrees fairly well with satellite observations, although this agreement is very sensitive to the
24 choice of trend start and end years.

25 The NO_2 VCDs were retrieved from OMI and SCIAMACHY with the method described in
26 [Zhao et al. \(2013b\)](#) and [Zhang et al. \(2012a\)](#), respectively. Figure 5(c) compares the average NO_2
27 VCD in Eastern Central China and the total NO_x emissions in this area. It can be seen that the
28 growing trend of NO_x emissions are well captured by both the observations of OMI and
29 SCIAMACHY. The growth rates of NO_2 VCD from OMI, NO_2 VCD from SCIAMACHY, and
30 NO_x emissions are 27%, 34%, and 31%, respectively.

1 The trends in PM concentrations are not directly comparable with primary emissions, as
2 secondary PM is formed through complex chemical reactions of primary pollutants. Our previous
3 study (Zhao et al., 2013a) simulated the concentrations of air pollutants in China in 2005 and
4 2010 using the Community Multi-scale Air Quality (CMAQ) model and the same emission
5 inventory as presented in this paper. The trends of air pollutant emissions were evaluated by
6 comparing the trends of simulated air quality with observations. From 2005 to 2010, the
7 simulated PM₁₀ concentrations of 58 Chinese cities decreased by 7.3%, which agreed well with
8 the rate of decline of the observations (7.6%, <http://datacenter.mep.gov.cn>). In addition, the
9 simulated changes of Aerosol Optical Depth (AOD) during 2005-2010 can well reproduce the
10 spatial pattern of the AOD changes observed by Moderate Resolution Imaging Spectroradiometer
11 (MODIS). During 2005-2010, AOD decreased in some areas such as the southeast coast of China,
12 but increased in a large part of China, with especially pronounced increases in the Sichuan Basin
13 and the southern part of the North China Plain (Zhao et al., 2013a).

14 As described above, both observation and simulation results indicate that annual average
15 PM₁₀ concentrations in major cities of Eastern China decreased since 2005. However, based on
16 our simulation results (Zhao et al., 2013a), the control policies had not been successful in
17 reducing concentrations of fine particles over a large part of China. One of the important reasons
18 for the increase of fine particles during 2005-2010 is that nitrate concentrations increased in most
19 of China driven by the increase of NO_x and NH₃ emissions. Although sulfate concentrations in
20 East China decreased due to the decline of SO₂ emissions, the concentrations of secondary
21 inorganic aerosol (SIA) increased in most of China, especially in the Sichuan Basin and eastern
22 Hubei province. In addition, the increase in the emissions of NMVOC led to the increase of
23 secondary organic aerosols. The increase in secondary PM_{2.5} concentrations offset the decline of
24 primary PM_{2.5} concentrations and led to the increase of total PM_{2.5} concentrations in a large part
25 of China. Given above, although the emissions of primary PM and SO₂ decreased in most of
26 China, the modeling results indicated that total PM_{2.5} concentrations still increased in a large part
27 of China (Zhao et al., 2013a).

1 **5 Conclusions and policy implications**

2 In this study we reviewed the application status of air pollution control measures in East Asia in
3 the last decade, evaluated the impact of control policies on the emission trends during 2005-2010,
4 and projected future emissions of SO₂, NO_x, PM₁₀, PM_{2.5}, and NMVOC up to 2030 under six
5 emission scenarios based on a range of energy-saving and end-of-pipe emission control measures.

6 During 2005-2010, the emissions of SO₂ and PM_{2.5} in East Asia decreased by 15% and 12%,
7 respectively, mainly attributable to the large scale deployment of FGD in China's power plants,
8 and the deployment of more efficient PM removal technologies in China's power and cement
9 plants. During this period, the emissions of NO_x and NMVOC increased by 25% and 15%,
10 respectively, driven by the rapid increase in the emissions from China due to inadequate control
11 strategies. In contrast, the NO_x and NMVOC emissions in East Asia other than China decreased
12 by 13-17% mainly due to the implementation of stringent vehicle emission standards in Japan
13 and South Korea.

14 Under current regulations and implementation status (the BAU[0] scenario), NO_x, SO₂, and
15 NMVOC emissions in East Asia are estimated to increase by about one quarter by 2030 from the
16 2010 levels, while PM_{2.5} emissions are expected to decrease by 7%. Assuming enforcement of
17 new energy-saving policies, emissions of NO_x, SO₂, PM_{2.5}, and NMVOC in East Asia are
18 expected to decrease by 28%, 36%, 28%, and 15%, respectively, compared with the baseline case.
19 The implementation of progressive end-of-pipe control measures is expected to lead to another
20 one-third reduction of the baseline emissions of NO_x, and about one-quarter reduction of SO₂,
21 PM_{2.5}, and NMVOC. Exploring the potential of currently known best-available technologies,
22 their full implementation could reduce the emissions of NO_x, SO₂, and PM_{2.5} in East Asia to only
23 about one quarter, and NMVOC to one third, of the levels of the baseline projection.

24 Comparison with emission projections in the literature indicates that this study: (1) estimates
25 similar recent emission trends until 2010; (2) projects larger reductions in NO_x and SO₂
26 emissions by assuming aggressive governmental plans and standards scheduled to be
27 implemented in the next decade; (3) accounts for the significant effects of detailed progressive
28 control measures on NMVOC emissions up to 2030; and (4) quantifies technically feasible
29 reduction potentials. The results of this study provide future emission projections for the
30 modeling community of the MICS-Asia program, allowing modelers to assess the impact of

1 emission changes on future air quality. In addition, the emission projections at various stringency
2 levels from a business-as-usual case to a maximum feasible reduction case provide a basis for
3 further studies on cost-effective emission control strategies, which can balance control measures
4 over all pollutants and control levels.

5 The results of this study have important policy implications. First, this study indicates that the
6 successful implementation of the control policies set in China's 12th Five Year Plan, the recently
7 released emission standards for various industrial sources, and slowly strengthened control
8 measures after 2015 (as assumed in the "progressive" end-of-pipe control strategy) could reduce
9 China's emissions of NO_x, SO₂, and PM_{2.5} significantly. The resulting NO_x, SO₂, and PM_{2.5}
10 emissions would be 16-26% lower than the 2010 levels by 2020, and even lower by 2030,
11 demonstrating a high mitigation potential when this legislation and associated regulations are
12 enforced efficiently. Therefore we believe it is essential to support and monitor the progress of
13 implementation of these measures. Second, the contributions of advanced energy-saving
14 measures to the reduction of SO₂ and PM_{2.5} emissions exceeds those of progressive end-of-pipe
15 control measures by 2030. Since end-of-pipe control technologies (e.g., FGD facilities and high-
16 efficiency dedustors) have already been widely applied in typical sources in the base year, their
17 reduction potential will diminish in the future. The energy-saving measures would play an
18 essential role for further reduction of air pollutant emissions. Third, control policies for NMVOC
19 emissions are unfortunately lacking in China and South Korea at present; this study indicates that
20 the simultaneous enforcement of energy-saving measures and progressive end-of-pipe control
21 measures (mainly assuming enforcement of European standards) could reduce 38% of the total
22 NMVOC emissions from the levels of baseline projection. Nevertheless, large reduction potential
23 still remains, and additional policies to reduce NMVOC emissions efficiently and effectively
24 warrant careful consideration .

25
26 **Acknowledgment.** This work was sponsored by National Natural Science Foundation of China
27 (21221004), Strategic Priority Research Program of the Chinese Academy of Sciences
28 (XBD05020300), and special fund of State Key Joint Laboratory of Environment Simulation and
29 Pollution Control (12L05ESPC). The corresponding author, Dr. Shuxiao Wang, is supported by
30 the Program for New Century Excellent Talents in University (NCET-10-0532) and the China

1 Scholarship Council. The authors also appreciate the support from Collaborative Innovation
2 Center for Regional Environmental Quality of Tsinghua University.

3

4 **References**

- 5 Amann, M., Jiang, K. J., Hao, J. M., and Wang, S. X.: Scenarios for cost-effective control of air
6 pollution and greenhouse gases in China, International Institute for Applied Systems Analysis,
7 Laxenburg, Austria, 51, 2008.
- 8 Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Hoglund-Isaksson, L., Klimont,
9 Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schopp, W., Wagner, F., and Winiwarter, W.:
10 Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy
11 applications, *Environ. Modell. Softw.*, 26, 1489-1501, doi: 10.1016/j.envsoft.2011.07.012,
12 2011.
- 13 Bo, Y., Cai, H., and Xie, S. D.: Spatial and temporal variation of historical anthropogenic
14 NMVOCs emission inventories in China, *Atmos. Chem. Phys.*, 8, 7297–7316, 2008.
- 15 China Electric Power Yearbook Committee: *China Electric Power Yearbook 2006*, China
16 Electric Power Press, Beijing, China, 2006 (in Chinese).
- 17 China Electric Power Yearbook Committee: *China Electric Power Yearbook 2011*, China
18 Electric Power Press, Beijing, China, 2011 (in Chinese).
- 19 Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., and Hoglund-Isaksson, L.: Scenarios of
20 global anthropogenic emissions of air pollutants and methane until 2030, *Atmos. Environ.*, 41,
21 8486-8499, doi: 10.1016/j.atmosenv.2007.07.010, 2007.
- 22 Cofala, J., Bertok, I., Borken-Kleefeld, J., Heyes, C., Klimont, Z., Rafaj, P., Sander, R., Schöpp,
23 W., and Amann, A.: Emissions of Air Pollutants for the World Energy Outlook 2012 Energy
24 Scenarios, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2012.
- 25 Delphi Company: Worldwide Emission Standard: Heavy Duty and Off-Highway Vehicles,
26 available at www.delphi.com/emissions-hd, access: 1 November 2013, Delphi company, Troy,
27 Michigan, U.S., 100 pp., 2013a.
- 28 Delphi Company: Worldwide Emission Standard: Passenger Cars and Light Duty Vehicles,
29 available at www.delphi.com/emissions-pc, access: 1 November 2013, Delphi company, Troy,
30 Michigan, U.S., 100 pp., 2013b.
- 31 Energy Conservation Center of Japan: *Japan Energy Conservation Handbook 2011*, available at
32 <http://www.asiaeec-col.eccj.or.jp/databook/2011/>, access: 1 October 2013, Energy
33 Conservation Center of Japan, Tokyo, Japan, 145 pp., 2011.
- 34 Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P., Theys, N.,
35 Van Roozendael, M., Nowlan, C. R., Chance, K., Liu, X., Lee, C., and Martin, R. V.:
36 Application of OMI, SCIAMACHY, and GOME-2 satellite SO₂ retrievals for detection of
37 large emission sources, *J. Geophys. Res-Atmos.*, 118, 11399-11418, doi:10.1002/jgrd.50826,
38 2013.
- 39 Huo, H., Lei, Y., Zhang, Q., Zhao, L. J., and He, K. B.: China's coke industry: Recent policies,
40 technology shift, and implication for energy and the environment, *Energ. Policy.*, 51, 397–404,
41 2012.

- 1 Institute of Energy Economics of Japan: Handbook of Energy & Economic Statistics in Japan,
2 Institute of Energy Economics of Japan, Tokyo, Japan, 370 pp., 2010.
- 3 International Energy Agency (IEA): Energy Balances of OECD Countries 1999-2000,
4 International Energy Agency, Head of Publications Service, Paris, France, 249 pp., 2002.
- 5 International Energy Agency (IEA): Energy policy of IEA countries: Korea 2006 Review,
6 International Energy Agency, Paris, France, 2006.
- 7 International Energy Agency (IEA): Energy Balances of OECD Countries 2004-2005,
8 International Energy Agency, Head of Publications Service, Paris, France, 249 pp., 2007.
- 9 International Energy Agency (IEA): Energy policy of IEA countries: Japan 2008 Review,
10 International Energy Agency, Paris, France, 2008.
- 11 International Energy Agency (IEA): World Energy Outlook 2009, International Energy Agency,
12 Paris, France, 2009.
- 13 International Energy Agency (IEA): Energy policy of IEA countries: Korea 2012 Review,
14 International Energy Agency, Paris, France, 2012a.
- 15 International Energy Agency (IEA): Energy Balances of OECD Countries 2009-2010,
16 International Energy Agency, Head of Publications Service, Paris, France, 249 pp., 2012b.
- 17 Japan Automobile Manufacturers Association: PM/PM2.5 in Ambient Air & Related Activities in
18 Japan, Japan Automobile Manufacturers Association, Tokyo, Japan, 51 pp., 2011.
- 19 Japan Petroleum Energy Center (JPEC): Emission inventory of road transport in Japan, Japan
20 Petroleum Energy Center, Tokyo, 136, 2012a (in Japanese).
- 21 Japan Petroleum Energy Center (JPEC): Emission inventory of sources other than road transport
22 in Japan, Japan Petroleum Energy Center, Tokyo, 288, 2012b (in Japanese).
- 23 Japan Petroleum Energy Center (JPEC): Speciation profiles of VOC, PM, and NOx emissions for
24 atmospheric simulations of PM_{2.5}, Japan Petroleum Energy Center, Tokyo, 69, 2012c (in
25 Japanese).
- 26 Klimont, Z., Cofala, J., Schopp, W., Amann, M., Streets, D. G., Ichikawa, Y., and Fujita, S.:
27 Projections of SO₂, NO_x, NH₃ and VOC emissions in East Asia up to 2030, Water. Air. Soil.
28 Poll., 130, 193-198, 2001.
- 29 Klimont, Z., Streets, D. G., Gupta, S., Cofala, J., Fu, L. X., and Ichikawa, Y.: Anthropogenic
30 emissions of non-methane volatile organic compounds in China, Atmos. Environ., 36, 1309-
31 1322, doi: 10.1016/S1352-2310(01)00529-5, 2002.
- 32 Klimont, Z., Cofala, J., Xing, J., Wei, W., Zhang, C., Wang, S., Kejun, J., Bhandari, P., Mathur,
33 R., Purohit, P., Rafaj, P., Chambers, A., and Amann, M.: Projections of SO(2), NO(x) and
34 carbonaceous aerosols emissions in Asia, Tellus. B., 61, 602-617, doi: 10.1111/j.1600-
35 0889.2009.00428.x, 2009.
- 36 Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global anthropogenic sulfur dioxide:
37 2000-2011 emissions, Environ. Res. Lett., 8, 1-6, doi:10.1088/1748-9326/8/1/014003, 2013.
- 38 Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Greet, J.-M., Fukui, T., Kawashima, K.,
39 and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during
40 2000-2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys.
41 Discuss., 13, 10049-10123, doi:10.5194/acpd-13-10049-2013, 2013.
- 42 Lei, Y., Zhang, Q., He, K. B., and Streets, D. G.: Primary anthropogenic aerosol emission trends
43 for China, 1990-2005, Atmos. Chem. Phys., 11, 931-954, doi: 10.5194/acp-11-931-2011, 2011.
- 44 Li, C., Zhang, Q., Krotkov, N. A., Streets, D. G., He, K. B., Tsay, S. C., and Gleason, J. F.:
45 Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the

- 1 Ozone Monitoring Instrument, *Geophys. Res. Lett.*, 37, L08807, doi:10.1029/2010GL042594,
2 2010.
- 3 Li, Y.: Dynamics of clean coal-fired power generation development in China, *Energ. Policy.*, 51,
4 138-142, doi: 10.1016/j.enpol.2011.06.012, 2012.
- 5 Lin, J., Nielsen, C. P., Zhao, Y., Lei, Y., Liu, Y., and McElroy, M. B.: Recent Changes in
6 Particulate Air Pollution over China Observed from Space and the Ground: Effectiveness of
7 Emission Control, *Environ. Sci. Technol.*, 44, 7771-7776, Doi 10.1021/Es101094t, 2010a.
- 8 Lin, J. T., McElroy, M. B., and Boersma, K. F.: Constraint of anthropogenic NO_x emissions in
9 China from different sectors: a new methodology using multiple satellite retrievals, *Atmos.*
10 *Chem. Phys.*, 10, 63-78, doi:10.5194/acp-10-63-2010, 2010b.
- 11 Liu, H. Y., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and Sachse, G. W.: Transport
12 pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, *J.*
13 *Geophys. Res-Atmos.*, 108, D20, 8786, doi:10.1029/2002JD003102, 2003.
- 14 Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M.,
15 Diehl, T., and Tan, Q.: Sulfur dioxide emissions in China and sulfur trends in East Asia since
16 2000, *Atmos. Chem. Phys.*, 10, 6311-6331, doi:10.5194/acp-10-6311-2010, 2010.
- 17 Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions
18 in China and India, 1996-2010, *Atmos. Chem. Phys.*, 11, 9839-9864, doi:10.5194/acp-11-
19 9839-2011, 2011.
- 20 Ministry of Environment of South Korea: Air & Climate Change Policies in South Korea:
21 <http://eng.me.go.kr/eng/web/index.do?menuId=64&findDepth=1>, access: 23 January, 2014,
22 2013.
- 23 Ministry of Environmental Protection of China (MEP): Bulletin of urban sewage treatment
24 facilities, and flue gas desulfurization/denitrification facilities of coal-fired power plants:
25 http://www.mep.gov.cn/gkml/hbb/bgg/201104/t20110420_209449.htm, access: 5 May 2012,
26 2011 (in Chinese).
- 27 Ministry of the Environment of Japan: Air & Transportation Policies in Japan:
28 <http://www.env.go.jp/en/air/>, access: 01 August, 2013, 2013.
- 29 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2006, China Statistics
30 Press, Beijing, 2007.
- 31 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2007, China Statistics
32 Press, Beijing, 2008a.
- 33 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2008, China Statistics
34 Press, Beijing, 2008b.
- 35 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2009, China Statistics
36 Press, Beijing, 2009.
- 37 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2011, China Statistics
38 Press, Beijing, 2011a.
- 39 National Bureau of Statistics (NBS): China Energy Statistical Yearbook 2010, China Statistics
40 Press, Beijing, 2011b.
- 41 National Development and Reform Commission (NDRC): Bulletin of the progress in shutting
42 down small power generation units:
43 http://www.sdpc.gov.cn/zcfb/zcfbogg/2011gg/t20110422_407267.htm, access: 5 May 2012,
44 2011 (in Chinese).

- 1 National Institute of Environmental Research (NIER): The methodology of national air pollutants
2 emission estimation II, 2010, National Institute of Environmental Research, Inchon, South
3 Korea, 2010 (in Korean).
- 4 National Institute of Environmental Research (NIER): A Study on the Characteristics of the
5 Process Facilities using SEMS Data, National Institute of Environmental Research, Inchon,
6 South Korea, 2013 (in Korean).
- 7 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An
8 Asian emission inventory of anthropogenic emission sources for the period 1980-2020, *Atmos.*
9 *Chem. Phys.*, 7, 4419-4444, 2007.
- 10 Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z.,
11 Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G.,
12 Pozzoli, L., Kupiainen, K., Hoglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V.,
13 Hicks, K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.:
14 Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and
15 Food Security, *Science*, 335, 183-189, DOI 10.1126/science.1210026, 2012.
- 16 State Environmental Protection Administration (SEPA): Administrative regulations for the
17 application of desulfurization electricity price and the operation of flue gas desulfurization
18 facilities in coal-fired power generation units:
19 http://www.sdpc.gov.cn/zcfb/zcfbtz/2007tongzhi/t20070612_140883.htm, access: 1 Jan 2014,
20 2007 (in Chinese).
- 21 Streets, D. G., and Waldhoff, S. T.: Present and future emissions of air pollutants in China: SO₂,
22 NO_x, and CO, *Atmos. Environ.*, 34, 363-374, 2000.
- 23 The State Council of the People's Republic of China: The Eleventh Five-Year Plan for National
24 Economic and Social Development of the People's Republic of China:
25 http://www.gov.cn/gongbao/content/2006/content_268766.htm, access: 2 Feb 2013, 2006 (in
26 Chinese).
- 27 The State Council of the People's Republic of China: Integrated Work Plan for Energy Saving
28 and Emission Reduction During the Twelfth Five-Year Plan: http://www.gov.cn/zwgk/2011-09/07/content_1941731.htm, access: 2 Feb 2013, 2011 (in Chinese).
- 28 The State Council of the People's Republic of China: The Twelfth Five-Year Plan for Energy
29 Saving and Emission Reduction: http://www.gov.cn/zwgk/2012-08/21/content_2207867.htm,
30 access: 2 Feb 2013, 2012 (in Chinese).
- 31 Tsinghua University Building Energy Research Center (THUBERC): Annual Report on China
32 Building Energy Efficiency, China Architecture & Building Press, Beijing, 2009 (in Chinese).
- 33 United Nations Environment Programme (UNEP): Overview of the Republic of Korea's National
34 Strategy for Green Growth, United Nations Environment Programme, Geneva, Switzerland, 54
35 pp., 2010.
- 36 United Nations Environment Programme (UNEP), and World Meteorological Organization
37 (WMO): Integrated Assessment of Black Carbon and Tropospheric Ozone, United Nations
38 Environment Programme and World Meteorological Organization, Nairobi, Kenya, 2011.
- 39 van Aardenne, J. A., Carmichael, G. R., Levy, H., Streets, D., and Hordijk, L.: Anthropogenic
40 NO_x emissions in Asia in the period 1990-2020, *Atmos. Environ.*, 33, 633-646, 1999.
- 41 Wakamatsu, S., Morikawa, T., and Ito, A.: Air Pollution Trends in Japan between 1970 and 2012
42 and Impact of Urban Air Pollution Countermeasures, *Asian J. Atmos. Environ.*, 7, 177-190,
43 doi: 10.5572/ajae.2013.7.4.177, 2013.

- 1 Wang, Q. Y.: Chinese Energy Data 2010, The Energy Foundation, Beijing, 109 pp., 2010.
- 2 Wang, S. X., and Hao, J. M.: Air quality management in China: Issues, challenges, and options, *J. Environ. Sci-China.*, 24, 2-13, doi: 10.1016/S1001-0742(11)60724-9, 2012.
- 3 Wei, W., Wang, S. X., Chatani, S., Klimont, Z., Cofala, J., and Hao, J. M.: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China, *Atmos. Environ.*, 42, 4976–4988, 2008.
- 4 Wei, W., Wang, S. X., and Hao, J. M.: Uncertainty Analysis of Emission Inventory for Volatile Organic Compounds from Anthropogenic Sources in China, *Environmental Science*, 32, 305-312, 2011a (in Chinese).
- 5 Wei, W., Wang, S. X., Hao, J. M., and Cheng, S. Y.: Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010-2020, *Atmos. Environ.*, 45, 6863-6871, doi: 10.1016/j.atmosenv.2011.01.013, 2011b.
- 6 World Bank (WB), and State Environmental Protection Administration (SEPA): Cost of Pollution in China: Economic Estimates of Physical Damages, available at www.worldbank.org/eapenvironment, access: 1 October, 2013, 2007.
- 7 Wu, Y., Zhang, S. J., Li, M. L., Ge, Y. S., Shu, J. W., Zhou, Y., Xu, Y. Y., Hu, J. N., Liu, H., Fu, L. X., He, K. B., and Hao, J. M.: The challenge to NOx emission control for heavy-duty diesel vehicles in China, *Atmos. Chem. Phys.*, 12, 9365–9379, doi: 10.5194/acp-12-9365-2012, 2012.
- 8 Xing, J., Wang, S. X., Chatani, S., Zhang, C. Y., Wei, W., Hao, J. M., Klimont, Z., Cofala, J., and Amann, M.: Projections of air pollutant emissions and its impacts on regional air quality in China in 2020, *Atmos. Chem. Phys.*, 11, 3119-3136, doi: 10.5194/acp-11-3119-2011, 2011.
- 9 Xu, Y., Williams, R. H., and Socolow, R. H.: China's rapid deployment of SO2 scrubbers, *Energ. Environ. Sci.*, 2, 459–465, 2009.
- 10 Yang, Z. D.: Well-to-wheels analysis of energy consumption and CO2 emissions of electric-powered vehicles in China, Master thesis, School of Environment, Tsinghua University, Beijing, China, 83 pp., 2012 (in Chinese).
- 11 Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P., Uno, I., Jang, C. J., Chen, D., Yao, Z., and Lei, Y.: NOx emission trends for China, 1995-2004: The view from the ground and the view from space, *J. Geophys. Res-Atmos.*, 112, D22306, doi: 10.1029/2007jd008684, 2007.
- 12 Zhang, Q., Geng, G. N., Wang, S. W., Richter, A., and He, K. B.: Satellite remote sensing of changes in NO (x) emissions over China during 1996-2010, *Chinese. Sci. Bull.*, 57, 2857-2864, DOI 10.1007/s11434-012-5015-4, 2012a.
- 13 Zhang, Q., He, K. B., and Huo, H.: Cleaning China's air, *Nature*, 484, 161-162, 2012b.
- 14 Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, *Atmos. Chem. Phys.*, 12, 779-799, DOI 10.5194/acp-12-779-2012, 2012c.
- 15 Zhao, B., Wang, S. X., Dong, X. Y., Wang, J. D., Duan, L., Fu, X., Hao, J. M., and Fu, J.: Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification, *Environ. Res. Lett.*, 8, 024031, doi:10.1088/1748-9326/8/2/024031, 2013a.
- 16 Zhao, B., Wang, S. X., Wang, J. D., Fu, J., Liu, T. H., Xu, J. Y., Fu, X., and Hao, J. M.: Impact of national NOX and SO2 control policies on particulate matter pollution in China, *Atmos. Environ.*, 77, 453-463, 2013b.

- 1 Zhao, B., Wang, S. X., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., and
2 Amann, M.: NOx emissions in China: historical trends and future perspectives, *Atmos. Chem.
3 Phys.*, 13, 9869-9897, doi:10.5194/acp-13-9869-2013, 2013c.
4 Zhao, Y., Wang, S. X., Nielsen, C. P., Li, X. H., and Hao, J. M.: Establishment of a database of
5 emission factors for atmospheric pollutants from Chinese coal-fired power plants, *Atmos.
6 Environ.*, 44, 1515-1523, doi: 10.1016/j.atmosenv.2010.01.017, 2010.
7 Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in
8 emissions of anthropogenic atmospheric pollutants and CO₂ in China, *Atmos. Chem. Phys.*, 13,
9 487–508, doi:10.5194/acp-13-487-2013, 2013d.

10

11

1 Tables and figures

2 Table 1. Definition of the energy and emission scenarios in this study.

Energy scenario name	Energy scenario definition	Emission scenario name	Emission scenario definition
Business-as-usual (abbr. BAU)	The BAU scenario is based on current regulations and implementation status (until the end of 2010).	BAU[0]	The BAU[0] scenario assumes the energy-saving policies of the BAU scenario. For an end-of-pipe control strategy, it assumes that all current regulations (until the end of 2010) and the current implementation status in all countries will be continued during 2011-2030.
		BAU[1]	The BAU[1] scenario assumes the energy-saving policies of the BAU scenario. For an end-of-pipe control strategy in China, it assumes that new pollution control policies will be released and implemented, representing a progressive approach towards future environmental protection. For the other countries in East Asia, the assumptions of the BAU[1] scenario are exactly the same as the BAU[0] scenario.
		BAU[2]	The BAU[2] scenario assumes the energy-saving policies of the BAU scenario. For an end-of-pipe control strategy, it assumes that the maximum technically feasible control technologies would be fully applied by 2030, regardless of the economic cost.
Alternative policy (abbr. PC)	The PC scenario assumes that new energy-saving policies will be released and more strongly enforced, resulting in lifestyle changes, structural adjustment, and energy efficiency improvement.	PC[0]	The PC[0] scenario assumes the energy-saving policies of the PC scenario, and the same end-of-pipe control strategy as the BAU[0] scenario.
		PC[1]	The PC[1] scenario assumes the energy-saving policies of the PC scenario, and the same end-of-pipe control strategy as the BAU[1] scenario.
		PC[2]	The PC[2] scenario assumes the energy-saving policies of the PC scenario, and the same end-of-pipe control strategy as the BAU[2] scenario.

1 Table 2. Penetrations of major control technologies in the power sectors in China, Japan, and South Korea (% of fuel use).

Energy technology	Control technology	Base year						BAU[0]/PC[0]						BAU[1]/PC[1]						BAU[2]/PC[2]		
		2005		2010		2020		2030		2020		2030		2030		2030		2030		2030		
Country	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	
Grate boilers	CYC (PM)	12	-	-	12	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-
	WET (PM)	88	-	-	88	-	-	100	-	-	100	-	-	100	-	-	100	-	-	0	-	-
	HED (PM)	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	100	-	-
Pulverized coal combustion	WET (PM)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ESP (PM)	92	3	72	93	2	67	90	0	64	80	0	61	65	0	64	50	0	61	0	0	0
	HED (PM)	0	97	28	7	98	33	10	100	36	20	100	39	35	100	36	50	100	39	100	100	100
	FGD (SO ₂)	12	97	95	88	98	97	93	100	98	96	100	98	100	100	98	100	100	98	100	100	100
	LNB (NO _x)	53	10	23	75	0	13	82	0	13	84	0	13	8	0	13	0	0	13	0	0	0
	LNB+SNCR (NO _x)	0	0	5	1	0	5	1	0	5	1	0	5	6	0	5	7	0	5	0	0	0
	LNB+SCR (NO _x)	1	90	56	12	100	68	12	100	72	12	100	76	86	100	72	94	100	76	100	100	100
Fluidized bed combustion	WET (PM)	8	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-
	ESP (PM)	92	-	-	100	-	-	90	-	-	80	-	-	65	-	-	50	-	-	0	-	-
	HED (PM)	0	-	-	0	-	-	10	-	-	20	-	-	35	-	-	50	-	-	100	-	-
	CFB-FGD (SO ₂)	17	-	-	53	-	-	66	-	-	80	-	-	100	-	-	100	-	-	100	-	-
	SNCR (NO _x)	0	-	-	0	-	-	0	-	-	0	-	-	30	-	-	80	-	-	70	-	-
	SCR (NO _x)	0	-	-	0	-	-	0	-	-	0	-	-	5	-	-	20	-	-	30	-	-
Natural gas power	LNB (NO _x)	30	80	20	74	61	15	87	52	15	91	50	15	50	52	15	10	50	15	0	0	0
	LNB+SNCR (NO _x)	0	0	0	1	0	0	1	0	0	1	0	0	5	0	0	9	0	0	10	0	0
	LNB+SCR (NO _x)	0	20	30	5	39	46	5	48	50	5	50	54	45	48	50	81	50	54	90	100	100

2 Notes: CYC, cyclone dust collector; WET, wet scrubber; ESP, electrostatic precipitator; HED, high efficiency deduster; FGD, flue gas desulfurization for circulated fluidized bed; LNB, low-NO_x combustion technology; SCR, selective catalytic reduction; SNCR, selective non-catalytic reduction. The table gives the national average penetrations of major control technologies. Note, however, that the penetrations vary with provinces and the penetration in “key regions” as defined by the Chinese government, is usually larger than that of other regions.

6

7

1 Table 3. Penetrations of major control technologies in industrial and residential combustion sources in China, Japan, and South
2 Korea (% of fuel use).

Energy technology	Control technology	Base year						BAU[0]/PC[0]						BAU[1]/PC[1]						BAU[2]/PC[2]		
		2005		2010		2020		2030		2020		2030		2030		2030		2030		2030		
Country	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	China	Japan	South Korea	
Industrial grate boilers	CYC (PM)	23	0	25	0	0	23	0	0	20	0	0	17	0	0	20	0	0	17	0	0	0
	WET (PM)	73	0	12	95	0	9	95	0	9	95	0	9	60	0	9	20	0	9	0	0	0
	ESP (PM)	0	50	16	0	50	16	0	50	16	0	50	16	20	50	16	40	50	16	0	0	0
	HED (PM)	0	50	47	5	50	52	5	50	55	5	50	58	20	50	55	40	50	58	100	100	100
	FGD (SO ₂)	0	42	80	1	42	85	1	42	88	1	42	90	40	42	88	80	42	90	100	100	100
	LNB (NO _x)	0	65	0	0	80	0	0	80	0	0	80	0	91	80	0	100	80	0	0	0	0
	LNB+SCR (NO _x)	0	20	0	0	20	0	0	20	0	0	20	0	0	20	0	0	20	0	100	100	100
Residential boilers	CYC (PM)	23	50	60	14	50	51	12	50	45	10	50	40	0	50	45	0	50	40	0	50	50
	WET (PM)	63	0	40	78	0	49	81	0	55	85	0	60	80	0	55	60	0	60	50	0	0
	HED (PM)	0	50	0	0	50	0	0	50	0	0	50	0	20	50	0	40	50	0	50	50	50
	DC (SO ₂)	0	0	0	0	0	0	5	0	0	10	0	0	20	0	0	40	0	0	100	100	100
Coal stoves	STV_ADV_C	0	25	10	0	50	13	0	50	18	0	50	20	10	50	18	30	50	20	100	100	100
Biomass stoves	STV_ADV_B	0	35	30	0	48	35	0	70	35	0	78	35	10	70	35	30	78	35	50	50	50
	STV_PELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	50	50

3 Notes: DC, application of (low-sulfur) derived coal; STV_ADV_C, replacement of advanced coal stove; STV_ADV_B, replacement of advanced biomass stove (e.g. better
4 combustion condition, catalytic stove); STV_PELL, biomass pellet stove.

5

1 Table 4. Penetrations of major control technologies for selected industrial process in China.

2 (a) SO₂

Industrial process	Control technology	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2030	
Sintering	FGD	0	10	20	40	95	100	100	
Coke oven	FGD for coal-charging process	0	0	0	0	10	10	0	
	FGD for coke oven gas	0	0	0	0	10	10	0	
	Combination of the technologies above	0	0	0	0	30	50	100	
Glass production (float process)	FGD	0	0	0	0	50	90	100	
Sulfuric acid production	Ammonia acid desulfurization method	0	0	0	0	40	80	100	

3

4 (b) NO_x

Industrial process	Control technology	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2030	
Sintering	SNCR	0	0	0	0	36	54	20	
	SCR	0	0	0	0	24	36	80	
Precalciner cement kiln	LNB	30	35	35	35	30	25	0	
	LNB+SNCR	0	0	0	0	30	45	0	
Glass production (float process)	LNB+SCR	0	0	0	0	20	30	100	
	OXFL	0	0	0	0	80	88	70	
Nitric acid (dual pressure process)	SCR	0	0	0	0	10	12	30	
	ABSP	10	12	12	12	18	18	18	
Nitric acid (other process)	SCR	15	18	18	18	72	82	82	
	ABSP+SCR	0	0	0	0	0	0	0	
Nitric acid (other process)	ABSP	60	63	66	66	5	5	0	
	SCR	30	32	34	34	15	15	0	
	ABSP+SCR	0	0	0	0	80	80	100	

5 Notes: ABSP, absorption method; OXFL, oxy-fuel combustion technology.

6

1
2

(c) PM

Industrial process	Control technology	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2030	
Sintering (flue gas)	CYC	5	0	0	0	0	0	0	
	WET	20	5	0	0	0	0	0	
	ESP	65	75	80	80	70	60	0	
	HED	10	20	20	20	30	40	100	
Blast furnace (flue gas)	WET	100	100	100	100	100	100	100	
	ESP	100	100	100	100	100	100	100	
Basic oxygen furnace	ESP	40	30	20	20	10	0	0	
	HED	60	70	80	80	90	100	100	
Electric arc furnace	WET	60	30	20	20	0	0	0	
	ESP	30	50	50	50	40	20	0	
	HED	10	20	30	30	60	80	100	
Coke oven	WET	100	100	100	100	50	30	0	
	HED	0	0	0	0	50	70	100	
Precalciner cement kiln	WET	1	0	0	0	0	0	0	
	ESP	52	40	35	30	20	5	0	
	HED	47	60	65	70	80	95	100	
Glass production	CYC	5	0	0	0	0	0	0	
	WET	25	20	20	20	0	0	0	
	ESP	68	75	75	75	85	75	0	
	HED	3	5	5	5	15	25	100	
Brick production	CYC	40	30	30	30	20	0	0	
	WET	8	20	20	20	40	50	0	
	ESP	0	20	20	20	40	50	0	
	HED	0	0	0	0	0	0	100	

3 Notes: CMN, common control of fugitive emissions; HIEF, high-efficiency control of fugitive emissions.

4

1

2 (d) NMVOC

Industrial process	Control technology	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2030	2030
Coke oven	No control	100	100	100	100	55	20	0	
	End of pipe control measures	0	0	0	0	45	80	100	
Refinery	No control	100	100	87	80	20	0	0	
	Leak detection and repair program	0	0	10	15	30	15	0	
	Covers on oil and water separators	0	0	3	5	10	5	0	
Plant oil extraction	Combination of the above options	0	0	0	0	40	80	100	
	No control	95	90	84	80	20	0	0	
	Activated carbon adsorption	5	10	13	15	50	50	0	
Pharmacy	Schumacher type DTDC and activated carbon adsorption	0	0	3	5	25	35	0	
	Schumacher type DTDC and new recovery section	0	0	0	0	5	15	100	
	No control	100	100	90	85	15	0	0	
Gasoline storage	Primary measures and low-level end-of-pipe measures	0	0	10	15	50	30	0	
	Primary measures and high-level end-of-pipe measures	0	0	0	0	35	70	100	
	No control	100	95	75	60	25	0	0	
Gasoline loading and unloading	IFC (Internal floating covers or secondary seals)	0	5	25	40	75	100	100	
	No control	100	85	50	50	25	0	0	
Service station	Stage IA (Vapor recovery systems and modified loading techniques)	0	15	50	50	75	100	100	
	No control	100	85	50	50	25	0	0	
Crude oil storage and distribution	Stage IB + Stage II (Improvement in service station tank and vapor balancing system between a vehicle and service station tank)	0	15	50	50	75	100	100	
	No control	100	100	100	100	75	50	0	
	IFC + Stage IA + Stage IB + Storage II	0	0	0	0	25	50	100	

3

1

2 Table 5. Penetrations of vehicle emission standards in China, Japan, and South Korea (%).

3 (a) China

Vehicle	Standard	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2030	
HDT-D	NOC	19	1	0	0	0	0	0	
	HDEUI	42	8	0	0	0	0	0	
	HDEUII	39	22	0	0	0	0	0	
	HDEUIII	0	70	7	0	7	0	0	
	HDEUIV	0	0	19	0	19	0	0	
	HDEUV	0	0	75	100	41	0	0	
	HDEUVI	0	0	0	0	32	100	100	
HDB-D	NOC	28	8	0	0	0	0	0	
	HDEUI	40	18	0	0	0	0	0	
	HDEUII	32	24	3	0	3	0	0	
	HDEUIII	0	51	20	0	22	0	0	
	HDEUIV	0	0	18	2	18	2	0	
	HDEUV	0	0	59	98	32	8	0	
	HDEUVI	0	0	0	0	25	90	100	
LDT-D	NOC	11	0	0	0	0	0	0	
	MDEUI	65	13	0	0	0	0	0	
	MDEUII	23	30	0	0	0	0	0	
	MDEUIII	0	58	1	0	2	0	0	
	MDEUIV	0	0	99	100	26	0	0	
	MDEUV	0	0	0	0	57	1	0	
	MDEUVI	0	0	0	0	16	100	100	
LDT-G	NOC	27	0	0	0	0	0	0	
	LFEUI	56	13	0	0	0	0	0	
	LFEUII	16	29	0	0	0	0	0	
	LFEUIII	0	58	2	0	2	0	0	
	LFEUIV	0	0	98	100	28	0	0	
	LFEUV	0	0	0	0	56	1	0	
	LFEUVI	0	0	0	0	14	99	100	
LDB-G	NOC	31	6	0	0	0	0	0	
	LFEUI	54	22	1	0	1	0	0	
	LFEUII	15	23	4	0	4	0	0	
	LFEUIII	0	48	14	0	15	0	0	
	LFEUIV	0	0	81	100	35	6	0	
	LFEUV	0	0	0	0	36	25	0	
	LFEUVI	0	0	0	0	8	70	100	
CAR-G	NOC	23	3	0	0	0	0	0	
	LFEUI	55	16	0	0	0	0	0	
	LFEUII	23	28	3	0	3	0	0	
	LFEUIII	0	53	9	0	10	0	0	
	LFEUIV	0	0	88	100	30	1	0	
	LFEUV	0	0	0	0	44	11	0	
	LFEUVI	0	0	0	0	13	87	100	

4 Notes: HDT-D, heavy duty diesel truck; HDB-D, heavy duty diesel bus; LDT-D, light duty diesel truck; LDT-G,
5 light duty gasoline truck; LDB-G, light duty gasoline bus; CAR-G, gasoline car; HDEUI~ HDEUIII, EURO
6 I~III standards on heavy duty diesel road vehicles; MDEUI~ MDEUIII, EURO I~III standards on light duty
7 diesel road vehicles; LFEUI~ LFEUIII, EURO I~III standards on light duty spark ignition road vehicles (4-
8 stroke engines).

1

2 (b) Japan

Vehicle	Standard	Base year					Vehicle	Standard	Base year						
		BAU[0]/		BAU[2]/	PC[0]/	PC[2]			BAU[0]/		BAU[2]/	PC[0]/	PC[2]		
		BAU[1]/	PC[1]						2005	2010					
2005	2010	2020	2030	2030			2005	2010	2020	2030	2030				
HDT-D	BST	41%	25%	0%	0%	0%	LDT-G	BST	38%	16%	1%	0%	0%		
	ST	27%	19%	1%	0%	0%		ST	4%	2%	0%	0%	0%		
	LT	26%	25%	22%	0%	0%		LT	10%	6%	0%	0%	0%		
	NST	7%	11%	10%	0%	0%		1998R	14%	10%	6%	0%	0%		
	NLT	0%	20%	22%	7%	0%		NST	34%	31%	19%	0%	0%		
	PNLT	0%	0%	44%	93%	100%		NLT	0%	34%	24%	8%	0%		
HDB-D	BST	52%	32%	0%	0%	0%	LDB-B	BST	0%	0%	49%	92%	100%		
	ST	19%	15%	2%	0%	0%		ST	12%	4%	0%	0%	0%		
	LT	25%	24%	23%	0%	0%		LT	4%	1%	0%	0%	0%		
	NST	5%	8%	8%	0%	0%		1998R	4%	1%	0%	0%	0%		
	NLT	0%	20%	22%	8%	0%		NST	16%	6%	3%	0%	0%		
	PNLT	0%	0%	45%	92%	100%		NLT	63%	35%	17%	0%	0%		
LDT-D	BST	41%	27%	0%	0%	0%	CAR	NLT	0%	52%	27%	10%	0%		
	ST	27%	20%	0%	0%	0%		PNLT	0%	0%	53%	90%	100%		
	LT	27%	23%	22%	0%	0%		1983R	72%	32%	8%	0%	0%		
	NST	5%	11%	10%	0%	0%		NST	28%	37%	24%	0%	0%		
	NLT	0%	20%	23%	7%	0%		NLT	0%	31%	23%	9%	0%		
	PNLT	0%	0%	46%	93%	100%		PNLT	0%	0%	46%	91%	100%		

3 Notes: BST, before short term target; ST, short term target; LT, long term target; NST, new-short term target;

4 NLT, new-long term target; PNLT, post new-long term target; 1998R, 1998 regulation; 1983R, 1983 regulation.

5

6

1 (c) South Korea

Vehicle	Standard	Base year		BAU[0]/ BAU[1]/ PC[0]/ PC[1]		BAU[2]/ PC[2]		Vehicle	Standard	Base year		BAU[0]/ BAU[1]/ PC[0]/ PC[1]		BAU[2]/ PC[2]		
		2005	2010	2020	2030	2030	2005			2005	2010	2020	2030	2030	2005	
HDT-D	NOC	0	0	0	0	0	LDT-G	NOC	0	0	0	0	0	LDB-G	NOC	
	HDEUI	13	10	0	0	0		LFEUI	15	10	0	0	0		LFEUI	0
	HDEUII	15	13	0	0	0		LFEUII	33	12	0	0	0		LFEUII	0
	HDEUIII	35	33	0	0	0		LFEUIII	30	28	0	0	0		LFEUIII	0
	HDEUIV	0	24	10	0	0		LFEUIV	7	38	23	0	0		LFEUIV	0
	HDEUV	0	12	48	0	0		LFEUV	0	10	77	100	0		LFEUV	0
	HDEUVI	0	0	42	100	100		LFEUVI	0	0	0	0	100		LFEUVI	0
HDB-D	NOC	0	0	0	0	0	LDB-G	NOC	0	0	0	0	0	CAR-G	NOC	
	HDEUI	13	10	0	0	0		LFEUI	15	10	0	0	0		LFEUI	0
	HDEUII	15	13	0	0	0		LFEUII	33	12	0	0	0		LFEUII	0
	HDEUIII	35	33	0	0	0		LFEUIII	30	28	0	0	0		LFEUIII	0
	HDEUIV	0	24	10	0	0		LFEUIV	7	38	23	0	0		LFEUIV	0
	HDEUV	0	12	48	0	0		LFEUV	0	10	77	100	0		LFEUV	0
	HDEUVI	0	0	42	100	100		LFEUVI	0	0	0	0	100		LFEUVI	0
LDT-D	NOC	0	0	0	0	0	CAR-G	NOC	0	0	0	0	0	CAR-G	NOC	
	MDEUI	30	10	0	0	0		LFEUI	15	10	0	0	0		LFEUI	0
	MDEUII	20	17	0	0	0		LFEUII	33	12	0	0	0		LFEUII	0
	MDEUIII	35	34	0	0	0		LFEUIII	30	28	0	0	0		LFEUIII	0
	MDEUIV	0	27	25	0	0		LFEUIV	7	38	23	0	0		LFEUIV	0
	MDEUV	0	8	35	0	0		LFEUV	0	10	77	100	0		LFEUV	0
	MDEUVI	0	0	40	100	100		LFEUVI	0	0	0	0	100		LFEUVI	0

2 Note: South Korea adopted U.S. emission standards for gasoline vehicles, which were equivalent to the

3 penetrations of European standards above in terms of removal efficiencies.

4

2 Table 6. Penetrations of major control technologies for NMVOC emissions from selected
3 solvent use types in China.

Solvent use type	Control technology	Base year		BAU[0]/PC[0]		BAU[1]/PC[1]		BAU[2]/PC[2]	
		2005	2010	2020	2030	2020	2030	2020	2030
Paint use in interior wall of buildings	No control (GB18582-2001)	100	0	0	0	0	0	0	0
	Decrease of solvent content--GB18582-2008	0	100	95	90	70	0	0	0
	Decrease of solvent content--2004/42/EC stage 1	0	0	5	10	30	80	0	0
	Decrease of solvent content--2004/42/EC stage 2	0	0	0	0	5	20	100	100
Paint use in external wall of buildings	No control (solvent-based paint)	81.5	78	72.5	68.5	70	50	0	0
	Substitution with water-based paint	18.5	22	27.5	32.5	30	50	100	100
Paint use in vehicle manufacturing	No control (water-based primer, solvent-based paint for other parts)	100	97	91	84	35	0	0	0
	Substitution with water-based paint	0	2	4	6	15	30	0	0
	Adsorption, incineration	0	1	5	10	40	65	0	0
	Substitution + adsorption, incineration	0	0	0	0	0	5	100	100
Paint use in vehicle refinishing	No control (solvent-based paint)	95	92.5	87.5	82.5	80	40	0	0
	Sustitution with high solids or water-based paint	5	7.5	12.5	17.5	20	60	100	100
Paint use in wood coating	No control (solvent-based paint)	93.5	89	79	69	50	15	0	0
	Incineration	0	0	2	4	15	25	20	20
	Substitution with high solids paint	2	4	8	12	15	25	20	20
	Substitution with water-based or UV paint	4.5	7	11	15	20	35	60	60
Offset printing	No control (solvent-based ink)	94	90	85	80	60	15	0	0
	Substitution with water-based or UV ink	6	10	15	20	20	30	10	10
	Add-on control technology	0	0	0	0	20	55	90	90
Flexography and rotogravure printing (for packaging)	No control (solvent-based ink)	70	64	55	45	30	0	0	0
	Substitution with low solvent or water-based ink	30	35	40	45	40	30	0	0
	Add-on control technology	0	1	5	10	10	30	0	0
	Substitution + add-on control technology	0	0	0	0	20	40	100	100
Flexography and rotogravure printing (for publication)	No control (solvent-based ink)	90	85	80	75	62.5	5	0	0
	Substitution with low solvent or water-based ink	10	15	20	25	22.5	40	0	0
	Add-on control technology	0	0	0	0	15	50	0	0
	Substitution + add-on control technology	0	0	0	0	0	5	100	100
Screen printing	No control (solvent-based ink)	90	85	80	75	62.5	5	0	0
	Substitution with low solvent or water-based ink	10	15	20	25	22.5	40	0	0
	Add-on control technology	0	0	0	0	15	50	0	0
	Substitution + add-on control technology	0	0	0	0	0	5	100	100
Adhesive use in wood processing	No control	100	97.5	92.5	87.5	90	60	0	0
	Add-on control technology	0	2.5	7.5	12.5	10	40	100	100
Adhesive use in manufacturing of shoes	No control (solvent-based adhesive)	90	87	82.5	80	70	50	10	10
	Substitution with low solvent adhesive	10	13	17.5	20	30	50	90	90
	Add-on control technology	0	0	0	0	0	0	0	0

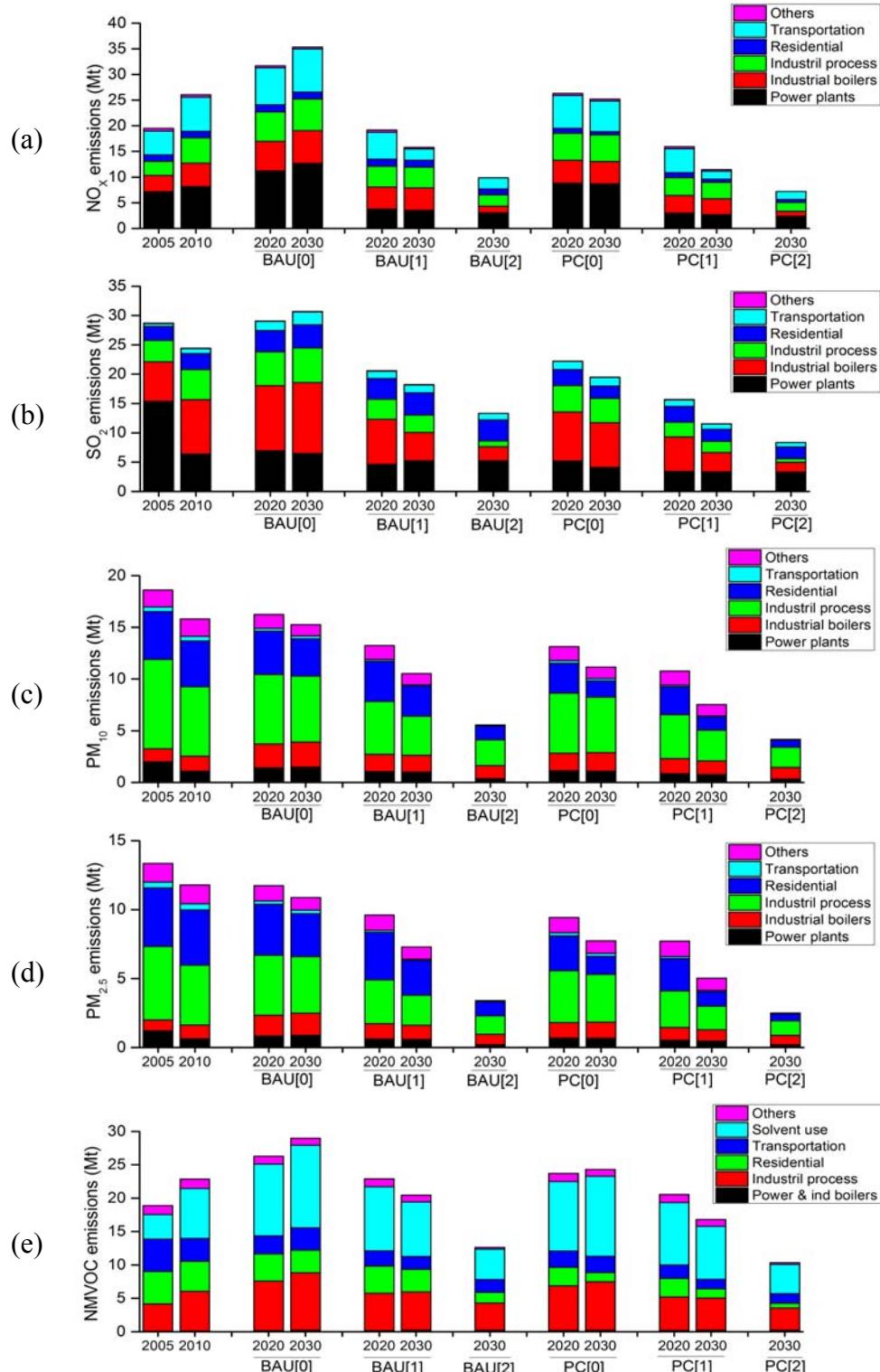
1

2 Table 7. Summary of national energy consumption in East Asia (Unit: EJ/year).

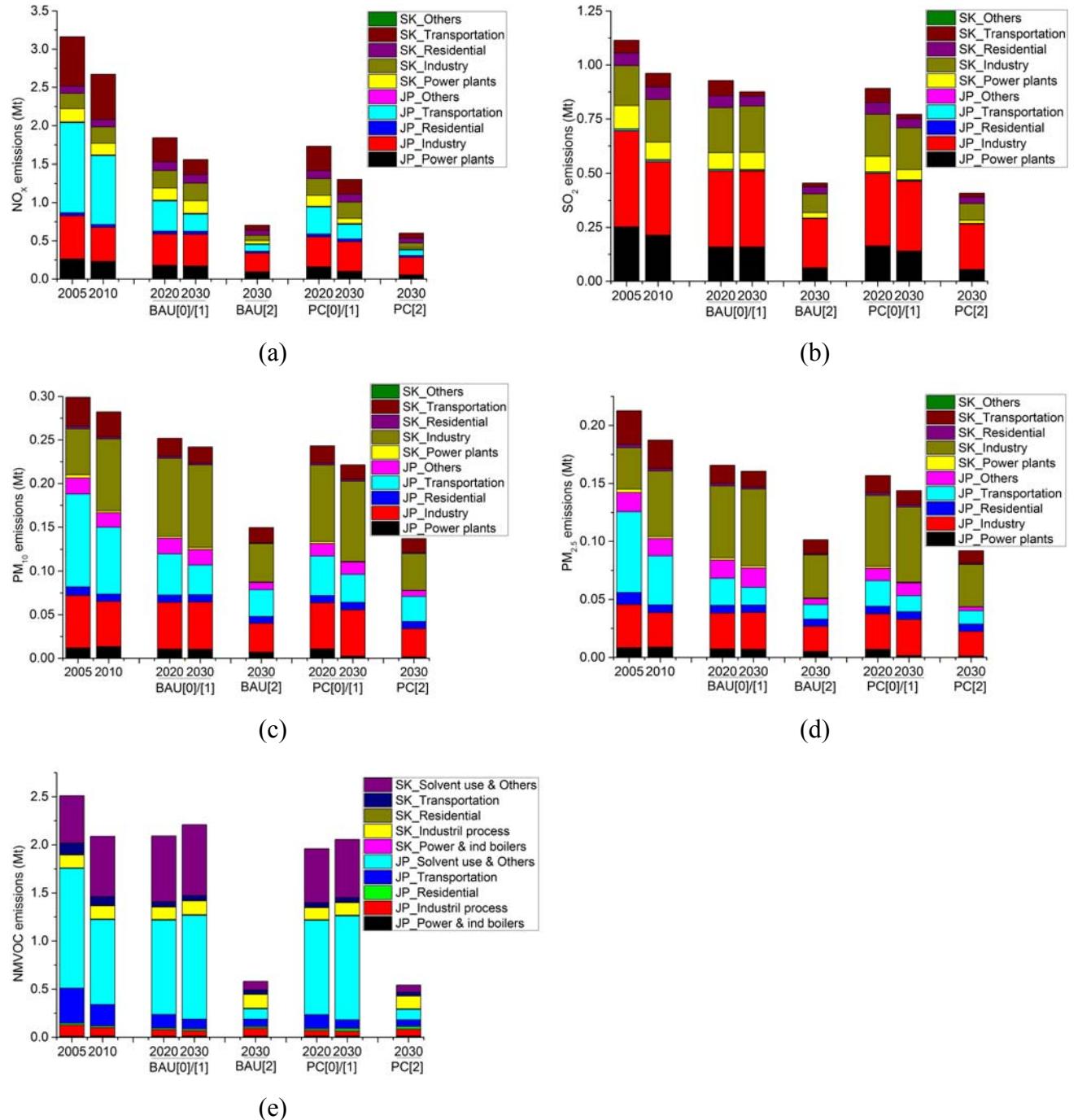
	2005	2010	BAU		PC	
			2020	2030	2020	2030
China, mainland	85.31	121.75	169.41	199.55	144.39	155.01
Power plants	18.87	25.52	37.45	43.93	32.23	36.07
Other conversion	3.11	5.30	5.98	6.49	5.07	4.84
Industry	37.79	58.16	73.64	81.68	62.83	66.51
Residential	18.12	20.79	28.05	32.78	22.96	24.01
Transportation	6.73	11.00	22.91	33.02	20.04	22.11
Loss	0.69	0.98	1.37	1.64	1.26	1.46
Coal	58.01	82.93	106.83	118.80	83.84	80.31
Oil	12.48	18.28	33.36	45.31	28.62	29.68
Gas	1.80	4.19	7.87	10.99	8.40	14.35
Biomass	7.60	7.21	7.35	6.74	6.30	6.21
Other renewables and nuclear	5.43	9.15	14.01	17.71	17.24	24.45
Japan	22.03	21.36	21.78	21.86	20.93	20.09
Power plants	5.59	5.22	5.63	6.07	5.54	5.35
Other conversion	1.62	2.25	2.27	2.21	2.13	1.93
Industry	5.61	5.32	5.62	5.57	5.45	5.30
Residential	5.03	4.86	5.17	5.48	5.02	5.28
Transportation	4.17	3.71	3.10	2.53	2.80	2.23
Coal	4.23	4.79	4.73	4.47	4.46	2.45
Oil	9.97	8.47	7.45	6.70	6.78	5.84
Gas	3.79	4.33	4.92	5.12	4.43	4.46
Biomass	0.29	0.30	0.42	0.54	0.50	0.68
Other renewables and nuclear	3.76	3.50	4.30	5.07	4.82	6.68
South Korea	8.90	10.59	12.33	13.31	11.81	12.22
Power plants	2.33	2.85	3.52	4.00	3.40	3.65
Other conversion	0.48	0.98	1.03	1.03	0.95	0.89
Industry	3.01	3.58	3.99	4.17	3.87	3.95
Residential	1.71	1.83	2.19	2.40	2.11	2.25
Transportation	1.37	1.34	1.61	1.70	1.48	1.49
Coal	2.05	3.17	3.22	3.31	3.00	1.75
Oil	3.90	4.10	4.43	4.45	4.26	4.16
Gas	1.23	1.59	2.16	2.29	1.93	2.13
Biomass	0.09	0.13	0.19	0.28	0.22	0.37
Other renewables and nuclear	1.62	1.64	2.37	3.02	2.49	3.91
North Korea	1.42	1.55	1.95	2.51	1.90	1.96
Mongolia	0.12	0.09	0.08	0.08	0.06	0.04
Hong Kong & Macao, China	0.76	0.93	1.30	1.39	1.16	1.08
Taiwan, China	4.43	4.24	4.27	4.43	3.94	4.16
Total	122.97	160.51	211.12	243.13	184.20	194.57
Total (except mainland China)	37.66	38.75	41.70	43.59	39.80	39.56

3

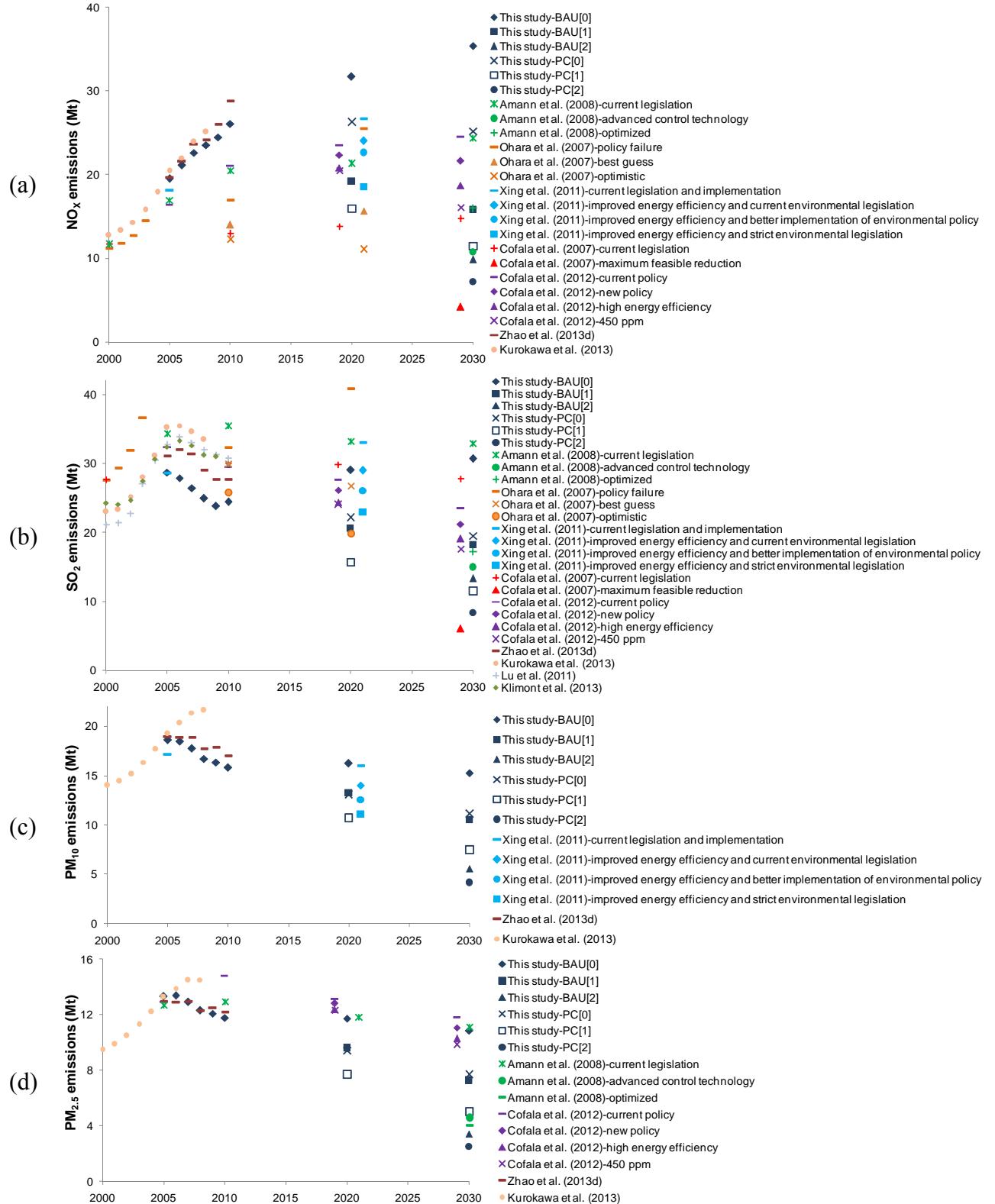
2 Table 8. Summary of national air pollutant emissions in East Asia (Unit: Mt/year).

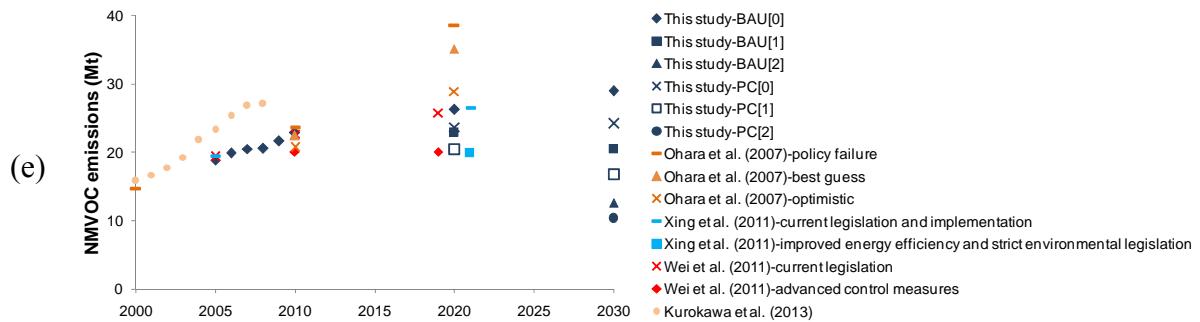

	Base year		BAU[0]		BAU[1]		BAU[2]		PC[0]		PC[1]		PC[2]
	2005	2010	2020	2030	2020	2030	2030	2020	2030	2020	2030	2030	2030
NO_x													
China, mainland	19.48	26.05	31.69	35.35	19.18	15.82	9.85	26.32	25.16	15.95	11.47	7.18	
Japan	2.050	1.616	1.033	0.860	1.033	0.860	0.461	0.954	0.727	0.954	0.727	0.392	
South Korea	1.112	1.055	0.809	0.697	0.809	0.697	0.245	0.778	0.575	0.778	0.575	0.210	
North Korea	0.276	0.284	0.345	0.481	0.345	0.481	0.086	0.342	0.375	0.342	0.375	0.067	
Mongolia	0.064	0.058	0.055	0.057	0.055	0.057	0.041	0.052	0.047	0.052	0.047	0.034	
Hong Kong & Macao, China	0.199	0.230	0.229	0.260	0.229	0.260	0.039	0.208	0.218	0.208	0.218	0.033	
Taiwan, China	0.551	0.440	0.348	0.342	0.348	0.342	0.091	0.316	0.287	0.316	0.287	0.076	
Total	23.73	29.74	34.51	38.05	21.99	18.51	10.81	28.97	27.39	18.60	13.70	8.00	
Total except mainland China	4.252	3.682	2.819	2.697	2.819	2.697	0.963	2.649	2.229	2.649	2.229	0.813	
SO₂													
China, mainland	28.70	24.42	29.07	30.68	20.59	18.23	13.32	22.24	19.49	15.69	11.55	8.34	
Japan	0.705	0.562	0.520	0.518	0.520	0.518	0.294	0.507	0.470	0.507	0.470	0.268	
South Korea	0.410	0.400	0.408	0.358	0.408	0.358	0.162	0.384	0.301	0.384	0.301	0.141	
North Korea	0.268	0.297	0.368	0.471	0.368	0.471	0.099	0.363	0.333	0.363	0.333	0.070	
Mongolia	0.087	0.073	0.065	0.073	0.065	0.073	0.011	0.054	0.036	0.054	0.036	0.005	
Hong Kong & Macao, China	0.022	0.016	0.019	0.021	0.019	0.021	0.007	0.017	0.016	0.017	0.016	0.006	
Taiwan, China	0.244	0.139	0.115	0.119	0.115	0.119	0.026	0.104	0.122	0.104	0.122	0.026	
Total	30.44	25.91	30.57	32.24	22.08	19.78	13.92	23.67	20.77	17.12	12.83	8.85	
Total except mainland China	1.735	1.486	1.496	1.559	1.496	1.559	0.599	1.431	1.278	1.431	1.278	0.516	
PM₁₀													
China, mainland	18.61	15.81	16.24	15.26	13.24	10.53	5.55	13.13	11.15	10.76	7.52	4.17	
Japan	0.206	0.167	0.137	0.125	0.137	0.125	0.087	0.131	0.111	0.131	0.111	0.078	
South Korea	0.093	0.116	0.115	0.117	0.115	0.117	0.062	0.112	0.111	0.112	0.111	0.059	
North Korea	0.596	0.558	0.557	0.599	0.557	0.599	0.134	0.477	0.444	0.477	0.444	0.099	
Mongolia	0.053	0.040	0.034	0.035	0.034	0.035	0.008	0.029	0.019	0.029	0.019	0.004	
Hong Kong & Macao, China	0.039	0.043	0.049	0.046	0.049	0.046	0.012	0.043	0.033	0.043	0.033	0.009	
Taiwan, China	0.095	0.085	0.078	0.081	0.078	0.081	0.035	0.072	0.066	0.072	0.066	0.029	
Total	19.69	16.81	17.21	16.26	14.21	11.53	5.88	13.99	11.94	11.62	8.31	4.45	
Total except mainland China	1.082	1.007	0.970	1.002	0.970	1.002	0.338	0.864	0.784	0.864	0.784	0.277	
PM_{2.5}													
China, mainland	13.34	11.79	11.74	10.87	9.61	7.29	3.41	9.43	7.73	7.71	5.03	2.50	
Japan	0.142	0.102	0.084	0.077	0.084	0.077	0.051	0.077	0.064	0.077	0.064	0.044	
South Korea	0.071	0.085	0.082	0.083	0.082	0.083	0.051	0.080	0.079	0.080	0.079	0.048	
North Korea	0.407	0.383	0.401	0.426	0.401	0.426	0.101	0.349	0.329	0.349	0.329	0.078	
Mongolia	0.025	0.019	0.016	0.016	0.016	0.016	0.004	0.014	0.010	0.014	0.010	0.002	
Hong Kong & Macao, China	0.023	0.024	0.026	0.027	0.026	0.027	0.006	0.023	0.022	0.023	0.022	0.005	
Taiwan, China	0.057	0.049	0.045	0.047	0.045	0.047	0.019	0.041	0.038	0.041	0.038	0.016	
Total	14.07	12.45	12.39	11.55	10.27	7.97	3.64	10.01	8.27	8.29	5.57	2.69	
Total except mainland China	0.724	0.662	0.653	0.676	0.653	0.676	0.231	0.584	0.542	0.584	0.542	0.193	
NM VOC													
China, mainland	18.89	22.86	26.29	28.97	22.90	20.46	12.62	23.70	24.30	20.53	16.80	10.37	
Japan	1.755	1.223	1.218	1.268	1.218	1.268	0.297	1.217	1.262	1.217	1.262	0.291	
South Korea	0.756	0.866	0.875	0.943	0.875	0.943	0.286	0.743	0.794	0.743	0.794	0.253	
North Korea	0.401	0.389	0.463	0.577	0.463	0.577	0.081	0.423	0.481	0.423	0.481	0.068	
Mongolia	0.022	0.020	0.019	0.019	0.019	0.019	0.004	0.017	0.016	0.017	0.016	0.004	
Hong Kong & Macao, China	0.123	0.138	0.160	0.178	0.160	0.178	0.146	0.156	0.170	0.156	0.170	0.140	
Taiwan, China	0.599	0.402	0.243	0.203	0.243	0.203	0.166	0.223	0.180	0.223	0.180	0.147	
Total	22.55	25.90	29.27	32.16	25.88	23.64	13.60	26.48	27.20	23.31	19.70	11.27	
Total except mainland China	3.657	3.039	2.977	3.188	2.977	3.188	0.980	2.780	2.902	2.780	2.902	0.901	

1


Type	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Light duty vehicle	1	1	1	1	1	2	2	2	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Heavy duty diesel vehicle		1	1	1	2	2	2	3	3	3	3	3	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Heavy duty gasoline vehicle			1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
(a) Motorcycle (2&4 strokes)			1	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Rural Vehicle					1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Tractors, machines						1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Train, inland water																																
Type	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Light duty vehicle	1	1	1	1	1	2	2	2	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	
Heavy duty diesel vehicle		1	1	1	2	2	2	3	3	3	3	3	4	4	4	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	
(b) Heavy duty gasoline vehicle			1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Motorcycle (2&4 strokes)			1	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Rural Vehicle					1	2	2	2	2	2	2	3	3	3	3	4	4	4	5	5	6	6	6	6	6	6	6	6	6	6	6	
Tractors, machines						1	1	2	2	2	2	2	3A	3A	3A	3A	3B	3B	3B	4	4	4	4	4	4	4	4	4	4	4		
Train, inland water													3A	3A	3A	3A	3B	3B	3B	4	4	4	4	4	4	4	4	4	4	4		

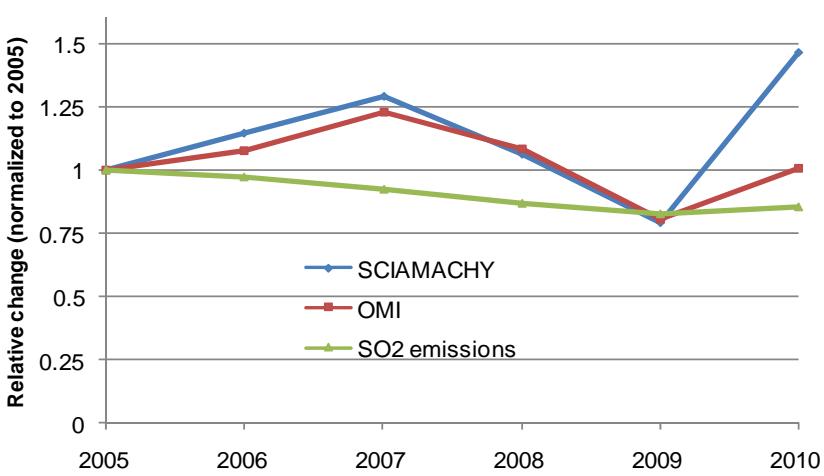
2 Figure 1. The implementation time of the vehicle emission standards in China: (a) the BAU[0]
3 and PC[0] scenarios; (b) the BAU[1], PC[1], BAU[2], and PC[2] scenarios. The Arabic
4 numbers 1-6 represent Euro I to Euro VI vehicle emission standards. Numbers in black
5 represent standards released by the end of 2010, and those in red represent those to be
6 released in the future.

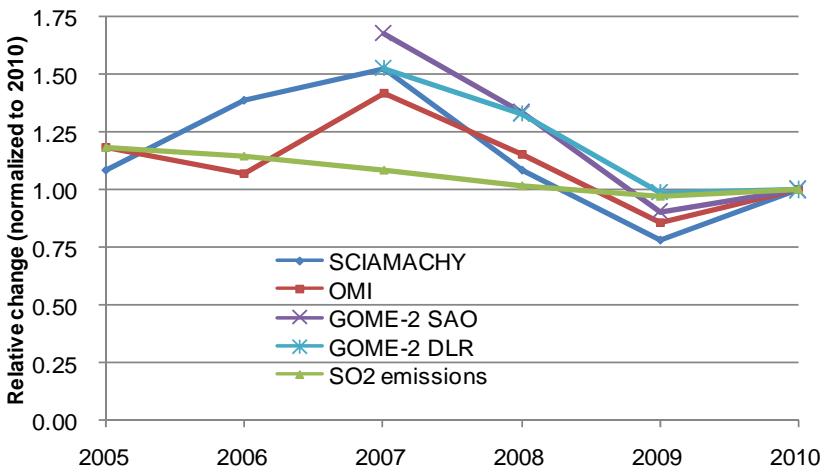

7



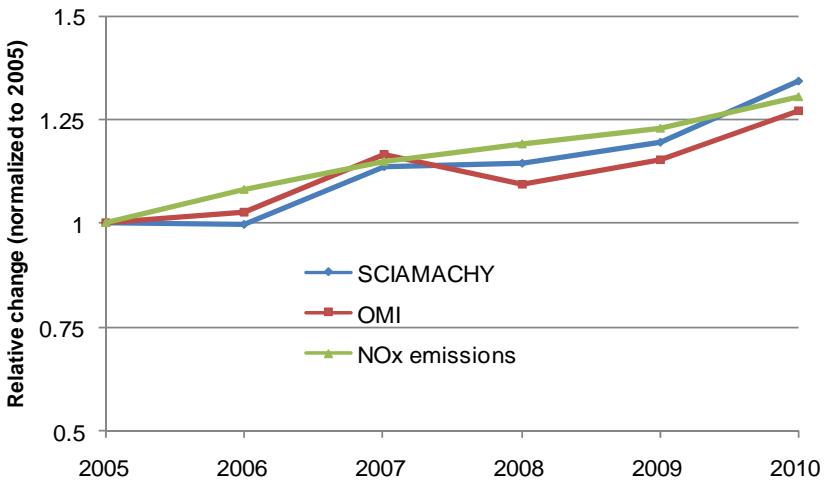
2 Figure 2. Emissions of major air pollutants in China and their sectoral distribution during
3 2005-2030: (a) NO_x; (b) SO₂; (c) PM₁₀; (d) PM_{2.5}; (e) NMVOC. The sector of “Others”
4 represents biomass open burning for NO_x, SO₂, PM₁₀, and PM_{2.5}; for NMVOC, it includes
5 biomass open burning, waste treatment, cooking, and smoking, with biomass open burning
6 contributing over 80% of the total NMVOC emissions of this sector.

2 Figure 3. Emissions of major air pollutants in Japan and South Korea and their sectoral
3 distributions during 2005-2030: (a) NO_x; (b) SO₂; (c) PM₁₀; (d) PM_{2.5}; (e) NMVOC. JP and
4 SK in the legend represent Japan and South Korea, respectively. The sector of “Others” is
5 mainly biomass open burning.




1 Figure 4. Comparison of estimated emissions in this study with those of other studies: (a)
2 NO_x; (b) SO₂; (c) PM₁₀; (d) PM_{2.5}; (e) NMVOC. The scenarios from the same study are
3 shown with symbols of the same colour, and since their historical emissions duplicate each
4 other, we show just the historical values of one scenario. Some points for the years 2020 and
5 2030 are shifted a little left or right, in order to avoid overlapping representation. Note that the
6 current legislation scenario in Amann et al. (2008) is consistent with the baseline scenario in
7 Klimont et al. (2009), and the historical emission trends of Zhao et al. (2013a) is consistent
8 with this study. Therefore, Klimont et al. (2009) and Zhao et al. (2013a) are not shown in the
9 figures.

10


1
(a)

(b)

(c)

2 Figure 5. Inter-annual relative changes of SO₂ and NO₂ VCD from satellite observations and
3 estimated emissions in this study. (a) Average SO₂ VCD and total SO₂ emissions in Eastern
4 Central China (latitude <45°N, longitude >100°E). SO₂ VCD was derived by Lu et al. (2011).
5 All data are normalized to 2005. (b) Average SO₂ VCD and total SO₂ emissions over an area
6 of Eastern China (34°N–38°N, 112°E–118°E). SO₂ VCD was derived by Fioletov et al.
7 (2013), in which a filtering procedure was applied to remove local biases, in particular
8 volcanic signals. All data are normalized to 2010 because the data of GOME-2 are only
9 available since 2007. (c) Average NO₂ VCD and total NO_x emissions in Eastern Central
10 China. NO₂ VCD was retrieved from OMI and SCIAMACHY in this study. All data are
11 normalized to 2005.