

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Technical Note: A new mechanism of 15 μm emission in the mesosphere-lower thermosphere (MLT)

R. D. Sharma

Institute for Scientific Research, Boston College, Newton, MA, USA

Received: 27 May 2014 – Accepted: 1 September 2014 – Published: 1 October 2014

Correspondence to: R. D. Sharma (rsharma.win@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

ACPD

14, 25083–25093, 2014

A new mechanism of 15 μm emission in the mesosphere-lower thermosphere (MLT)

R. D. Sharma

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Abstract

Accurate knowledge of the rate as well as the mechanism of excitation of the bending mode of CO₂ is necessary for reliable modeling of the mesosphere-lower thermosphere (MLT) region of the atmosphere. Assuming the excitation mechanism to be thermal collisions with atomic oxygen the rate coefficient derived from the observed 15 μm emission by space-based experiments differ from the laboratory measurements by a factor of 2–4. It is proposed that thermal collisions with N₂, mediated by a near-resonant rotation to vibration energy transfer process, excite bending mode of CO₂ by transferring energy from high rotational levels of thermal N₂. Analogy with the excitation of the bending mode of CO₂ by H₂O, a process important in CO₂ lasers, mediated by a near-resonant rotation-to vibration energy transfer process lends credibility to the hypothesis which has yet to be tested by direct calculations.

1 Introduction

The 15 μm emission from CO₂ is the dominant cooling mechanism in the MLT region (Gordiets et al., 1982; Dickinson, 1984; Sharma and Wintersteiner, 1990; Wintersteiner et al., 1992; Sharma and Roble, 2002). The magnitude of this cooling impacts both the temperature and height of the terrestrial mesopause (Bougher et al., 1994). This process is also important in the Martian and Venusian atmospheres (Bougher et al., 1999), especially the latter where it acts as a thermostat during the long day (243 times the length of terrestrial day). The 15 μm emission from CO₂ has been used by a number of satellites (Offermann et al., 1999; Russell et al., 1999; Fischer et al., 2008) to retrieve atmospheric temperature as a function of altitude. Finding the mechanism leading to this emission is therefore very important.

Translational energy (heat) is collisionally converted into vibrational energy of the bending mode of CO₂. A fraction of the resulting vibrational energy is radiated away to

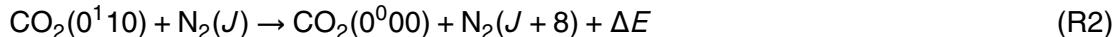
Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

$(2.5 \pm 0.4) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 168 K and $(1.9 \pm 0.3) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 272 K. Unexplained rate coefficient $k_u(v_2)$ is $(5.5 - 2.5 =) 3.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 90 km altitude ($T \approx 168$ K) and is $(7.9 - 1.9 =) 6.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 105 km altitude ($T \approx 272$ K). $k_u(v_2)$ increases by a factor of 2 in going from 90 km altitude (168 K) to 105 km altitude (272 K) showing a steep variation with altitude.

Feofilov et al. (2012) postulate that nonthermal oxygen atoms, produced in the MLT region by photolysis of O_2 and dissociative recombination of O_2^+ , etc., may serve as an additional source of $\text{CO}_2(v_2)$ level excitation. These authors have derived CO_2 volume mixing ratio (vmr) parts per million by volume (ppmv) in the MLT region for the time of their experiment from atmospheric models as well as space based observations. The average vmr given by these authors is about 300 ppmv at 95 km altitude and about 140 ppmv at 105 km altitude. This means that for every collision a “hot” oxygen atom undergoes with CO_2 , it must undergo $(10^6 / 300 =) 3333$ collisions at 95 km altitude and $(10^6 / 140 =) 7143$ collisions at 105 km altitude with other atmospheric constituents, mostly with N_2 , O_2 and O. Solution of the time dependent Boltzmann equation with realistic potential functions (Dothe et al., 1997) has shown that a 1 eV “hot” atom loses most of its energy in a few collisions. The chance of a “hot” atom colliding with CO_2 is therefore virtually nil. Another reservoir of energy that either takes energy from various energy sources or is in local thermodynamic equilibrium and one that readily transfers energy preferentially to bending mode of CO_2 must be found to explain the large k_{VT} rate coefficient. The situation is similar to that of elevated $4.3 \mu\text{m}$ (v_3 mode) CO_2 emission from the hydroxyl layer in the nocturnal mesosphere (Kumer et al., 1978; López-Puertas et al., 2004). Highly vibrationally excited OH, produced by the reaction of $\text{H} + \text{O}_3$, because of its short lifetime can only transfer a very small amount of energy directly to trace specie CO_2 even though transfer of vibrational energy from higher levels ($v = 8$ and 9) of OH to v_3 mode of CO_2 is a fast near-resonant process (Burtt and Sharma, 2008b). The vibrational energy from higher levels ($v = 8$ and 9) of OH is instead transferred to N_2 by a fast near-resonant process (Burtt and Sharma, 2008a). The longer lived vibrationally excited N_2 transfers its energy, again by a fast

R. D. Sharma

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)


near-resonant process (Sharma and Brau, 1969), to the v_3 mode of CO₂, the latter radiating around 4.3 μm. The longer lived N₂($v = 1$) molecule acts as a reservoir that takes energy from OH and stores it until it is preferentially released to CO₂.

2 Hypothesis

5 We advance the hypothesis that the thermalized rotational degrees of freedom of N₂ and O₂ are the reservoirs that transfer their energy efficiently to the v_2 mode of CO₂. High rotational levels of these reservoirs by a near-resonant rotation-to-vibration energy transfer process are responsible for efficiently exciting the bending (v_2) mode of CO₂ leading to 15 μm emission.

10 3 Justification of the Hypothesis

Since the N₂ density at the altitudes under consideration is much greater than O₂ density we provide justification for the deactivation of CO₂(0¹10) by N₂. The reaction

is exothermic by 46 cm⁻¹ and 14 cm⁻¹ for $J = 15$ and 16 and endothermic by 17 cm⁻¹ and 49 cm⁻¹ for $J = 17$ and 18. Since the near-resonant processes require transfer of a small amount of energy from internal degrees of freedom (vibration and rotation) to translation and can be mediated by long-range multipole and dispersion interactions they can have much large cross section. On the other hand the processes that require transfer of large amount of energy from internal (vibration and rotation) degrees of freedom to translation and can be mediated only by short range repulsive forces tend to have smaller cross section. This is the rationale for selecting $\Delta J = 8$ transitions since they are both near-resonant and can be mediated by long-range forces. At 168 K, temperature relevant to about 90 km altitude, about 2.0 % of the N₂ molecules reside

Discussion Paper	Title Page
Discussion Paper	Abstract
Discussion Paper	Introduction
Discussion Paper	Conclusions
Discussion Paper	References
Discussion Paper	Tables
Discussion Paper	Figures
	◀
	▶
	◀
	▶
	Back
	Close
	Full Screen / Esc
	Printer-friendly Version
	Interactive Discussion

in one of these four rotational levels. The density of N_2 in these four thermalized rotational levels is $(0.02 \times 1.1 \times 10^{13} =) 2.2 \times 10^{11} \text{ cm}^{-3}$ is about ten times that of atomic oxygen $(2.1 \times 10^{10} \text{ cm}^{-3})$. The unexplained rate coefficient $k_u(v_2)$ at 90 km altitude for pumping of the v_2 mode of CO_2 is $3.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$. The sum of the rate coefficients of Reaction (R2) at 168 K for all four rotational levels has to be nearly equal or greater than $3 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ to make Reaction (R2) the dominant mechanism for pumping the v_2 mode of CO_2 . A larger calculated rate coefficient for Reaction (R2) would not be a problem since the v_2 mode of CO_2 at 90 km altitude is in local thermodynamic equilibrium (LTE), i.e., its vibrational temperature is nearly the same as the translational temperature (Feofilov et al., 2012).

Sharma (1971) has calculated the probability per collision of the reaction

a much studied process because of its importance in CO_2 lasers, assuming a vibration-to-rotation (VR) energy transfer (ET) mechanism. In spite of a large scatter in the experimental data, a situation typical of low temperature experiments involving water vapor, the agreement is quite good. The calculated probability per collision is 0.06 at 200 K and 0.08 at 300 K. The rate coefficients (σv), assuming a gas kinetic rate of $2 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$ at 200 K and $2.5 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$ at 300 K, are 1.2×10^{-11} and $2.0 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ at 200 and 300 K, respectively. It is therefore eminently reasonable to assume that total rate coefficient of the four aforementioned rotational levels at 168 K (90 km altitude) may be quite large.

The population of the four levels of N_2 ($J = 15–18$) at 272 K (105 km altitude) is about 6.8 % of the N_2 population $(0.068 \times 2.1 \times 10^{12} =) 1.4 \times 10^{11} \text{ cm}^{-3}$. This density is about the same as that of atomic oxygen $(1.6 \times 10^{11} \text{ cm}^{-3})$. The unaccounted of rate coefficient at 105 km altitude for pumping of the v_2 mode of CO_2 is $k_u(v_2) = 6.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$. The sum of the rate coefficients of Reaction (R2) at 272 K for all four aforementioned rotational levels of N_2 has to be about $k_u(v_2) = 6.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ to make these levels the dominant mechanism for pumping the v_2 mode of CO_2 . This

R. D. Sharma

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

value of the rate coefficient $k_u(v_2)$ is smaller by a factor of 3 than that calculated for the deactivation of the v_2 mode of CO_2 by H_2O (Reaction R3) at 300 K making it a possible sought after mechanism. Since only 6.8 % of the N_2 molecules participate in the rotation-to-vibration (RV) energy transfer process a $\text{CO}_2\text{--N}_2$ RV rate coefficient at 5 272 K (105 km altitude) $k_u(v_2) \times 0.068 = 6.0 \times 10^{-12} \times 0.068 = 4.1 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$, about two orders of magnitude smaller than the $\text{CO}_2\text{--H}_2\text{O}$ RV rate coefficient, would reconcile the experimental and field observations.

In a survey of vibrational relaxation data for processes important in $\text{CO}_2\text{--N}_2$ laser system Taylor and Bitterman (1969) report “two old sound dispersion experiments of 10 limited extent”, one (Wallman, 1934) giving a value of $2.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 291 K, the second one (Metter, 1937) giving a value of $2.2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 273 K. The latter value of the rate coefficient, smaller only by a factor of 2 than the value needed, would resolve the problem at hand. Unfortunately, I was not able to locate either reference.

15 4 Conclusion

By analogy with the deactivation of the v_2 mode of CO_2 by H_2O , it is proposed that the mechanism for populating the v_2 mode of CO_2 in the MLT region is a rotation-to-vibration near-resonant energy transfer process. Translational temperature, like the atomic oxygen density, in the MLT region varies rapidly with altitude. It is this rapid 20 increase in temperature and not the rapid increase in atomic oxygen density that explains rapid increase in unaccounted rate coefficient. It should be noted that while the density of N_2 decreases by a factor of about 5 in going from 90 to 105 km altitude the density of high rotational levels that can exchange energy with $\text{CO}_2(0^110)$ has decreased only by one-third. Much smaller decrease in the high rotational levels of N_2 is of course due 25 to rapid increase of temperature with altitude. The hypothesis advanced here, although simple and straight forward, has yet to be tested by direct calculations. The calculations do not involve any non-equilibrium effects and therefore should not too difficult to

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

carry out. In addition to the $\text{CO}_2(v_2)$ – H_2O calculation (Sharma, 1971) mentioned earlier, similar calculations on deactivation of $\text{CO}_2(v_2)$ by H_2 and D_2 (Sharma, 1969) and deactivation of vibrationally excited CO by para-hydrogen (Sharma and Kern, 1971) were performed earlier.

5 The 15 μm (bending mode v_2) emission from CO_2 is also important cooling mechanism in the atmospheres of Venus and Mars, especially the former where it acts as a thermostat during the long day (243 times the length of the terrestrial day). The atmospheres of Venus and Mars are similar ($\sim 95\%$ CO_2 , a few percent N_2) but very different from that of the Earth. Therefore, the proposed new mechanism for the excitation of the 15 μm (bending mode v_2) emission from CO_2 requires rate coefficients in the atmospheric models of Venusian and Martian that are different from those in the models of terrestrial atmosphere.

10

Acknowledgements. The author is grateful to Peter Wintersteiner for many helpful discussions.

References

15 Bouger, S. W., Hunten, D. M., and Roble, R. G.: CO_2 cooling in the terrestrial planet thermospheres, *J. Geophys. Res.*, 99, 14609–14622, 1994.

Bouger, S. W., Engel, S., Roble, R. G., and Foster, B.: Comparative terrestrial planet thermospheres, 2. Solar cycle variations of global structure and winds at equinox, *J. Geophys. Res.*, 104, 16591–16611, 1999.

20 Burtt, K. D. and Sharma, R. D.: Near-resonant energy transfer from vibrationally excited OH to N_2 , *J. Chem. Phys.*, 128, 124311, doi:10.1063/1.2884343, 2008a.

Burtt, K. D. and Sharma, R. D.: Near-resonant energy transfer from vibrationally excited OH(v), $v = 9, 8, 1$ to CO_2 , *Geophys. Res. Lett.*, 35, L18102, doi:10.1029/2008GL035204, 2008b.

25 Castle, K. J., Kleissas, K. M., Rheinhart, J. M., Hwang, E. S., and Dodd, J. A.: Vibrational relaxation of $\text{CO}_2(v_2)$ by atomic oxygen, *J. Geophys. Res.*, 111, A09303, doi:10.1029/2006JA011736, 2006.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Castle, K. J., Black, L. A., Simione, M. W., and Dodd, J. A.: Vibrational relaxation of $\text{CO}_2(v_2)$ by $\text{O}(^3\text{P})$ in the 142–490 K temperature range, *J. Geophys. Res.*, 117, A04310, doi:10.1029/2012JA017519, 2012.

Crutzen, P. J.: Discussion of paper “Absorption and emission by carbon dioxide in the atmosphere” by Houghton, J. T., Q. J. Roy. Meteor. Soc., 96, 767–770, 1970.

de Lara-Castells, M. P., Hernández, M. I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M.: Vibrational quenching of $\text{CO}_2(010)$ by collisions with $\text{O}(^3\text{P})$ at thermal energies: a quantum-mechanical study, *J. Chem. Phys.*, 124, 164302, doi:10.1063/1.2189860, 2006.

de Lara-Castells, M. P., Hernández, M. I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M.: Key role of spin-orbit effects in the relaxation of $\text{CO}_2(010)$ by thermal collisions with $\text{O}(^3\text{P})$, *Mol. Phys.*, 105, 1171–1181, doi:10.1080/00268970701244809, 2007.

Dickinson, R. E.: Infrared radiative cooling in the mesosphere and lower thermosphere, *J. Atmos. Sol.-Terr. Phys.*, 46, 995–1008, 1984.

Dothe, H., Sharma, R. D., and Duff, J. W.: On the steady-state assumption for the energy distribution function of the nonthermal $\text{N}(^4\text{S})$ atoms and the efficiency of NO production by these atoms in the terrestrial thermosphere, *Geophys. Res. Lett.*, 24, 3233–3236, 1997.

Feofilov, A. G., Kutepov, A. A., She, C.-Y., Smith, A. K., Pesnell, W. D., and Goldberg, R. A.: $\text{CO}_2(v_2)$ –O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere, *Atmos. Chem. Phys.*, 12, 9013–9023, doi:10.5194/acp-12-9013-2012, 2012.

Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, *Atmos. Chem. Phys.*, 8, 2151–2188, doi:10.5194/acp-8-2151-2008, 2008.

Gordiets, B. F., Kulikov Yu.N., Markov M. N., and Marov, M. Y.: Numerical modeling of the thermospheric heat budget, *J. Geophys. Res.*, 87, 4504–4514, 1982.

Gusev, O., Kaufmann M., Grossmann K. U., Schmidlin F. J., and Shepard, F. J.: Atmospheric neutral temperature distribution at the mesopause/turbopause altitude, *J. Atmos. Sol.-Terr. Phys.*, 68, 1684–1697, doi:10.1016/j.jastp.2005.12010, 2006.

Khvorostovskaya, L. E., Potekhin, I. Yu., Shved G. M., Ogibalov V. P., and Uzyukova, T. V.: Measurement of the rate constant for quenching $\text{CO}_2(01^10)$ by atomic oxygen at low tem-

peratures: reassessment of the rate of cooling by the CO₂ 15-μm Emission in the Lower Thermosphere, *Izv- Atmos. Ocean. Phy.*+, 38, 613–624, 2002.

5 Kumer, J. B., Stair A. T., Jr., Wheeler N., Baker K. D., and Baker, D. J.: Evidence for an OH[†] \xrightarrow{vv} N₂[†] \xrightarrow{vv} CO₂(v₃) \rightarrow CO₂ + he(4.3 μm) mechanism for 4.3 μm airglow, *J. Geophys. Res.*, 83, 4743–4747, doi:10.1029/JA083iA10p04743, 1978.

López-Puertas, M., Garcia-Comas, M., Funke, B., Picard, R. H., Winick, J. R., Wintersteiner, P. P., Mlynczak, M. G., Mertens, C. J., Russell III, J. M., and Gordley, L. L.: Evidence for an OH(v) excitation mechanism of CO₂ 4.3 μm nighttime emission from SABER/TIMED measurements, *J. Geophys. Res.*, 109, D09307, doi:10.1029/2003JD004383., 2004.

10 Metter, I. M.: *Phys. Zeit. Sowjetunion*, 12, 233, 1937.

Offermann, D., Grossmann K. U., Barthol P., Knieling P., Riese M., and Trant, R.: Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability, *J. Geophys. Res.*, 104, 16311–16325, doi:10.1029/1998JD100047, 1999.

15 Pollock, D. S., Scott G. B. I., and Phillips, L. F.: Rate constant for quenching of CO₂(010) by atomic oxygen, *Geophys. Res. Lett.*, 20, 727–729, 1993.

Ratkowski, A. J., Picard, R. H., Winick, J. R., Grossmann, K. U., Homann, D., Ulwick, J. C., and Paboojian, A. J.: Lower-thermospheric infrared emissions from minor species during high-altitude twilight-b. analysis if 15 μm emission and comparison with non-LTE models, *J. Atmos. Terr. Phys.*, 56, 1899–1914, 1994.

20 Russell III, J. M., Mlynczak M. G., Gordley L. L., Tansock J. J., and Esplin, R.: Overview of the SABER experiment and preliminary calibration results, *P. Soc. Photo.-Opt. Ins.*, 3756, 277–288, 1999.

Sharma, R. D.: Deactivation of bending mode of CO₂ by hydrogen and deuterium, *J. Chem. Phys.*, 50, 919–923, 1969.

25 Sharma, R. D.: Vibrational relaxation of CO₂ by H₂O, *J. Chem. Phys.*, 54, 810–811, doi:10.1106/1.1674916, 1971.

Sharma, R. D.: Infrared Airglow, *Progress in Atmospheric Physics: Proceedings of the 15th Annual Meeting on Atmospheric Studies by Optical Methods*. Edited by: Rodrigo R., Lpez Moreno J. J., Lpez-Puertas M., and Molina A., Kluwer Academic Publishers, Boston, 177–186, 1987.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Sharma, R. D. and Brau, C. A.: Energy transfer in near-resonant molecular collisions due to long-range forces with application to transfer of vibrational energy from v_3 mode of CO₂ to N₂, *J. Chem. Phys.*, 50, 924–930, 1969.

Sharma, R. D. and Kern, C. W.: Theoretical model for the differential quenching rates of quenching of CO fluorescence by ortho- and para-hydrogen, *J. Chem. Phys.*, 55, 1171–1188, doi:10.1063/1.1676203, 1971.

Sharma, R. D. and Nadile, R. M.: Carbon Dioxide (v_2) Radiance Results Using a New Non-Equilibrium Model, *Proceedings of the 19th Aerospace Sciences Meeting*, AIAA, St. Louis, MO, 12–15 January, doi:10.251416.1981-426, 1981.

Sharma, R. D. and Roble, R. G.: Cooling mechanisms of the planetary thermospheres: the key role of o atom vibrational excitation of CO₂ and NO, *Chem. Phys. Chem.*, 3, 841–843, doi:10.1002/1439-7641, 2002.

Sharma, R. D. and Wintersteiner P. P.: Role of Carbon Dioxide in cooling planetary thermospheres, *Geophys. Res. Lett.*, 17, 2201–2204, 1990.

Shved, G. M., Khvorostovskaya L. E., Potekhin, I. Yu., Demyanikov, A. I., Kutepov, A. I., and Fomichev, V. I.: Measurement of the quenching rate constant for collisions CO₂(01¹0)–O; the importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere, *Izv. Atmos. Ocean. Phys.*, 27, 431–437, 1991.

Stair Jr., A. T., Sharma, R. D., Nadile, R. M., Baker, D. J., and Greider, W.: Observations of limb radiance with cryogenic Spectral Infrared Rocket Experiment (SPIRE), *J. Geophys. Res.*, 90, 9763–9775, 1985.

Taylor, R.: energy transfer processes in the stratosphere, *Can. J. Chem.*, 52, 1436–1451, 1974.

Taylor, R. and Bitterman, S.: Survey of vibrational relaxation data for processes important in CO₂–N₂ Laser System, *Rev. Mod. Phys.*, 41, 26–41, 1969.

Vollmann, K. and Grossmann, K. U.: Excitation of 4.3 μm CO₂ emission by (¹D) during twilight, *Adv. Space Res.*, 20, 1185–1189, 1997.

Wallman, M. H.: *Ann. Phys.*, Leipzig, 20, 671, 1934.

Wintersteiner, P. P., Picard, R. H., Sharma, R. D., Jeremy Winick, R., and Joseph, R. A.: Line-by-line radiative excitation model for non-equilibrium atmosphere: application to CO₂ 15 μm emission, *J. Geophys Res.-Atmos.*, 97, 18083–18117, 1992.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)