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Abstract 20 

To quantitatively evaluate the effect of carbonaceous aerosols on the south edge of the 21 

Tibetan Plateau, aerosol samples were collected weekly from August 2009 to July 22 

2010 at Mt. Everest (QOMS, 28.36°N, 86.95°E, 4276 m a.s.l.). The average 23 

concentrations of OC, EC and WSOC were 1.43, 0.25 and 0.77 μg m
-3

, respectively. 24 

The concentration levels of OC and EC at QOMS are comparable to those at high 25 

elevation sites on the southern slopes of the Himalayas (Langtang and NCO-P), but 26 

three to six times lower than those at Manora Peak, India and Godavari, Nepal. 27 

Sulfate was the most abundant anion species followed by nitrate, accounting for 25% 28 

and 12% of total ionic mass, respectively. Ca
2+

 was the most abundant cation species 29 

(annual average of 0.88 μg m
-3

). The dust loading, represented by Ca
2+

 concentration, 30 

was relatively constant throughout the year. OC, EC and other ionic species (NH4
+
, K

+
, 31 

NO3
-
, and SO4

2-
) exhibited a pronounced peak in the pre-monsoon period and a 32 

minimum in the monsoon season, being similar to the seasonal trends of aerosol 33 

composition reported previously from the southern slope of the Himalayas, such as 34 

Langtang and NCO-P. The strong correlation of OC and EC in QOMS aerosols with 35 

K
+
 and levoglucosan indicates that they were mainly originated from biomass burning. 36 

The fire spots observed by MODIS and their backward trajectories further 37 

demonstrate that in pre-monsoon season, agricultural and forest fires in the northern 38 

India and Nepal were most likely sources of carbonaceous aerosol at QOMS. 39 

Moreover, the CALIOP observations confirmed that air pollution plumes crossed the 40 

Himalayas during this period. The highly coherent variation of daily aerosol optical 41 

depth (AOD, 500 nm) between QOMS and NCO-P indicates that both slopes of the 42 

Himalayas share a common atmospheric environment regime. In addition to 43 

large-scale atmospheric circulation, the unique mountain/valley breeze system can 44 

also have an important effect on air pollutant transport. 45 

 46 

 47 
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1 Introduction 48 

The Tibetan Plateau (TP) and the surrounding Hindu Kush-Himalayan mountains are 49 

known as the “Third Pole” of the Earth (Qiu, 2008), due to its immense area and high 50 

elevation (Yao et al., 2012). Because of the contrast of thermal heating between 51 

continent and ocean, the TP plays a fundamental role in the formation of the Asian 52 

monsoon system and Northern Hemispheric climatology (Wu and Zhang, 1998). The 53 

TP and Himalayas, with more than 100,000 km
2
 of glaciers, contain the largest ice 54 

mass outside the Polar region (Xu et al., 2009;Yao et al., 2012). Over the past decades, 55 

climate change impacts have been revealed due to marked air temperature rising and 56 

dramatic glacier shrinkage across this area (Kang et al., 2010). 57 

Due to sparse human population and minimal industrial activities, the TP is 58 

considered one of the most pristine terrestrial regions, alongside the Arctic and 59 

Antarctic. However, growing evidence has demonstrated that widespread atmospheric 60 

brown clouds (ABCs) over South Asia may affect this region (Bonasoni et al., 61 

2010;Kaspari et al., 2011;Lu et al., 2012;Xia et al., 2011;Wang et al., 2010). Research 62 

has attempted to reveal a link between climate change over the TP (e.g. air 63 

temperature rising, glacier melting) and the distribution of anthropogenic pollutants 64 

(mainly absorbing carbonaceous materials) (Qian et al., 2015;Wang et al., 2014b). 65 

Ramanathan and Carmichael (2008) reported that in the high Himalayan region, solar 66 

heating caused by black carbon (BC) could be approximately equivalent to the 67 

warming by CO2 in terms of the melting of snowpack and glaciers. 68 

Could we quantitatively differentiate the various factors that contribute to glacier 69 

melting, including aerosols, greenhouse gas, and BC deposition on the snow surface? 70 

Clearly, to answer this question and reduce the uncertainties, adequate knowledge of 71 

the aerosol properties is urgently needed. Some scientists have used different models 72 

to reveal the importance of carbonaceous aerosol in this region (Menon et al., 73 

2010;Qian et al., 2011;Yasunari et al., 2010). So far, most works on aerosol 74 

composition have been carried out on the south slope of the Himalayas, such as 75 

Langtang, Nepal (Carrico et al., 2003), Godavari (Stone et al., 2010), Nepal Climate 76 

http://dict.cnki.net/dict_result.aspx?searchword=%e8%bf%91%e4%bc%bc&tjType=sentence&style=&t=approximate


 4 

Observatory-Pyramid (NCO-P) (Decesari et al., 2010) and Manora Peak, India (Ram 77 

et al., 2010). Long-term aerosol chemistry measurements from the TP are extremely 78 

scarce mainly due to its remoteness and challenging weather conditions, with 79 

measurements limited to Lulang (Zhao et al., 2013), Waliguan (Ma et al., 2003), Nam 80 

Co (Ming et al., 2010) and Qinghai Lake (Li et al., 2013). As we know, no systematic 81 

data on carbonaceous aerosols from the south edge of the TP (i.e. the north slope of 82 

Himalayas) has been reported. From the spatial distribution of aerosols observed by 83 

satellites (e.g. MODIS, Fig. S1), there was a clear difference between South Asia and 84 

Tibetan Plateau. Therefore, as the boundary area this region merits special attention.    85 

In this paper, we present results from one-year measurements of organic carbon (OC), 86 

elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions in the 87 

aerosols at Mt. Everest, the south edge of the TP. Our aim is to provide baseline levels 88 

of aerosols for this region, reduce the assessment uncertainties of aerosol radiative 89 

forcing and provide more information on their transport mechanism. 90 

 91 

2 Methodology 92 

2.1 Description of research site 93 

In 2005, Qomolangma (Mt. Everest) Station for Atmospheric and Environmental 94 

Observation and Research (briefly QOMS, 28.36°N, 86.95°E, 4276 m a.s.l.) (Fig. 1) 95 

was established to begin continuous monitoring of the environment (Ma et al., 2011). 96 

A solar electricity system generates the power to maintain the instrumentation. 97 

According to the observations achieved so far, the Mt. Everest region (QOMS) is a 98 

typical representative of the middle Himalayas in terms of climate, air circulation 99 

systems and environmental characteristics (Chen et al., 2012;Li et al., 2012;Ma et al., 100 

2011). Sandy soil with sparse grass and small rocks cover the land surface around the 101 

QOMS. Due to its harsh environment, QOMS is relatively isolated from industrial 102 

zone and cities, with a very limited local population (Ma et al., 2011). 103 
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2.2 Aerosol sampling 104 

From August 2009 to July 2010, total suspended aerosol particle (TSP) samples were 105 

collected weekly at QOMS using medium-volume samplers (KC-120H, Laoshan Co., 106 

flow rate: 100 L min
−1

 at standard condition). The sampling duration of each sample 107 

was 24 hours. Aerosols were collected using 90-mm diameter quartz filters (QM/A, 108 

Whatman, UK), which were pre-combusted at 450 °C for 6 hours. Field blanks were 109 

collected every month by placing filters into the filter holder for a few minutes with 110 

no air flowing. After sampling, the filters were wrapped with aluminum foil and 111 

frozen until analysis. Eventually, fifty samples were successfully obtained. 112 

2.3 OC and EC analysis 113 

The quartz filters were analyzed for OC and EC using a carbon analyzer (DRI model 114 

2001). Briefly, a filter aliquot (0.5 cm
2
) was analyzed for eight carbon fractions 115 

following the IMPROVE-A thermal/optical reflectance (TOR) protocol (Cao et al., 116 

2007;Chow et al., 2007). Four OC fractions (OC1, OC2, OC3 and OC4) were 117 

determined at 140, 280, 480 and 580 °C in pure He atmosphere, which was 118 

subsequently switched to 2% O2/98% He atmosphere to determine EC1, EC2 and 119 

EC3 at 580, 740 and 840 °C, respectively. The residence time of each heating step 120 

was defined by the flattening of the carbon signal. The pyrolyzed carbon fraction 121 

(OPC) is determined when reflected laser light returns to its initial value after oxygen 122 

is introduced. In general, OC is defined as OC1 + OC2 + OC3 + OC4 + OPC and EC 123 

is defined as EC1 + EC2 + EC3 - OPC. The detection limit for the carbon analyzer 124 

was 0.05 μgC cm
-2

 for OC and 0.05 μg C cm
-2

 for EC. 125 

2.4 Water-soluble ions and WSOC 126 

An aliquot of filter (2.54 cm
2
) was extracted with 10 ml ultrapure water with 127 

sonication for 30 minutes. The extracted solutions were filtrated with syringe-driven 128 

filters (Millex‐GV PVDF, 0.22 μm; Millipore, Ireland) to remove the quartz fiber 129 

debris and other insoluble impurities. Then the water-soluble ionic species (Cl
-
, SO4

2-
, 130 

NO3
-
, Ca

2+
, Na

+
, K

+
, Mg

2+ 
and NH4

+
) were analyzed using an ion chromatograph (761 131 
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Compact IC, Metrohm). Anions were measured with a suppressor on a Shodex SI-90 132 

4E column using an eluent mixture of 1.8 mM Na2CO3, 1.7 mM NaHCO3 and 40 mM 133 

H2SO4 at a flow rate of 1.2 mL min
-1

. Cations were determined on a Metrohm C2-150 134 

column with tartaric acid (4 mM) and dipicolinic acid (1 mM) as an eluent. The 135 

overall uncertainty in determining ionic species is less than 4% (Miyazaki et al., 136 

2010). The detection limit for cations and anions was 0.01 μg m
-3

, which was 137 

calculated according to the air volume of actual samples. 138 

To quantify WSOC, a portion of filter (19.1 cm
2
) was extracted and filtrated using the 139 

same procedure for major ions described above. Then the extract was injected into a 140 

total carbon analyzer (TOC-V, Shimadzu). The method detection limit (MDL) used 141 

was 4 μg L
-1

 with a precision of ±5%. All the concentrations of carbonaceous and 142 

ionic components in this study are field-blank corrected. It should be noted that there 143 

are possible sampling artifacts by the adsorption/evaporation of gaseous organic 144 

materials on/from the quartz membrane. However, no quantitative information on 145 

such positive/negative artifact is available in this study, therefore, no correction was 146 

made for the data of carbonaceous components. 147 

2.5 Determination of levoglucosan 148 

Levoglucosan was determined by GC/MS after the extraction of the samples with a 149 

methanol/methylene chloride mixture followed by BSTFA derivatization. Details of 150 

the analytical procedure is presented elsewhere (Fu et al., 2008).   151 

2.6 Meteorology and backward air mass trajectories 152 

At the QOMS station, various meteorological parameters (Fig. 2) were recorded by a 153 

40 m atmospheric boundary layer tower that measures wind speeds, wind direction 154 

(014A-L, Met One), relative humidity, air temperature, air pressure (HMP45C, 155 

Vaisala) and rain intensity (TE525MM-L, Young) (Chen et al., 2012;Li et al., 2012). 156 

Monthly mean air temperature reaches a maximum of 12.3°C in July, with a 157 

minimum in January of -3.2°C. Humidity is highest in August while lowest in 158 

December. Precipitation was unevenly distributed throughout the year, with more 159 
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than 90% of annual precipitation occurring from June to September. According to the 160 

meteorological parameters at QOMS (Fig. 2), the climatology is roughly divided into 161 

four seasons, i.e. pre-monsoon, monsoon, post-monsoon and winter (The definition of 162 

different seasons was shown in Table S1). These seasons are generally in agreement 163 

with the seasonal definition made in a previous study in this region (Bonasoni et al., 164 

2010). In general, this region is controlled by Indian Monsoon system in summer 165 

(June-August), characterized by relatively high temperature and humid weather with 166 

prevailing southerly winds. While in the remaining period, westerlies dominate the 167 

large-scale atmospheric circulation patterns with limited precipitation. 168 

To reveal the transport pathway of air masses that arrive at QOMS, seven-day 169 

backward trajectories were computed using the HYSPLIT model (Draxler and Rolph, 170 

2012) and GDAS (Global Data Assimilation System) data for each sampling day. 171 

Given the typical height of the planetary boundary layer (PBL) in this region (Chen et 172 

al., 2012), the arrival height of air mass in these modeling was set to 500 m above 173 

ground level. 174 

 175 

3 Results and discussion 176 

3.1 Characteristics and temporal variations of OC and EC 177 

The statistical summaries of carbonaceous components in the aerosols from QOMS 178 

are presented in Table 1. The average concentrations of OC and EC in the aerosols 179 

from QOMS were 1.43 ± 1.16 and 0.25 ± 0.22 μg m
-3

, respectively. The concentration 180 

levels of OC and EC at QOMS are about three times higher than those of Muztagh 181 

Ata, northwest TP (Cao et al., 2009), while they are comparable to those reported 182 

from the Central and Northeastern TP (Li et al., 2013;Ming et al., 2010) (Table 2). In 183 

contrast, OC and EC concentrations from the southeastern TP (Tengchong and Lulang) 184 

are significantly higher than those at QOMS, possibly due to the higher contribution 185 

of biomass burning (Engling et al., 2011;Zhao et al., 2013). When compared with 186 

sites on the south slopes of the Himalayas, QOMS data present the same order of OC 187 
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and EC with NCO-P (Decesari et al., 2010) and Langtang (Carrico et al., 2003), but 188 

three to six-fold lower than Manora Peak, India (Ram et al., 2010) and Godavari, 189 

Nepal (Stone et al., 2010). The latter two sites are at lower altitudes and are closer to 190 

the populated areas of South Asia, heavily influenced by anthropogenic emission. 191 

Generally, the high altitude sites on both sides of the Himalayas (i.e. Langtang, 192 

NCO-P and QOMS) exhibit similar OC and EC abundance, which could be 193 

considered as a regional baseline level to be used in the regional climate model as 194 

input parameters. 195 

In a previous study, Ming et al. (2008) estimated atmospheric EC concentration in the 196 

region based on the analysis of an ice core from the East Rongbuk Glacier, Mt. 197 

Everest. Apparently, there is a big discrepancy between our EC data (annual average 198 

of 0.25 ± 0.22 μg m
-3

) and the EC data estimated by ice cores (average: 0.077 ± 0.045 199 

μg m
-3

 during 1951–2001). One potential reason is that several parameters (e.g. 200 

scavenging ratio of EC) need to be assumed to convert the EC in the ice core to 201 

atmospheric concentration, which may introduce some uncertainty. Moreover, 202 

dramatically increasing trends of EC in the Himalayas and the TP ice cores have been 203 

reported (Cong et al., 2013;Kaspari et al., 2011), i.e. a two and a half to three fold rise 204 

in recent decades compared to background conditions. Therefore, our EC data for 205 

2009–2010, which is higher than the average EC concentration for 1951–2001, is 206 

reasonable. 207 

The OC/EC ratios at QOMS range from 1.91 to 43.8, with average of 6.69. Such high 208 

ratios are commonly found in different areas of the TP (Table 2). There are two 209 

potential reasons for those high OC/EC ratios. One reason may be a strong solar 210 

radiation (exceeding 7500 MJ m
-2

) over the TP, because substantial secondary organic 211 

carbon (SOC) could be formed through photochemical reaction (Wan et al., 2015). 212 

The other potential reason is the influence of biomass burning. Usually, the aerosols 213 

emitted from biomass burning have higher OC/EC ratio. For example, Watson et al. 214 

(2001) have reported an OC/EC ratio of 14.5 for forest fires. Considering the specific 215 

condition of this study (QOMS), the second reason is more likely, i. e. the strong 216 
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influence of biomass-burning emissions. The higher abundance of OC than EC on the 217 

TP emphasizes that OC should not be ignored in the quantification of total radiative 218 

forcing of aerosol by climate models (Kopacz et al., 2011). Although some organic 219 

carbon has light-absorbing capability (i.e. brown carbon), the net effect of organic 220 

carbon on climate is negative (cooling) (Stocker et al., 2013), which may attenuate the 221 

positive radiative forcing caused by EC.  222 

The temporal variations of the aerosol OC, EC and WSOC are illustrated in Fig. 3. 223 

Clearly, the OC, EC and WSOC share a significant seasonal pattern，i.e. a maximum 224 

in the pre-monsoon period and a minimum in the monsoon season. Higher abundance 225 

of OC and EC imply that the contributions from anthropogenic activities are larger in 226 

pre-monsoon than other seasons. Similar seasonal trends of aerosol composition were 227 

also reported previously on the south slopes of the Himalayas, such as Langtang 228 

(Carrico et al., 2003) and NCO-P (Decesari et al., 2010). This phenomenon indicates 229 

that these regions (Mt. Everest), both slopes of the Himalayas, have a common 230 

atmospheric environmental regime, although the high altitude of the Himalayas was 231 

once considered a good barrier for the spreading of atmospheric pollutants in South 232 

Asia. This point will be further discussed in Section 3.5. 233 

3.2 Relationship between OC and EC 234 

Examining the relationship between OC and EC can provide meaningful insights into 235 

the origin and possible reaction process during the transport of carbonaceous aerosols 236 

(Turpin and Huntzicker, 1995). At QOMS, a strong correlation (R
2
 = 0.81) was 237 

observed between OC and EC during the pre-monsoon season (Fig. 4a), indicating 238 

common emission sources and transport processes. The correlation coefficients 239 

between OC and EC in the other three seasons were lower than that of the 240 

pre-monsoon season (Fig. 4b, c, d), with the lowest correlation observed in the 241 

summer monsoon season (R
2
 = 0.08), suggesting that there are other influences. In 242 

addition to the common emission sources (e.g. fossil fuel and biomass burning), OC 243 

could also be produced by biogenic sources and the formation of secondary OC 244 

(SOC). The relative importance of different sources and/or formation process merits a 245 
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further study. 246 

SOC has often been calculated from the primary OC/EC ratio (EC-tracer method) 247 

(OCpri = EC*(OC/EC)min, OCsec = OCtot – OCpri), which is assumed to be relatively 248 

constant for a given site (Turpin and Huntzicker, 1995). The lowest OC/EC ratio in 249 

the aerosol was suggested for use as the primary source to calculate the SOC 250 

abundance (Castro et al., 1999), when the secondary production of OC is expected to 251 

be minimal. However, for the samples from QOMS, we found that calculating SOC 252 

formation using this method was not reliable. The minimum OC/EC ratios differ 253 

greatly among various seasons (3.40, 3.78, 1.91 and 2.67 for pre-monsoon, monsoon, 254 

post-monsoon and winter, respectively). Even for each season (11–13 samples for 255 

each seasons), the lowest three values of OC/EC ratios also varied substantially. 256 

Therefore, the SOC formation estimated by the conventional EC-tracer method is not 257 

presented here.  258 

3.3 Water-Soluble Organic Carbon (WSOC) 259 

The WSOC in aerosols, a major proportion of total organic carbon, could affect the 260 

hygroscopic property of the particles and their ability to act as cloud condensation 261 

nuclei (CCN) (Psichoudaki and Pandis, 2013). The abundance of WSOC relative to 262 

OC could be employed as an indictor to decipher whether organic aerosol is primary 263 

or secondary, because SOC usually tends to be more water-soluble than primary 264 

organic matter (Psichoudaki and Pandis, 2013). The concentration of WSOC at 265 

QOMS varied from 0.07 to 3.22 μg m
-3

, with an average of 0.77 μg m
-3

 (Table 1). The 266 

average WSOC/OC ratios at QOMS were 0.47, 0.59, 0.62 and 0.57 for pre-monsoon, 267 

monsoon, post-monsoon and winter, respectively. The lowest WSOC/OC in 268 

pre-monsoon indicated the dominant contribution from primary emission sources with 269 

poor aging and less SOA formation. Furthermore, in the pre-monsoon season, the 270 

WSOC concentration exhibited a significant positive correlation with OC (y = 271 

0.54x-0.12, R
2
 = 0.94), which could be ascribed to the influence of biomass 272 

combustion. Previous studies have revealed that organic matters emitted from 273 

biomass burning were substantially composed of water-soluble polar organic 274 
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compounds, including dicarboxylic acids, sugars, aromatic acids, etc. (Claeys et al., 275 

2010;Fu et al., 2012;Kundu et al., 2010). No evident correlation was found between 276 

WSOC and OC in other seasons when OC concentrations were low (Fig. 5).  277 

3.4 Water-Soluble Ionic Species (WSIS) 278 

Sulfate was the most abundant anion species followed by nitrate, accounting for 25% 279 

and 12% of total ionic mass, respectively (Table 1). Ca
2+

 was the most abundant 280 

cation species with annual average of 0.88 μg m
-3

. Cl
- 
and Na

+
 only consisted of a 281 

very minor portion of total ions, indicating that at QOMS the influence of sea salt is 282 

negligible. Water-soluble Ca
2+

 is a typical tracer of crustal material (dust) (Ram et al., 283 

2010). At QOMS, the time-series of Ca
2+

 was somewhat uniform throughout the years 284 

(Fig. 6), implying that the mineral dust loading at QOMS is relatively constant. This 285 

pattern was obviously in contrast to other ionic species (NH4
+
, K

+
, NO3

-
, and SO4

2-
). 286 

The temporal variation patterns of Ca
2+

 and SO4
2-

 are different (Fig. 6), and thus the 287 

correlation is not strong (R
2
 = 0.27), which excludes the possibility that they 288 

predominantly co-occurred in some minerals (e.g. gypsum).  289 

Soluble potassium (K
+
) is a good tracer of biomass burning (Andreae and Merlet, 290 

2001;Cachier et al., 1995). In our study, the K
+
 concentrations were below detection 291 

limit in most samples, but K
+
 concentrations did show peaks in pre-monsoon season 292 

(Fig. 6). Furthermore, K
+
 and EC demonstrated a good relationship (R

2
 = 0.66, n = 9) 293 

during that period, indicating that they were both derived from biomass burning (Fig. 294 

7c). A significant correlation between NO3
-
 and SO4

2-
 was not surprising (Fig. 7a), 295 

because they generally form from the oxidation of NOx and SO2, which are closely 296 

related to fossil fuel combustion. In the pre-monsoon season with a high abundance of 297 

NH4
+ 

(Fig. 6), NH4
+ 

and NO3
-
 exhibited a good correlation (R

2
 = 0.80, n = 9), 298 

implying that they are present as NH4NO3 in the aerosol particles.  299 

The seasonal variation of biomass burning (K
+
) coincided with that of ions associated 300 

with the fossil fuel combustion (NH4
+
, NO3

-
, and SO4

2-
), suggesting that in the 301 

pre-monsoon season, QOMS might have received mixed anthropogenic pollution. But 302 

another explanation is more plausible. According to earlier observation by 303 
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transmission electron microscopy (Li et al., 2003), large amounts of K2SO4 and KNO3 304 

were present in aged smoke aerosols from biomass burning. Andreae et al. (1988) 305 

pointed out that haze aerosol from biomass burning is comprised of abundant NH4
+
, 306 

K
+
, NO3

-
 and SO4

2- 
. Similarly, NH4

+
, K

+
, NO3

-
 and SO4

2-
 are also reported as major 307 

water-soluble inorganic ions in aerosols from biomass burning on the southeastern 308 

Tibetan Plateau (Engling et al., 2011). In addition to K
+
, levoglucosan is also used as 309 

a specific marker for biomass burning, which is formed by the pyrolysis of cellulose 310 

but not formed by fossil fuel combustions (Simoneit et al., 1999). In the pre-monsoon 311 

season, EC, OC and K
+
 show good correlations with levoglucosan (Fig. 8), which 312 

further indicate that carbonaceous components in QOMS aerosols were 313 

predominantly from biomass burning.  314 

3.5 Transport mechanism of aerosols 315 

Seven-day backward air mass trajectories corresponding to each sampling date were 316 

calculated using the Hysplit model (Draxler and Rolph, 2012). Seven days were 317 

chosen because of the typical residence time of carbonaceous aerosols in atmosphere. 318 

The trajectories were generally consistent with other descriptions of air circulation 319 

patterns in previous studies (Cong et al., 2009), which correspond to the South Asian 320 

monsoon regime (Fig. 9). In the summer monsoon season, air masses are derived 321 

from Bangladesh and northeast India, and bring moisture that originates in the Bay of 322 

Bengal. In the non-monsoon season, strong westerlies pass through western Nepal, 323 

northwest India, and Pakistan (i.e. Southern Himalayas). Although the transport 324 

pathways of air masses arriving at QOMS during pre-monsoon, post-monsoon and 325 

winter are similar (Fig. 9), a distinctly higher carbonaceous aerosol level was found 326 

only in the pre-monsoon season (Fig. 3), which emphasizes the importance of source 327 

strength changes.  328 

According to the previous ABC research (Ramanathan et al., 2005) and the emission 329 

inventory (Wang et al., 2014a), a high loading of atmospheric pollutants exists over 330 

the southern slopes of the Himalayas, which was pronounced in the pre-monsoon 331 

season. We further checked the biomass burning emission from different seasons 332 
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using the active fire product from MODIS (MODerate-resolution Imaging 333 

Spectroradiometer, both Terra and Aqua dataset), which was provided by Fire 334 

Information for Resource Management System (FIRMS, 335 

https://earthdata.nasa.gov/firms). Figure 10 clearly shows that the active fire counts 336 

(representing the agricultural burning and forest fires) peaked in pre-monsoon (April). 337 

This finding is in agreement with the vegetation fire study on the southern slopes of 338 

the Himalayas by Vadrevu et al. (2012). In general, the seasonal pattern of 339 

carbonaceous components (OC, EC and WSOC), their strong correlation with K
+
 and 340 

levoglucosan, together with the air mass trajectories and active fire spots distribution, 341 

all suggest that the higher loadings of carbonaceous aerosols in the pre-monsoon 342 

season at QOMS were most likely affected by the biomass burning (agricultural and 343 

forest fires) in northern India and Nepal. 344 

In addition to the large-scale atmospheric circulation, the local orographic effect on 345 

air pollutant transport should also be taken into account (Hindman and Upadhyay, 346 

2002). In mountainous areas, because of the temperature difference between 347 

mountaintop and lowland, a diurnal valley wind system occurs that blows upward 348 

during the day and reverses into downward during the night. As shown by Bonasoni et 349 

al. (2010), the wind regime at NCO-P (southern slope of the Himalayas) was 350 

characterized by an evident daily circle of mountain/valley breeze. During the 351 

daytime, the valley winds (southerly) were predominant with maximum wind speed in 352 

the afternoon. Therefore, the daytime up-valley breeze delivered the air pollutants 353 

from the foothills (South Asia ABC) to higher altitudes (>5000 m a.s.l.). Aerosol mass 354 

concentration, BC and ozone at NCO-P exhibit strong diurnal cycles, with minima 355 

during the night and maxima during the afternoon especially in the pre-monsoon 356 

season (Decesari et al., 2010;Marinoni et al., 2010). However, distinct 357 

mountain-valley breeze circulation was observed on the northern slopes of the 358 

Himalayas (QOMS). A dominating down-valley wind occurs on the north side of Mt. 359 

Everest in the daytime, especially in the afternoon. Further, the driving force of the 360 

vast snow cover at high altitude could form a “glacier wind”, and the up-valley air 361 

https://earthdata.nasa.gov/firms
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flow produced by intense ground surface heating is overcome by down-valley air flow 362 

“glacier wind” and “mountain wind” (Chen et al., 2012;Zou et al., 2008). Therefore, 363 

daytime intense valley wind circulation could make the valleys efficient channels for 364 

the transport of air pollutants crossing over the Himalayas (Fig. S2), i.e., from the low 365 

altitude of South Asia to the Tibetan Plateau. 366 

Because both QOMS and NCO-P have sun-photometers and participated in the 367 

AERONET project, the same instrument (Cimel 318), the same data processing 368 

method and simultaneous observation between QOMS and NCO-P make it possible to 369 

compare AOD data directly between the two slopes of Himalayas (Xu et al., 370 

2014;Gobbi et al., 2010). As shown in Figure 11, the daily AOD (500 nm) of QOMS 371 

and NCO-P varied in highly similar pattern (The correlation significant at p<0.001), 372 

which suggesting that the observation at QOMS can also capture the pollution signals 373 

as NCO-P. Recently, Lüthi et al. (2014) investigated the transport mechanisms of 374 

pollutants across Himalayas using a high-resolution model. They found some 375 

trajectories with low altitudes originate from the TP, and then flow down through 376 

valleys to the foothills of Himalayas during nighttime where they can mix with air 377 

pollutants, and are then blown onto the TP again during daytime. For the vertical 378 

distribution of aerosols, two examples of such transport episode revealed by CALIOP 379 

satellite now were provided in the Supplementary Information (Fig. S3), which 380 

clearly showed the pollution plumes from South Asia could transport across 381 

Himalayas during the pre-monsoon season. 382 

We roughly estimated the timescale for air masses transported from the southern slope 383 

of Mt. Everest (NCO-P) to QOMS. The straight distance between the two sites is 384 

about 40 km, and along the valley the real distance is about 50 km if we consider the 385 

terrain effect (Fig. 1). The average wind speed in pre-monsoon season is 7.86 m/s 386 

(Table S1). This means that the air mass could travel from the southern slope of Mt. 387 

Everest and reach QOMS in less than two hours, even at the average wind speed. 388 

These results demonstrate that at QOMS we can capture the air pollution signal from 389 

the southern Himalayas. This air mass transport of pollutants caused by mountain 390 
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terrain along the valley was also supported by WRF modeling, i.e. at the upper valley 391 

there is a pronounced southerly flow onto the Tibetan Plateau (Bonasoni et al., 2010). 392 

In this study, a similar seasonal trend of aerosol composition was revealed between 393 

the southern and northern slopes of the Himalayas. The most probable explanation is 394 

that the local mountain/valley breeze circulation (south-to north air flow) acts as the 395 

connection for the air pollutants crossing the Himalayas.  396 

 397 

4 Summary and conclusions 398 

A comprehensive knowledge of aerosol chemistry is crucial for assessing 399 

anthropogenic influences and evaluating the effect of radiative forcing. This research 400 

presents the first dataset of carbonaceous aerosols for the south edge of the Tibetan 401 

Plateau. The average concentrations of OC and EC in the aerosols at QOMS were 402 

1.43 and 0.25 μg m
-3

, with a standard deviation of 1.16 and 0.22 μg m
-3

, respectively. 403 

The high altitude sites from both sides of the Himalayas (i.e. Langtang, NCO-P and 404 

QOMS) exhibit similar OC and EC abundances, which could be considered as a 405 

regional baseline level to be used as input parameters in the regional climate model. 406 

The most striking finding in this study is that carbonaceous components (OC, EC and 407 

WSOC) and several ionic species (NH4
+
, K

+
, NO3

-
 and SO4

2-
) exhibit a clear seasonal 408 

pattern with concentration maxima in the pre-monsoon season (March, April and 409 

May). A strong correlation (R
2
 = 0.81) was observed between OC and EC during the 410 

pre-monsoon season, indicating their common emission sources and transport process. 411 

The EC and OC show good correlations with biomass burning tracers (K
+ 

and 412 

levoglucosan), which further suggests that carbonaceous components in QOMS 413 

aerosols mainly originate from biomass burning. Based on the active fire spots 414 

observed by MODIS and backward trajectories, we found that in pre-monsoon, 415 

agricultural and forest fires in northern India and Nepal are the most likely sources of 416 

carbonaceous aerosol at QOMS. In addition to large-scale atmospheric circulation 417 

(South Asia monsoon system and westerlies), local mountain wind systems can also 418 

play an important role. The south-to-north airflow along mountain valleys in the 419 
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Himalayas could closely connect the atmospheric environment between the two sides 420 

of the Himalayas. A higher time resolution research (diurnal) is imperative in the 421 

future to deepen our understanding of such important processes. 422 
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Table 1. Seasonal average abundances (along with standard deviation) of OC, EC, WSOC 628 

and water soluble ionic species (μg m
-3

), as well as the ratios of OC/EC and WSOC/OC. 629 

 
Annual  Pre-monsoon Monsoon Post-monsoon Winter 

Number 50 13 11 13 13 

Carbonaceous components 

OC  1.43±1.16 2.61±1.58 0.81±0.14 1.06±0.53 1.14±0.50 

EC  0.25±0.22 0.44±0.31 0.10±0.06 0.19±0.07 0.26±0.12 

OC/EC  6.69±6.33 6.63±4.05 10.58±11.95 5.56±2.03 5.18±3.58 

WSOC 0.77±0.60 1.28±0.87 0.49±0.25 0.71±0.26 0.54±0.29 

WSOC/OC 0.58±0.24 0.47±0.09 0.59±0.28 0.62±0.23 0.57±0.27 

Levoglucosan 0.019±0.037 0.047±0.064 0.004±0.003 0.007±0.005 0.014±0.008 

 

Water-soluble inorganic ions 

Cl
-
 0.02±0.03 0.04±0.04 0.01±0.01 0.02±0.02 0.02±0.04 

NO3
-
 0.20±0.27 0.51±0.37 0.06±0.04 0.08±0.04 0.12±0.07 

SO4
2-

 0.43±0.54 1.06±0.66 0.09±0.09 0.18±0.07 0.32±0.24 

Na
+
 0.07±0.06 0.13±0.06 0.04±0.04 0.04±0.03 0.06±0.05 

NH4
+
 0.03±0.09 0.10±0.16 BDL BDL 0.00±0.01 

K
+
 0.02±0.05 0.06±0.07 BDL BDL 0.00±0.02 

Ca
2+

 0.88±0.56 1.19±0.48 0.50±0.18 1.01±0.75 0.79±0.36 

Mg
2+

 0.04±0.02 0.06±0.02 0.02±0.01 0.05±0.01 0.04±0.01 

BDL, Below Detection Limits (0.01 μg m
-3

 for cations and anions).  630 
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Table 2. Comparison of OC and EC concentrations (μg m
-3

) and OC/EC ratios of aerosols from QOMS with other sites in the Himalayas and on the Tibetan 

Plateau. 

Location Description Sample Sampling period OC EC OC/EC Method Reference 

QOMS Southern TP(4276 m) TSP Aug 2009 - Jul 2010 1.43±1.16 0.25±0.22 6.7 (1.91-43.8) TOR This study 

Nam Co Central TP (4730 m) TSP Jul 2006-Jan 2007 1.66±0.79 0.082±0.07 31.9±31.1 TOR (Ming et al., 2010) 

Muztagh Ata,  Northwest TP(4500 m) TSP Dec 2003-Feb 2005 0.48 0.055 10 (2.9-32.1) TOR (Cao et al., 2009) 

Qinghai Lake Northeast TP (3200 m) PM2.5 Jul-Aug 2010 1.58±0.59 0.37±0.24 5.9(1.85-21.8) TOR (Li et al., 2013) 

Lulang Southeast TP(3360 m) TSP Jul 2008-July 2009 4.28±2.05 0.52±0.35 1.7-58.4 TOR (Zhao et al., 2013) 

Tengchong Southeast TP(1640 m) PM10 Apr-May 2004 5.8±4.4 1.5±1.0 2.63 TOR (Engling et al., 2011) 

Manora Peak, India Himalayas (1950 m) TSP Feb 2005-Jul 2008 8.2±5.2 1.3±1.2 7.3±3.4 TOT (Ram et al., 2010) 

NCO-P, Nepal Himalayas(5079 m) PM10 Premonsoon 2006-2008 2.4 0.5 4.8 TOT (Decesari et al., 2010) 

   Monsoon 0.9 0.1 9   

   Postmonsoon 1.4 0.1 14   

   Dry season 1.2 0.1 12   

Langtang, Nepal Himalayas (3920 m) PM2.5 Jun –Sep 1999 0.75±0.69 0.15±0.16 5.0 TOT (Carrico et al., 2003) 

   Oct 1999-Jan 2000 1.81±1.25 0.52±0.48 3.48   

   Feb-May 2000 3.44±4.19 0.48±0.38 7.17   

Godavari, Nepal S. Himalayas (1600 m) PM2.5 2006 4.8±4.4 1.0±0.8 4.8 TOT (Stone et al., 2010) 
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Fig. 1 Location of the sampling site (QOMS, 4276 m a.s.l.) at the south rim of the Tibetan 

Plateau, with the NCO-P (5079 m a.s.l.) and the summit of Mt. Everest (8844 m a.s.l.). 
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Fig. 2. Time-series of ambient temperature, atmospheric pressure, relative humidity and wind 

speed at QOMS from August 2009 to July 2010. 
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Fig. 3. Temporal variations (weekly) of OC, EC and WSOC at the QOMS site from August 

2009 to July 2010. 
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Fig. 4. Relationship between OC and EC in aerosols of different seasons at QOMS.  
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Fig. 5. Relationship between WSOC and OC in aerosols from QOMS. 

 

  



 29 

 

     

 

Fig. 6. Temperal variations (weekly) of water-soluble ionic species (Ca
2+

, K
+
, NH4

+
, SO4

2-
 and 

NO3
-
) in aerosols collected at QOMS (Units: μg m

-3
).  
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Fig. 7. Correlations between various chemical components. (a) SO4
2-

 and NO3
-
, (b) NH4

+
 and 

NO3
-
, (c) K

+
 and EC, (d) NO3

-
 and EC. 
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Fig. 8. The relationship between EC, OC, K
+
 and levoglucosan in aerosols at QOMS during 

the pre-monsoon season, 2010. 
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Fig. 9. Seven-day backward trajectories at QOMS on each sampling day during different 

seasons.   
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Fig. 10. The spatial distribution of fire spots observed by MODIS in different seasons 

(Aug. 2009 to Jul. 2010) (https://firms.modaps.eosdis.nasa.gov/firemap/). 
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 Fig. 11. The temporal variations of the daily aerosol optical depth (AOD, 500nm) at QOMS 

and NCO-P during the pre-monsoon season, 2010 (n=70). 
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