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Abstract

Twomey’s seminal 1959 paper provided lower and upper bound approximations to the es-
timation of peak supersaturation within an updraft and thus provides the first closed ex-
pression for the number of nucleated cloud droplets. The form of this approximation is
simple, but provides a surprisingly good estimate and has subsequently been employed5

in more sophisticated treatments of nucleation parametrization. In the current paper, we re-
visit the lower bound approximation of Twomey and make a small adjustment which

::::
that can

be used to obtain a more accurate calculation of peak supersaturation under all potential
aerosol loadings and thermodynamic conditions. In order to make full use of this improved
approximation, the underlying integro-differential equation for supersaturation evolution and10

the condition for calculating peak supersaturation are examined. A simple rearrangement
of the algebra allows for an expression to be written down which

:::
that

:
can then be solved

with a single lookup table with only one independent variable for an underlying lognormal
aerosol population. Multimode aerosol with only

:::::
While

::::::::::::
multimodal

::::::::
aerosol

:::::
with

:
N different

dispersion characteristics require
::::::::
requires

::::::::
2N + 1

::::::
inputs

:::
to

:::::::::
calculate

::::
the

::::::::::
activation

:::::::::
fraction,15

only N of these one-dimensional lookup tables
::::
are

::::::::
needed. No additional information is

required in the lookup table to deal with additional chemical, physical or thermodynamic
properties. The resulting implementation provides a relatively simple, yet computationally
cheapand very accurate

:
, physically-based parametrization of droplet nucleation for use in

climate and NWP models.20

1 Background

Atmospheric aerosols are fundamental to the formation of clouds. They provide the sub-
strate onto which liquid droplets can form, overcoming the energy barriers associated with
clustering of water molecules (see Mason, 1971; Pruppacher and Klett, 1997, hereafter
PK97). Not only do they facilitate the formation of cloud, but they also determine the ini-25

tial sizes and numbers of droplets as the cloud forms. Variations in the underlying aerosol
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population; through numbers, sizes, dispersion characteristics and chemical composition;
combined with variations in the dynamic and thermodynamic properties of the ambient air;
lead to wide ranging differences in the number concentrations of droplets within clouds.
Differences in number further impact the physical evolution of the clouds, their lifetime and
their interaction with radiation. These impacts are most famously seen through the Twomey5

(1977) and Albrecht (1989) effects, but also through other mechanisms once feedbacks with
the dynamics (e.g. Ackerman et al., 2004; Jiang et al., 2006; Wang and Feingold, 2009) or
the ice phase (Lohmann and Feichter, 2005) are taken into account. Collectively, the in-
teractions between aerosol and clouds represent a significant source of uncertainty in our
ability to model the climate system and, moreover, to estimate the impacts of anthropogenic10

climate change (IPCC, Summary for Policymakers, 2007).
The approach generally used to ascertain how many of the total population of the un-

derlying interstitial aerosol will grow into droplets is based upon solving a system for the
time variation of supersaturation. Supersaturation is key, since a given aerosol particle will
activate to form a droplet at a particular critical supersaturation, scr, and so the evolution15

of supersaturation determines which and how many aerosol can activate. For a volume of
air undergoing an adiabatic

:
a

:
cooling, the cooling results in an increase in the saturation

of the volume. Conversely any condensation that takes place as a result of the increased
saturation will itself lead to a decrease in the saturation. An equation which

::::
that

:
describes

the contention between these terms can be constructed in the form20

ds

dt
= α−ψ2(T,p)s

s∫
0

ϕ(σ)

 t∫
τ(σ)

sdt


1
2

dσ. (1)

Here, the adiabatic cooling term is represented by α and for an updraft undergoing con-
stant vertical velocity, w, can be written as α = ψ1(T,p)w. The condensation term is derived
from the equations for diffusional growth kinetics of the droplets, given the differential ac-25

tivity spectrum, ϕ(σ), which expresses the number of cloud nuclei activated in the interval
[σ,σ+ δσ]. The terms ψ1 and ψ2 along with other notation used in this paper are defined

3
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in Table A1, while slightly
:
.
::::
We

:::::
note

:::::
that

::
in

::::::
order

:::
to

:::::::
obtain

::::
Eq.

:::
(1)

::
it

::
is

::::::::::
assumed

:::::
that

::
i)

::::
the

:::::
initial

::::::::
particle

:::::
size

::
is

::::::::::
negligible

:::::::::::
compared

::
to

::::
the

::::::::
droplet

:::::
size,

::
ii)

:::::::::
particles

::::::
grow

::
in

::::::::::::
equilibrium

::::
with

::::
the

:::::::::::::::
environmental

::::::::
relative

::::::::::
humidity,

:::::
and

:::
iii)

::::::::
kinetic

::::
and

::::::::
inertial

:::::::::::
limitations

:::
to

::::::::
droplet

:::::::
growth

::::
are

:::::::::
ignored.

::::::
These

:::::
and

:::::::
further

::::::::::::::::
approximations

::::
are

:::::::::::
discussed

::
in

:
Ghan et al. (2011)

:
,

:::::
while

:
more detail surrounding the derivation and approximations used to obtain Eq. (1) is5

provided in Appendix A.
:::
We

:::::
also

:::::
note

::::
that

::::::::::
although

:::::::
kinetic

:::::::
effects

::::
are

::::
not

:::::::::
explicitly

::::::::
treated

::
in

::::
Eq.

::::
(1),

::::
the

:::::::::::::::::
parametrization

::
of

:
Fountoukis and Nenes (2005)

:
is

:::::::::::
employed,

:::::::
which

::::::
uses

:
a

:::::
size

::::::::::
averaged

::::::::::
diffusivity

:::::::::::
coefficient

:::
to

::::::::
account

::::
for

:::::::::
changes

::
in

:::::::::::
diffusivity

::::
with

::::::::
droplet

:::::
size

(c.f. Shipway and Abel, 2010)
:
.
:

Equation (1) is the bedrock of Twomey’s analysis which first enabled the estimation of the10

fraction of aerosol that would grow into cloud droplets. Once the peak supersaturation has
been achieved, i.e. condensation terms start to dominate over the adiabatic source term,

::::
and

::::::::::
assuming

:::::::::
droplets

::::::::
remain

::
in

::::::::::::
equilibrium

:::::
with

:::::
their

::::::::::::::
environment,

:
no more aerosol will

be activated. By finding the peak supersaturation, smax, i.e. when ds/dt= 0 and

α = ψ2(T,p)s

s∫
0

ϕ(σ)

 t∫
τ(σ)

sdt


1
2

dσ, (2)15

the number of nucleated droplets, Nc, can simple
::::::
simply

:
be determined by the differential

activity spectrum as

NCCN =

smax∫
0

ϕ(σ)dσ. (3)

20

Equations (1) and (2), or equations which
::::
that

:
closely resemble them, have subsequently

been used in parametrization schemes which aim to either improve or extend Twomey’s ap-
proximation (e.g. Feingold and Heymsfield, 1992; Cohard et al., 1998; Nenes and Seinfeld,
2003; Shipway and Abel, 2010; Morales Betancourt and Nenes, 2014). These parametriza-
tions use various methods to tackle the problem of evaluating the integrals contained within25
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the condensation term, but many (e.g. Cohard et al., 1998; Shipway and Abel, 2010;
Morales Betancourt and Nenes, 2014) exploit the same lower bound approximation that
Twomey developed for evaluating the integral of supersaturation, i.e.

t∫
τ(σ)

sdt=
1

2α

(
s2−σ2

)
. (4)

5

Twomey obtained this bound using a simple geometric argument which
:::
that

:
considers the

areas of triangles bounded above by a line whose slope is given by ds/dt= α. Since ds/dt
is a monotonically decreasing function, the area represented is guaranteed to provide a
lower bound approximation to the integral under the supersaturation curve (see the red
hatching in Fig. 1). It is somewhat surprising though that this lower bound has also proven10

to be a relatively good approximation, and what is more it makes the solution of Eq. (1) far
more tractable.

The following sections revisit this lower bound approximation, develop a slight improve-
ment and subsequently employ this revised approximation in a new parametrization scheme
for inclusion in cloud resolving models and GCMs. Section 2 develops an equation set,15

based on Eq. (1), which enables a rapid solution to find the peak supersaturation. The
method of solution further allows for a more general approximation to that described by
Eq. (4) and so Sect. 3 investigates the possibility of improving on Twomey’s lower bound.
Section 4 then provides some sample results from testing the newly developed parametriza-
tion.20

2 A reduced lookup table approach

The peak supersaturation, smax, satisfies the condition

ds

dt

∣∣∣∣
smax

= 0 (5)

5
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and so Eq. (1) with the left hand side set to zero provides an equation for determining peak
supersaturation, which can in turn be used to evaluate cloud droplet activation.

Retaining Twomey’s approximation in Eq. (4) and rearranging Eq. (1) we find

√
2α3/2

ψ2
= smax

smax∫
0

ϕ(σ)
(
s2max−σ2

)1/2
dσ. (6)

5

Twomey used a differential activity spectrum of the form ϕ(s) = kCsk−1. There are limita-
tions to this expression as discussed by Ghan et al. (1993), but moreover, it is desirable to
link the activity spectrum directly to the underlying dry aerosol characteristics without the
need for a priori information to determine the parameters C and k. To this end (c.f. Ship-
way and Abel, 2010), we use the expression of Khvorostyanov and Curry (2006) as the10

differential activity function:

ϕ(s) =
N∑
i=1

Na,i√
2π ln(σs,i)s

exp

(
− ln2(s/s0,i)

2 ln2σs,i

)
. (7)

This represents a superposition of N modes relating to the modes of an underlying aerosol
population. It is common and convenient to represent aerosol in a modal form in aerosol-15

chemistry models (e.g. Mann et al., 2010), and although the following methodology does not
preclude other representations, we consider only lognormal modal representations here.

Khvorostyanov and Curry (2006) relate the dry aerosol properties to the critical saturation
properties via the relations

s0 = r
−(1+β)
d0

(
4A3

k

27b

)1/2

(8)20

and

σs = σ
(1+β)
d . (9)

6
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Here Ak is the Kelvin curvature parameter. The variables rd0 and σd represent the mean
geometric radius and dispersion of the dry aerosol size distribution and are represented
by a subscript i for each lognormal mode in Eq. (7). Likewise, Na,i are the number con-
centrations for each mode of the dry aerosol. The relations in Eqs. (8) and (9) link the un-
derlying dry aerosol physicochemical properties, via b and β, to the activity spectrum (see5

Khvorostyanov and Curry, 2006; Shipway and Abel, 2010, for more comprehensive details).

::
In

::::::::::
essence,

:
b
:::::::::::
represents

::::
the

:::::::::
solubility

:::
of

::::
the

:::::::
soluble

:::::::::
fraction,

::::::
while

:::
the

::::::::::::::::
representation

::
of

::::
the

:::::::::::
distribution

:::
of

::::
this

::::::::
soluble

:::::::::
fraction

:::::::
within

::::
the

::::::::
particle

::::::::
volume

:::
is

::::::::::::
determined

::::
by

:::
β.

:::
In

::::
the

:::::::::::
application

::::::::::::::
demonstrated

::::::
here,

::::
we

:::::::::
assume

::::
the

:::::::
soluble

:::::::::
fraction

::
of

::::
the

::::::::
aerosol

:::
is

::::::::::
uniformly

::::::::::
distributed

:::::::
within

::::
the

::::::::
particle

:::::::
volume

:::::
and

:::
so

::::::::
β = 0.5.

:::::::
Under

::::
this

:::::::::::::
assumption,

::::
the

:::::::::::
parameter10

:
b

::
is

:::::::::::
equivalent

:::
to

::::
the

::::::
more

:::::::::::
commonly

::::::
used

:::::::::::::::
hygroscopicity

:::::::::::
parameter

::
κ

:
(Petters and Krei-

denweis, 2007)
The resulting expression when using this information in Eq. (1) becomes

√
2α3/2

ψ2
=
smax√

2π

N∑
i=1

Na,i

ln(σs,i)

smax∫
0

(
s2max−σ2

)1/2
σ

× exp

− ln2
(

σ
s0,i

)
2 ln2(σs,i)

dσ. (10)

15

The first thing to note about this expression is that all the thermodynamic and dynamic infor-
mation, i.e. temperature, pressure and vertical velocity, is held on the left hand side of this
equation. Thus for fixed aerosol characteristics, the right hand side need only be calculated
once to be used in a variety of thermodynamic states. However, if aerosol characteristics
also vary in space and time (as is usually the case in a GCM) we cannot exploit this feature20

of the equation without precalculating all possible aerosol states.
Nevertheless, the computationally challenging part of evaluating the right hand side

comes from the integral terms. In this form, in addition to smax, there is a dependence within
the integral on aerosol characteristics through the critical supersaturations, s0,i, and the
standard deviations, σs,i, but not number concentration. This leaves us with three param-25

eters for each aerosol mode, however, a further reduction in the dimension of the problem
can be obtained by making a substitution of the form σ = s0,it :::::::::

σ = s0,iσ̂:
for each integral

7
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within each summand, which then reduces the problem to a form

A=
N∑
i=1

aiI

(
smax

s0,i
, ln(σs,i)

)
(11)

where

A=
2
√
πα3/2

ψ2
, ai =

Na,is
2
0,i

ln(σs,i)
, (12)5

and

I(x,y) = x

x∫
0

(
x2− t2

)1/2
t

(
x2− σ̂2

)1/2
σ̂:::::::::::::

exp

− ln2 t

2y2

ln2 σ̂

2y2
:::::

dt.σ̂, (13)

::::::
where

:::̂
σ,

::
x

::::
and

::
y
:::
in

::::
Eq.

:::::
(13)

::::
are

::::::::
dummy

::::::::::
variables.

:
Now if we wish to evaluate Eq. (11) for10

a range of thermodynamic, dynamic and aerosol conditions, we need only calculate A and
the ai and make use of a precalculated lookup table for I(x,y).

For single mode aerosol, the right hand side of Eq. (11) reduces to a single term and since
A, ai, s0,i and ln(σs,i) are all known, the peak supersaturation can be easily recovered from

A

ai
= I

(
smax

s0,i
, ln(σs,i)

)
, (14)15

using an inverse lookup procedure.
For a multimodal distribution, Eq. (11) must be solved using an iterative approach. Al-

though such an iterative approach makes the method more expensive, the cost of evaluat-
ing the right hand side of Eq. (11) is now very low and, since I(x,y) is monotonic and well20

behaved, convergence is rapid and the method remains computationally inexpensive. In
the application used throughout the remainder of this paper, a second order Householder’s
method (i.e. Halley’s method) is applied and produces rapid convergence to a high degree
of accuracy.

8
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3 Revisiting Twomey’s approximation

The method used in Sect. 2 retained the original approximation of Twomey as given by
Eq. (4). Unlike approaches such as those adopted by Shipway and Abel (2010) or Morales
Betancourt and Nenes (2014), this method no longer seeks to evaluate the inner integral
with a closed analytical form, but rather precalculates the integral numerically. This gives5

us the freedom to choose an expression for the approximation to the supersaturation in-
tegral which might make analytical progress more difficult, but provides a more accurate
approximation.

Figure 1 illustrates the approximation (4), which can be interpreted as a right trapezoid
whose uprights have length s and σ with the top most edge having a gradient α (red hatched10

region). The width of the trapezoid is thus determined by this gradient. If the local gradient
at s deviates significantly from α, i.e. as s approaches smax, the width of the trapezoid will
be significantly less than (t− τ) and the approximation will significantly underestimate the
integral.

However, if we maintain this trapezoidal representation, then it can be clearly seen that15

taking the gradient of the upper edge to be equal to the mean gradient of the supersaturation
curve, i.e. (s−σ)/(t− τ), will lead to a much more accurate approximation (black hatched
region). The problem now becomes one of determining an expression for the gradient of
the supersaturation curve which

:::
that

:
we can make use of in our evaluation of Eq. (1).

3.1 A parametrization for ds/dt20

A feature of the evolution of the supersaturation gradient is that we know that for small
values of time, ds/dt≈ α, while when s= smax, ds/dt= 0. Thus we might expect a scaled
form for ds/dt to be given by

1

α

ds

dt
= f

(
s

smax

)
. (15)

25

9
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It is noted that this functional form, i.e. with argument s/smax, can be very easily used in
the analysis of Sect. 2, since the required scaling by s0,i within each integral will return a
function in terms of x= smax /s0,i.

To investigate the behaviour of ds/dt, we perform a numerical integration of the full
expression for Eq. (1) given the activity spectrum in Eq. (7) using a range of aerosol loadings5

and updrafts. A composite of the data from these numerical integrations are shown by the
grey shaded area in Fig. 2, where the data are normalized by the anticipated scalings. It is
striking from these data how little spread there is, suggesting that a single fitted curve may
suffice to represent all regimes.

We choose to fit a curve through these data of the form10

ds

dt
= α

(
1−

(
s

smax

)µ)λ
, (16)

where a least squares optimisation on the envelope of data leads to the choice that µ≈ 3
and λ≈ 0.6. These values are used in the final parametrization. The functional form chosen
in 16 is motivated solely by inspection of the data in Fig. 2, however further discussion of15

this approximation, and the evaluation of µ and λ is given in Appendix B.

3.2 A revised approximation for the inner integral of s

Having facilitated a suitable expression for ds/dt, we can now exploit this to obtain a revised
form for Twomey’s approximation in Eq. (4). For this, we simply replace the gradient

:::::
take

:::
the

:::::::::
gradient

:::
of

:::
the

:::::::::
topmost

::::::
edge

:::
of

:::
the

::::::::::
trapezoid

:::
in

::::
Fig.

::
1
::::::::
(which

::
is

::::::::::
assumed

::
to

::::
be α with20

::
in

::::::::::
Twomey’s

::::::::::::::::
approximation)

::
to

:::
be

:
the mean gradient given by

ds

dt

∣∣∣∣
σ,s

=
1

2

(
ds

dt

∣∣∣∣
σ

+
ds

dt

∣∣∣∣
s

)
. (17)

10
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or when s= smax, simply

ds

dt

∣∣∣∣
σ,smax

=
1

2

(
ds

dt

∣∣∣∣
σ

)
. (18)

Our revised approximation for the inner integral of s, becomes

t∫
τ(σ)

sdt≈ 1

2

[
ds

dt

∣∣∣∣
σ,s

]−1 (
s2−σ2

)
. (19)5

≈ 1

2α

[
1

2
(1− (σ/smax)µ)λ

]−1 (
s2−σ2

)
, (20)

when s= smax, with µ and λ determined in the previous section.
In order to understand the impact of this revised approximation, the relation (19) is applied

to the full form of Eq. (1) and a numerical integration is performed. This has been carried10

out for a range of scenarios (see Sect. 4), but an example evolution of supersaturation is
provided in Fig. 3. This figure shows three evolution curves when using the Whitby ma-
rine aerosol loadings (Whitby, 1978) under conditions with T = 279 K, p= 1000 mb and an
updraft velocity of w = 0.5 m s−1. The solid line represents the evolution when the full equa-
tion set is evaluated numerically with no approximations to the inner integral. The dashed15

line shows the effect of using Twomey’s original approximation, Eq. (4), and demonstrates
that using a lower bound approximation to the inner integral necessarily underestimates the
contribution from the condensation term and thus overestimates the peak supersaturation
(NB when we employ the approximation terms we only do so up until peak supersaturation
is achieved and thus the downward branch of the supersaturation curve is not simulated).20

The dotted curve shows how the supersaturation evolves if we replace Twomey’s approx-
imation with that from Eq. (19) where the mean gradient of ds/dt is calculated using the
parametrization (Eq. 16). A similar integration where the gradient is calculated explicitly as
the curve evolves results in a curve which

::::
that

:
almost exactly overlies the dotted curve and

11
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is thus not shown in Fig. 3. These curves demonstrate the benefits of using the revised
parametrization in Eq. (19), but further suggest that using the parametrization in Eq. (16)
will suffice for an approximation to the gradient when applied to the full parametrization.
For this particular example, the revised approximation leads to a peak supersaturation of
0.518 % compared with the value from the integration with no approximation of 0.508 %, i.e.5

a 2 % overestimate. The original approximation of Twomey, gives a peak supersaturation of
0.608 %, i.e. a 20 % overestimate.

3.2.1 A revised parametrization to determine smax

Section 2 provides a new parametrization for the determination of peak supersaturation and
thus the number of activated droplets. By itself, it represents a fast and accurate method,10

which has an accuracy comparable with many existing parametrizations (see Sect. 4). By
exploiting the revised approximation in Eq. (20) we can potentially improve the accuracy
further with minimal modification. In fact, the only change that is necessary, is to update the
expression for the integral (Eq. 13) which is used in the lookup tables and is independent
from any properties of the aerosol or thermodynamics. The final expression for I(x,y) if we15

make use of Eq. (20) and rescale according to σ = s0,it :::::::::
σ = s0,iσ̂, simply becomes

I(x,y) = x

x∫
0

(
x2− t2

)1/2
t
[

1
2 (1− (t/x)µ)λ

]1/2
(
x2− σ̂2

)1/2
σ̂
[

1
2 (1− (σ̂ /x)µ)λ

]1/2
:::::::::::::::::::::::

exp

− ln2 t

2y2

ln2 σ̂

2y2
:::::

dtσ̂, (21)

where µ and λ are taken to be 3 and 0.6 respectively. Precalculation of I(x,y) allows a rapid
solution to Eq. (11), where y may be taken as a continuous variable or, if the modal rep-20

resentation of the aerosol has fixed dispersion characteristics, can simply use appropriate
discrete values.
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4 Sample results

The recent paper of Ghan et al. (2011, hereafter G11) provides an overview of droplet nu-
cleation parametrizations and their relative performance across a range of aerosol loadings
and dynamical situations. We refrain from provided

:::::::::
providing

:
an exhaustive evaluation in

the current expository text, but note that in the majority of scenarios tested within the Ghan5

paper, the parametrization presented here performs as well, if not better than the Shipway
and Abel (2010) parametrization (labelled “Shipway” in the plots of G11). The Shipway and
Abel (2010) parametrization uses a similar approach to that used in the current work when
considering the representation of the differential activity spectrum, while it also uses the
Twomey approximation to determine peak supersaturation.10

However, as a sample demonstration, plots are presented in Figs. 4 and 5, which use
the Whitby aerosol loadings (Whitby, 1978) over a range of updraft velocities. These load-
ings use three modes of aerosol (Aitken, accumulation and coarse) and represent samples
from relatively clean marine conditions to very polluted urban conditions. These figures
show a comparison of various parametrizations and numerical solutions for the evaluation15

of smax and the fraction of activated aerosol respectively. The red and green curves respec-
tively represent the solution obtained with the look-up table procedure described here using
Twomey’s approximation and the newly developed approximation in Eq. (20). The dashed
curves represent the peak supersaturation obtained when a full integration of Eq. (1) is per-
formed without any further approximation. The remaining curves are taken from the paper20

of G11 for comparison and represent parametrizations of Abdul-Razzak and Ghan (2000,
“ARG”) and Fountoukis and Nenes (2005, “Nenes”); two parametrizations which

::::
that are

widely used in climate models. The diamonds show the solution obtained from the numer-
ical parcel model used in G11, which represents the complete evolution of droplet growth
without the approximations implicit in the derivation of Eq. (1) (see Appendix A).25

The first thing to note from these plots is the discrepancy between the full numerical
implementation and the results obtained from the numerical integration of Eq. (1). For ma-
rine aerosol loadings, these two curves are very closely aligned across all updraft values,

13
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suggesting that in this regime with lower aerosol number concentrations, the errors associ-
ated with the approximations described in Appendix A are unimportant. However as aerosol
numbers are increased, there may be an increased competition between the neglect of the
influence of the initial droplet radius and the y term (again see Appendix A): For the Urban
aerosol, with very high number concentrations, the coarse mode aerosol dominate the nu-5

cleation process, compared to the Clean Continental and Background scenarios in which
more accumulation mode aerosol are activated (see Figs. 11–15 of G11). This suggests
that the critical radius for activation is larger in the Urban scenario and that the influence of
the initial droplet radius is greater. However, the larger number of activated aerosol and the
low peak supersaturations in the Continental and Background scenarios compared to the10

Marine scenario, might suggest that the y term becomes more influential (see Appendix A).
This speculation doesn’t take into account the way kinetic effects are treated. A more exten-
sive investigation into the attribution of the differences between results from Eq. (1) and a
full numerical treatment would shed light onto areas for future improvement of parametriza-
tion schemes, but this is beyond the scope of the current investigation.15

Despite these differences, it is apparent from the data in Fig. 4, that Twomey’s equa-
tion (1) provides a very good estimate of peak supersaturation. If we now turn our attention
to the red and green curves representing the parametrizations developed in this work, we
immediately see the benefit of the revised approximation to Twomey’s original. Across all
scenarios, the revised approximation (green curve) sits very close to the dashed line of20

Eq. (1), while Twomey’s lower bound approximation (red curve), as one would expect, con-
sistently overestimates the peak supersaturation. That said, this latter overestimation in
certain circumstances can be seen to compensate for some of the differences between the
parcel model and Eq. (1) discussed above.

A more comprehensive analysis of the performance of this and other parametrizations25

has been conducted by Partridge et al. (2014) and will be reported elsewhere in the litera-
ture.
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5 Summary

A new method for parametrizing peak supersaturation, smax, and thus droplet nucleation,
has been developed. This method involves reducing the number of degrees of freedom
within the integral expressions involved in the equation for smax to two in the case of N
aerosol modes with variable dispersion characteristics (as opposed to 2N + 1 before the5

transformation) and only 1 for fixed dispersion. This reduction makes it feasible to precal-
culate the integral expressions using numerical methods and then re-use these data in the
form of lookup tables when solving for smax.

This method in itself represents a much more computationally efficient and accurate
method for determining aerosol activation and links through to the underlying aerosol10

physicochemistry. However, another benefit is that it allows the
::
is

::::
not

::::::::::::
constrained

:::
to

:::::
use

:::
the

::::::
fixed

:
form of the lower bound approximation of Twomey (1959), which is frequently

used to make the solution feasible, to be relaxed
::::::::
analytic

:::::::::::
integration

:::::::::
feasible,

:
and so a

more accurate approximation is derived. This newly derived approximation perhaps lacks
the elegance of Twomey’s original estimate, but is shown to faithfully reproduce the evolu-15

tion of supersaturation and the calculation of the peak supersaturation across a range of
scenarios.

The
:::::::::::
underlying

:::::::::
equation

::::
set

::::
on

::::::
which

::::
the

:::::::::::::::::
parametrization

:::
is

:::::
built

:::::::
makes

::
a

:::::::::
number

:::
of

::::::::
physical

::::::::::::::
assumptions,

:::::::
which

::::
are

::::::::::
common

:::
to

::::::
many

:::::
well

::::::
used

::::::::::
activation

::::::::::::::::::
parametrizations

(Ghan et al., 2011).
:::::::
These

::::::::::::::
assumptions

::::
and

::::
the

:::::::::
resulting

:::::::::::::::
consequences

::::
are

:::::::::::
discussed,

::::
but20

:::
the

:
accuracy and computational efficiency of the resulting parametrization make it suitable

for inclusion in both GCMs and high resolution models which
:::
that

:
use a modal representa-

tion of aerosol.

Appendix A: Derivation of Twomey’s supersaturation equation

A complete derivation of Eq. (1) is provided in chapter 13 of PK97, but we briefly summarize25

some of the approximations which
::::
that are necessary to obtain this form. The starting point

15
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is with a more general expression for the condensation term (c.f. equation 13-29 of PK97),
namely

ds

dt
= α−

(
p

εes
+

(1 + s)εL2
v

RdT 2cp

)
dwL
dt

(A1)

where wL is the total condensed water mixing ratio. Given the differential activity spectrum,5

ϕ(σ), the rate of change in the total condensate mass can be expressed as

dwL
dt

=

s∫
0

ϕ(σ)
dm

dt
dσ, (A2)

where dm/dt represents the rate of growth of condensate mass on each droplet of a given
size as it becomes active. For spherical drops, m= 4

3πρwa
3, where a is the drop radius.10

The rate of growth of a droplet by diffusional growth can be approximated by

a
da

dt
≈G(T,p)(s− y). (A3)

The expression for y is given in Table A1 and represents the Kelvin effect, which describes
the way saturation vapour pressure changes due to the curved surface of a droplet , and15

Raoult’s Law, which accounts for the change in vapour pressure due to the solute. We note
that for large values of the droplet radius, both terms in y will become small. Thus the
first approximation we will make is that y can be neglected in Eq. (A3). We also note that
the diffusivity and thermal conductivity terms within the expression for G(T,p) are actually
dependent on the size of the droplet. This dependence is also neglected in the following20

derivation, although in the application of the parametrization the approach of Fountoukis
and Nenes (2005) is used to determine a representative mean diffusivity (c.f. Shipway and
Abel, 2010).
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These approximations remove the dependence of the right hand side of Eq. (A3) on a
and so we can integrate to find

a2− a2
τ = 2G(T,p)

t∫
τ

s(t)dt, (A4)

where τ is the activation time of a given droplet. Equations (A4) and (A3) together allow us5

to write the mass change of a droplet as

dm

dt
=

4

3
πρw

da3

dt

= 4πρwG(T,p)(s(t)− y)

a2
τ + 2G(T,p)

t∫
τ

s(t)dt

1/2

. (A5)

To complete the derivation of Eq. (1) we must make further approximations, but it is worth-10

while considering the impact that these may have before we do. The assumption that y� s,
will serve to overestimate the rate of condensation (similarly when the approximation is ap-
plied to derive Eq. A3). This assumption becomes decreasingly valid for small droplet sizes
and low saturation conditions. I.e. for a very large number of small droplets which

::::
that

depress the peak supersaturation, this approximation may lead to an overestimate of the15

condensation rate, and thus an underestimate of the peak supersaturation. Twomey em-
ploys the further assumption that the initial droplet size is small and can be neglected. In
this case, the validity of the approximation is weakened in conditions of low supersatura-
tions, but with larger droplets dominating the condensation process. Large numbers of large
aerosol will likely lead to approximation of this term underestimating the condensation rate20

and over-predicting the peak supersaturation. Having made these two further approxima-
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tions, the form for Eq. (A3) becomes

dwL
dt

= 2πρw(2G(T,p))3/2s(t)

s∫
0

ϕ(σ)

 t∫
τ

s(t)dt

1/2

dσ. (A6)

By substituting Eq. (A6) into (A1), and making the final approximation that s� 1 within the
bracketed term of (A1), we recover the Eq. (1).5

Appendix B: Fit to ds/dt

The choice to approximate ds/dt with the functional form in Eq. (16) is motivated purely
by inspection of the data in Fig. 2. However, it is noted that we can solve Eq. (16) for s to
obtain

s ·2 F1

(
λ,

1

µ
; ,1 +

1

µ
;

(
s

smax

)µ)
= αt. (B1)10

where 2F1(a,b;c;z) is the Gauss hypergeometric function (Abramowitz and Stegun, 1964,
chapter 5). This by itself provides us with an approximate evolution of s, but since it is in
terms of smax does not provide any insight into the problem at hand of determining smax.

However, Pinsky et al. (2013) use a scale analysis to demonstrate that the time at which15

peak supersaturation is achieved, tmax is well approximated by

tmax =
C2

C1

smax

α
, (B2)

where C1 = 1.058 and C2 = 1.904 are universal coefficients which
::::
that

:
are independent of

any physical variables. Taking s= smax and using Eq. (B2) in Eq. (B1) leads us to an implicit20

relation for µ and λ:

2F1

(
λ,

1

µ
; ,1 +

1

µ
;1

)
=
C2

C1
, (B3)
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which, given the argument is unity in the hypergeometric function, further reduces to

Γ
(

1 + 1
µ

)
Γ(1−λ)

Γ
(

1 + 1
µ −λ

) =
C2

C1
, (B4)

(see Abramowitz and Stegun, 1964, Eq. 15.1.20). Figure 6 shows the solution space for
µ and λ along with least squares error estimates of µ given λ using the data in Fig. 2.5

The point of intersection suggests values of µ= 2.64 and λ= 0.515 would be consistent
with both minimising to the numerical data and the scale analysis of Pinsky et al. (2013).
Comparison of the solid and dashed lines in Fig. 2, provides reassurance that the final
parametrization employed in Eq. (21) is consistent.

The result of Pinsky et al. (2013) further provides a basis for testing the validity of the10

parametrization of the gradient of ds/dt between the activation time, τ , and the time of
peak supersaturation approximated by the mean gradient in Eq. (18). There it is assumed
that the monotonic behaviour of the ds/dt curve allows for the mean ds/dt value to be
used as an approximation to (s−σ)/(t− τ). If we consider the extreme ends of the curve,
i.e. (smax− 0)/(tmax− 0), then the relation (B2) suggests that15

(smax− 0)

(tmax− 0)
=
C1

C2
α =

1

1.8

ds

dt

∣∣∣∣
σ=0

. (B5)

Thus the mean ds/dt value in Eq. (18) represents only a slight underestimate of the gradi-
ent as depicted in Fig. 1.
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Table A1. List of symbols.

a radius of a droplet
aτ initial radius of a droplet activated at time τ
β distribution of soluble aerosol fraction
Γ(x) Gamma function
ε molecular weight ratio of water to dry air
εv volume fraction of soluble aerosol

::
κ

:::::::::::::
hygroscopicity

::::::::::
parameter

:

λ parameter in parametrization of ds/dt
µ parameter in parametrization of ds/dt
ν number of ions in solution
ρa density of air
ρs density of soluble fraction of aerosol
ρw density of liquid water
σd dispersion of dry aerosol distribution
σd dispersion of dry aerosol distribution
σs dispersion of distribution of ψ(s)
σs/a surface tension for water air interface
Φs osmotic potential
ϕ(σ) differential CCN activity spectrum

ψ1(T )
g

TRd

(
Lv

cpT
− 1

)
ψ2(T,p) 2π

ρw

ρa
(2G(T,p))3/2

(
p

εes
+

εL2
v

RdT 2cp

)
τ(σ) initial time of activation
Ak the Kelvin curvature parameter
B activity of a nucleus
b solubility parameter, b= νΦsεv

ρs

ρw

Mw

Ms

C parameter describing ψ(σ)
cp heat capacity of dry air at constant pressure
es saturation vapour pressure
Dv diffusivity of water vapour in air
2F1(a,b;c;x) Gauss’ Hypergeometric function

G(T,p)
1

ρw

[
RvT

esDv
+

Lv

KvT

(
Lv

RvT
− 1

)]−1

g gravitational acceleration
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Table A1. Continued.

I(x,y) integral expression with two independent variables
k parameter describing ψ(σ)
Kv thermal conductivity of air
Lv latent heat of vaporisation
Na number concentration of dry aerosol
NCCN(s) number concentration of activated CCN at a given supersaturation
Ms molecular weight of solute
Mw molecular weight of water
p ambient air pressure
rd radius of dry aerosol particle
rd0 mean geometric radius of the aerosol size distribution
rw radius of aqueous solution droplet
Rd gas constant for dry air
Ru universal gas constant
Rv gas constant for water vapour
s supersaturation fraction
s0 mean geometric supersaturation
smax peak supersaturation fraction
t time
T ambient air temperature [K]
w vertical velocity
wL total condensed water mixing ratio

y
2σs/a

RuTρwa
− νΦsmsMw /Ms

(4πρwa3/3)−ms
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Figure 1. Lower bound approximation to integral under the supersaturation curve. The red hatched
region represents the lower bound approximation of Twomey, the black hatched region represents
the revised approximation.
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Figure 2. Scaled ds/dt as a function of s/smax evaluated from numerical solution of Eq. (1) using
a range of updraft velocities and the various Whitby aerosol loadings. The solid line represents the
parametrization (Eq. 16) with µ= 3 and λ= 0.6. The dashed line uses the coefficients determined
in Appendix B.
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Figure 3. Evolution of supersaturation using Whitby Marine aerosol loading. Solid line shows nu-
merical integration of the full equation set in Eq. (1). Broken lines show numerical integration using
various approximations to the inner integral.
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Figure 4. Evaluation of peak supersaturation for the parametrization with the original (Eq. 4) and
revised (Eq. 20) approximations to the integral under the supersaturation curve. These are compared
to the full numerical solution of Eq. (1). Results from other well-used parametrization schemes are
also shown, together with results from the parcel model used in Ghan et al. (2011). Each panel
provides results from different aerosol scenarios as described by Whitby (1978) and range from
relatively clean marine conditions to highly polluted conditions.
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Figure 5. As Fig. 4 but showing the resulting fraction of aerosol which are activated to become
droplets.
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Figure 6. Solution space for the parameters µ and λ as determined from condition (B4) (solid curve)
and least squares fit of data in Fig. 2 to the functional form Eq. (16) (dashed curve).
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