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Abstract

Accurate knowledge of the rate as well as the mechanism of excitation of the bend-
ing mode of CO2 is necessary for reliable modeling of the mesosphere-lower ther-
mosphere (MLT) region of the atmosphere. Assuming the excitation mechanism to be
thermal collisions with atomic oxygen the rate coefficient derived from the observed5

15 µm emission by space-based experiments differ from the laboratory measurements
by a factor of 2–4. It is proposed that thermal collisions with N2, mediated by a near-
resonant rotation to vibration energy transfer process, excite bending mode of CO2 by
transferring energy from high rotational levels of thermal N2. Analogy with the excita-
tion of the bending mode of CO2 by H2O, a process important in CO2 lasers, mediated10

by a near-resonant rotation-to vibration energy transfer process lends credibility to the
hypothesis which has yet to be tested by direct calculations.

1 Introduction

The 15 µm emission from CO2 is the dominant cooling mechanism in the MLT region
(Gordiets et al., 1982; Dickinson, 1984; Sharma and Wintersteiner, 1990; Wintersteiner15

et al., 1992; Sharma and Roble, 2002). The magnitude of this cooling impacts both
the temperature and height of the terrestrial mesopause (Bougher et al., 1994). This
process is also important in the Martian and Venusian atmospheres (Bougher et al.,
1999), especially the latter where it acts as a thermostat during the long day (243 times
the length of terrestrial day). The 15 µm emission from CO2 has been used by a number20

of satellites (Offermann et al., 1999; Russell et al., 1999; Fischer et al., 2008) to retrieve
atmospheric temperature as a function of altitude. Finding the mechanism leading to
this emission is therefore very important.

Translational energy (heat) is collisionally converted into vibrational energy of the
bending mode of CO2. A fraction of the resulting vibrational energy is radiated away to25
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space cooling the atmosphere. The dominant mechanism for this conversion is believed
to be the collisions between CO2 and O,

CO2(0000)+O(3P) → CO2(0110)+O(3P)−667cm−1 (R1)

This process is endothermic by the energy of the emitted photon, 667 cm−1

(∼15 µm). In chemical literature, the rate coefficients of the reactions are given in the5

exothermic direction (reverse of Eq. 1) and we will follow that convention. The room
temperature value of the rate coefficient kO for the exothermic process derived by mod-
eling the 15 µm emission, observed by Spectral Infrared Rocket Experiment (SPIRE)
(Stair et al., 1985), from the MLT region of the atmosphere is 5×10−13 cm3 s−1 (Sharma
and Nadile, 1981), 5.2×10−12 cm3 s−1 (Stair et al., 1985), 3.5×10−12 cm3 s−1 (Sharma,10

1987), (3–9)×10−12 cm3 s−1 (Sharma and Wintersteiner, 1990). These studies gave
values of kO that are 1–2 orders of magnitude greater than values recommend earlier
(Crutzen, 1970; Taylor, 1974). Later analyses of space-based observations have given
values around 6×10−12 cm3 s−1 (Wintersteiner et al., 1992; Ratkowski et al., 1994;
Gusev et al., 2006; Feofilov et al., 2012 and references therein) except for the Voll-15

mann and Grossmann (1997) study giving a value of 1.5×10−12 cm3 s−1. The study
of Feofilov et al. (2012) determined this rate coefficient by coincidental SABER/TIMED
and Fort Collins sodium lidar observations in the MLT region and arrived at values of
(5.5±1.1)×10−12 cm3 s−1 at 90 km altitude and (7.9±1.2)×10−12 cm3 s−1 at 105 km
with an average value of (6.5±1.5)×10−12 cm3 s−1.20

The laboratory measurements (Shved et al., 1991; Pollock et al., 1993; Khvoros-
tovskaya et al., 2002; Castle et al., 2006, 2012) and theoretical calculations (de Lara-
Castells et al., 2006, 2007) give room temperature values of kV T near 1.5×10−12

( cm3 s−1). The values of kV T determined by modeling 15 µm emission from the MLT
region are thus larger than the calculated and measured values by a factor of about25

four. Castle et al. (2012) have measured the deactivation of CO2(v2) by O(3P) in
the 142–490 K temperature range obtaining values of the rate coefficient kO(v2) =
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(2.5±0.4)×10−12 cm3 s−1 at 168 K and (1.9±0.3)×10−12 cm3 s−1 at 272 K. Unexplained
rate coefficient ku(v2) is (5.5−2.5 =)3.0×10−12 cm3 s−1 at 90 km altitude (T ≈ 168K)
and is (7.9−1.9 =)6.0×10−12 cm3 s−1 at 105 km altitude (T ≈ 272K). ku(v2) increases
by a factor of 2 in going from 90 km altitude (168 K) to 105 km altitude (272 K) showing
a steep variation with altitude.5

Feofilov et al. (2012) postulate that nonthermal oxygen atoms, produced in the MLT
region by photolysis of O2 and dissociative recombination of O+

2 , etc., may serve as
an additional source of CO2(v2) level excitation. These authors have derived CO2 vol-
ume mixing ratio (vmr) parts per million by volume (ppmv) in the MLT region for the
time of their experiment from atmospheric models as well as space based observa-10

tions. The average vmr given by these authors is about 300 ppmv at 95 km altitude
and about 140 ppmv at 105 km altitude. This means that for every collision a “hot” oxy-
gen atom undergoes with CO2, it must undergo (106/300 =)3333 collisions at 95 km
altitude and (106/140 =)7143 collisions at 105 km altitude with other atmospheric con-
stituents, mostly with N2, O2 and O. Solution of the time dependent Boltzmann equation15

with realistic potential functions (Dothe et al., 1997) has shown that a 1 eV “hot” atom
loses most of its energy in a few collisions. The chance of a “hot” atom colliding with
CO2 is therefore virtually nil. Another reservoir of energy that either takes energy from
various energy sources or is in local thermodynamic equilibrium and one that read-
ily transfers energy preferentially to bending mode of CO2 must be found to explain20

the large kV T rate coefficient. The situation is similar to that of elevated 4.3 µm (v3
mode) CO2 emission from the hydroxyl layer in the nocturnal mesosphere (Kumer et
al., 1978; López-Puértas et al., 2004). Highly vibrationally excited OH, produced by the
reaction of H+O3, because of its short lifetime can only transfer a very small amount
of energy directly to trace specie CO2 even though transfer of vibrational energy from25

higher levels (v = 8 and 9) of OH to v3 mode of CO2 is a fast near-resonant process
(Burtt and Sharma, 2008b). The vibrational energy from higher levels (v = 8 and 9) of
OH is instead transferred to N2 by a fast near-resonant process (Burtt and Sharma,
2008a). The longer lived vibrationally excited N2 transfers its energy, again by a fast
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near-resonant process (Sharma and Brau, 1969), to the v3 mode of CO2, the latter
radiating around 4.3 µm. The longer lived N2(v = 1) molecule acts as a reservoir that
takes energy from OH and stores it until it is preferentially released to CO2.

2 Hypothesis

We advance the hypothesis that the thermalized rotational degrees of freedom of N25

and O2 are the reservoirs that transfer their energy efficiently to the v2 mode of CO2.
High rotational levels of these reservoirs by a near-resonant rotation-to-vibration en-
ergy transfer process are responsible for efficiently exciting the bending (v2) mode of
CO2leading to 15 µm emission.

3 Justification of the Hypothesis10

Since the N2 density at the altitudes under consideration is much greater than O2

density we provide justification for the deactivation of CO2(0110) by N2. The reaction

CO2(0110)+N2(J) → CO2(0000)+N2(J +8)+∆E (R2)

is exothermic by 46 cm−1 and 14 cm−1 for J = 15 and 16 and endothermic by 17 cm−1

and 49 cm−1 for J = 17 and 18. Since the near-resonant processes require transfer of15

a small amount of energy from internal degrees of freedom (vibration and rotation) to
translation and can be mediated by long-range multipole and dispersion interactions
they can have much large cross section. On the other hand the processes that re-
quire transfer of large amount of energy from internal (vibration and rotation) degrees
of freedom to translation and can be mediated only by short range repulsive forces20

tend to have smaller cross section. This is the rationale for selecting ∆J = 8 transitions
since they are both near-resonant and can be mediated by long-range forces. At 168 K,
temperature relevant to about 90 km altitude, about 2.0 % of the N2 molecules reside
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in one of these four rotational levels. The density of N2 in these four thermalized ro-
tational levels is (0.02×1.1×1013 =)2.2×1011 cm−3 is about ten times that of atomic
oxygen (2.1×1010 cm−3). The unexplained rate coefficient ku(v2) at 90 km altitude for
pumping of the v2 mode of CO2 is 3.0×10−12 cm3 s−1. The sum of the rate coefficients
of Reaction (R2) at 168 K for all four rotational levels has to be nearly equal or greater5

than 3×10−13 cm3 s−1 to make Reaction (R2) the dominant mechanism for pumping
the v2 mode of CO2. A larger calculated rate coefficient for Reaction (R2) would not be
a problem since the v2 mode of CO2 at 90 km altitude is in local thermodynamic equi-
librium (LTE), i.e., its vibrational temperature is nearly the same as the translational
temperature (Feofilov et al., 2012).10

Sharma (1971) has calculated the probability per collision of the reaction

CO2(0110)+H2O → CO2(0000)+H2O, (R3)

a much studied process because of its importance in CO2 lasers, assuming a vibration-
to-rotation (VR) energy transfer (ET) mechanisn. In spite of a large scatter in the ex-
perimental data, a situation typical of low temperature experiments involving water15

vapor, the agreement is quite good. The calculated probability per collision is 0.06
at 200 K and 0.08 at 300 K. The rate coefficients (σv), assuming a gas kinetic rate
of 2×10−10 cm3 s−1 at 200 K and 2.5×10−10 cm3 s−1 at 300 K, are 1.2×10−11 and
2.0×10−11 cm3 s−1 at 200 and 300 K, respectively. It is therefore eminently reasonable
to assume that total rate coefficient of the four aforementioned rotational levels at 168 K20

(90 km altitude) may be quite large.
The population of the four levels of N2 (J = 15–18) at 272 K (105 km altitude) is

about 6.8 % of the N2 population (0.068×2.1×1012 =)1.4×1011 cm−3. This density
is about the same as that of atomic oxygen (1.6×1011 cm−3). The unaccounted of
rate coefficient at 105 km altitude for pumping of the v2 mode of CO2 is ku(v2) =25

6.0×10−12 cm3 s−1. The sum of the rate coefficients of Reaction (R2) at 272 K for all
four aforementioned rotational levels of N2 has to be about ku(v2) = 6.0×10−12 cm3 s−1

to make these levels the dominant mechanism for pumping the v2 mode of CO2. This
25088
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value of the rate coefficient ku(v2) is smaller by a factor of 3 than that calculated for
the deactivation of the v2 mode of CO2 by H2O (Reaction R3) at 300 K making it
a possible sought after mechanism. Since only 6.8 % of the N2 molecules participate in
the rotation-to-vibration (RV) energy transfer process a CO2–N2 RV rate coefficient at
272 K (105 km altitude) ku(v2)×0.068 = 6.0×10−12×0.068 = 4.1×10−13 cm3 s−1, about5

two orders of magnitude smaller than the CO2–H2O RV rate coefficient, would reconcile
the experimental and field observations.

In a survey of vibrational relaxation data for processes important in CO2–N2 laser
system Taylor and Bitterman (1969) report “two old sound dispersion experiments of
limited extent”, one (Wallman, 1934) giving a value of 2.0×10−14 cm3 molecule−1 s−1 at10

291 K, the second one (Metter, 1937) giving a value of 2.2×10−13 cm3 molecule−1 s−1

at 273 K. The latter value of the rate coefficient, smaller only by a factor of 2 than
the value needed, would resolve the problem at hand. Unfortunately, I was not able to
locate either reference.

4 Conclusion15

By analogy with the deactivation of the v2 mode of CO2 by H2O, it is proposed that
the mechanism for populating the v2 mode of CO2 in the MLT region is a rotation-
to-vibration near-resonant energy transfer process. Translational temperature, like the
atomic oxygen density, in the MLT region varies rapidly with altitude. It is this rapid in-
crease in temperature and not the rapid increase in atomic oxygen density that explains20

rapid increase in unaccounted rate coefficient. It should be noted that while the density
of N2 decreases by a factor of about 5 in going from 90 to 105 km altitude the density
of high rotational levels that can exchange energy with CO2(0110) has decreased only
by one-third. Much smaller decrease in the high rotational levels of N2 is of course due
to rapid increase of temperature with altitude. The hypothesis advanced here, although25

simple and straight forward, has yet to be tested by direct calculations. The calcula-
tions do not involve any non-equilibrium effects and therefore should not too difficult to
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carry out. In addition to the CO2(v2)–H2O calculation (Sharma, 1971) mentioned ear-
lier, similar calculations on deactivation of CO2(v2) by H2 and D2 (Sharma, 1969) and
deactivation of vibrationally excited CO by para-hydrogen (Sharma and Kern, 1971)
were performed earlier.

The 15 µm (bending mode v2) emission from CO2 is also important cooling mech-5

anism in the atmospheres of Venus and Mars, especially the former where it acts as
a thermostat during the long day (243 times the length of the terrestrial day). The at-
mospheres of Venus and Mars are similar (∼95 % CO2, a few percent N2) but very
different from that of the Earth. Therefore, the proposed new mechanism for the exci-
tation of the 15 µm (bending mode v2) emission from CO2 requires rate coefficients in10

the atmospheric models of Venusian and Martian that are different from those in the
models of terrestrial atmosphere.

Acknowledgements. The author is grateful to Peter Wintersteiner for many helpful discussions.
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