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Abstract

The present study investigates the effects of aerosols on the Mediterranean climate
daily variability during summer 2012. Simulations have been carried out using the
coupled regional climate system model CNRM-RCSM5 which includes prognostic
aerosols, namely desert dust, sea salt, organic, black-carbon and sulfate particles, in5

addition to the atmosphere, land surface and ocean components. An evaluation of the
dust aerosol scheme of CNRM-RCSM5 has been performed against in-situ and satel-
lite measurements. This scheme shows its ability to reproduce the spatial and tempo-
ral variability of aerosol optical depth (AOD) over the Mediterranean region in summer
2012. Observations from the TRAQA/ChArMEx campaign also show that the model10

correctly represents dust vertical and size distributions. Thus CNRM-RCSM5 can be
used for aerosol–climate studies over the Mediterranean. Here we focus on the effects
of dust particles on surface temperature and radiation daily variability. Surface short-
wave aerosol radiative forcing variability is found to be more than twice higher over
regions affected by dust aerosols, when using a prognostic aerosol scheme instead15

of a monthly climatology. In this case downward surface solar radiation is also found
to be better reproduced according to a comparison with several stations across the
Mediterranean. Moreover, the radiative forcing due to the dust outbreaks also causes
an extra cooling in land and sea surface temperatures. A composite study has been
carried out for 14 stations across the Mediterranean to identify more precisely the dif-20

ferences between dusty days and the set of all the days. Observations show that dusty
days receive less radiation at the surface and are warmer than average because of
southwesterly fluxes often generating dust outbreaks. Only the simulation using the
prognostic aerosol scheme is found to reproduce the observed intensity of the dim-
ming and warming on dusty days. Otherwise, the dimming is underestimated and the25

warming overestimated.

25353

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25351–25410, 2014

Dust radiative effects
over the

Mediterranean

P. Nabat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

Numerous and various aerosols affect the Mediterranean basin (Lelieveld et al., 2002),
located at the crossroads of air masses carrying both natural (desertic particles, sea-
salt, volcanic ashes, etc.) and anthropogenic (black carbon, sulfate, etc.) particles. Be-
cause of their microphysical and optical properties, these aerosols can have strong ef-5

fects on the regional radiative budget (e.g. Bergamo et al., 2008), with ensuing impact
on climate (Zanis et al., 2012; Spyrou et al., 2013; Nabat et al., 2014), and ecosystems
of the Mediterranean (Guieu et al., 2010). Among these aerosols, the Saharan desert
dust particles represent an important contribution of aerosols for this region (Barnaba
and Gobbi, 2004; Nabat et al., 2013). Indeed, dust particles coming from suspension,10

saltation and creeping processes associated with wind erosion, can move from north-
ern Africa to the Mediterranean Sea and Europe (Moulin et al., 1997; Papadimas et al.,
2008; Gkikas et al., 2013). These dust outbreaks are mainly driven by the synoptic
meteorological conditions (Gkikas et al., 2012): they are more frequent in the east-
ern basin in winter and spring, in the central basin in spring and in the western basin15

in summer (Moulin et al., 1998). The ChArMEx initiative (Chemistry-Aerosol Mediter-
ranean Experiment, http://charmex.lsce.ipsl.fr) has been launched for a few years in
the framework of the MISTRALS (Mediterranean Integrated STudies at Regional And
Local Scales) program, in order to improve our knowledge of aerosols and their impacts
on climate in the Mediterranean. Thus, in early summer 2012, the ChArMEx/TRAQA20

(TRansport and Air QuAlity) campaign focused on the characterization of the air pol-
lution masses over the Mediterranean basin through the study of representative case
studies. A particularly intense dust event has been measured at the end of June with
different observation means (balloons, aircraft, surface and remote-sensing measure-
ments), and consequently represents a documented case to evaluate the ability of25

climate models to reproduce this kind of events and their effects on climate. The aim
of the present work is consequently to evaluate the direct and semi-direct effects of
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dust particles on regional climate at the daily time scale. We consider here a modelling
approach, but several elements are necessary to answer this question.

First of all, in order to simulate dust outbreaks, models need interactive dust scheme
that can uplift and transport dust particles from desert sources. Many climate models
indeed use only monthly aerosol climatology (e.g. Tanré et al., 1984; Tegen et al., 1997)5

that cannot correspond to this kind of study. However, let alone the chemistry-transport
models (e.g. CHIMERE, MOCAGE) that do not have aerosol–climate interactions, sev-
eral aerosol schemes already exist in different climate models (e.g. MACC, ECHAM-
HAM, IPSL), evaluated in different intercomparison exercises (e.g., AEROCOM, Schulz
et al., 2006, ACCMIP, Lamarque et al., 2013). With regards to dust aerosols, most of10

the climate models can simulate the main patterns of dust emission and transport
(Woodage et al., 2010), but large uncertainties remain in the characterization of dust
properties and the resulting impact on climate (Huneeus et al., 2011), notably because
of differences in dust emission parameterizations (Todd et al., 2008). Over the Euro-
Mediterranean region, several studies have considered the effects of aerosols on cli-15

mate using simulations with a prognostic scheme, both for anthropogenic aerosols
(Zanis, 2009; Vogel et al., 2009; Meier et al., 2012) and dust particles (Santese et al.,
2010; Spyrou et al., 2013).

Moreover, the role of the Mediterranean Sea is essential in climate feedbacks (So-
mot et al., 2008; Artale et al., 2010; Herrmann et al., 2011), so that ocean–atmosphere20

coupled regional models have recently been developed (Krzic et al., 2011; Herrmann
et al., 2011; Mariotti and Dell’Aquila, 2012; L’Hévéder et al., 2012; Turuncoglu et al.,
2013; Nabat et al., 2014). The importance of this coupling in the aerosol–climate inter-
actions in the Mediterranean has even been recently highlighted (Nabat et al., 2014).
However, up to now, aerosol–climate studies with prognostic aerosol schemes have25

been achieved either with the COSMO (Vogel et al., 2009) or with the RegCM model
(Giorgi et al., 2012), and have not included an ocean–atmosphere coupling yet, even
if an ocean–atmosphere coupling is currently developed between RegCM and ROMS
(Turuncoglu et al., 2013).
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In addition, as the Mediterranean is also characterized by local winds, complex coast-
lines and orography, high resolution modelling is needed to correctly reproduce the at-
mospheric circulation (Gibelin and Déqué, 2003; Gao et al., 2006; Giorgi and Lionello,
2008).

From our knowledge, none of these regional models can have at the same time5

ocean–atmosphere coupling and prognostic aerosol schemes. In the present study,
a new version of the coupled regional climate model system (RCSM) of the CNRM,
called CNRM-RCSM5, has been developed, including an aerosol prognostic scheme
derived from the GEMS/MACC project (Morcrette et al., 2009; Michou et al., 2014), in
addition to the atmosphere, ocean and land-surface components. This new model tool10

thus complies with all the criteria mentioned above, and should be able to help us to
evaluate the direct and semi-direct effects of dust aerosols at the daily time scale. The
data brought by the TRAQA campaign also enable a first evaluation of the dust aerosol
scheme before assessing the aerosol impact on climate. Besides, including the other
aerosol species allows a comparison of total aerosol optical depth with remote-sensing15

measurements. The question of the difference between the use of climatologic and
prognostic aerosols in this model will also be raised.

After a description of the aerosol scheme in Sect. 2 and its evaluation in Sect. 3, the
aerosol impact on climate is studied in Sects. 4 and 5, before the concluding remarks
in Sect. 6.20

2 Methodology

2.1 The CNRM-RCSM5 model

Four different components are included in this regional climate model system: the at-
mosphere with the regional climate model ALADIN-Climate (Déqué and Somot, 2008;
Colin et al., 2010), the ocean with the regional model NEMOMED8 (Beuvier et al.,25

2010), the land-surface with the model ISBA (Noilhan and Mahfouf, 1996) and the
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aerosols, simulated interactively within ALADIN-Climate (see details in Sect. 2.2).
ALADIN-Climate is a bi-spectral semi-implicit semi-lagrangian regional model, with
a 50 km horizontal resolution and 31 vertical levels in the present work. The version 5.3
is used here bringing some improvements compared to the previous version 5.2 used
in Nabat et al. (2014). As in the version used in Lucas-Picher et al. (2013), the longwave5

radiation scheme is now based on the Rapid Radiation Transfer Model (RRTM, Mlawer
et al., 1997), while the shortwave scheme initially developed by Morcrette (1989) has
a finer spectral resolution (6 bands). We also use here a spectral nudging method de-
scribed in Radu et al. (2008), that enables to keep large scales from the boundary forc-
ing and thus impose the true natural climate variability which is essential to represent10

dust events notably. Here the wind vorticity and divergence, the surface pressure, the
temperature and the specific humidity are nudged. The function used imposes a con-
stant rate above 700 hPa, a relaxation zone between 700 and 850 hPa, while the levels
below 850 hPa are free. The spatial wavelengths are similarly nudged beyond 400 km,
with a relaxation zone between 200 and 400 km. Thus this method gives the model15

enough freedom to generate the aerosols at the surface while keeping the large scales
conditions that are essential to simulate the true chronology.

The ocean model NEMOMED8 and the land surface model ISBA are the same mod-
els as used in Nabat et al. (2014). The ocean–atmosphere coupling is achieved by the
OASIS3 coupler (Valcke, 2013) at a 3 h frequency, which represents an improvement20

compared to CNRM-RCSM4 described in Nabat et al. (2014). Note finally that con-
trary to CNRM-RCSM4, the coupling to the river routine scheme is not included in the
present version of CNRM-RCSM5.

2.2 The aerosol scheme in ALADIN-Climate

Until the version 5.2 of ALADIN-Climate aerosols were represented in this model25

through monthly climatologies of aerosol optical depth (AOD) for five aerosol types
(desert dust, sea-salt, black carbon, organic matter and sulfate) distributed vertically
according to constant profiles. In the version 5.3 used here, a prognostic aerosol
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scheme has been included, adapted from the GEMS/MACC aerosol scheme (Mor-
crette et al., 2009; Benedetti et al., 2011; Michou et al., 2014). It includes the same
five aerosol species that can be directly emitted from the surface for dust and sea-
salt particles, or from external emission datasets for black carbon, organic matter and
sulfate precursors. The spatial domain of our simulations has consequently been ex-5

tended compared to the previous study of Nabat et al. (2014), in order to include all the
sources generating aerosols that can be transported over the Mediterranean basin. No
aerosol is indeed included in the lateral boundary forcing.

Sea salt aerosols are generated by wind stress on ocean surface, either because
of air bubbles bursting at the sea surface, or from spume droplets directly torn off the10

wave crests by the wind. Guelle et al. (2001) have reviewed different approaches to
model these processes. The current formulation used in ALADIN-Climate is based on
the studies of Guelle et al. (2001) and Schulz et al. (2004), that provide surface mass
fluxes at 80 % relative humidity depending on 10 m-wind, integrated for the three size
bins defined in the scheme: 0.03 to 0.5 µm, 0.5 to 5 µm and 5 to 20 µm. Note that15

the size distribution of emitted sea salt also depends on other factors such as the
sea surface temperature (Jaeglé et al., 2011), which are not taken into account in this
current version.

Dust emission processes depend on several factors such as soil characteris-
tics (chemical composition, humidity, roughness) and surface wind speed. In the20

GEMS/MACC scheme, the dust parameterization follows Ginoux et al. (2001), that
propose a simplified formulation of dust emission, based on the wind speed and thresh-
olds according to the fraction of bare soil and soil moisture. In ALADIN-Climate, this
function has been replaced by the Marticorena and Bergametti (1995) parameteriza-
tion, that takes into account more soil characteristics coming from the ECOCLIMAP25

database (Masson et al., 2003), which provides information on the erodible fraction
and the sand and clay fractions, allowing a classification of the soil textures. After the
determination of an erosion threshold based on the soil distribution, the soil moisture
and the roughness caused by nonerodible elements, the horizontal saltation flux is cal-
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culated, proportionally to the third power of the wind friction velocity. The vertical flux
is then inferred from this saltation flux, according to an empirical relationship given by
Marticorena and Bergametti (1995), which notably depends on the soil clay content.
The emitted dust size distribution is based on the work of Kok (2011). More details
about this dust emission parameterization can be found in Nabat et al. (2012), who5

have used the same dust emission scheme in RegCM4. Once emitted dust particles
are integrated in the three dust size bins of the scheme: 0.01 to 1.0 µm, 1.0 to 2.5 µm
and 2.5 to 20 µm.

The external emission datasets for the three other aerosol types come from Lamar-
que et al. (2010), who have provided inventories at 0.5◦ resolution of different species10

for climate models. These inventories include numerous sectors such as energy pro-
duction, industries, domestic activities, agriculture, transport and fires. Organic and
black carbon particles are separated between hydrophile and hydrophobic particles.
SO2 emitted particles can be transformed in SO4, but 5 % of them are directly emitted
as SO4 aerosols (Benkovitz et al., 1996). Volcanic sulfur emissions are also included,15

as well as DMS particles from oceans (see Michou et al., 2014).
All these aerosols gathered in 12 bins are then transported in the atmosphere, be-

fore possible dry or wet deposition. More details about transport and deposition can
be found in Morcrette et al. (2009). Optical properties (single scattering albedo and
asymmetry factor) are fixed for each aerosol type, as defined in Nabat et al. (2013).20

The complexity of this aerosol scheme is similar to the one used in RegCM, but it
does not include detailed chemical processes that can be found in COSMO-ART (Vo-
gel et al., 2009). However it enables our model to keep a low cost of calculations, so
that multi-annual simulations could be carried out for aerosol–climate studies.

2.3 Simulations25

Three simulations have been carried out with CNRM-RCSM5, driven by the ERA-
Interim reanalysis (Dee et al., 2011) as initial and lateral boundary forcing. The PROG
simulation includes the whole aerosol prognostic scheme described previously. The
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PROG-M simulation uses monthly AOD provided by PROG, so that PROG and PROG-
M share the same average aerosol content at the monthly scale. The NO simulation
does not include any aerosols. Comparisons between these simulations will enable to
estimate the aerosol effects on the radiative budget and regional climate, and the im-
plications of using prognostic aerosol schemes instead of monthly climatologies. The5

three simulations cover the summer 2012 period from 1 June to 31 August. A one-
month spin-up period has been performed for each simulation in order to have realist
aerosol concentrations on 1 June.

2.4 Observation data

For the evaluation of the aerosols and their direct radiative effects, different observed10

datasets are used in the present work.
Simulated AOD is compared to satellite data from the MODerate resolution Imag-

ing Spectroradiometer (MODIS, collection 5.1, standard and Deep Blue algorithms, 1◦

resolution, Tanré et al., 1997; Levy et al., 2007), the Multiangle Imaging SpectroRa-
diometer (MISR, Level3, Kahn et al., 2005, 2010) and the SEVIRI radiometer onboard15

the geostationary satellite Meteosat Second Generation (MSG). For the latter instru-
ment, we use the algorithm of Carrer et al. (2010), which provides high-resolution AOD
over both ocean and land surfaces. Nowadays, this algorithm is being implemented on
the production chain of the ICARE thematic center (http://www.icare.univ-lille1.fr) under
the name of AERUS-GEO (Aerosol and surface albEdo Retrieval Using a directional20

Splitting method-application to GEO data).
Ground-based observations from 30 stations of the AErosol RObotic NETwork

(AERONET, Holben et al., 1998, 2001) will also be considered (Fig. 1). These sun-
photometer observations provide high-quality data (Level 2.0), which have been down-
loaded from the AERONET website (http://aeronet.gsfc.nasa.gov). All AOD data have25

been calculated at 550 nm using the Angstrom coefficient when necessary, to make
comparisons and evaluation easier.
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The TRAQA campaign has also provided interesting observations for dust aerosols,
namely vertical profiles from lidar instruments in Barcelona and San Giuliano (Cor-
sica). The Barcelona lidar system is part of the ACTRIS/EARLINET network (Aerosols,
Clouds, and Trace gases Research InfraStructure Network/European Aerosol Re-
search Lidar Network, Pappalardo et al., 2014). The extinction coefficient profiles were5

retrieved by means of the two-component elastic lidar inversion algorithm constrained
with the AERONET sun-photometer-derived AOD (Reba et al., 2010). In San Giuliano
(42.28◦ N, 9.51◦ E), aerosol vertical profiles were acquired with a 355 nm backscattering
lidar. The aerosol extinction coefficient profiles are estimated using the Klett’s method
and a fix lidar ratio (Léon et al., 2014) from hourly averaged attenuated range-corred10

lidar signals. Besides, an ATR-42 research flight operated by SAFIRE (Service des
Avions Francais Instrumentés pour la Recherche en Environnement) has also been
realized during the TRAQA campaign. This study uses the airborne data from the Pas-
sive Cavity Aerosol SPectrometer (PCASP), which measures particles between 0.1
and 3.2 µm.15

In addition, the Météo-France and AEMET networks have provided daily radiation
and 2 m-temperature measurements (see Fig. 1). Radiation measurements have been
completed by the stations of Sede-Boker (SED, SolRad-Net network, AERONET web-
site), Lampedusa (LAM, coll. ENEA) and two Météo-France buoys located in the Gulf of
Lions (LIO) and near the French Riviera (AZU). Lampedusa and the two buoys also pro-20

vide sea surface temperature (SST) measurements. All the fourteen stations providing
surface radiation and temperature have been added in Fig. 1 (red crosses). It is worth
mentioning that available data is provided by stations that are located for most of them
in the western Mediterranean. However, in summer, most of the dust outbreaks occur
in this region because of frequent low pressure systems over Morocco that favour the25

dust export over the western Mediterranean (Moulin et al., 1998; Gkikas et al., 2012).
Besides, the MACC reanalysis (Morcrette et al., 2009) is also used in the present

work, as a means of evaluating the CNRM-RCSM5 simulations. This reanalysis in-
cludes data assimilation from the MODIS instrument (AOD).
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3 Evaluation of the simulated aerosols

3.1 Aerosol optical depth

The average AOD simulated by PROG in summer 2012 is presented in Figs. 2 and
3, respectively for the five aerosol types, and for total AOD. Figure 3 also presents the
average AOD for summer 2012 for three satellite products (MODIS, MISR and AERUS-5

GEO) as well as the MACC reanalysis (Morcrette et al., 2009; Benedetti et al., 2011).
The general spatial pattern shows a good agreement between satellites, MACC and
CNRM-RCSM5. The highest values (up to 1.5) are indeed found over northern Africa
and Arabian peninsula, where dust aerosols are emitted, while anthropogenic particles,
especially sulfate and organic matter, are responsible for local maxima in Europe. The10

Mediterranean Sea, located between both sources, is also affected by moderate AOD,
ranging from 0.15 to 0.3, from the north-east to the south-west. Sea-salt particles are
essentially simulated over the Atlantic ocean, as well as the western Mediterranean
Sea in lower quantities.

In greater detail, some differences can be noted between the model and satellite15

data. CNRM-RCSM5 AOD is closer to MISR over northern Africa, where a large zone
of AOD higher than 0.5 can be identified in both datasets, while MODIS and espe-
cially AERUS-GEO show lower AOD. Similar conclusions can be drawn for the Ara-
bian peninsula. Dust export over the Atlantic ocean is on the contrary in very good
agreement between the five products (AOD between 0.5 and 0.7). Over western and20

central Europe, MISR AOD is lower than MODIS, AERUS-GEO, MACC and CNRM-
RCSM5. Large differences in AOD are also present in Eastern Europe and Russia,
where MODIS shows higher AOD than the other datasets. However, this region is in
the limit of the domain seen by SEVIRI (lower values in AERUS-GEO), and is also
close to the border of the domain used in CNRM-RCSM5, so that aerosols over this re-25

gion may come from outside the domain. Finally, AOD over the northern Atlantic ocean
is higher in CNRM-RCSM5 and MACC than in satellite products, but the presence of
numerous clouds in this area limits the quality of the satellite data there.
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Averages for summer 2012 are given in Table 1, for CNRM-RCSM5 and different
model and satellite datasets: the MACC reanalysis, the AOD climatology from Nabat
et al. (2013), named NAB13 thereafter, MODIS, MISR and AERUS-GEO. NAB13 and
MACC, which present AOD components for each aerosol type, are based on both
model and satellite data for the first one, and on model and data assimilation for the5

second one. NAB13, which gives reliable estimations of the different AOD components,
is only available on the 2003–2009 period, so that the average over this period with the
minimum and maximum values have been indicated. Averages have been calculated
on the three domains defined in Nabat et al. (2013): Europe, the Mediterranean Sea
and northern Africa.10

Over Europe, CNRM-RCSM5 is very close to NAB13 for total AOD (0.18 on average)
and the five aerosol types, even if the sharing between organic matter and sulfate
aerosols is slightly different. MACC simulate more dust and sulfate particles, but the
three satellite data have lower AOD (between 0.15 and 0.16), so that CNRM-RCSM5
AOD is median. Over the Mediterranean Sea, a good agreement is shown between15

CNRM-RCSM5 (0.23 for total AOD), MACC (0.24) and NAB13 (0.23). In addition, the
proportion between the different aerosol types is similar in the three datasets. However,
as in Europe, satellite data have lower AOD (between 0.18 and 0.22).

More variability is noted with regards to AOD over northern Africa, notably because
of the dust component. CNRM-RCSM5 shows higher AOD (0.45) than NAB13 (0.41),20

MACC (0.32) and the satellite data (between 0.21 and 0.33). However, interannual vari-
ability is stronger in this region as shown by the larger amplitude in NAB13 (0.33–0.44).
Moreover, MACC does not assimilate AOD over the Sahara because the standard al-
gorithm of MODIS cannot retrieve AOD on bright surface, so that an underestimation
of dust aerosols in MACC had been identified (Nabat et al., 2013).25

This evaluation has been completed by a comparison to ground-based observations
from the AERONET network that provide accurate AOD measurements. Over 30 sta-
tions around the Mediterranean basin (see Fig. 1), the mean bias of CNRM-RCSM5
is 0.02, against −0.03 for AERUS-GEO, 0.04 for MODIS, −0.07 for MISR and −0.09

25363

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25351–25410, 2014

Dust radiative effects
over the

Mediterranean

P. Nabat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

for MACC. Considering only the stations to the south of 33◦ N, CNRM-RCSM5 has also
the lowest bias (0.03) compared to AERUS-GEO (−0.06), MODIS (0.04), MISR (−0.07)
and MACC (−0.10).

As a summary, Table 2 presents the spatial correlations between these five products.
All the correlations are higher than 0.6, confirming the general agreement. CNRM-5

RCSM5 correlations are comparable to the scores of the satellite products when com-
pared together, indicating its ability to reproduce the spatial patterns of AOD over this
region.

As far as the daily scale is concerned, Fig. 4 shows four temporal series across the
Mediterranean basin, respectively at Oujda (a, Morocco, number 10 in Fig. 1), Mallorca10

(b, Spain, 2), Frioul (c, France, 8) and Lampedusa (d, Italy, 1). All these series show
high daily variability, because of frequent dust outbreaks in this season. The spectral
nudging technique used in CNRM-RCSM5 enables to reproduce the true chronology
of the synoptic meteorological conditions as shown in Herrmann et al. (2011), which is
useful for driving dust emission. in the present work. As a result, the model is able to re-15

produce the intensity and the chronology of most AOD peaks, such as those observed
in Oujda (18 June, 25 July) in Mallorca (19 June, 9 July, 10 August), Frioul (28 June,
19 August) and Lampedusa (21 June, 13 August). However, CNRM-RCSM5 some-
times overestimate some dust events (e.g. 19 June in Frioul, 15 June in Lampedusa),
but these differences remain in minority.20

Similar comparisons have been realized for 30 AERONET stations (see their loca-
tions on Fig. 1), the results are presented in a Taylor diagram (Fig. 5, adapted to daily
time series from Taylor, 2001). This diagram represents three statistics: the correlation
coefficient is the azimuth angle, the radial distance from the origin is the standard de-
viation normalised by observations, and the distance to the “REF” point on the x-axis25

is the root-mean-square error (RMSE). The average temporal correlation coefficient
for CNRM-RCSM5 is 0.70, while the ratio between simulated and observed standard
deviations is 1.01, revealing the ability of the aerosol scheme to reproduce AOD daily
variability. This scores are close to MODIS and AERUS-GEO, whose standard devia-
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tion ratio is slightly worse (respectively 1.29 and 1.10) and correlation coefficient slightly
better (resp. 0.73 and 0.76). Note that AERUS-GEO has consequently the best scores
among the satellite products in the comparison against AERONET data. The lowest
scores of MISR are probably due to the reduced number of available retrievals with
this instrument. MACC has also a high correlation coefficient (0.74), but shows less5

variability than AERONET (its average normalized standard deviation is only 0.63. It
is also worth mentioning that contrary to satellite data, CNRM-RCSM5 has no station
with very low scores: MODIS and AERUS-GEO have respectively 5 and 3 stations with
RMSE higher than 1.25, none for CNRM-RCSM5.

3.2 Dust vertical profiles and size distribution10

CNRM-RCSM5 has shown its ability to reproduce correctly AOD daily evolution, which
is a parameter often evaluated in climate models. However, aerosol direct and semi-
direct forcing also depends on the profile and size distribution of particles, rarely eval-
uated given the scarcity of observations, and affected by large uncertainties (Textor
et al., 2006). Even if total AOD is necessary to evaluate AOD against in-situ or satellite15

measurements that cannot separate the different aerosol types, more attention is now
given to the dust component which is the focus of the study. The TRAQA campaign has
provided a well-documented dust outbreak over the Mediterranean Sea, which is use-
ful for this evaluation. However a deeper evaluation of the other aerosol components is
out of the scope of the paper.20

The dust plume observed in the TRAQA campaign comes from the uplift of dust parti-
cles in western Africa between 21 and 23 June. These particles have been transported
along the African coast up to southern Spain, driven by the presence of a low pressure
system over Morocco and a high pressure area over the Azores. From 26 June, a low
formed in the bay of Biscay generated a southwesterly flow bringing the dust plume25

over northern Spain. Successively moving to the southeast, dust particles have also
been transported over the Mediterranean Sea. Figure 6 presents the vertical distribu-
tion of aerosols during the dust outbreak observed by lidars in the TRAQA campaign
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in terms of extinction coefficient in Barcelona at 532 nm and in San Giuliano at 355 nm.
Dust aerosols first reach Spain on 27 June, transported in the mid-troposphere, as
noted in the profile between 2000 and 5000 m with a maximum extinction (0.18 km−1)
at 3500 m. The two-component elastic lidar inversion algorithm constrained with an
AERONET AOD of 0.32 gave a column-equivalent lidar ratio of 54 sr. This value is5

in the range of 50–70 sr established by Tesche et al. (2009) of desert dust lidar ra-
tio observations by Raman lidar, which makes us confident with the result of the lidar
inversion. The altitude of these dust particles is similar in CNRM-RCSM5, despite an
underestimation of the intensity of the dust outbreak and a slight overestimation in
the higher layers. Under this dust layer, the presence of sulfate aerosols is noted in the10

model, with an extinction coefficient close to observations (0.03 km−1). In San Giuliano,
where the dust plume has arrived three days later, its altitude is also similar in CNRM-
RCSM5 and observations: between 2000 and 5000 m. As in Barcelona, extinction is
slightly overestimated in the high troposphere (above 6500 m).

Size distribution is also an essential physical parameter for aerosol–climate studies,15

as optical properties depend on the particle size. Figure 7 presents the size distribu-
tion observed during a sounding realized by the ATR42 during the TRAQA campaign,
as well as the simulated distribution. Note that the bin scheme used in CNRM-RCSM5
does not enable to reproduce exactly the observed distribution, but the division in 3 bins
for dust particles notably can still be evaluated. This sounding took place in the Mediter-20

ranean Sea (43.05◦ N, 9.55◦ E) on 29 June, when the dust plume has been transported
over this area. In the lower layers, a first maximum is observed in the smallest par-
ticles (around 0.1 µm), probably due to sulfate aerosols, as represented by CNRM-
RCSM5. The observed distribution shows that mass concentration is higher for larger
particles, especially between 2000 and 4000 m, where dust aerosols are located. This25

distribution is simulated by CNRM-RCSM5, notably between 2000 and 3000 m. Above
3000 m, coarse particles (larger than 2.0 µm) are underestimated. However, these par-
ticles have less impact on extinction than submicronic particles, but they could play
a role in other processes (e.g. deposition).
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These results finally show that the aerosol vertical and size distributions simulated
by CNRM-RCSM5 reproduce the main patterns seen in observations from the TRAQA
campaign, even if the simulated profile in Barcelona shows an underestimated extinc-
tion peak.

To summarize, CNRM-RCSM has shown its ability to simulate the evolution of5

aerosols during summer 2012 in terms of spatial pattern and daily variability, as well
as the vertical profiles and size distribution of dust particles. This model will be used in
the following section, to study the impact of dust outbreaks on regional climate. In addi-
tion, an intercomparison modeling study about this dust event observed in the TRAQA
campaign will be the subject of a parallel study led by Sara Basart.10

4 Aerosol radiative effects

4.1 Direct shortwave radiative forcing

As seen previously in the AOD temporal series, the Mediterranean basin has been af-
fected by frequent dust outbreaks in summer 2012. This section aims at assessing their
impact on regional climate. Figure 8 first shows the daily direct shortwave radiative forc-15

ing (DRF) of aerosols in the PROG and PROG-M simulations. DRF is calculated on-line
during the simulation, calling twice the radiation code: with and without aerosols. On
average in summer 2012, very few differences have been identified between PROG
and PROG-M (Fig. 8a). Both show a negative forcing of aerosols at the surface, which
is stronger over regions under dust influence: northern Africa, Arabian peninsula and20

the tropical Atlantic ocean, reaching −20 to −50 W m−2, in line with Nabat et al. (2014).
Over Europe and northern Atlantic, aerosol DRF ranges from −10 to −15 W m−2, no-
tably because of sulfate aerosols. However, the daily standard deviation is higher in
PROG than in PROG-M, particularly over northern Africa and the Mediterranean Sea,
where it is more than twice higher (Fig. 8b). Indeed, dust emission is not a continu-25

ous phenomenon, because it is associated with episodes of strong wind over northern
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Africa. Consequently dust particles show high variability over the Mediterranean basin
that PROG-M cannot take into account contrary to PROG. The only daily variations of
DRF in PROG-M are due to cloud cover variations, as the aerosol effect can be partially
masked by the presence of clouds.

Daily temporal series in Oujda, Frioul, Lampedusa and Mallorca (Fig. 8c) confirm that5

aerosol forcing variability is more important in PROG than in PROG-M. For example
in Mallorca, aerosol DRF ranges from −70 to −5 W m−2 in PROG but only −30 to
−10 W m−2 in PROG-M. Indeed, during a given month, AOD can vary in PROG at each
time step, but is constant in PROG-M. DRF can reach highest negative values in PROG
whenever AOD peaks (Figs. 4 and 8). Consequently, PROG-M misses the strong dust10

outbreaks that can occur over the Mediterranean basin. Compared to estimations from
literature such as the studies of Di Sarra et al. (2008) and Di Biagio et al. (2010) who
have respectively found an average DRF of −30 and −26 W m−2 in Lampedusa, the
values given by CNRM-RCSM5 have the same order of magnitude, even if they can
reach largest forcings. Note also that the Atlantic ocean under the influence of dust15

export shows the highest variability.

4.2 Surface radiation

As dust outbreaks cause high DRF values and variability in PROG, consequences on
climate might be expected, first on surface radiation. The idea is therefore to have
colocalized measurement of AOD, shortwave radiation and 2 m temperature, which is20

hard to obtain. A few ground-based measurements are thus available to evaluate the
ability of the model to reproduce the observed radiation. Here an evaluation of solar
surface radiation (SSR) is presented in details for two stations representative of the
Mediterranean basin, namely Lampedusa and Murcia. Lampedusa is located on an is-
land close to dust-emitting regions where clear-sky conditions are frequent in summer,25

while Murcia is located in southeastern Spain, where more clouds are observed. Fig-
ure 9 presents the daily series of AOD and downward SSR in Lampedusa, observed
and simulated by PROG, PROG-M and NO.

25368

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25351–25410, 2014

Dust radiative effects
over the

Mediterranean

P. Nabat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

NO is the only CNRM-RCSM5 simulation to have a high bias against observed ra-
diation (+18.0 W m−2), compared to PROG-M (−6.0 W m−2) and PROG (−3.5 W m−2),
due to the absence of aerosols in NO. While the aerosol climatology is enough to re-
duce the bias in PROG-M, PROG has the highest temporal correlation (0.87 against
0.81 for NO and 0.85 for PROG-M), and its standard deviation is the closest to ob-5

servations (a ratio of 0.88 against 0.74 both for NO and PROG-M). Indeed, PROG-M
and NO clearly miss some variations of SSR. When AOD is high (e.g. 21 June, 3–12
July, 29 July, 7 August), PROG-M and NO overestimate SSR, and inversely when AOD
is low (e.g. 24 June, 20 July, 10 August) but only for PROG-M as NO benefits in this
case from the absence of aerosols. ERA-Interim, which has a monthly aerosol clima-10

tology as in PROG-M, except that the aerosol climatology used in ERA-Interim (Tegen
et al., 1997) is probably less realistic, also simulates radiation variations lower than ob-
served. As a result, the effect of aerosols on surface radiation can easily be identified
in Lampedusa, where cloud cover is generally low (see its variations in Fig. 9).

In Murcia, more affected by clouds than Lampedusa, similar results have been found.15

Figure 10 presents the same series as in Lampedusa in Fig. 9. NO is still the only
simulation to have a high bias (+25.7 W m−2) compared to PROG-M, PROG and ERA-
Interim (lower than 7 W m−2). The remaining bias could be attributed to a lack of cloud
cover in the model. The temporal correlation (0.77) and the standard deviation ratio
(0.95) of PROG are higher than PROG-M and NO. The evolution of AOD also enables20

to justify the role of aerosols in the higher scores obtained by PROG. Indeed, the peaks
in AOD generally correspond to minima in surface radiation in PROG (e.g. 18 June, 28
June, 28 July). In several of these cases (notably end July), PROG is the only simulation
to reproduce the observed radiation. ERA-Interim, which has only a monthly aerosol
climatology (Tegen et al., 1997), misses these minima in radiation.25

Besides, PROG is also closer to SSR measurements when the atmospheric aerosol
content is close to zero. Indeed, in case of clean air without aerosols, more radiation
can reach the surface, as illustrated between 10 June and 14 June when PROG-M
and ERA-Interim underestimate surface radiation because of their aerosol climatology.
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Note finally that when PROG does not have the true aerosol content (e.g. 4 June),
errors can alse be found in radiation.

As a result, these comparisons in Lampedusa and Murcia show that the prognostic
aerosol scheme used in PROG enables to better reproduce the evolution of surface
radiation, that cannot be done properly with an aerosol climatology. This conclusion5

drawn from the series in Lampedusa and Murcia is also checked in other stations. Ta-
ble 3 presents the scores obtained by the different simulations in 14 stations across
the Mediterranean basin (see Table 5). On average, the bias is reduced both in PROG
and PROG-M, reaching a level close to ERA-Interim (between 11 and 13 W m−2). A net
improvement is noted in temporal correlation, since it is higher in PROG than in PROG-10

M and NO in every station. Daily variability in SSR is also higher in PROG for most
stations, representing an improvement compared to observations except where this
variability was already overestimated (e.g. Ajaccio). It is worth mentioning that in Sede-
Boker PROG is getting closer to observations by reducing SSR variability. A misrepre-
sentation of cloud processes could also explain some of the discrepancies with obser-15

vations. The lack of cloud cover in CNRM-RCSM shown in Nabat et al. (2014) could
explain the remaining bias. ERA-Interim that does not have the daily aerosol variations
and consequently misses some peaks in surface radiation, succeeds in getting a high
average correlation coefficient (0.79) probably because of a better representation of
clouds. Moreover, changes in water vapour column amount may also affect the SSR to20

a lesser extent.

4.3 Land surface temperature

Once the impact of aerosols on surface radiation has been proven in the previous sec-
tion, an effect on 2 m-temperature (T2m) could also be expected. Figure 11a presents
the average difference between PROG-M and NO (top) and PROG and PROG-M (bot-25

tom) for summer 2012. As shown in Nabat et al. (2014), compared to NO, a general
cooling is observed in PROG-M, due to the presence of aerosols that scatter and ab-
sorb incident solar radiation, preventing it from reaching the surface. This cooling is
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about −0.5 ◦C over the Mediterranean Sea, and can reach between −1 and −2 ◦C over
northern Africa. The daily temporal series shows the variability of the effect of aerosols
(Fig. 11b), even if the latter are constant in a month. Their effect notably depends on
the presence of clouds and changes in atmospheric dynamics between the NO and
PROG-M simulations (semi-direct effect).5

In the PROG simulation, a similar cooling is simulated compared to the NO simu-
lation, but the amplitude of this cooling differs from PROG-M. On average in summer
2012, the cooling at surface is weaker in PROG than in PROG-M over Europe and par-
ticularly eastern Europe, as well as in the most part of northern Africa, and inversely
over regions submitted to frequent dust outbreaks such as the southwestern Mediter-10

ranean sea and the Atlantic Ocean.
The daily series of the PROG-NO difference in T2m are relatively correlated with the

PROG-M-NO difference, as the correlation coefficient for the four stations considered
in Fig. 11 is 0.41 in Oujda, 0.55 in Mallorca, 0.83 in Frioul and 0.68 in Lampedusa.
However, the impact of some dust events can be identified in these series. For example15

in Oujda, AOD is higher than 0.6 between 9 and 12 July, when the maximum difference
between PROG-M and NO is −0.5 ◦C against −1.0 ◦C between PROG and NO. The
extra cooling of 0.5 ◦C is likely related to the passage of the dust plume. Note that
cloud cover remained weak during this period in Mallorca, enabling dust aerosols to
have a strong impact on surface temperature. Similar examples have been found in20

Oujda (e.g. 15–18 August) and Lampedusa (9–12 July). These three stations, located
in regions where average cooling is higher in PROG than in PROG-M compared to NO,
reveal that the frequent dust outbreaks in clear-sky conditions are responsible for this
extra average cooling.

On the contrary, in Frioul, located further to the dust sources where the average25

cooling is higher in PROG-M than in PROG, no such event has been identified. In
addition, clear-sky conditions are often characterized by low aerosol loads (e.g. 21–
23 July) where aerosol forcing is higher in PROG-M, while dust outbreaks are often
affected by clouds (e.g. 18 June). Consequently, the average cooling by aerosols is
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reduced in PROG compared to PROG-M. However, a dynamic component could also
be considered, notably to explain the strong differences in eastern Europe.

As a result, the daily variability of aerosols brought by the prognostic scheme enables
to identify an extra cooling during some dust outbreaks, notably when cloud cover is
not important. A comparison with surface observations is now considered. Figures 95

and 10 also present the daily averages of T2m, respectively in Lampedusa and Murcia.
While PROG-M and PROG are on average cooler than NO because of the aerosol forc-
ing, the three CNRM-RCSM5 simulations have similar temporal correlations (between
0.76 and 0.77 for Murcia, 0.72 and 0.73 for Lampedusa). Even during dust outbreaks,
it is not possible to state that average temperature in PROG is closer to observations.10

Note however that Lampedusa island is too small to be captured by the model resolu-
tion. With regards to standard deviations, the daily variability is reduced in PROG (1.27
in Murcia, against 1.31 for PROG-M and 1.36 for NO; 0.89 in Lampedusa against 0.92
for PROG-M and 0.95 for NO). The aerosol forcing during dust events could indeed
decrease the maximum daily temperature, while the effect of dust particles on thermal15

surface radiation (TSR) could increase night-time temperature, and thus reduce T2m
diurnal variability.

Table 4 presents the scores of the evaluation of T2m for 13 stations around the
Mediterranean basin (see Table 5). On average, while no change in correlation coef-
ficient is noted, the PROG simulation is cooler than NO and PROG-M, increasing the20

negative bias. Nevertheless the daily variability is slightly reduced, getting closer to ob-
served variability. In addition, it is worth mentioning ERA-Interim has the highest scores
in terms of correlation and variability (standard deviation), probably benefiting from the
assimilation of surface temperature (Dee et al., 2011).

4.4 Sea surface temperature25

Thanks to the ocean–atmosphere coupling, the aerosol-induced changes in SST can
be addressed. Indeed the aerosol surface negative forcing also leads to a cooling in
SST, as shown in Fig. 12, on average −0.4 ◦C for the difference PROG-M-NO. This
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cooling is stronger near the African coast of Maghreb, where dust aerosols are prevail-
ing in this season. This result is close to the study of Nabat et al. (2014), who have
found an average aerosol effect of −0.6 ◦C on the Mediterranean Sea in summer. The
comparison between PROG and NO shows similar differences (on average −0.4 ◦C as
for PROG-M-NO), indicating an average similar effect of prognostic aerosols on SST.5

However, Fig. 12 reveals regional differences in the comparison between PROG and
PROG-M. Indeed, SST is slightly warmer in the northern basins (Gulf of Lions, Adriatic
Sea, Aegean Sea) in PROG than in PROG-M, and conversely colder in the Algerian
basin.

This difference is also shown by the daily temporal series in the Gulf of Lions and10

the strait of Gibraltar (Fig. 12b). Even if both PROG-M and PROG simulate a cooling
compared to NO, SST is most of the time 0.1 ◦C warmer in PROG than in PROG-M in
the Gulf of Lions. The impact of the main dust outbreaks is also noted. For example,
on 18 June, under an AOD peak of 0.65, SST gets 0.1 ◦C colder in PROG than in
PROG-M which does not see this maximum. In the strait of Gibraltar, similar effects of15

the maximum AOD are observed (e.g. 24 June).
However the main difference between these two series is the variability of the at-

mospheric aerosol content. While frequent AOD peaks are observed in the Strait of
Gibraltar due to frequent dust outbreaks, the latter less often reach the Gulf of Lions,
hence less frequent AOD peaks. The AOD standard deviation in PROG is 0.22 for the20

Strait of Gibraltar and only 0.14 for the Gulf of Lions. In result, there are more days
in the Strait of Gibraltar (32) where AOD is much higher (difference higher than 0.1)
in PROG than in PROG-M, than in the Gulf of Lions (15), despite common averages.
Consequently, the aerosol effect can be more important in the Strait of Gibraltar than
in the Gulf of Lions, which must explain a cooler SST in the Strait of Gibraltar.25

In addition, the days when AOD is high in the Gulf of Lions are often cloudy, which
alleviate the effect of aerosols. Indeed, dust outbreaks over the northern basins are
more frequent under southerly winds (Gkikas et al., 2012), that also favour humidity
advection and cloud cover.
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These comparisons have shown the effect of using a prognostic aerosol scheme,
notably its importance to reproduce the daily variability of observed radiation. With
regards to surface temperature, differences are also noted but they are generally too
weak to see a general improvement compared to observations. Moreover, aerosol max-
ima over the Mediterranean are associated to particular weather conditions which are5

responsible for effects on radiation and temperature that are not due to aerosols. That
is the reason why a composite study to isolate the effect of dust aerosols is carried out
in the following section.

5 Composite analysis

5.1 Methodology10

This section aims at highlighting the simulated and observed differences between days
of high aerosol load and the set of all the days in terms of several meteorological pa-
rameters (radiation, temperature, cloud cover, . . . ). For the fourteen stations defined
previously, the days of high AOD, called thereafter “dusty” days as dust aerosols are
mostly responsible for these AOD maxima, have been selected over the 92 days of the15

summer 2012 (June-July-August). A threshold in AOD has been chosen for each sta-
tion, in order to have 10 % of dusty days. This threshold differs between the model and
the observations because of the model bias described in Sect. 3.1. A day is consid-
ered as a dusty day provided that AOD is higher than the defined threshold, both for
the PROG simulation and observations. Days when observations were not available20

have been removed.
Average differences for several parameters have then been calculated between the

dusty days and the set of all the days, for the three simulations (NO, PROG-M and
PROG) and observations. The differences obtained for NO will enable to estimate the
meteorological effect, only due to changes in weather parameters (cloud cover, wind,25

etc.) without considering the aerosols, for PROG-M the average effect of having an
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aerosol climatology, and for PROG the adding value of prognostic aerosols. The objec-
tive is to isolate the effects of aerosols from weather changes that are systematically
observed during dust outbreaks. This method is first presented for the station of Murcia,
whose results are representative of the whole Mediterranean basin, and then general-
ized to the fourteen stations.5

5.2 Case of Murcia

In Murcia, 9 days have been identified as dusty days over the 83 days when observa-
tions are available, results are presented in Table 6. First of all, the difference in AOD
between dusty days and the set of all the days is similar in the observations and PROG,
confirming the ability of CNRM-RCSM5 to reproduce aerosol daily variability, and mak-10

ing it possible the comparison for other parameters. In PROG-M, the slight difference
(−0.01) is due to the fact that the number of dusty days varies from one month to an-
other (AOD is monthly constant in PROG-M); no difference in NO since no aerosols are
simulated. The higher AOD during dusty days leads to a decrease in downward SSR.
The difference with the set of all the days reaches −28 W m−2 against only −8 and15

−13 W m−2 for respectively NO and PROG-M, while measurements in the station show
a difference of −24 W m−2. The difference in NO (−8 W m−2) can be considered as the
“weather effect”, that is due to the choice of the days (meteorological and astronomi-
cal variations). The duration of sunshine indeed varies during summer, and reaches its
maximum at the solstice (21 June), which can explain a part of the radiation differences20

in NO, in addition to changes in cloud cover. PROG-M, which has a monthly climatol-
ogy of aerosols, enables to identify changes in atmospheric circulation and cloud cover
due to a monthly climatology of aerosols (−4 W m−2). The difference between PROG-M
and PROG gives the contribution of the daily variability of aerosols, that is necessary
to reproduce observed radiation measurements. Few changes are observed in cloud25

cover and TSR.
Temperature is also affected by weather changes, as dusty days are 1.6 ◦C higher

in NO than the set of all the days. This is probably explained by the predominance
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of stronger southern fluxes during dusty days that can transport aerosols from Sa-
hara to the Mediterranean basin. Figure 13 indeed shows the average circulation at
850 hPa during dusty days and the set of all the days, indicating a reinforcement of
southwesterly winds in southern Spain advecting warm air. However, this increase in
temperature during dusty days is lower in PROG than in PROG-M and NO, which is5

closer to observed variations of temperature. This decrease of −0.4 ◦C is caused by
dust aerosols that have reduced incoming solar radiation. A similar impact is observed
in soil temperature.

As a result, radiation and temperature in Murcia have been shown to be better re-
produced in the PROG simulation, showing the adding value of a prognostic scheme10

compared to monthly climatologies to reproduce local climatic variations.

5.3 Generalization

A similar composite study has been carried out for other stations (defined in Table 5)
where daily radiation and temperature data were available. Figure 14 presents the
results per station for six parameters (AOD, solar and thermal surface radiation, cloud15

cover, 2 m and soil temperature) for the NO, PROG-M and PROG simulations, as well
as for observations when available, while the average composites are given in Table 7.

As in Murcia, the difference in AOD between dusty days and the set of all the days
is for every station similar in observations (0.23 on average) and the PROG simulation
(0.22). The difference in PROG-M comes only from the number of dusty days varying20

from one month to another. As a consequence, measurements reveal that downward
SSR is on average 28 W m−2 lower during dusty days, which is correctly reproduced
by PROG (−29 W m−2). A part of this decrease (−10 W m−2) is explained by weather
changes as simulated by NO, while adding an aerosol climatology does not bring signif-
icant differences (−2 W m−2). Besides, the decrease of SSR in dusty days varies from25

one station to another (ranging from −4 to −54 W m−2). The amplitude of the increase
in AOD on dusty days and changes in weather conditions explain this variability. For
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example in Mallorca, an increase of 6 % in cloud cover on dusty days amplifies the
dimming due to aerosol loads.

With regards to downward TSR, an average increase of 16 W m−2 is simulated by
PROG on dusty days, but it is mainly due to weather conditions as NO and PROG-M
also show an increase of 15 W m−2. Dust aerosols would consequently only represent5

an increase of 1 W m−2. Few longwave observations are unfortunately available. The
only one in the Gulf of Lions shows a lower increase than simulated.

More observations are available for T2m, revealing a general increase of tempera-
ture on dusty days (on average 1.6 ◦C). As in Murcia, this increase is probably due to
warm advection caused by southerly to southwesterly winds responsible of these dust10

outbreaks. NO indeed simulates an average increase of 2.0 ◦C, but reduced to 1.8 ◦C in
PROG, indicating the cooling due to dust aerosols, which makes the simulation closer
to observations. This improvement is noted in 9 out of the 13 stations considered in
the study (Fig. 14), these 9 stations being the continental stations. The other stations
either do not show a cooling (Ajaccio) or this cooling is not in line with observations15

(buoys of the Gulf of Lions and Azur, Lampedusa). For these three latter stations, sea
surface temperature also increases on dusty days (up to 2.0 ◦C in the Gulf of Lions in
NO), while PROG-M and PROG both alleviate this increase by 0.1 ◦C. However, this
reduction cannot be confirmed by observations. Maybe the three-month period is not
long enough to identify the daily effects of aerosols on SST. With regards to land soil20

temperature, a cooling of −0.4 ◦C due to dust aerosols is simulated by PROG, in rela-
tionship with the cooling in T2m.

6 Conclusions

A prognostic aerosol scheme has recently been added in the regional climate model
ALADIN-Climate, enabling to have for the first time a regional coupled system model25

(CNRM-RCSM5) including the atmosphere, prognostic aerosols, land surface and the
ocean components over the Mediterranean region. Simulations have been carried out
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in summer 2012 first to evaluate the aerosols produced by the model, and then to
estimate the impact of dust outbreaks on the Mediterranean climate variability.

CNRM-RCSM5 has shown its ability to reproduce the spatial and temporal variability
of AOD over the Mediterranean region in summer 2012. The general spatial patterns,
notably the locations of regions with high AOD, are in agreement with satellite data,5

while the distribution in the main different aerosol types is close to the MACC reanal-
ysis and the independent climatology from Nabat et al. (2013). Daily variability is also
correctly simulated by the model, since the evaluation against 30 stations from the
AERONET network shows a mean bias of 0.02, an average correlation coefficient of
0.70 and an average ratio of standard deviations of 1.01 as good as satellite data.10

In addition, the TRAQA campaign has provided lidar and airborne measurements of
a strong dust outbreak that occurred at the end of June 2012. The aerosol vertical
distributions observed in Barcelona and in Corsica show that the model is able to re-
produce the altitude of maximum extinction, even if a slight overestimation has been
noted in the upper troposphere. With regards to dust size distribution, the 3-bin scheme15

used in ALADIN-Climate only enables to simulate higher mass concentrations for the
largest particles, as well as a second maxima for submicronic particles, as observed
during the TRAQA campaign.

The simulated aerosol surface shortwave DRF is negative, ranging from −10 W m−2

in Europe to −50 W m−2 in Africa, in line with previous studies. However, here the20

aerosol DRF is shown to have much variability when using a prognostic aerosol
scheme instead of a monthly climatology. As a consequence, thanks to the prognos-
tic aerosol scheme, downward SSR is better reproduced compared to ground-based
measurements from several stations across the Mediterranean, both on days of high
AOD (lower SSR) and low AOD (higher SSR), as correlation and standard deviation25

are improved. The forcing due to the dust outbreaks also causes extra cooling in sur-
face temperature, but insufficient to improve significantly the correlation. However, the
average difference between a simulation using a prognostic aerosol scheme and an
aerosol climatology show a cooling of 0.1 to 0.2 ◦C both in T2m and SST close to the
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dust sources, notably in the southwestern Mediterranean. Dynamics can also change
in the two simulations, and thus modify surface temperature.

A composite study has been realized in 14 stations across the Mediterranean to
identify more precisely the differences between dusty days and the set of all the days.
During dusty days, SSR is shown to be reduced on average by 28 W m−2, mostly be-5

cause of the dimming of aerosols (−17 W m−2) but also because of weather conditions
(−10 W m−2). In parallel, dust outbreaks that are responsible of dusty days also bring
warm air, which explains that T2m is observed 1.6 ◦C higher on dusty days. This warm-
ing is too strong (2.0 ◦C) when considering only an aerosol climatology. The prognostic
scheme reduces this average warming of 0.2 ◦C, getting closer to observations.10

Finally this study has shown the improvement brought by a prognostic aerosol
scheme compared to a monthly climatology in terms of radiation and temperature
during a summer. This methodology could be applied on multi-annual simulations to
evaluate the impact of prognostic aerosols at the climate scale. Differences could be
expected not only in terms of variability but also in average climate as suggested by15

the differences shown in average SST in summer 2012 in the present work.
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Table 1. Total AOD and components for the five aerosol types simulated by CNRM-RCSM5
and the MACC reanalysis in summer 2012 over Europe (continental area up to 30◦ E), the
Mediterranean Sea and northern Africa (continental area up to 25◦ N). Averages in summer
from NAB13, the climatology of Nabat et al. (2013), have also been indicated with the minimum
and maximum summer values (period 2003–2009). Total AOD from satellite data (MODIS,
MISR, AERUS-GEO) is also given.

Europe CNRM-RCSM5 MACC NAB13 MODIS MISR AERUS-GEO

Sea-salt 0.01 0.02 0.00 [0.00–0.00] – – –
Desert dust 0.04 0.06 0.05 [0.04–0.05] – – –
Organic matter 0.04 0.02 0.02 [0.02–0.03] – – –
Black carbon 0.01 0.01 0.01 [0.01–0.01] – – –
Sulfate 0.08 0.10 0.10 [0.08–0.12] – – –
Total 0.18 0.21 0.18 [0.16–0.20] 0.16 0.15 0.15

Mediterranean Sea

Sea-salt 0.01 0.02 0.01 [0.00–0.01] – – –
Desert dust 0.11 0.10 0.12 [0.10–0.13] – – –
Organic matter 0.03 0.02 0.01 [0.01–0.02] – – –
Black carbon 0.01 0.01 0.01 [0.00–0.01] – – –
Sulfate 0.07 0.09 0.08 [0.07–0.10] – – –
Total 0.23 0.24 0.23 [0.19–0.25] 0.20 0.22 0.18

Africa

Sea-salt 0.00 0.01 0.00 [0.00–0.00] – – –
Desert dust 0.37 0.18 0.31 [0.25–0.33] – – –
Organic matter 0.02 0.02 0.01 [0.01–0.02] – – –
Black carbon 0.01 0.01 0.01 [0.01–0.01] – – –
Sulfate 0.05 0.07 0.08 [0.06–0.09] – – –
Total 0.45 0.29 0.41 [0.33–0.44] 0.33 0.32 0.21

25390

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25351/2014/acpd-14-25351-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25351–25410, 2014

Dust radiative effects
over the

Mediterranean

P. Nabat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Spatial correlation coefficients between AOD of the different datasets presented in
Fig. 3.

Datasets MODIS MISR AERUS-GEO MACC

CNRM-RCSM5 0.64 0.77 0.65 0.74
MODIS 0.81 0.69 0.84
MISR 0.68 0.84
AERUS-GEO 0.61
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Table 3. Evaluation of daily SSR simulated by NO, PROG-M, PROG and ERA-Interim against
14 ground-based measurements located around the Mediterranean basin, in terms of bias
(W m−2), temporal correlation coefficient and standard deviation ratio.

Bias MUR BAR MAL ALI AJA CAR MON NIC PER FES LIO AZU LAM SED MOY

NO 31.0 2.8 54.3 39.0 18.0 22.3 35.9 37.6 34.7 48.2 31.2 35.1 18.0 5.6 29.6
PROG-M 7.6 −8.5 35.1 18.1 2.4 10.1 20.8 19.6 19.3 13.6 13.6 16.6 −6.0 −13.4 10.6
PROG 9.7 −7.5 36.0 21.2 5.1 11.5 24.0 22.9 21.0 16.5 15.9 19.1 −3.5 −11.7 12.9
ERA-Interim 12.8 4.6 53.7 25.4 −1.0 −4.3 17.0 10.1 27.7 34.7 10.2 7.2 −16.8 −12.9 12.0

Corr.

NO 0.72 0.76 0.66 0.62 0.87 0.89 0.71 0.67 0.76 0.39 0.87 0.86 0.81 0.84 0.75
PROG-M 0.76 0.77 0.65 0.67 0.89 0.87 0.70 0.69 0.77 0.49 0.88 0.87 0.85 0.89 0.76
PROG 0.77 0.79 0.69 0.74 0.89 0.91 0.75 0.69 0.78 0.53 0.89 0.90 0.87 0.90 0.79
ERA-Interim 0.79 0.81 0.88 0.81 0.88 0.88 0.77 0.68 0.75 0.37 0.90 0.76 0.87 0.88 0.79

St. Dev.

NO 0.79 1.20 0.84 1.16 1.11 0.96 0.97 0.81 0.96 0.93 0.92 1.00 0.74 1.15 0.97
PROG-M 0.79 1.10 0.82 1.11 1.10 0.86 0.92 0.81 0.93 0.94 0.91 1.04 0.74 0.99 0.93
PROG 0.95 1.16 1.01 1.20 1.17 0.94 0.98 0.88 0.99 1.01 1.01 1.12 0.88 1.07 1.03
ERA-Interim 0.58 0.72 0.69 0.78 0.78 0.77 0.69 0.72 0.63 0.53 0.61 0.90 0.67 0.92 0.71
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Table 4. Evaluation of daily 2 m-temperature simulated by NO, PROG-M, PROG and ERA-
Interim against 13 ground-based measurements located around the Mediterranean basin, in
terms of bias (◦C), temporal correlation coefficient and standard deviation ratio.

Bias MUR BAR MAL ALI AJA CAR MON NIC PER FES LIO AZU LAM MOY

NO −0.3 −1.6 1.2 −0.5 −1.5 0.9 −1.5 −0.0 −2.0 0.0 0.6 1.6 −0.4 −0.3
PROG-M −0.6 −1.7 0.8 −0.7 −1.7 0.8 −1.7 −0.3 −2.2 −0.4 0.4 1.4 −0.8 −0.5
PROG −0.8 −1.9 0.7 −0.8 −1.8 0.8 −1.7 −0.3 −2.2 −0.4 0.4 1.4 −0.8 −0.6
ERA-Interim −2.7 −2.8 −1.2 −0.1 0.1 −2.8 −1.3 −1.4 −1.6 −0.9 0.4 0.6 −0.5 −1.1

Corr.

NO 0.76 0.87 0.91 0.76 0.88 0.92 0.77 0.79 0.87 0.91 0.97 0.82 0.96 0.86
PROG-M 0.77 0.89 0.92 0.77 0.88 0.92 0.77 0.81 0.88 0.92 0.97 0.81 0.96 0.86
PROG 0.76 0.88 0.92 0.75 0.88 0.92 0.77 0.80 0.89 0.92 0.97 0.81 0.96 0.86
ERA-Interim 0.88 0.98 0.88 0.75 0.86 0.92 0.89 0.90 0.89 0.96 0.93 0.81 0.90 0.89

St. Dev.

NO 1.36 1.09 1.25 1.44 1.45 1.16 0.90 1.42 1.37 0.96 1.14 1.08 0.97 1.20
PROG-M 1.31 1.10 1.26 1.38 1.45 1.15 0.87 1.41 1.37 0.96 1.10 1.05 0.95 1.18
PROG 1.27 1.04 1.20 1.34 1.42 1.12 0.87 1.36 1.35 0.97 1.08 1.03 0.93 1.15
ERA-Interim 1.04 0.76 0.92 1.36 1.05 1.03 0.93 0.98 0.82 0.88 0.95 0.99 1.00 0.98
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Table 5. Stations used for the composite study. The total number of days when observations
are available and among them the number of dusty days have been indicated. The right-most
column provides the threshold used to define dusty days in CNRM-RCSM5 (and in observations
between brackets).

Short name Station Lat Lon Available days Dusty days Threshold

MUR Murcia 37.8 −0.8 83 9 0.40 (0.25)
BAR Barcelona 41.3 2.1 85 9 0.35 (0.35)
MAL Palma de Mallorca 39.6 2.6 74 9 0.35 (0.35)
ALI Alicante 38.3 −0.6 90 11 0.3 (0.3)
AJA Ajaccio 41.6 8.5 88 10 0.26 (0.15)
CAR Carpentras 44.1 5.1 84 10 0.25 (0.2)
MON Montpellier 43.6 4.0 75 9 0.25 (0.25)
NIC Nice 43.7 7.2 88 9 0.2 (0.2)
PER Perpignan 42.7 2.9 80 8 0.3 (0.2)
FES Fès 33.9 −5.0 61 14 0.5 (0.35)
LIO Gulf of Lions (buoy) 42.1 4.6 83 10 0.3 (0.2)
AZU Azur (buoy) 43.4 7.8 78 12 0.25 (0.15)
LAM Lampedusa 35.5 12.6 89 9 0.4 (0.3)
SED Sede-Boker 30.9 34.8 92 10 0.23 (0.23)
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Table 6. Composite study for Murcia: differences between dusty days and the set of all the
days in observations (OBS), NO, PROG-M and PROG, for AOD, downward SSR (W m−2), cloud
cover (%), downward TSR (W m−2), 2 m-temperature (◦C) and soil temperature (Ts, ◦C). The
contribution of the different effects, namely weather, aerosol (mean), and aerosol (variability),
have been added.

Parameter OBS NO PROG-M PROG Weather Aerosol (mean) Aerosol (var)

AOD 0.20 0.00 −0.01 0.22 0.00 −0.01 0.23
SSR −24 −8 −13 −28 −8 −4 −15
Cloud cover – −4 −5 −6 −4 −1 −1
TSR – 8 8 9 8 0 1
T2m 1.2 1.6 1.5 1.1 1.6 −0.2 −0.4
Ts – 1.6 1.4 1.0 1.6 −0.2 −0.4
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Table 7. Same as Table 6 but for the average over the 14 stations defined in Table 5.

Parameter OBS NO PROG-M PROG Weather Aerosol (mean) Aerosol (var)

AOD 0.23 0.00 0.00 0.22 0.00 0.00 0.22
SSR −29 −9 −11 −28 −9 −2 −17
Cloud cover – −1 −1 −1 −1 0 0
TSR – 15 15 16 15 0 1
T2m 1.6 2.0 2.0 1.8 2.0 0.0 −0.2
Land soil temperature – 1.9 1.8 1.4 1.9 −0.1 −0.4
SST 1.7 1.4 1.3 1.3 1.3 −0.1 0.0
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Figure 1. Stations of the AERONET network (black crosses, see the list of the correspond-
ing numbers in Fig. 5). Red crosses indicate the stations providing measurements of surface
radiation and temperature (see the list in Table 5).
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Figure 2. Mean aerosol optical depth at 550 nm in summer 2012 (JJA) simulated by CNRM-
RCSM5 for the five aerosol types (sea-salt, desert dust, organic matter, black carbon and sul-
fate).
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Figure 3. Mean aerosol optical depth at 550 nm in summer 2012 (JJA) simulated by CNRM-
RCSM5 and MACC (top), and measured by 3 satellite instruments (MODIS, MISR and AERUS-
GEO, bottom)
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Figure 4. AOD temporal series between 1 June and 31 August 2012 simulated by CNRM-
RCSM5 (red lines) and MACC (orange lines), and observed by AERONET sunphotometers
(black crosses), MODIS (blue crosses) and AERUS-GEO (green crosses), at four stations of
the AERONET network: (a) Oujda, number 10, see Fig. 1 – (b) Mallorca, 2 – (c) Frioul, 8 – (d)
Lampedusa, 1.
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Figure 5. Taylor diagram evaluating CNRM-RCSM5 (red), MACC (orange) and satellite
(MODIS, blue and AERUS-GEO, green) data against 30 AERONET ground-based observa-
tions in terms of daily AOD in summer 2012. Averages over the 30 stations for each dataset
are indicated with crosses.
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Figure 6. Aerosol extinction coefficient simulated by CNRM-RCSM5 (full black lines) and ob-
served by a ground-based lidar (dotted black lines) in Barcelona on 27 June at 12 UTC (left)
and in San Giuliano (Corsica) on 30 June 2012 at 12 UTC. The different colored lines represent
the contribution of each aerosol type to the extinction coefficient.
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Figure 7. Dust particle size distribution observed by the PCASP instrument onboard ATR42
(flight 22) on 29 June at 8 UTC (black lines), the dust refractive index has been adjusted (1.53−
0.002i). Colored lines indicate the aerosol concentration for each aerosol bin of CNRM-RCSM5.
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Figure 8. Aerosol shortwave direct radiative forcing (DRF) in the PROG and PROG-M sim-
ulations. (a) Average in summer 2012 for PROG (colors) and the PROG-PROG-M difference
(white lines, interval is 5 W m−2). (b) Standard deviation of daily DRF for PROG (colors). The
white line indicated the region where the ratio between the standard deviations of PROG and
PROG-M is higher than 2. (c) Daily series for PROG (red) and PROG-M (blue) over the 4
AERONET stations defined in Fig. 4.
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Figure 9. 2 m-temperature (◦C, curves), cloud cover (%, green bars for PROG, curves for the
other simulations), downward SSR (W m−2, curves) and AOD (green bars for PROG, blue line
for PROG-M), from top to bottom, in Lampedusa (Italy) for PROG (green), PROG-M (blue), NO
(purple), ERA-Interim (black) and observations (dashed red).
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Figure 10. Same as Fig. 9 but for Murcia (Spain).
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Figure 11. Impact of aerosols on 2 m-temperature (◦C) in the PROG and PROG-M simula-
tions. (a) Average in summer 2012 for the PROG-M-NO (top) and PROG-PROG-M (bottom)
differences. (b) Daily series for the PROG-NO (red) and PROG-M-NO (blue) 2 m-temperature
differences over the 4 AERONET stations defined in Fig. 4. Cloud cover has been added in
grey lines for NO (dashed line), PROG-M (dotted line) and PROG (full line).
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Figure 12. Impact of aerosols on SST (◦C) in the PROG and PROG-M simulations. (a) Average
in summer 2012 for the PROG-M-NO (top) and PROG-PROG-M (bottom) differences. (b) Daily
series for the PROG-NO (red) and PROG-M-NO (blue) differences over the Gulf of Lions (top)
and the strait of Gibraltar (bottom).
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Figure 13. Average wind (km h−1, colored barbs) and geopotential (mgp, black lines) at
850 hPa for the set of all the days (left) and the dusty days (right) defined in Murcia.
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Figure 14. Average AOD (a), downward SSR (b), cloud cover (c), downward TSR (d), 2 m-
temperature (e) and soil temperature (f) difference between the dusty and the set of all the days
in fourteen stations (Murcia, Barcelona, Carpentras, Ajaccio, Fès, Mallorca and the buoy in the
Gulf of Lions) in summer 2012 for the NO, PROG-M and PROG simulations, as well as ob-
servations (AERUS-GEO for AOD, ground-based measurements for the other parameters). For
Lampedusa and the buoys in the Gulf of Lions and Azur, 2 m-temperature has been replaced
by SST.
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