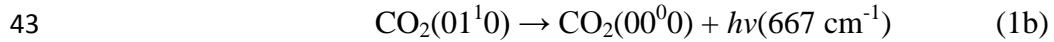
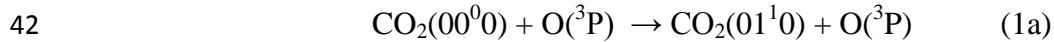


1 **On the possibly missing mechanism of 15 μm emission in the mesosphere-**
2 **lower thermosphere (MLT)**

3 Ramesh D. Sharma, Institute for Scientific Research, Boston College, Newton, MA

4



5 **Abstract.** Accurate knowledge of the rate as well as the mechanism of excitation of the
6 bending mode of CO₂ is necessary for reliable modeling of the mesosphere- lower thermosphere
7 (MLT) region of the atmosphere. Assuming the excitation mechanism to be thermal collisions
8 with atomic oxygen the rate coefficient derived from the observed 15 μm emission by space-
9 based experiments ($k_{\text{ATM}} = 6.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$) differ from the laboratory measurements ($k_{\text{LAB}} =$
10 $(1.5 - 2.5) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$) by a factor of 2 – 4. The General Circulation Models (GCMs) of Earth,
11 Venus, and Mars have chosen to use a median value of $k_{\text{GCM}} = 3.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ for this rate
12 coefficient. As a first step to resolve the discrepancies between the three rate coefficients we
13 attempt to find the source of disagreement between the first two. It is pointed out that large
14 magnitude of the difference between these two rate coefficients ($k_x \equiv k_{\text{ATM}} - k_{\text{LAB}}$) requires that
15 the unknown mechanism involve one or both major species; N₂, O. Because of the rapidly
16 decreasing volume mixing ratio (VMR) of CO₂ with altitude the exciting partner must be long
17 lived and transfer energy efficiently. It is shown that thermal collisions with N₂, mediated by a
18 near-resonant rotation to vibration (RV) energy transfer process, while giving a reasonable rate
19 coefficient k_{VR} for de-excitation of bending mode of CO₂ lead to vibration-to-translation k_{VT} rate
20 coefficients, in the terrestrial atmosphere, that are 1 – 2 orders of magnitude larger than those
21 observed in the laboratory. It is pointed out that the efficient near-resonant rotation-to-vibration
22 (RV) energy transfer process has a chance of being the unknown mechanism if very high
23 rotational levels of N₂, produced by the reaction of N and NO and other collisional processes,
24 have super-thermal population and are long lived. Since atomic oxygen plays a critical role in

25 the mechanisms discussed here, it suggested that its density be determined experimentally by
26 ground and space based Raman lidars proposed earlier.

27 **Key words:** 15 μm emission, CO₂, N₂, O, rotation, vibration, near-resonant energy transfer.

28 **Introduction.** The 15 μm emission from CO₂ is the dominant cooling mechanism in the MLT
29 region [Gordiets *et al.*, 1982; Dickinson, 1984; Sharma and Wintersteiner, 1990; Wintersteiner *et*
30 *al.*, 1992; López-Puertas *et al.*, 1992; Sharma and Roble, 2002]. The magnitude of this cooling
31 impacts both the temperature and height of the terrestrial mesopause [Bougher *et al.*, 1994]. This
32 process is also important in the Martian and Venusian atmospheres [Bougher *et al.*, 1999],
33 especially the latter where it acts as a thermostat during the long day (243 times the length of
34 terrestrial day). The 15 μm emission from CO₂ has been used by a number of satellites
35 [Offermann *et al.*, 1999; Russell *et al.*, 1999; Fischer *et al.*, 2008] to retrieve atmospheric
36 temperature as a function of altitude. Finding the mechanism leading to this emission is
37 therefore very important.

38 Translational energy (heat) is collisionally converted into vibrational energy of the bending mode
39 of CO₂. A fraction of the resulting vibrational energy is radiated away to space cooling the
40 atmosphere. The dominant mechanism for this conversion is believed to be the collisions
41 between CO₂ and O,

44 This process is endothermic by the energy of the emitted photon, 667 cm⁻¹ (~15 μm). In
45 chemical literature, the rate coefficients of the reactions are given in the exothermic direction
46 (reverse of equation 1a) and we will follow that convention. The room temperature value of the

47 rate coefficient k_{ATM} for the exothermic process derived by modeling the 15 μm emission,
48 observed by Spectral Infrared Rocket Experiment (SPIRE) [Stair *et al.*, 1985], from the MLT
49 region of the atmosphere is $5 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ [Sharma and Nadile, 1981], $5.2 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ [Stair
50 *et al.*, 1985], $3.5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ [Sharma, 1987], $(3 - 9) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ [Sharma and Wintersteiner,
51 1990]. These studies gave values of k_{ATM} that are 1 – 2 orders of magnitude greater than values
52 recommend earlier [Crutzen, 1970; Taylor, 1974]. Later analyses of space-based observations
53 have given values around $6 \times 10^{-12} (\text{cm}^3 \text{ s}^{-1})$ [Wintersteiner *et al.*, 1992; López-Puertas *et al.*,
54 1992; Ratkowski *et al.*, 1994; Gusev *et al.*, 2006; Feofilov *et al.*, 2012 and references therein]
55 except for the Vollmann and Grossmann [1997] study giving a value of $1.5 \times 10^{-12} (\text{cm}^3 \text{ s}^{-1})$. The
56 study of Feofilov *et al.* [2012] determined the rate coefficient by coincidental SABER/TIMED
57 and Fort Collins sodium lidar observations in the MLT region and arrived at values of
58 $(5.5 \pm 1.1) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 90 km altitude and $(7.9 \pm 1.2) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 105 km with an average
59 value of $(k_{\text{ATM}} = 6.5 \pm 1.5) \times 10^{-12} \text{ cm}^3/\text{s}$. The study of López-Puertas *et al.* [1992] “suggests a
60 value of between 3 and $6 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 300 K” and temperature “independent or negative
61 temperature dependence”. This study derives the values for all input parameters from
62 ATMOS/Spacelab 3 observations [Farmer *et al.*, 1987; Rinsland *et al.*, 1992] except the VMR of
63 atomic oxygen which is taken from atmospheric models.

64 The laboratory measurements [Shved *et al.*, 1991; Pollock *et al.*, 1993; Khvorostovskaya *et al.*,
65 2002; Castle *et al.*, 2006, 2012] and theoretical calculations [de Lara-Castells *et al.*, 2006, 2007]
66 give room temperature values of $k_{\text{LAB}} \approx (1.5 - 2.5) \times 10^{-12} (\text{cm}^3 \text{ s}^{-1})$. The values of k_{VT} determined
67 by modeling 15 μm emission from the MLT region, termed k_{ATM} , are thus larger than the
68 calculated and measured values by a factor of about four. Castle *et al.* [2012] have measured the
69 deactivation of $\text{CO}_2(v_2)$ by O^3P in the 142 - 490 K temperature range obtaining values of the

70 rate coefficient $k_{\text{LAB}} = (2.5 \pm 0.4) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 183 K and $(2.4 \pm 0.4) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 206 K.
71 Unexplained rate coefficient $k_x(v_2)$ is $(5.6 \pm 1.1 - 2.5 \pm 0.4) \times 10^{-12} = (3.1 \pm 1.5) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 90
72 km altitude ($T \approx 183$ K) and is $(7.9 \pm 1.2 - 2.4 \pm 0.4) \times 10^{-12} = (5.5 \pm 1.6) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ at 105 km
73 altitude [Table 1B]. $k_x(v_2)$ increases by a factor of 1.8 in going from 90 km altitude to 105 km
74 altitude (≈ 206 K) showing a steep variation with altitude. Using the average of the value of k_{ATM}
75 3 and $6 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$, $4.5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$, suggested by *López-Puertas et al.* [1992], and $k_{\text{LAB}} =$
76 $2.5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ we get $k_x = 2.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$, a smaller value independent of temperature
77 (altitude). It should be noted that the contribution to the rate coefficient k_{ATM} by unknown
78 mechanism k_x nearly equals [*López-Puertas et al.*, 1992] or is greater [*Feofilov et al.*, 2012] than
79 k_{LAB} , contribution by major constituent atomic oxygen. As pointed out by *Feofilov* [2014] the
80 GCMs use of a value of $k_{\text{GCM}} = 3.0 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ for this rate coefficient [*Bougher et al.*, 1999]
81 further complicates the problem. To resolve this difficult problem we break it into pieces and
82 attempt to find the cause of discrepancy between k_{ATM} and k_{LAB} .

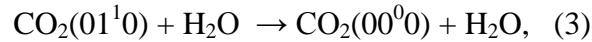
83 To resolve the discrepancy between k_{ATM} and k_{LAB} *Feofilov et al.* [2012] postulate that
84 nonthermal, or “hot”, oxygen atoms, produced in the MLT region by photolysis of O_2 and
85 dissociative recombination of O_2^+ , etc., may serve as an additional source of $\text{CO}_2(v_2)$ level
86 excitation. These authors have derived CO_2 volume mixing ratio (VMR) parts per million by
87 volume (ppmv) in the MLT region for the time of their experiment from atmospheric models as
88 well as space based observations. The average VMR, according to MLW atmosphere is about
89 268 ppmv at 90 km altitude and about 105 ppmv at 105 km altitude in general agreement with
90 the values given by *Rinsland et al.* [1992]. This means that for every collision a “hot” oxygen
91 atom undergoes with CO_2 , it must undergo $(10^6/268=)$ 3731 collisions at 90 km altitude and
92 $(10^6/105=)$ 9524 collisions at 105 km altitude with other atmospheric constituents, mostly with

93 N₂, O₂ and O. Solution of the time dependent Boltzmann equation with realistic potential
94 functions [Dothe *et al.*, 1997] has shown that a 1 eV “hot” atom loses most of its energy in a few
95 collisions. The chance of a “hot” atom colliding with CO₂ is therefore virtually nil. However,
96 since CO₂ is the dominant constituent in the Martian and Venusian atmospheres “hot” O atoms
97 may play a significant role in exciting its vibrations in these planets. In the terrestrial
98 atmosphere another reservoir of energy that either takes energy from various non-thermal energy
99 sources, e.g., ‘hot’ O atoms, and that may or may not be in local thermodynamic equilibrium but
100 one that readily transfers energy preferentially to bending mode of CO₂ must be found to explain
101 large k_x . The situation is similar to that of elevated 4.3 μm (v_3 mode) CO₂ emission from the
102 hydroxyl layer in the nocturnal mesosphere [Kumer *et al.*, 1978; López-Puertas *et al.*, 2004].
103 Highly vibrationally excited OH, produced by the reaction of H + O₃, because of its short
104 lifetime can only transfer a very small amount of energy directly to trace species CO₂ even though
105 transfer of vibrational energy from higher levels ($v= 8$ and 9) of OH to v_3 mode of CO₂ is a fast
106 near-resonant process [Burtt and Sharma, 2008b]. The vibrational energy from higher levels
107 ($v= 8$ and 9) of OH is instead transferred to N₂ by a fast near-resonant process [Burtt and
108 Sharma, 2008a]. The longer lived and super-thermal vibrationally excited N₂ transfers its
109 energy, again by a fast near-resonant process [Sharma and Brau; 1967, 1969], to the v_3 mode of
110 CO₂, the latter radiating around 4.3 μm . The longer lived N₂($v = 1$) molecule acts as a reservoir
111 that takes energy from OH and stores it until it is preferentially released to CO₂.
112 **Hypothesis.** *We advance the hypothesis that rotational degrees of freedom of N₂ and O₂ are the*
113 *reservoirs that transfer their energy efficiently to the v_2 mode of CO₂. High rotational levels of*
114 *these reservoirs by a near-resonant rotation-to-vibration energy transfer process are responsible*

115 for efficiently exciting the bending (v_2) mode of CO_2 leading to $15\text{ }\mu\text{m}$ emission. These rotational
116 levels may be thermal or long lived non-thermal.

117 **Test of the Hypothesis.**

118 **A. Thermal rotational levels.** Since the N_2 density at the altitudes under consideration is
119 much greater than O_2 density we provide justification for the deactivation of $\text{CO}_2(01^10)$
120 by N_2 . The reaction



122 is exothermic by 46 cm^{-1} and 14 cm^{-1} for $J = 15$ and 16 and endothermic by 17 cm^{-1} and 49 cm^{-1}
123 for $J = 17$ and 18 . The CO_2 molecule, in the dipole-hexadecapole moment and quadrupole-
124 hexadecapole moment interactions involved undergoes $\Delta J = \pm 3, \pm 2, \pm 1, 0$ in the process. Since
125 CO_2 has a much smaller rotational constant ($\approx 0.39\text{ cm}^{-1}$) than N_2 ($\approx 1.99\text{ cm}^{-1}$) we, for the rough
126 estimate, ignore the contributions of its rotational transitions to the energy transfer process.

127 The near-resonant processes, mediated by long-range multipole and dispersion interactions,
128 transfer of a small amount of energy from internal degrees of freedom (vibration and rotation) to
129 translation and can therefore have much larger cross section. On the other hand, processes that
130 require transfer of large amount of energy from internal (vibration and rotation) degrees of
131 freedom to translation and can be mediated only by short range repulsive forces tend to have
132 smaller cross section. This is the rationale for selecting $\Delta J = 8$ transitions since they are both
133 near-resonant and can be mediated by long-range forces. At 183 K , temperature relevant to MLS
134 atmosphere (Table 1B), at about 90 km altitude, about 2.4% of the N_2 molecules reside in one of
135 these four rotational levels. The density of N_2 in these four thermalized rotational levels is
136 ($0.0241/0.018 =$) 1.34 times that of atomic oxygen. The unexplained of rate coefficient $k_x(v_2)$ at

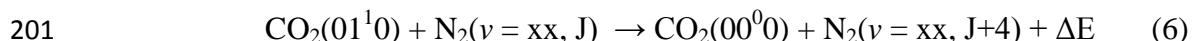
137 90 km altitude for pumping of the v_2 mode of CO₂ is $(3.1 \pm 1.5) \times 10^{-12}$ cm³ s⁻¹. The sum of the rate
138 coefficients of reaction (2) at 168 K for all four rotational levels $k_{\text{VR}}(\text{N}_2)$ has to be nearly equal or
139 greater than $(3.1 \pm 1.5) \times 10^{-12} / 1.34 = (2.32 \pm 1.1) \times 10^{-12}$ cm³ s⁻¹ to make reaction (2) the dominant
140 mechanism for pumping the v_2 mode of CO₂. Since only 2.4 % of the N₂ molecules participate
141 in the RV energy transfer process the rate coefficient for deactivation of CO₂(v_2) by N₂ would be
142 $k_{\text{VT}}(\text{N}_2) = ((2.32 \pm 1.1) \times 0.024) \times 10^{-12} = (5.6 \pm 2.6) \times 10^{-14}$. A larger calculated rate coefficient
143 k_{N_2} would not be a problem since the v_2 mode of CO₂ at least up to 90 km altitude is in local
144 thermodynamic equilibrium (LTE), i.e., its vibrational temperature is nearly the same as the
145 translational temperature [Feofilov *et al.*, 2012; López-Puertas *et al.*, 1992; Stair *et al.*, 1985].
146 Tables 1A – 1D, using the atmospheres, provided by Feofilov and López-Puertas, give the rate
147 coefficients $k_{\text{VT}}(\text{N}_2)$, fifth column, and $k_{\text{VR}}(\text{N}_2)$, last column, required by k_x given by these
148 atmospheres. The rate coefficient $k_{\text{VT}}(\text{N}_2)$ for the deactivation of bending mode of CO₂ by N₂ at
149 low temperatures has been measured at room temperature by *Merrill and Amme* [1969] using
150 ultrasonic velocity dispersion measurements and by *Cannemeyer and De Vries* [1974] using
151 optic-acoustic effect. *Taine et al.* [1978, 1979], by photoacoustic method, and by *Allen et al.*
152 [1980], by laser fluorescence technique, have measured $k_{\text{VT}}(\text{N}_2)$ at low temperatures. These
153 studies are in general agreement with that of *Allen et al.* [1980] giving $k_{\text{VT}}(\text{N}_2)$ equal to 1.4×10^{-15}
154 cm³ s⁻¹ at 170 K and 3.7×10^{-15} cm³ s⁻¹ 295 K about one order of magnitude smaller at lower
155 temperature and two orders magnitude smaller at higher temperature than the values given in
156 Tables 1A – 1D. Clearly, another mechanism is needed to explain the large observed values of
157 $k_x \equiv k_{\text{ATM}} - k_{\text{LAB}}$. It has already been noted that since k_x is almost equal (Tables 1C and 1D) or
158 greater (Tables 1A and 1B) than k_{LAB} it must involve a major species with a large rate
159 coefficient.

160 **B. Nonthermal rotational levels.** *Sharma* [1971] has calculated the probability per
161 collision of the reaction

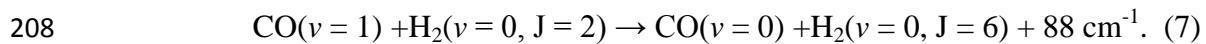
163 a much studied process because of its importance in CO_2 lasers, assuming a vibration-to-rotation
164 (VR) energy transfer (ET) mechanism mediated by long range multipolar interactions. In spite of
165 a large scatter in the experimental data, a situation typical of low temperature experiments
166 involving water vapor, the agreement is quite good. The calculated probability per collision is
167 0.06 at 200 K and 0.08 at 300 K. The rate coefficients (σv), assuming gas kinetic rate of 2×10^{-10}
168 $\text{cm}^3 \text{ s}^{-1}$ at 200 K and $2.5 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$ at 300 K, are 1.2×10^{-11} and $2.0 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ at 200 K and
169 300 K, respectively.

170 *Allen et al.* [1980] have measured rate coefficients for the deactivation of the bend-stretch mode
171 of CO_2 by H_2 in the 170 – 295 K temperature range obtaining values of 7.5×10^{-12} and 5.0×10^{-12}
172 $\text{cm}^3 \text{ s}^{-1}$ at 170 K and 295 K, respectively; probability of energy transfer per collision P at the two
173 temperatures being 1.4×10^{-2} and 7.4×10^{-3} . The inverse temperature dependence of this rate
174 coefficient is at odds with Landau-Teller TV energy transfer mechanism and very much in
175 accord with the near-resonant energy transfer mechanism [*Sharma and Brau*; 1967, 1969].
176 *Sharma* [1969] has calculated the deactivation of $\text{CO}_2(v_2)$ by H_2 assuming a near-resonant VR
177 energy transfer mechanism mediated by dipole-quadrupole interaction,

179 obtaining inverse temperature dependence with $P(300 \text{ K}) \approx 4 \times 10^{-3}$ and good agreement with the
180 then available data but smaller than the value measured by *Allen et al.* [1980] by a factor of
181 about two.


182 The VR energy transfer processes are seen to be capable of giving rate coefficients of desired
183 magnitude. The only molecule with large and nearly constant VMR with altitude capable of
184 collisionally converting the vibrational energy of $\text{CO}_2(01^10)$ into its rotational energy is N_2 .

185 Rotationally super-thermal N_2 may be produced by collisions of fast O atoms with N_2 . *Sharma*
186 and *Sindoni* [1993] have calculated the differential cross-section of Ar-CsF colliding with 1.0
187 initial relative translational energy as a function of laboratory recoil velocity of CsF obtaining
188 excellent agreement for all eight laboratory scattering angles for which the data was available.
189 The calculation exhibits rich rotational structure showing primary and supernumerary rainbows
190 with rotational levels of CsF as high as $J=194$ populated. There is no reason why
191 correspondingly high rotational levels of N_2 may not be populated in collisions with fast O
192 atoms.


193 *Duff and Sharma* [1996, 1997] have calculated the rate coefficient of the reaction of N with NO,

195 in the 100 – 1000 K temperature obtaining excellent agreement with the available experimental
196 data and conforming to JPL recommendations [*Sanders et al.*, 2011]. The calculation [*Duff and*
197 *Sharma*, 1997] shows that product N_2 is produced in excited vibrational and rotational states;
198 vibrational levels 2 – 7 are each populated with a probability of about 0.1 with rotational levels
199 of vibrational states 1 – 4 peaked around $J = 45$ while those of vibrational states 5 – 8 peaked
200 around $J = 40$. The VR energy transfer process

202 is near-resonant with $|\Delta E| \leq 50 \text{ cm}^{-1}$ for seven rotational levels 36 – 42. This process has the
203 potential of being the sought after mechanism provided rotational levels relax in small steps (ΔJ
204 = -2, $\Delta E \approx 230 \text{ cm}^{-1}$) with small rate coefficient. The calculation would proceed in the manner of
205 *Sharma and Kern* [1971] who showed that greater rate of deactivation of vibrationally excited
206 CO by para-hydrogen over ortho-hydrogen is due to the near-resonant VR process mediated by
207 multipolar interactions

209 **Conclusion.** A large value of k_x requires the rate coefficient of the unknown mechanism be
210 equal to $k_x \times (\text{M VMR})/(\text{O VMR})$ where M is the species participating in the unknown
211 mechanism. While k_x may stay constant or increase by a factor of less than 2, the O atom VMR
212 increases by about an order of magnitude going from 90 to 105 km altitude. Only species that
213 stands a chance meeting these stringent requirements is N₂, its VMR while not increasing stays
214 nearly constant at about 0.78. It is shown that the CO₂(v_2) – N₂ near-resonant VR rate
215 coefficients could be large enough to meet the requirements. In the thermal atmosphere the VR
216 processes lead to VT rate coefficients that are 1 – 2 orders of magnitude too large. Rotationally
217 super-thermal N₂, produced by collisions of fast O atoms with N₂ or by the N + NO reaction or
218 any other mechanism hold out hope if these rotational levels relax in small steps ($\Delta J = -2, \Delta E \approx$
219 230 cm^{-1}) with small rate coefficient.

220 The 15 μm (bending mode v_2) emission from CO₂ is also important cooling mechanism in the
221 atmospheres of Venus and Mars [*Bougher et al.*, 1999], especially the former where it acts as a
222 thermostat during the long day (243 times the length of the terrestrial day). The atmospheres of

223 Venus and Mars are similar (~ 95 % CO₂, a few percent N₂) and in these atmospheres direct
224 excitation of CO₂ vibrations by fast O atoms may be an important cooling mechanism.

225 The density of atomic oxygen plays very important role in cooling planetary atmospheres.
226 Recently published values of atomic oxygen density [Kaufmann *et al.*, 2014] derived from
227 nighttime limb measurements of atomic oxygen green line intensity in the mesopause region, by
228 SCIAMACHY instrument on the European Environmental Satellite, are “at least 30% lower than
229 atomic oxygen abundances obtained from SABER” instrument on the TIMED satellite. Perhaps
230 it is time that atomic oxygen density is measured using ground-based [Sharma and Dao, 2006]
231 and space-based [Sharma and Dao, 2005] Raman lidars proposed earlier.

232 **Acknowledgment.** The author is grateful to Peter Wintersteiner for many helpful discussions.
233 The author thanks the referees for constructive comment and A. Feofilov and M. López-Puertas
234 for supplying relevant model atmospheres.

235 Table 1A –MLW Atmosphere (A. Feofilov, 19 October 2014)

Altitude (km)	Temperature (K)	k_x	O VMR/N ₂ VMR	$k_{TV}(N_2)$	N ₂ P4(J)	$k_{VR}(N_2)$
91	169	3.4	0.023	0.0782	0.0183	4.27
93	174	4.1	0.029	0.1189	0.0206	5.77
96	185	4.7	0.043	0.2021	0.0249	8.12
99	199	5.0	0.056	0.280	0.0314	8.92
102	213	5.2	0.089	0.463	0.0381	12.1
105	227	5.4	0.129	0.697	0.0451	15.4

236 Rate Coefficients are in units of cm³s⁻¹ × 10¹².

237 $k_x = k_{ATM} - k_{LAB}$. k_{ATM} provided by Dr. Feofilov (3 November 2014). k_{LAB} is taken equal to 2.5×10^{12} cm³
238 s⁻¹ throughout based on the work of Castle *et al.* [2012].

239 $k_{TV}(N_2)$ is the N₂ - CO₂(ν_2) TV rate coefficient needed to explain k_x .

240 N₂P4(J) is the fraction of N₂ molecules in the four rotational levels 15 – 18.

241 $k_{VR}(N_2)$ is the N₂ - CO₂(ν_2) VR rate coefficient needed to explain k_x .

242

243

Table 1B –MLS Atmosphere (A. Feofilov, 19 October 2014)

Altitude (km)	Temp (K)	k_x	O VMR/N ₂ VMR	$k_{TV}(N_2)$	[N ₂ P4(J)]	$k_{VR}(N_2)$
90	183	3.1	0.018	0.0558	0.0241	2.32
93	179	4.1	0.028	0.1148	0.0223	5.15
96	178	4.7	0.05	0.235	0.0218	10.8
99	182	5.1	0.079	0.4029	0.0237	17.0
102	191	5.2	0.156	0.8112	0.0277	29.3
105	206	5.4	0.219	1.1826	0.0372	31.8

244 $k_x = k_{ATM} - k_{LAB}$ - k_{ATM} provided by Dr. Feofilov (3 November 2014). k_{LAB} is taken equal to $2.5 \times 10^{12} \text{ cm}^3 \text{ s}^{-1}$
 245 throughout based on Castle et al. [2012].

246

247 Table 1C –Polar Summer SABER Model Atmosphere (López-Puertas, 11 Nov 2014)

Altitude (km)	Temperature (K)	k_x	O VMR/N ₂ VMR	$k_{TV}(N_2)$	N ₂ P4(J)	$k_{VR}(N_2)$
95	179.7	2.0	0.0198	0.0396	0.02264	1.75
98	183.7	2.0	0.0358	0.0716	0.02438	2.97
101	194.5	2.0	0.0591	0.1182	0.02927	4.04
104	214.6	2.0	0.0920	0.184	0.03897	4.72
107	254.8	2.0	0.130	0.260	0.05928	4.39
110	304.4	2.0	0.163	0.326	0.08339	3.91

248 $k_{ATM} = 4.5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ is average of $(3 - 6) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ given by López-Puertas et al. [1992].

249

250

251 Table 1D –Polar Winter SABER Model Atmosphere (López-Puertas, 11 Nov 2014)

Altitude (km)	Temperature (K)	k_x	OVMR/N ₂ VMR	$k_{TV}(N_2)$	N ₂ P4(J)	$k_{VR}(N_2)$
95	179.6	2.0	0.0125	0.025	0.02264	1.10
98	239.7	2.0	0.021	0.042	0.05162	0.814
101	296.0	2.0	0.031	0.062	0.07949	0.780
104	346.8	2.0	0.041	0.082	0.1016	0.807
107	380.3	2.0	0.047	0.094	0.1142	0.823
110	395.2	2.0	0.054	0.108	0.1192	0.906

252

253

254 **References**

255 Allen, D. C., T. Scragg, and C. J. S. M. Simpson, Low temperature fluorescence studies of the
256 bend-stretch mode of CO₂, *Chemical Physics* 51, 279-278, 1980.

257 Bouger, S. W., D. M. Hunten, and R. G. Roble, CO₂ cooling in the terrestrial planet
258 thermospheres, *J. Geophys. Res.* 99, 14609–14622, 1994.

259 Bouger, S. W., S. Engel, R. G. Roble, and B. Foster, Comparative terrestrial planet
260 thermospheres 2. Solar cycle variations of global structure and winds at equinox, *J Geophys.*
261 *Res.*, 104(E7), 16,591-16,611, 1999.

262 Burtt, K. D., and Ramesh D. Sharma, Near-resonant energy transfer from vibrationally excited
263 OH to N₂, *J. Chem. Phys.* 128, 124311, doi:10.1063/1.2884343, 2008a.

264 Burtt, K. D., and R. D. Sharma, Near-resonant energy transfer from vibrationally excited OH(ν),
265 $\nu=9, 8, 1$ to CO₂, *Geophys. Res. Lett.*, 35, L18102, doi:10.1029/2008GL035204, 2008b.

266 Cannemeyer, F., and A. E. De Vries, Vibration relaxation of CO₂ in CO₂-N₂ and CO₂-O₂
267 mixtures, *Physica* 74, 196-204, 1974.

268 Castle, K. J., K. M. Kleissas, J. M. Rheinhart, E. S. Hwang, and J. A. Dodd, Vibrational
269 relaxation of CO₂(ν_2) by atomic oxygen, *J. Geophys. Res.* 111, A09303,
270 doi:10.1029/2006JA011736, 2006.

271 Castle, K. J., L. A. Black, M. W. Simione, and J. A. Dodd, Vibrational relaxation of CO₂(ν_2) by
272 O(³P) in the 142-490 K temperature range, *J. Geophys. Res.* 117, A04310,
273 doi:10.1029/2012JA017519, 2012.

274 Crutzen, P. J., Discussion of paper “Absorption and emission by carbon dioxide in the
275 atmosphere” by J. T. Houghton, *Quart. J. Roy. Met. Soc.*, 96, 767 – 770, 1970.

276 de Lara-Castells, M. P., M. I. Hernández, G. Delgado-Barrio, P. Villarreal, and M. López-
277 Puertas, Vibrational quenching of CO₂(010) by collisions with O(³P) at thermal energies: A
278 quantum-mechanical study, *J. Chem. Phys.* 124, 164302, doi:10.1063/1.2189860, 2006.
279 de Lara-Castells, M. P., M. I. Hernández, G. Delgado-Barrio, P. Villarreal, and M. López-
280 Puertas (2007), Key role of spin-orbit effects in the relaxation of CO₂(010) by thermal
281 collisions with O(³P), *Mol. Phys.* 105, 1171 – 1181, doi:10.1080/00268970701244809, 2007.
282 Dickinson, R. E., Infrared radiative cooling in the mesosphere and lower thermosphere, *J. Atmos.*
283 *Sol. Terr. Phys.*, 46, 995 – 1008, 1984.
284 Dothe, H., R. D. Sharma, and J. W. Duff, On the steady-state assumption for the energy
285 distribution function of the nonthermal N(⁴S) atoms and the efficiency of NO production by
286 these atoms in the terrestrial thermosphere, *Geophys. Res. Lett.*, 24, 3233-3236, 1997.
287 Duff, J. W., and R. D. Sharma, Quasiclassical trajectory study of the N(⁴S)+NO(²Π)→N₂(¹Σ_g)
288 +O(³P) reaction cross section on the excited ³A' NNO surface, *Chem. Phys. Lett.* 265, 404-
289 409, 1997.
290 Duff, J. W., and R. D. Sharma, Quasiclassical trajectory study of the N(⁴S)+NO(²Π)→N₂(¹Σ_g)
291 +O(³P) reaction rate coefficient, *Geophys. Res. Lett.* 23, 2777-2780, 1996.
292 Farmer, C. B., O. F. Raper, and F. G. O'Callaghan, Final report on the first flight of the ATMOS
293 instrument during the Spacelab 3 mission, April 29 through May 6, 1985, *JPL Pub.* 87-32, 45
294 pp. Jet Propul. Lab., Oct. 1, 1987.
295 Feofilov, A. G., A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg,
296 CO₂(v₂)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort

297 Collins lidar observations of the mesosphere and lower thermosphere, *Atmos. Chem. Phys.*
298 *12*, 9013-9023, doi:10.5194/acp-12-9013-2012, 2012.

299 Feofilov, A., Interactive comment on “Technical Note: A new mechanism of 15 μm emission in
300 the mesosphere-lower thermosphere(MLT)” by R. D. Sharma, *Atmos. Chem. Phys. Discuss.*,
301 *14*, C8069-C8075, 2014.

302 Fischer, H., M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A. Dudhia,
303 D. Ehhalt, M. Endemann, J. M. Flaud, R. Gessner, A. Lkeinert, R. Koopman, J. Langen, M.
304 López-Puertas, M. Mosner, H. Nett, H. Oelhaf, G. Perron, J. Remedios, M. Ridolfi, G.
305 Stiller, and R. Zander,; MIPAS: an instrument for atmospheric and climate research, *Atmos.*
306 *Chem. Phys.* *8*, 2151-2188, doi:10.5194/acp-8-2151-2188, 2008.

307 Gordiets, B. F., Yu. N. Kulikov, M. N. Markov, and M. Ya. Marov, Numerical Modeling of the
308 Thermospheric Heat Budget, *J. Geophys. Res.* *87*, 4504–4514, 1982.

309 Gusev, O., M. Kaufmann, K. U. Grossmann, F. J. Schmidlin, and F. J. Shepard, Atmospheric
310 neutral temperature distribution at the mesopause/turbopause altitude, *J. Atmos. Sol. Terr.
311 Phys.*, *68*, 1684-1697, doi:10.1016/j.jastp.2005.12.010,2006.

312 Kaufmann, M., Y. Zhu, M. Ern, and M. Riese, Global distribution of atomic oxygen in the medopause
313 region as derived from SCIAMACHY O(¹S) green line measurements, *Grophys. Res. Lett.*, *41*, 6274-
314 6280, doi: 10.1002/2014GL060574.

315 Khvorostovskaya, L. E., I. Yu. Potekhin, G. M. Shved, V. P. Ogibalov, and T. V. Uzyukova,
316 Measurement of the rate constant for quenching CO₂(01¹0) by atomic oxygen at low
317 temperatures: reassessment of the rate of cooling by the CO₂ 15- μm Emission in the Lower
318 Thermosphere, *Izv-Atmos. Ocean. Phys.* *38*, 613-624, 2002.

319 Kumer, J. B., A. T. Stair, Jr., N. Wheeler, K. D. Baker, and D. J. Baker, Evidence for an $\text{OH}^\dagger \xrightarrow{vv}$
320 $\text{N}_2^\dagger \xrightarrow{vv} \text{CO}_2(v_3) \rightarrow \text{CO}_2 + \text{he}(4.3 \mu\text{m})$ mechanism for 4.3 μm airglow, *J. Geophys. Res.* 83,
321 4743-4747, doi:10.1029/JA083iA10p04743, 1978.

322 López-Puertas, M., M. A. López-Valverde, C. P. Rinsland, and M. R. Gunson, Analysis of the
323 Upper Atmosphere $\text{CO}_2(v_2)$ Vibrational Temperatures Retrieved From ATMOS/Spacelab 3
324 Observations, *J. Geophys. Res.* 97, 20,469-20,478, 1992.

325 López-Puertas, M., M. Garcia-Comas, B. Funke, R. H. Picard, J. R. Winick, P. P. Wintersteiner,
326 M. G. Mlynczak, C. J. Mertens, J. M. Russell III, and L. L. Gordley, Evidence for an $\text{OH}(v)$
327 excitation mechanism of CO_2 4.3 μm nighttime emission from SABER/TIMED
328 measurements, *J. Geophys. Res.*, **109**, D09307, doi:10.1029/2003JD004383 2004.

329 López-Puertas, M., Interactive comment on “Technical Note: A new mechanism of 15 μm
330 emission in the mesosphere-lower thermosphere(MLT)” by R. D. Sharma, *Atmos. Chem.*
331 *Phys. Discuss.*, **14**, C8669-C8674, 2014.

332 Merrill, K. M., and R. C. Amme, Deactivation of the CO_2 bending mode by collisions with N_2
333 and O_2 , *J. Chem. Phys.* 51, 844-846, 1969.

334 Offermann, D., K. U. Grossmann, P. Barthol, P. Knieling, M. Riese, and R. Trant, Cryogenic
335 Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and
336 middle atmosphere variability, *J. Geophys. Res.* 104, 16311 – 16325,
337 doi:10.1029/1998JD100047, 1999.

338 Pollock, D. S., G. B. I. Scott, and L. F. Phillips, Rate constant for quenching of $\text{CO}_2(010)$ by
339 atomic oxygen, *Geophys. Res. Lett.* 20, 727-729, 1993.

340 Ratkowski, A. J., R. H. Picard, J. R. Winick, K. U. Grossmann, D. Homann, J. C. Ulwick, and A.
341 J. Paboojian, Lower-thermospheric infrared emissions from minor species during high-
342 altitude twilight-B. Analysis if 15 μ m emission and comparison with non-LTE models, *J.*
343 *Atmos. Terr. Phys.* 56, 1899-1914, 1994.

344 Rinsland, C. P., M. R. Gunson, R. Zander, and M. López-Puertas, Middle and Upper
345 Atmosphere Pressure-Temperature Profiles and the Abundances of CO₂ and CO in the Upper
346 Atmosphere From ATMOS/Spacelab 3 Observations, *J. Geophys. Res.* 97D, 20,479-20,495,
347 1992.

348 Russell III, J. M., M. G. Mlynczak, L. L. Gordley, J. J. Tansock, and R. Esplin, Overview of the
349 SABER experiment and preliminary calibration results, *P. Soc. Photo.-Opt. Ins.*, 3756, 277 –
350 288, 1999.

351 Sander, S. P., et al. (2011), Chemical kinetics and photochemical data for use in atmospheric
352 modeling – Evaluation 17, *JPL Publ. 06-2*, Jet Propul. Lab., Calif. Inst. of Tech., Pasadena,
353 CA [available at <http://jpldataeval.jpl.nasa.gov>].

354 Sharma, R. D., and C. A. Brau, "Near-Resonant Vibrational Energy Transfer in N₂-CO₂
355 Mixtures", *Phys. Rev. Lett.* 19, 1273-1275, 1967.

356 Sharma, R. D., and C. A. Brau, "Energy Transfer in Near-Resonant Molecular Collisions due to
357 Long-Range Forces with Application to Transfer of Vibrational Energy from v₃ Mode of
358 CO₂ to N₂", *J. Chem. Phys.* 50, 924-930, 1969.

359 Sharma, R. D., "Deactivation of Bending Mode of CO₂ by Hydrogen and Deuterium", *J. Chem.*
360 *Phys.*, 50, 919-923, 1969.

361 Sharma, R. D., and C. W. Kern, "Theoretical Model for the Differential Quenching Rates of
362 Quenching of CO Fluorescence by Ortho- and Para-Hydrogen", *J. Chem. Phys.* **55**, 1171-
363 1188, 1971.

364 Sharma, R. D., "Vibrational Relaxation of CO₂ by H₂O", *J. Chem. Phys.* **54**, 810-8121, 1971.

365 Sharma, R. D., and R. M. Nadile, "Carbon Dioxide (ν_2) Radiance Results Using a New Non-
366 Equilibrium Model", *Proceedings of the Aerospace Sciences Meeting*, AIAA, St. Louis, MO,
367 12-15 January, doi:10.251416.1981-426, 1981.

368 Sharma, R. D., Infrared Airglow, *Progress in Atmospheric Physics: Proceedings of the 15th*
369 *Annual Meeting on Atmospheric Studies by Optical Methods*. Edited by: R. Rodrigo, J. J.
370 López-Moreno, M. López-Puertas, and A. Molina, Kluwer Academic Publishers, Boston,
371 177 – 186, 1987.

372 Sharma, R. D., and P.P.Wintersteiner, "Role of Carbon Dioxide in cooling planetary
373 thermospheres", *Geophysical Research Letters*, **17**, 2201-2204, 1990.

374 Sharma, R. D., and J.M. Sindoni, " Inelastic and Ballistic Processes Resulting from CsF-Ar Collisions", *J.*
375 *Chem. Phys.* **98**, 1018-1033, doi:10.1063/1.464327, 1993.

376 Sharma, R. D., and R. G. Roble, Cooling Mechanisms of the Planetary Thermospheres: The Key
377 Role of O Atom Vibrational Excitation of CO₂ and NO, *ChemPhysChem.* **3**, 841-843,
378 doi:10.1002/1439-7641, 2002.

379 Sharma, R. D., and P. D. Dao, A potential experiment for *In-situ* measurement of atmospheric
380 temperature and atomic oxygen density in the 90-150 km altitude range by a Raman LIDAR,
381 *Journal of Atmospheric and Solar-Terrestrial Physics*, **67**, 1519-1523, 2005.

382 Sharma, R. D., and P. D. Dao, A potential remote-sensing technique for thermospheric
383 temperature with ground-based resonant atomic oxygen Raman LIDAR, *Journal of*
384 *Atmospheric and Solar-Terrestrial Physics*, 68, 921-929, 2006.

385 Shved, G. M., L. E. Khvorostovskaya, I. Yu. Potekhin, A. I. Demyanikov, A. I. Kutepov, and V.
386 I. Fomichev, Measurement of the quenching rate constant for collisions CO₂(01¹0)-O; the
387 importance of the rate constant magnitude for the thermal regime and radiation of the lower
388 thermosphere, *Izv. Atmos. Ocean. Phys.* 27, 431-437, 1991.

389 Stair Jr., A. T., R. D. Sharma, R. M. Nadile, D. J. Baker, and W. Greider, "Observations of Limb
390 Radiance with Cryogenic Spectral Infrared Rocket Experiment (SPIRE)", *J. Geophys. Res.*,
391 90, 9763-9775, 1985.

392 Taine, J., Lepoutre, F., and Louis, G., A photoacoustic study of the collisional deactivation of
393 CO₂ by N₂, CO and O₂ between 160 and 375 K, *Chem. Phys. Lett.* 58, 611-615, 1978.

394 Taine, J., and F. Lepoutre, A photoacoustic study of the collisional deactivation of the first
395 vibrational of CO₂ by N₂ and CO, *Chem. Phys. Lett.* 65, 554-558, 1979.

396 Taylor, R., energy transfer processes in the stratosphere, *Can. J. Chem.*, 52, 1436 – 1451, 1974.

397 Vollmann, K., and Grossmann, K. U., Excitation of 4.3 μ m CO₂ emission by (¹D) during
398 twilight, *Adv. Space Res.* 20, 1185-1189, 1997.

399 Wintersteiner, P. P., R. H. Picard, R.D. Sharma, Jeremy R. Winick, and R. A. Joseph, "Line-by-
400 Line Radiative Excitation Model for Non-Equilibrium Atmosphere: Application to CO₂ 15
401 μ m Emission", *JGR-Atmospheres (D)* 97, 18,083-18117, 1992.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421 .