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Reliable, robust and realistic: the three R’s of next-1 

generation land surface modelling 2 

Author’s response to review comments 3 

The three reviewers’ comments were gratifying: all made strong positive statements about the 4 

value and quality of this manuscript, and were evidently in sympathy with the main thrust of our 5 

argument. Here we address all of the specific criticisms and suggestions for improvement, one 6 

by one. We take the reviews in the order in which they were published: 7 

Anonymous Referee #1 8 

The author may want to add a brief discussion on this and how the three proposed ’tools’ can 9 

increase the reliability of simulated NPP. 10 

There is a natural place to do this, namely at the end of Section 5. We propose to add the 11 

following new text starting on p 24830, line 3: 12 

“This idea also has the potential to simplify the modelling of GPP and eventually NPP, which is a 13 

key quantity for the terrestrial carbon cycle. For example, Wang et al. (2014) have shown that a 14 

model explicitly derived from optimality considerations – the least-cost hypothesis of Wright et 15 

al. (2003) and Prentice et al. (2013), and the co-limitation or co-ordination hypothesis (e.g. 16 

Maire et al. 2012) – can predict global patterns of forest GPP without no need for PFT-specific 17 

parameters. The same has not yet been done for NPP and biomass growth. But the least-cost 18 

hypothesis also makes explicit predictions about respiration costs; together with recent findings 19 

of general relationships between carbon use efficiency and soil nutrient status (Vicca et al., 20 

2012; Fernandez-Martínez, 2014), these predictions are likely to provide the basis for an equally 21 

general model of NPP.” 22 

References to be added: 23 

“Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campiolo, M., Chapin, 24 

F. S. III, Ciais, P., Malhi, Y., Obersteiner, M., Paple, D., Piao, S. L., Reichstein, M., Rodà, F. and 25 

Peñuelas, J.: Nutrient availability as the key regulator of global forest carbon balance, 26 

Nature Clim. Change., 4, 471-476, 2014.  27 

Vicca, S., Luyssaert, S., Peñuelas, J., Campiolo, M.,, Chapin, F. S. III, Ciais, P., Heinemeyer, A, 28 

Högberg, P., Kutsch, W. L., Law, B. E., Malhi, Y., Papel, D., Piao, S. L., Reichstein, M., Schulze, 29 

E. D. and Janssens, I. A.: Fertile forests produce biomass more efficiently, Ecol. Lett., 15, 30 

520-526, 2012.” 31 

The authors could add recent findings on the importance of mesophyll diffusion on carbon fluxes, 32 

for example Sun et al. (2014) and references therein... 33 

We propose to add some words on this topic in the last paragraph of section 6.1, before the final 34 

sentence on p 24832, line 23: 35 
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“The resistance to diffusion of CO2 in the mesophyll, between the intercellular spaces and the 1 

chloroplasts where photosynthesis is carried out, is often ignored but can be substantial, and has 2 

implications for the strength of CO2 fertilization (Sun et al., 2014). Again there is an over-riding 3 

physical constraint, i.e. the flux of CO2 to the chloroplasts must match the net flux of CO2 into the 4 

leaves.” 5 

Reference to be added: 6 

“Sun, Y., Gu, L., Dickinson, R. E., Norby, R. J., Pallardy, S. G. and Hoffman, F. M.: Impact of 7 

mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl Acad. Sci. U.S.A., 8 

111, 15774-15779, 2014.” 9 

P24812 L5: LSMs are also applied to assess the response to land use and land use change. This 10 

should be added. 11 

We propose to replace “climate and atmospheric environment” with: 12 

“climate, atmospheric environment, land use and land-use change” 13 

P24832 L22: The co-ordination theory allows also to derive Vcmax as a function of leaf nitrogen. 14 

Thereby Vcmax can be derived dynamically from the state of the N cycle, rather than being a PFT-15 

specific parameters (P 24829 L22). 16 

We agree about the linkage between Vcmax and the N cycle, although the direction of cause and 17 

effect is open to discussion. Many current models with interactive C and N cycling predict Vcmax 18 

from N supply. On the other hand, optimality considerations suggest that N supply should 19 

primarily affect allocation to foliage versus fine roots, and there is plenty of experimental 20 

evidence to support this; also that Vcmax in wild plants, at the leaf level, should be treated as a 21 

regulator of N demand rather than a response to N supply. In any case, we propose to add after 22 

the new sentence beginning “The resistance to diffusion...”: 23 

“Vcmax no longer needs to be a PFT-specific parameter but can be predicted dynamically from 24 

environmental variations. Moreover the strong relationship between leaf nitrogen and Vcmax 25 

provides a natural way to predict plant nitrogen demand, a key quantity in determining how 26 

plants allocate carbon to different functions.” 27 

Figures 1, 2, 3, and 6 would benefit from more comprehensive captions. 28 

This point is well taken, as there is rather a lot of information in these pictures. For the revised 29 

version, we propose to write much more informative captions to all four, drawing attention to 30 

their most salient features. 31 

The layout of the figures is not fully consistent, for example the “atmosphere – land surface label” is 32 

not always present. 33 

This was an oversight. We will check the Figures and provide revised versions where necessary. 34 

The atmosphere – land surface label may be redundant; we will either apply it consistently or 35 

remove it in revised versions of the Figures. 36 
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Several aspects of Figure 6 are not easy to interpret. Brief captions with a list of changes from the 1 

previous version would be helpful in this respect. 2 

Our revised captions will take care of this. 3 

Figure 7 would benefit too from a more comprehensive caption. 4 

We will do the same for Figure 7. 5 

B. F. Zaitchik (Referee) 6 

1. The Three R’s of the title are never formally defined. 7 

This is a very good point! We propose to add the following new paragraph at the end of Section 8 

1. 9 

“The three R’s of the title are all generally recognized as important characteristics of a numerical 10 

model, but models often do not possess all three. Possession of one feature does not by any 11 

means guarantee the rest. By reliable, we mean a model that gives approximately correct 12 

predictions under most circumstances. By robust, we mean a model whose results do not depend 13 

sensitively on the specification of quantities that are poorly known. By realistic, we mean a 14 

model that includes sufficient processes, represented in adequate detail, to allow simulation of 15 

the system’s response to a changes in all of the external variables of interest. We will argue that 16 

the dominant paradigm in land-surface modelling focuses too heavily on realism at the expense 17 

of the other two R’s.” 18 

2. The authors might also provide guidance on how the modelling community would know when 19 

any of these “R’s” has been achieved. 20 

We propose to add new text just before the penultimate sentence (“Moreover, the widening 21 

field...”) of the manuscript, p 24835, line 7: 22 

“Observational data sets originating in different disciplines, including remote sensing, 23 

atmospheric chemistry, ecophysiology and hydrology, will need to be brought to bear routinely 24 

to benchmark models and thereby establish their reliability. Robustness will be achieved 25 

through the discovery of general regularities that obviate the need to specify large numbers of 26 

poorly known or ill-conditioned parameters, such as (non-existent) universal Vcmax values for 27 

PFTs, and evaluated over time as a community enterprise facilitated by the open publication and 28 

sharing of code. Realism will be assessed not as an over-riding requirement to include every 29 

known process, but rather by models’ ability to give consistent answers to scientific questions, 30 

such as the influence of different aspects of climate, environment and land use on global NPP.” 31 

3. ...can the authors say anything more concrete? ... [They should] use their pulpit to conclude with 32 

some more specific and potentially controversial recommendations for the community. 33 

The new text proposed above takes a big stride in this direction. As a further response to this 34 

encouragement, we propose to add before the last sentence of the text (“It will be 35 

challenging...”), p 24835, line 12: 36 
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“A new level of reliability is unlikely to be achieved through ‘business-as-usual’ model 1 

development. More robust ways to model key processes are within reach, but will require both 2 

further scientific development and new code to be written. Several proposals now exist in the 3 

literature for possible community-wide benchmark standards, but progress on this front will 4 

require community adoption of such standards. A technical facility will be required to help make 5 

comprehensive LSM benchmarking and data assimilation a routine process.” 6 

4. Figure 6 and/or the header paragraph for Section 6 need to be expanded. ... I encourage the 7 

authors to rethink this figure and how it relates to the text. 8 

We agree, this is a deficiency. We propose to address it by providing an informative caption, as 9 

mentioned in the response to Anonymous Referee #1 above. 10 

Anonymous Referee #3 11 

... the brevity of this part of the paper should be compensated by more detail in the discussion that 12 

follows ... The discussion of how model development should proceed ... is ultimately lacking in any 13 

solid advice ... 14 

We have avoided lengthy prescriptions, because much of what we propose has not yet been 15 

demonstrated in the literature – even though we are actively engaged in work along these lines. 16 

However, the additions we have proposed above all go strongly in the direction of providing 17 

“more detail” and “solid advice” as requested here. 18 

The impact of the manuscript could have been increased by suggesting areas for coordinated 19 

activity in [the field of Data Assimilation]: what are the problems we need to solve? 20 

We did mention some areas where work is needed, particularly on generic schemes, as currently 21 

the barrier to implementing data assimilation methods is rather high. We also stated why data 22 

assimilation can be a valuable aid to model development (p 24833, lines 21-27), and we even 23 

listed some of the key problems that need to be solved (p 24833, lines 28-29 and p 24834, lines 24 

1-13), including difficulties in the application of multiple-constraint approaches.  25 

Nonethless, for greater clarity, in our proposed revision we have numbered these key problems 26 

and provided some more explanation of each. A more detailed analysis can be found in several 27 

recently published published papers – see revised text below. 28 

Suggested revision to the final paragraph on data assimilation, p 24833 line 28 – p 24834 line 29 

13: 30 

“Data assimilation confronts a number of practical difficulties. Here we identify three 31 

issues that require further research for their satisfactory resolution.  32 

(1) High computational demand. Investigators have to choose between gradient-based 33 

methods and ‘brute-force’ ensemble simulation (Wang et al., 2009). Ensemble 34 

simulations are computationally extremely intensive, and can easily become infeasible for 35 

global LSMs with several hundred parameters. Gradient-based methods use adjoint 36 



5 
 

codes or finite-difference methods to compute the gradients that are required for 1 

optimization (Rayner et al., 2005). The gradient-based approach is many times more 2 

efficient than ensembles whenever a large number of parameters are to be optimized. 3 

However, adjoint code needs to be generated afresh whenever the model code is 4 

modified (Kaminski et al., 2013).  5 

(2) Maintaining mass and energy conservation in state assimilation. Compared to 6 

empirical ecosystem models, one of the advantages of global LSMs is that they enforce the 7 

conservation of mass and energy. However many state assimilation techniques do not 8 

automatically conserve mass and energy, and therefore need to be modified to include 9 

conservation constraints. It has yet to be fully explored how this modification affects the 10 

parameter estimation process. 11 

(3) Quantifying uncertainties in multiple datasets for parameter estimation. Because 12 

state-of-the-art LSMs typically include processes with time constants ranging from hours to 13 

decades or beyond, multiple datasets with different characteristic temporal and spatial 14 

scales are needed to constrain all the model parameters. However the uncertainties of 15 

multiple datasets and how those uncertainties vary in space and time are poorly 16 

quantified in many cases – introducing an element of subjectivity into the analysis. This 17 

problem has been discussed by Raupach et al. (2005) and Wang et al. (2009). A general 18 

solution has yet to be found.”  19 

 20 

Reference to be added: 21 

“Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S., Heimann, M., Ojima, D. S., Quegan, S. 22 

and Schmullius, C. C.: Model-data synthesis in terrestrial carbon observation: 23 

methods, data requirements and data uncertainty specifications, Global Change 24 

Biol., 11, 378-397, 2005.” 25 

 26 

 27 

 28 

 29 

 30 

 31 
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Abstract 23 

Land surface models (LSMs) are increasingly called upon to represent not only the exchanges 24 

of energy, water and momentum across the land-atmosphere interface (their original purpose 25 

in climate models), but also how ecosystems and water resources respond to climate, and 26 

atmospheric environment, land-use and land-use change, and how these responses in turn 27 
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influence land-atmosphere fluxes of carbon dioxide (CO2), trace gases and other species that 1 

affect the composition and chemistry of the atmosphere. However, the LSMs embedded in 2 

state-of-the-art climate models differ in how they represent fundamental aspects of the 3 

hydrological and carbon cycles, resulting in large inter-model differences and sometimes 4 

faulty predictions. These ‘third-generation’ LSMs respect the close coupling of the carbon 5 

and water cycles through plants, but otherwise tend to be under-constrained, and have not 6 

taken full advantage of robust hydrological parameterizations that were independently 7 

developed in offline models. Benchmarking, combining multiple sources of atmospheric, 8 

biospheric and hydrological data, should be a required component of LSM development, but 9 

this field has been relatively poorly supported and intermittently pursued. Moreover, 10 

benchmarking alone is not sufficient to ensure that models improve. Increasing complexity 11 

may increase realism but decrease reliability and robustness, by increasing the number of 12 

poorly known model parameters. In contrast, simplifying the representation of complex 13 

processes by stochastic parameterization (the representation of unresolved processes by 14 

statistical distributions of values) has been shown to improve model reliability and realism in 15 

both atmospheric and land-surface modelling contexts. We provide examples for important 16 

processes in hydrology (the generation of runoff and flow routing in heterogeneous 17 

catchments) and biology (carbon uptake by species-diverse ecosystems). We propose that the 18 

way forward for next-generation complex LSMs will include: (a) representations of biological 19 

and hydrological processes based on the implementation of multiple internal constraints; (b) 20 

systematic application of benchmarking and data assimilation techniques to optimize 21 

parameter values and thereby test the structural adequacy of models; and (c) stochastic 22 

parameterization of unresolved variability, applied in both the hydrological and the biological 23 

domains. 24 

 25 

1.  Introduction 26 

The land surface, together with the soil column underneath it, plays a key role in controlling 27 

not only the partitioning of available energy (into latent, sensible and ground heat fluxes) and 28 

water (into evapotranspiration, surface runoff, interflow, baseflow and soil moisture), but also 29 

the land-atmosphere exchange of carbon dioxide (CO2) and the close coupling between 30 

photosynthesis and the cycling of energy and water vapour. Adequate representations of 31 

biological, physical and hydrological processes in a land surface model (LSM) are therefore a 32 
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prerequisite for improving the accuracy of both numerical weather forecasts and climate 1 

predictions. LSMs also provide a valuable tool to assess water resources, and the hydrological 2 

impacts of changes in climate and land use, over large river basins and continents, having the 3 

advantage of a globally consistent physical basis (Eagleson, 1986; Harrison et al., 1991). 4 

Moreover, LSMs are being required to perform new functions. In emerging Earth system 5 

models, they are called upon to model land-atmosphere exchanges of biogenic greenhouse 6 

gases other than CO2; other reactive trace gases with influences on atmospheric chemistry and 7 

composition; emissions of aerosols in biomass burning and dust deflation; and emissions of 8 

volatile organic compounds as aerosol precursors. This list could be continued, and is 9 

lengthening as knowledge increases about the diversity and complexity of Earth system 10 

interactions and feedbacks (Friedlingstein et al., 2013; Scholze et al., 2013; Ciais et al., 2014). 11 

Many LSMs now include representations of the slower processes of vegetation dynamics, 12 

coupled to the fast exchanges of water, energy, momentum and CO2 that are at their core 13 

(Arora, 2002). Dynamic global vegetation models (DGVMs) have been reviewed elsewhere 14 

(e.g. Prentice et al., 2007; Tang and Bartlein, 2008; Prentice and Cowling, 2013). Some 15 

offline DGVMs (i.e. models not coupled to a climate model) have been used to address water 16 

resources questions (e.g. Rost et al., 2008; Murray et al., 2011; 2012a, b). Thus the boundaries 17 

between LSMs, DGVMs and global hydrological models are increasingly blurred. Here we 18 

focus on LSMs sensu stricto but our treatment applies equally to the representation of core 19 

land-surface processes in DGVMs. We first briefly review the evolution of land surface 20 

modelling, then proceed to consider the present state of the art and how it could be improved 21 

upon.  22 

The three R’s of the title are all generally recognised as important characteristics of a 23 

numerical model, but models often do not possess all three. Possession of one feature does not 24 

by any means guarantee the rest. By reliable, we mean a model that gives approximately 25 

correct predictions under most circumstances. By robust, we mean a model whose results do 26 

not depend sensitively on the specification of quantities that are poorly known. By realistic, 27 

we mean a model that includes sufficient processes, represented in adequate detail, to allow 28 

simulation of the system’s response to a change in all of the external variables of interest. We 29 

will argue that the dominant paradign in land-surface modelling focusses too heavily on 30 

realism at the expense of the other two R’s. 31 

 32 
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2.  Evolution of land surface models 1 

Land surface modelling consists of the development and application of computational models 2 

integrating biological, hydrological, and physical processes within the soil-plant-atmosphere 3 

continuum. LSMs have two essential characteristics: (1) they consider processes related to the 4 

energy, water, and carbon cycles and their interactions, and (2) they operate over relatively 5 

large spatial domains with short temporal scales. Depending on their complexity, different 6 

LSMs may consider different processes and represent them differently.   7 

Manabe (1969) was the first to include land-surface interactions explicitly in a climate model. 8 

Manabe’s so-called bucket model includes vastly simplified hydrology (for example, no 9 

surface runoff is generated until the entire soil column reaches saturation), a simple energy 10 

balance equation, and no explicit vegetation characteristics. But Manabe’s pioneer work 11 

ignited many significant developments in later LSMs.  12 

In common with several earlier reviews including the influential article by Sellers et al. 13 

(1997), we consider the subsequent evolution of LSMs as a sequence of ‘generations’, with 14 

Manabe’s bucket model representing the first generation. But whereas Sellers et al. (1997) 15 

focused exclusively on LSMs as a component of climate models, our treatment also covers 16 

the extensive offline development of LSMs for hydrological applications that took place from 17 

the late 1980s onwards. 18 

The pioneers of the second generation of LSMs were Deardorff (1978), Dickinson et al. 19 

(1986, 1993) (the BATS model) and Sellers et al. (1986, 1996) (the SiB model). These 20 

‘generation 2A’ LSMs focused on achieving a much more detailed representation of 21 

vegetation as the locus of many of the physical exchanges between land and the atmosphere, 22 

and a more realistic computation of the surface energy budget (Figure 1). Later models 23 

followed along similar lines, including a variety of innovative components (e.g. Noilhan and 24 

Planton, 1989; Xue et al., 1991; Koster and Suarez, 1992; Ducoudré et al., 1993; Verseghy et 25 

al., 1993; Viterbo and Beljaars, 1995; Wetzel and Boone, 1995; Desborough and Pitman, 26 

1998).  27 

Parallel developments in offline models (Figure 2) tackled problems caused by the unresolved 28 

(sub-grid scale) variability of precipitation and land-surface characteristics (topography, 29 

vegetation and soils). Because of the extreme non-linearity of many key processes, 30 

disregarding this variability can lead to substantially incorrect computations of the aggregate 31 
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surface water and energy budgets (e.g. Chen et al. 1997). Stochastic parameterizations, 1 

discussed in more depth later, were introduced as a means to deal with this problem of sub-2 

grid scale variability. Attention was also paid to improving the representation of specific 3 

hydrological processes including infiltration, surface and subsurface runoff, and processes 4 

associated with snow. Representative LSMs in this ‘generation 2B’ include the VIC (Liang et 5 

al., 1994; 1996a; 1996b; Liang & Xie 2001), TOPLATS (e.g., Famiglietti and Wood, 1994; 6 

Peters-Lidard et al., 1997) and NOAH (e.g., Chen et al., 1996; Schaake et al., 1996) models, 7 

and the work of Ducharne et al. (1999) based on the TOPMODEL framework. 8 

Crossley et al. (2000) and Gedney and Cox (2003) noted that inadequate representations of 9 

hydrological processes can significantly limit our ability to project future climate change and 10 

its impacts. Improvements in hydrological process representation (including runoff, 11 

groundwater exchanges, snow and frozen soil) continued in many second-generation LSMs 12 

(e.g., Koster et al., 2000; Liang and Xie, 2001; Milly and Shmakin, 2002; Cherkauer and 13 

Lettenmaier, 2003; Liang et al., 2003; Huang et al., 2007), providing more realistic 14 

representations of land-atmosphere water and energy exchanges. An additional focus was on 15 

achieving better representation of canopy hydrology, based on the schemes of Shuttleworth 16 

(1988), Liang et al. (1996b) and Wang and Wang (2007), for instance, to account for the 17 

effects of sub-grid variability in precipitation on its partitioning to the different components of 18 

evapotranspiration and runoff.  19 

The third generation of LSMs (Figure 3) was developed with the principal motivation to solve 20 

a ‘new’ problem, the representation of the carbon cycle in climate models. Representative 21 

work includes that of Bonan (1995), Sellers et al. (1996), Cox et al. (1998), and Dai et al. 22 

(2003). Our designation of these models as the third generation is consistent with Sellers et al. 23 

(1997) and Pitman (2003), who provided comprehensive discussions of them. The appearance 24 

of the third-generation models in particular marked a transition from the representation of the 25 

surface conductance to water vapour – a key quantity determining the evapotranspiration rate 26 

– by empirical relationships to multiple environmental predictors, to a new representation that 27 

explicitly recognized the close coupling between CO2 and water exchanges across the surface 28 

of leaves. This innovation allowed a simultaneous reduction in complexity and an 29 

improvement in realism. The closure schemes used to predict stomatal conductance at the leaf 30 

level have remained largely empirical, but Medlyn et al. (2011) showed how all of the 31 

commonly used expressions (including the Ball-Berry, Leuning and Jacobs formulae) can be 32 
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interpreted as approximations of a single equation that represents biologically optimized 1 

stomatal behaviour. Prentice et al. (20143) further generalized the derivation of Medlyn et 2 

al.’s equation, showing how this can be predicted based on the relative carbon ‘costs’ of 3 

maintaining the water flow pathway required for transpiration and the biochemical capacity 4 

for photosynthesis. 5 

Representing land-atmosphere exchanges of water and carbon also required a representation 6 

of dynamic changes in green vegetation cover, especially the seasonal cycle. But how to 7 

represent vegetation phenology in a model is still a work in progress. Two principal 8 

approaches can be distinguished: plant-physiological (e.g. Lu et al., 2001) and rule-based (e.g. 9 

Foley et al., 1996; Levis and Bonan, 2004; Kim and Wang, 2005). This remains one of the 10 

least well modelled aspects of the land surface (Keenan et al., 2014). One promising avenue 11 

of development considers the biologically adaptive nature of phenology (Caldararu et al., 12 

2014), leading to the idea of biologically optimized control of leaf flushing and senescence. 13 

Many LSMs are now coupled to explicit representations of vegetation dynamics, represented 14 

by quantitative mixtures of plant functional types (PFTs) that are updated at intervals much 15 

longer than the timestep of the LSMs. The land-surface component of many climate and Earth 16 

system models is therefore now a full DGVM, representing a cascade of processes with 17 

intrinsic time scales ranging from minutes to centuries, with asynchronous coupling to link 18 

faster and slower processes (Prentice et al., 2007). This development could, optimistically, be 19 

regarded as a major achievement in the integration of physical and biological aspects of the 20 

land surface (McGill et al., 2006). However, as discussed in the next section, the performance 21 

of such models has proved inconsistent. Reliability appears to have been lost in the scramble 22 

to develop multifunctional LSMs. Furthermore, the third-generation models and DGVMs 23 

have generally not fully capitalized on advances in the representation of sub-grid scale 24 

heterogeneity and hydrological processes made in the second generation. The time is ripe for 25 

a synthesis of these elements. 26 

 27 

3.  Model comparisons, evaluations, and the need for benchmarking 28 

The Programme for Intercomparison of Land-surface Parameterization Schemes (PILPS) was 29 

founded in the early 1990s (Henderson-Sellers et al., 1993; 1995) as an attempt to make sense 30 

of large differences that had been noted in the behaviour of contemporary LSMs, through 31 
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community involvement in standardized model ‘experiments’.  The specific goal of PILPS 1 

was to improve understanding and implementation of first- and second-generation LSMs, as 2 

used to represent land-surface physical processes at regional to continental scales.  3 

PILPS was one of six international efforts later subsumed under the umbrella of the Global 4 

Land/Atmosphere System Study (GLASS). GLASS aims to improve model representations of 5 

land-surface states and fluxes, to better understand interactions of the land surface with the 6 

overlying atmosphere, and to maximize the fraction of inherent predictability in land-7 

atmosphere coupled processes (van den Hurk et al., 2011). PILPS has been through five 8 

phases: documenting the status of LSMs (Phase 0), performing offline tests of LSMs using 9 

synthetic atmospheric forcings (Phase 1a-c), using observed forcings and observations to 10 

evaluate the performance of LSMs offline (Phase 2a-e), coupling tests of LSMs within the 11 

Atmospheric Model Intercomparison Project (AMIP) (Phase 3), and evaluation of the 12 

performance of LSMs when coupled to their host climate models (Phase 4) (Henderson-13 

Sellers et al., 1996). Results of ‘point’ and small-area studies from PILPS 1a-c and 2a, b and d 14 

revealed large differences among models, and the fact that many diverged considerably from 15 

observations (e.g., Shao and Henderson-Sellers, 1995; Henderson-Sellers et al., 1996; Chen et 16 

al., 1997; Schlosser et al., 2000).   17 

PILPS 2c and 2e were carried out for large river basins: 2c focusing on the mid-latitude Red-18 

Arkansas River basin in the central USA, 2e on high-latitude Torne-Kalix basin in Sweden. 19 

The principal findings (Liang et al., 1998; Lohmann et al., 1998a; Wood et al., 1998; Bowling 20 

et al., 2003a; 2003b; Nijssen et al., 2003) were as follows. (1) LSMs that applied sub-grid 21 

scale runoff parameterizations could simulate large-scale river discharges better than others. 22 

(2) The modelled partitioning between surface and subsurface runoff varied even more than 23 

the modelled total runoff. In particular, the runoff parameterizations of LSMs under dry 24 

conditions were found to need improvement (Lohmann et al., 1998b; Bowling et al., 2003a). 25 

(3) The attenuation of solar shortwave radiation by vegetation needs to be considered in order 26 

to calculate the ground heat flux properly (Liang et al., 1998). (4) The partitioning of water 27 

and energy (i.e. the modelling of runoff and evapotranspiration) differed greatly among 28 

LSMs, even on an annual and monthly basis and even when the same forcing data, vegetation 29 

and soil information, and model parameters were used. (5) Mean values and spatial patterns of 30 

net radiation and surface temperature in warm conditions generally showed the best 31 

agreement among the LSMs, and with observations (Liang et al., 1998). (6) Models that 32 
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conducted calibrations on some of their parameters performed consistently better than those 1 

that did not, regardless of the specific calibration method used. (7) Some model parameters in 2 

LSMs were found to be particularly critical for the partitioning of water and energy. For 3 

example, in the high-latitude study (PILPS 2e), it was shown using a simple ‘equivalent 4 

model’ that variations in the partitioning of precipitation and energy at an annual scale could 5 

be attributed primarily to parameters related to snow albedo, effective aerodynamic resistance 6 

and evaporation efficiency (Bowling et al., 2003b).   7 

For the mid-latitude study (PILPS 2c), Liang and Guo (2003) applied the fractional factorial 8 

method to ten LSMs in order to investigate the sensitivities of four quantities (annual 9 

evapotranspiration, total runoff, sensible heat flux, and soil moisture), and their combined 10 

effects, to five parameters that the models had in common: maximum soil moisture content 11 

(MSMC), effective available water content, the Clapp-Hornberger B parameter, leaf area 12 

index, and minimum stomatal resistance. It was shown that MSMC and the Clapp-Hornberger 13 

B were usually the most critical. This study also indicated that variations associated with soil 14 

properties (due to measurement uncertainties, and/or spatial heterogeneity) played a stronger 15 

role in the partitioning of water and energy budgets than those associated with vegetation 16 

properties. Sensitivities to different parameters were found to vary across hydroclimates, and 17 

generally the effects of different parameterizations were greater under arid than moist 18 

conditions (also shown by Lohmann et al. 1998a).  19 

Despite the achievements of PILPS, and subsequent projects with more specific goals 20 

including GSWP (Global Soil Wetness Project: Dirmeyer et al., 1999; 2006), GLACE (Global 21 

Land Atmosphere Coupling Experiment: Koster et al., 2004; 2010) and LUCID (Land-Use 22 

and Climate, IDentification of robust impacts: Pitman et al., 2009), many of the most general 23 

questions originally posed are still unanswered. This situation was articulated in a recent 24 

review of GLASS by van der Hurk et al. (2011). For example, it is still not clear to what 25 

extent predictability can be achieved in a LSM; what parameterizations are more appropriate, 26 

under what conditions; and what is the best strategy to reduce prediction uncertainties. 27 

Moreover, many of the differences among LSMs, and discrepancies between LSMs and 28 

observations, have not been resolved and remain incompletely understood.  29 

The co-ordinated international activities described above focused on the comparison and 30 

evaluation of LSMs sensu stricto. The international LAnd Model Benchmarking (iLAMB) 31 

project was inaugurated in 2009 with the explicit goal of a unified approach to the comparison 32 
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and evaluation of land models including both carbon and water cycling aspects, and an 1 

unstated one, to rekindle apparently flagging enthusiasm for the evaluation and improvement 2 

of land models of all kinds. The project recognized from the outset its equal relevance to 3 

DGVMs, LSMs and numerical weather prediction. The project’s stated goals are to (quoted 4 

from http://www.ilamb.org/, accessed 20 April 2014): 5 

“1. to develop internationally accepted benchmarks for land model performance, 6 

2. promote the use of these benchmarks by the international community for model 7 

intercomparison,  8 

3. strengthen linkages between experimental, remote sensing, and climate modeling 9 

communities in the design of new model tests and new measurement programs, and 10 

4. support the design and development of a new, open source, benchmarking software system 11 

for use by the international community.” 12 

These goals set out exactly what is required in order to make systematic testing against 13 

observations into a routine part of model development. However, the most recent iLAMB 14 

workshop took place in January 2011, and the stated goals seem to be some way from 15 

achievement. Some groups have published ‘first draft’ sets of benchmark protocols and 16 

metrics (Randerson et al., 2009; Kelley et al., 2013) principally (not exclusively) focused on 17 

the carbon-cycle aspects. The Protocol for the Analysis of Land-Surface models (PALS) 18 

software (Abramowitz, 2005; http://www.pals.unsw.edu.au/) allows rapid comparison of 19 

modelled and observed CO2 and latent heat fluxes at the publicly available eddy-covariance 20 

flux measurement stations in the FLUXNET archive. The ecosystem Modelling And Scaling 21 

infrasTructure (eMAST) project of the Australian Terrestrial Ecosystem Research Network 22 

(TERN) (http://www.tern.org.au/) is assembling diverse data sets and developing software to 23 

facilitate terrestrial ecosystem data-model comparison and integration, with an initial focus on 24 

the Australian continent. This is by no means a comprehensive list of such initiatives. 25 

Nevertheless, our impression is that there is still limited momentum in the co-ordinated 26 

development of international benchmark systems, and that this is to the detriment of LSM 27 

improvement. 28 

In summary, the development of LSMs in the climate modelling context has been 29 

characterized by intermittent and insufficient attention to model evaluation (Prentice, 2013). 30 

Probably as a direct consequence, those aspects of climate model predictions of the historical 31 
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observational record that depend most strongly on the land surface component are subject to 1 

remarkably large differences between models, which affect the quantification of both climate 2 

feedbacks (Ciais et al., 2014) and impacts with major consequences for human society 3 

(Schellnhuber, 2014). Two such areas of major disagreement among models were highlighted 4 

in the IPCC Fourth Assessment Report (Denman et al., 2007), and persisted without 5 

resolution into the Fifth: 6 

(a) The hydrological cycle, specifically the degree to which precipitation over the continents 7 

depends on soil moisture and evapotranspiration from the land surface. The GLACE-1 8 

experiment (Koster et al., 2002) showed that different GCMs behave very differently in this 9 

respect. Although the differences could be partly due to different schemes for generating 10 

precipitation in the atmosphere, the evidence points to differences among LSMs as a prime 11 

suspect. 12 

(b) The carbon cycle, specifically the degree to which the growth rate of CO2 in future is 13 

likely to be reduced due to enhancement of NPP (‘CO2 fertilization’: a negative feedback), 14 

and also the extent of compensating increase due to the acceleration of soil organic matter 15 

decay in a warming climate (a positive feedback). In the Coupled Carbon-Climate Model 16 

Intercomparison Project (C
4
MIP) (Friedlingstein et al., 2006) the participating models agreed 17 

that the sign of the feedback from climate change to atmospheric CO2 is positive, i.e. the 18 

effect of a warming climate is to release CO2 from the land surface. Some new models 19 

including C-N cycle coupling have predicted the opposite sign, i.e. a negative feedback 20 

(Thornton et al., 2007; Sokolov et al., 2008), although this is not consistent with evidence 21 

from past changes in atmospheric CO2 concentration shown in ice-core records of the past 22 

millennium (Friedlingstein et al., 2010). The models reported in the IPCC Fifth Assessment 23 

Report (AR5) have produced carbon-climate feedbacks with consistently positive sign, but 24 

varying greatly in magnitude (Ciais et al., 2014). All Most of the AR5 models underestimate 25 

the historically observed CO2 uptake by the land by ocean and land (Hoffman and Priceet al., 26 

20134). The two models that included C-N cycle coupling perform worst in this respect, 27 

suggesting that the way in which they have represented this coupling is incorrect. A model 28 

comparison against two Free Air Carbon dioxide Enrichment (FACE) experiments (Zaehle et 29 

al., 2014) found that the land C cycle component of one model in AR5 that includes a 30 

representation of C-N cycle coupling (CLM4) systematically underestimated the observed 31 

response of NPP to CO2 enhancement. 32 



16 
 

The differences among different models’ predictions of 21
st
 century CO2 uptake have 1 

remained large through successive IPCC Assessments (Figure 4). Alarmingly, the spread of 2 

modelled present values of gross primary production (GPP) and latent heat flux (λE), 3 

integrated across the global land surface – arguably the most fundamental of all carbon-cycle 4 

and hydrological quantities – is wide, with many modelled values falling well outside of 5 

accepted, observationally based ranges (Figure 5). The problem here is not properly 6 

characterized as ‘uncertainty’. It is rather that many models are certainly incorrect in their 7 

representation of the recent past. 8 

It has become recognized across the community of land surface and vegetation modellers that 9 

(a) multiple observational constraints are possible, and (b) more systematic application of 10 

these constraints is needed to improve confidence in land surface modelling. Recent reviews 11 

(Luo et al., 2012; Foley et al., 2013) and proof-of-concept studies (Randerson et al., 2009; 12 

Kelley et al., 2013; Piao et al., 2013) have promoted the concept of model benchmarking 13 

against a range of carbon-cycle and hydrological indicators. This is a welcome development. 14 

But benchmarking is not a panacea, and there are limits to the extent to which the routine 15 

application of observational data sets and data-model comparison metrics can constrain 16 

models. Some aspects also need close attention to developments in process understanding, 17 

e.g. experimental studies of CO2 effects on plants (Ainsworth and Long, 2005), or effects of 18 

land-use changes on catchment hydrology (e.g. Siriwardena et al., 2006). Increased 19 

confidence in model performance can be achieved through the evaluation of specific 20 

assumptions embedded in models against experimental data (Medlyn et al., 2015).  21 

Attention also needs to be paid to model structure, and especially to the way in which natural 22 

variability and heterogeneity in biological and physical quantities is represented. It is still 23 

common practice in LSMs and DGVMs for highly variable quantities to be represented by a 24 

single-valued parameter. For example the hydrological properties of soils are usually assumed 25 

either globally constant, or assigned a constant value for each of a small number of soil 26 

texture classes; and in any case assigned a constant value across each model grid cell. 27 

Biological properties such as leaf photosynthetic capacity have been treated analogously. 28 

Many models assign a constant biological parameter values within each of a small number of 29 

Plant Functional Types, PFTs, even though up to 75% of the observed variation in some 30 

important plant traits occurs within PFTs (Kattge et al., 2011). Such devices have the 31 

potential to generate artefacts, which should be identifiable as a systematic failure to meet 32 
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benchmarks. In Section 5 we discuss examples of an alternative general approach that appears 1 

to yield more robust results. 2 

 3 

4.  Complexity versus robustness 4 

As more processes continue to be identified and included in LSMs, the almost universal 5 

tendency is for LSMs to become more and more complex. A worrying side-effect is the 6 

progressive introduction of more model parameters with (commonly) substantially uncertain 7 

values. Moreover, complexity can conceal lack of rigour, because it becomes progressively 8 

easier to fit observations as more parameters are introduced. Thus, increasing complexity can 9 

mask a lack of understanding, resulting in a situation whereby models are tuned to perform 10 

well at standard tests but produce widely divergent results when projected beyond the domain 11 

of calibration. This seems to be precisely the situation currently observed with coupled carbon 12 

cycle-climate models, as reported in AR5 (Ahlström et al., 2012; Anav et al., 2013; Arora et 13 

al., 2013; Jones et al., 2013; Todd-Brown et al., 2013; Ciais et al., 2014). Although it seems 14 

reasonable to expect that a model including a larger subset of processes that are known to be 15 

important should be more realistic than a simpler model, increases in reliability and 16 

robustness are by no means automatically follow. 17 

Comparative studies have shown that indeed, complexity in land surface models has not 18 

generally improved their reliability (e.g. Desborough and Pitman, 1998). Furthermore, there is 19 

no point in achieving sophistication in one set of processes while retaining simple empiricism 20 

in another. Complexity needs to be balanced. This is not a precisely defined principle, but it is 21 

an important practical one (Smith et al., 2013). We suggest that there is often a trade-off 22 

between complexity and robustness, and that robustness is more important than (often 23 

spurious) precision. Whereas the representation of a complex system cannot be achieved in a 24 

simple model, it seems of paramount importance that complexity is dealt with in a carefully 25 

controlled manner that minimizes the scope for over-fitting and thus for the spurious 26 

impression of predictive skill. 27 

 28 

5.  Stochastic parameterization 29 

Stochastic (or statistical) parameterization has gained considerable traction in the atmospheric 30 

modelling community, where it has been shown to yield improved robustness and to reduce 31 
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model artefacts in the numerical representation of weather processes (e.g. Palmer, 2012; 1 

Arnold et al., 2013). Stochastic parameterizations represent one or more model parameters as 2 

a statistical distribution of values. Atmospheric modelling differs from land-surface modelling 3 

in that the equations describing weather processes are inherently chaotic, requiring ensembles 4 

of simulations to achieve probabilistic forecasts; implementing a stochastic parameterization 5 

in this context can be done by allowing ensemble members to differ in the assignment of 6 

parameter values. The equations describing carbon and water cycle processes at and below the 7 

land surface are in principle deterministic, in a given environment (Xia et al., 2013). 8 

However, the land surface – in contrast with the atmosphere – is heterogeneous at spatial 9 

scales down to metres and below, and this heterogeneity cannot be explicitly resolved for the 10 

purposes of large-scale modelling. Some form of parameterization is required. Similarly, the 11 

ecosystem consists of species with a range of properties, whose aggregate behaviour is not 12 

accurately represented by the behaviour of a single species; but a complete enumeration of 13 

species and their functional properties would be entirely impractical. As in the atmosphere, 14 

the processes represented can be highly non-linear, so that the mean behaviour of the system 15 

is not satisfactorily captured by its behaviour at the mean values of the system’s parameters. 16 

This is a general property of non-linear systems. Stochastic parameterizations get around this 17 

difficulty, and they can often be implemented in a computationally efficient way, avoiding the 18 

need for multiple model runs by including calculations on probability density functions within 19 

a single realization of the model. 20 

5.1 Hydrological examples 21 

Because runoff is the residual of two relatively large quantities (precipitation versus 22 

evapotranspiration and changes in soil water storage), and because there are no direct 23 

observations of evapotranspiration over large areas, streamflow data continue to have a great 24 

potential to be used to evaluate land surface modelsLSMs’ simulation of land-atmosphere 25 

latent heat and water vapour exchange. (This situation is evolving as improved methods for 26 

deriving evapotranspiration from remotely sensed measurements are developed: see Mueller 27 

et al., 2013.) Many LSMs fail to generate realistic temporal distributions of streamflow, 28 

limiting the potential for such data to be used to test and constrain LSMs. The fundamental 29 

problem is that the pointwise generation of runoff is a threshold process (compounded by 30 

other highly non-linear properties, including the relationship between hydraulic conductivity 31 

and soil water potential) and soil and topographic properties are highly variable. Representing 32 
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this system by a single ‘typical’ soil profile results in too sharp a transition between high and 1 

low flows. 2 

An effective solution to this problem was embedded in the VIC (which stands for ‘Variable 3 

Infiltration Capacity’) LSM (Liang et al., 1994; 1996a) in which the sub-grid scale spatial 4 

variabilities of both soil moisture capacity and potential infiltration rate are represented by 5 

statistical distributions (Liang and Xie, 2001). The impact of sub-grid scale variability of 6 

precipitation is also considered (Liang et al., 1996a). These aspects of variability have 7 

significant consequences for the grid-cell total values of the components of the water budget, 8 

which are better modelled as a result. VIC has been widely used for land-surface and 9 

hydrological impact studies. The soil-moisture capacity curve (a statistical distribution) used 10 

for the saturation-excess surface-runoff parameterization in VIC has been implemented in the 11 

ISBA (Habets et al., 1999) and SEWAB (Mengelkamp et al., 1999) LSMs. VIC has been used 12 

as a tool to provide retrospective global surface water flux fields (Nijssen et al., 2001). The 13 

runoff parameterization of VIC has also been implemented in the Community Land Model 14 

(CLM4VIC: Li et al., 2011).  15 

The development of VIC recognized that heterogeneity of land-surface properties is 16 

ubiquitous on all spatial scales, down to metres and below. Therefore increasing spatial 17 

resolution, tiling, grid nesting and similar devices cannot solve the problem of heterogeneity. 18 

Instead, VIC represents sub-grid scale heterogeneity statistically, taking into account of 19 

spatial autocorrelation properties as well as variability per se. VIC cannot provide location-20 

specific information on fluxes within each grid cell, but this does not matter, because the 21 

objective is only to provide robust information integrated across the grid cell.  22 

Liang and Guo (2003) showed that LSMs such as ISBA and VIC, which explicitly represent 23 

the sub-grid scale spatial variability of soil, vegetation, and/or atmospheric forcings, can be 24 

less sensitive to the choice of parameter values and thereby produce more robust results, and 25 

several other studies have supported this conclusion (e.g. Liang et al., 1996b; Koren et al., 26 

1999; Liang et al., 2004; Li et al., 2011). VIC is insensitive to the assumption of different 27 

precipitation distributions within the precipitation-covered area (e.g., Liang et al., 1996b) 28 

compared to other LSMs that treat soil properties as invariant (Pitman et al., 1990), and is 29 

robust with respect to changes in grid resolution and selection of parameter values (Liang et 30 

al., 2004).  31 
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A parallel approach has been applied to the routing of streamflow by Wen et al. (2012). This 1 

routing scheme, an extension of the one proposed by Guo et al. (2004), applies a statistical 2 

distribution for the overland flow path. It is different in several respects from other commonly 3 

used routing schemes. Runoff from a grid-cell is allowed to exit in multiple directions and a 4 

tortuosity coefficient is used to account for geomorphic properties such as channel slope and 5 

length. The flow network differentiates explicitly between overland and river flows. The 6 

scheme as implemented by Wen et al. (2012) was found to dramatically reduce the 7 

dependence of the routing model on the timestep (Table 1), and to produce good results for 8 

hourly flows (needed, for example, for flood prediction) where the previous, deterministic 9 

parameterization had failed altogether. 10 

A further example is provided by the VIC-SED model (Xie and Liang, 2014), where a 11 

stochastic parameterization was successfully used to overcome the large mis-match in both 12 

temporal and spatial scales between the usual representation of soil erosion processes 13 

(hillslope scale, timestep of minutes) and the much coarser temporal and spatial resolution of 14 

the LSM. 15 

DGVMs, even when used for water resources applications, have not generally included 16 

parameterizations of land-surface physical variability. However, the inclusion of such a 17 

parameterization can greatly improve the hydrological outputs of DGVMs (e.g. Li and 18 

Ishidaira, 2011). Exactly why stochastic parameterizations work so well in the context of real 19 

landscapes is a research question greatly in need of further study. However, it is worth noting 20 

that the statistical properties of landscapes are by no means arbitrary, but are predictable in 21 

principle based on the nature of erosion processes (e.g. Turcotte, 2007; Saeki and Okamura, 22 

2010), presumably leading to commonalities that can be exploited for modelling. 23 

5.2 A biological example 24 

Gross primary production (GPP, the space-time integral of carbon uptake by photosynthesis) 25 

is the basis of all plant growth. Its global total value is reasonably well constrained by 26 

observations (Wang et al., 2014). There is a close coupling between GPP and transpiration, 27 

because stomatal opening and closure regulates both CO2 uptake into and water loss out of 28 

leaves. Adequate estimation of GPP in the third-generation LSMs is therefore important for 29 

modelling the hydrological cycle as well as the carbon cycle. Some of the parameters of 30 

photosynthesis (the in vivo enzyme kinetic constants and their temperature responses) can be 31 

regarded as constant and well known for global modelling purposes, but others – notably the 32 
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maximum rate of carboxylation, Vcmax, and at least one parameter characterizing the 1 

relationship between stomatal conductance and vapour pressure deficit – vary greatly, both 2 

within and among species. The usual approach to provide values of these variables in LSMs 3 

has been to draw on literature sources to estimate values of each parameter, with the 4 

parameters thereby treated as constant (within PFTs) and independent of one another.  5 

There has been little systematic investigation of the consequences of these assumptions. 6 

However, just as the representation of hydrological responses can be improved by accounting 7 

for the variation and autocorrelation of physical properties within the landscape, it seems 8 

likely that the representation of CO2 uptake could be improved by accounting for the variation 9 

and covariation of ecophysiological properties within the community of species that carry out 10 

photosynthesis. 11 

A vast amount of empirical work during the past decade has gone into the compilation of 12 

relevant trait measurements from many plant species (see Wright et al., 2004; Kattge et al., 13 

2011), so the single-value approach can no longer be justified by the paucity of availableility 14 

data (as was the case during the early years of LSM development). In addition to the large 15 

variation within PFTs (Kattge et al. 2011), a key finding of this research has been that the 16 

parameters, far from being independent, show correlations, so that the variation among 17 

species can be collapsed into a few dimensions. One of these dimensions is the so-called leaf 18 

economics spectrum, relating photosynthetic rates, leaf longevity and specific leaf area 19 

(Wright et al., 2004). Although there has been criticism of the presentation of the leaf 20 

economics spectrum, centring on the existence of necessary correlations among various 21 

combinations of measurements, its existence and biological significance are not in any doubt 22 

(e.g. Lloyd et al., 2013). 23 

In a typical LSM representation, GPP depends on canopy leaf area index and Vcmax. Canopy 24 

leaf area index is modelled as a function of the fraction of net primary production allocated to 25 

leaves and of the leaf lifespan (in years), and Vcmax is modelled as a function of leaf nitrogen 26 

per unit leaf area – i.e. the product of leaf nitrogen concentration (n in g N g
-–1

) and leaf mass 27 

per area (m in g m
-–2

). Field observations from over 50 000 plant species show that leaf 28 

lifespan and leaf mass per area are positively correlated, while both are negatively correlated 29 

with leaf nitrogen concentration (Wright et al. 2004). Using the CABLE LSM (Kowalczyk et 30 

al. 2006; Wang et al. 2010, 2011), Wang et al. (2012) calculated the global mean and standard 31 

deviation of modelled GPP using two groups of 500 randomly sampled sets of the three leaf 32 
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traits n, and m with their observed means and standard deviations. One group also applied 1 

the observed covariances of the traits while the other group assumed zero covariance. 2 

Simulated global GPP was found to vary from 115 to 170 Gt C a
-–1

 when the three model 3 

parameters were varied independently. Including covariances did not change the mean GPP, 4 

but reduced its standard deviation by 28%, indicating that the observed trait correlations help 5 

to constrain the modelled value of global total GPP. 6 

This analysis by Wang et al. (2012) represents a first step towards the realistic inclusion of 7 

plant trait variability and correlation patterns in LSMs. The adaptive DGVM approach 8 

(Scheiter and Higgins, 2009) represents a somewhat different implementation of stochastic 9 

parameterization of plant traits at the continental scale. The general idea that the functional 10 

diversity of plants should be represented by continuous trait variation, rather than by a small 11 

number of PFTs with fixed characteristics, has been repeatedly mooted (e.g. Kleidon, 2007; 12 

van Bodegom et al., 2012). Key to this approach is the idea that functional convergence (the 13 

achievement of similar, optimized large-scale fluxes by diverse communities of plants 14 

differing in phylogeny) is a consequence of biodiversity, with environmental selection and 15 

competition ensuring that niches are filled.  16 

This idea also has the potential to simplify the modelling of GPP and eventually NPP, which 17 

is a key quantity for the terrestrial carbon cycle. For example, Wang et al. (2014) have shown 18 

that a model explicitly derived from optimality considerations - – the least-cost hypothesis of 19 

Wright et al. (2013) and Prentice et al. (20143), and the co-limitation or co-ordination 20 

hypothesis (e.g. Maire et al., 2012) – can predict global patterns of forest GPP without no 21 

need for PFT-specific parameters. The same has not yet been done for NPP and biomass 22 

growth. But the least-cost hypothesis also makes explicit predictions about respiration costs; 23 

together with recent findings of general relationships between carbon use efficiency and soil 24 

nutrient status (Vicca et al., 2012; Fernaández-Martiínez, 2014), these predictions are likely to 25 

provide the basis for an equally general model of NPP. 26 

 27 

 28 

6. Towards next-generation models 29 

Figure 6 presents a view of what next-generation LSMs might look like. The kKey 30 

developments illustrated there areneeded to make this level of complexity tractable are: the 31 
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implementation of multiple constraints; the use of data assimilation; and the more general 1 

application of stochastic parameterization as discussed above. 2 

6.1 Bounding complexity: the use of multiple constraints 3 

There are encouraging signs that ecologists and ecophysiologists, atmospheric scientists and 4 

hydrologists are beginning to work together to improve understanding of large-scale 5 

ecosystem and landscape processes, and to identify and quantify the processes that need to be 6 

included in LSMs.  For example, recognizing the role of deep roots in the function of the soil-7 

plant-atmosphere continuum, researchers are now begin to investigate ‘new’ processes 8 

including hydraulic redistribution (e.g., Lee et al., 2005; Amenu and Kumar, 2008; Li et al., 9 

2011; Wang, 2011; Quijano et al., 2012; Luo et al., 2013; Prentice and Cowling, 2013), plant 10 

water storage (e.g., Luo et al., 2013), surface water and groundwater interactions (e.g., 11 

Winter, 2001; Gutowski et al., 2002; York et al., 2002; Liang et al., 2003; Maxwell and 12 

Miller, 2005; Yeh and Eltahir, 2005; Liang et al., 2006; Fan et al., 2007; Niu et al., 2007), and 13 

the interactions among these processes (e.g., Luo et al., 2013) and with other existing 14 

processes in current LSMs (e.g., Luo et al., 2013). Further new developments include 15 

consideration of the relevance of agriculture, wetlands and lakes for the aggregate behaviour 16 

of the land surface (e.g., Rosnay et al., 2003; Ringeval et al., 2012; Webler et al., 2012; 17 

Drewniak et al., 2013).  18 

With these aspects adding ever-increasing complexity, however, a new modelling strategy is 19 

required to ensure that the uncertainties do not spiral out of control as more and more 20 

uncertain parameters are introduced. The key lies in ensuring that physical and biological 21 

constraints are identified, and explicitly embedded in models. The application of 22 

observational constraints (benchmarking against multiple types of observations) routinely 23 

during model development is necessary, but not sufficient. 24 

The key principle applied in the recent development of the VIC+ model (Luo et al., 2013) is 25 

to enforce multiple constraints on each process, as far as possible, to reduce the number of 26 

free (or highly uncertain) parameters in the model. The prototype for this approach was the 27 

realization that stomatal conductance to water vapour – which, when combined with leaf area 28 

index, is the largest land-surface control on the latent heat flux in vegetated landscapes – must 29 

conform (on a fast time scale of seconds) to the same equations (apart from a factor 1.6, 30 

relating the molecular diffusivities of water vapour and CO2) that describe how stomatal 31 

conductance to CO2 responds to environmental signals. This equality continues to hold even if 32 
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stomatal conductance is reduced, and/or photosynthetic capacity inhibited, in response to soil 1 

drying (Tuzet et al., 2003; Zhou et al., 2013). Moreover, the rate of photosynthesis implied by 2 

the CO2 concentration difference across the stomata must be equal to the rate of 3 

photosynthesis implied by the incident photosynthetic photon flux density and key 4 

photosynthetic parameters (Vcmax and Jmax). These insights were essential for the inclusion of 5 

coupled carbon and water exchanges in the third-generation LSMs (e.g. Collatz et al. 1992). 6 

But these are not the only relevant constraints. Allowing for small, but finitenon-zero, water 7 

storage, the rate of evaporation at the leaf surface must be equal to the rate of water flow 8 

through the xylem; which in turn, following the Ohm’s law analogy for water flows, must be 9 

equal to the product of plant hydraulic conductance and the water potential difference 10 

between the soil and the leaves. This constraint allows transpiration to be controlled by both 11 

the soil water potential of the root zone and the atmospheric conditions simultaneously, 12 

mediated by measurable plant characteristics (Tuzet et al., 2003). Figure 7 summarizes how 13 

the stomatal and hydraulic constraints are combined in VIC+ to determine the transpiration 14 

rate.  15 

VIC+ also represents the influence of soil water potential (via its effect on transpiration, and 16 

thus leaf water potential) on stomatal conductance, according to the model of Tuzet et al. 17 

(2003) which in turn built on pioneering work by Cowan (1965). The calculation of CO2 18 

assimilation in the model is constrained as a consequence of the interplay of the stomatal and 19 

biochemical limitations simultaneously, taking into account the effect of soil moisture 20 

signalling, by way of computing the CO2 concentration within the leaf. If transpiration is 21 

appropriately represented by Etr1 and Etr2 (Figure 7) then these two quantities must converge, 22 

as must the two rates An1 and An2 (also shown in Figure 7) representing CO2 uptake.  23 

The constraints discussed above pertain to physically necessary relationships between fluxes, 24 

arising from the architecture of leaves and plants. Potentially, many additional constraints 25 

may arise due to natural selection in biological systems, which acts to eliminate ‘ineffective’ 26 

combinations of traits, even if they are not directly physically linked. The leaf economics 27 

spectrum provides one such set of constraints. The least-cost hypothesis introduced by Wright 28 

et al. (2003) and elaborated by Prentice et al. (20143) provides another, potentially powerful 29 

constraint, as it leads to an independent specification of the leaf-internal CO2 concentration as 30 

calculated in Figure 7. The co-limitation (or co-ordination) hypothesis further leads to a 31 

prediction of both photosynthetic rate (given leaf temperature and internal CO2 concentration) 32 
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and Vcmax as a function of light availability (Dewar, 1996; Haxeltine and Prentice, 1996; 1 

Maire et al., 2012). The resistance to diffusion of CO2 in the mesophyll, between the 2 

intercellular spaces and the chloroplasts where photosynthesis is carried out, is often ignored 3 

but can be substantial, and has implications for the strength of CO2 fertilization (Sun et al., 4 

2014). Again, there is an over-riding physical constraint, i.e. the flux of CO2 to the 5 

chloroplasts must match the net flux of CO2 into the leaves. Vcmax no longer needs to be a 6 

PFT-specific parameter but can be predicted dynamically from environmental variations. 7 

Moreover the strong relationship between leaf nitrogen and Vcmax provides a natural way to 8 

predict plant nitrogen demand, a key quantity in determining how plants allocate carbon to 9 

different functions. With consideration of biologically optimized constraints, we are 10 

optimistic that the number of unknown or poorly constrained parameters describing the 11 

controls of CO2 and water exchange by plants can be greatly reduced.. 12 

6.2 Optimizing model performance: the potential of data assimilation 13 

Obtaining best estimates of parameters, given a set or multiple sets of observations, is one of 14 

the recent goals of data assimilation (e.g., Moradkhani et al., 2005a; Qin et al., 2009; Montzka 15 

et al., 2011; Vrugt et al., 2013). Data assimilation has evolved from Newtonian ‘nudging’ to 16 

more comprehensive approaches including various flavours of traditional, extended, ensemble 17 

Kalman filtering, variational data assimilation using the adjoint method, and the particle 18 

filtering method (e.g. Houser et al., 1998; Walker and Houser, 2001; Reichle et al., 2002a, 19 

2002b; Margulis et al., 2002; McLaughlin, 2002; Crow and Wood, 2003; Montaldo and 20 

Albertson, 2003; Moradkhani et al., 2005a, 2005b; Pan and Wood, 2006; Qin et al., 2009; 21 

Montzka et al., 2011; Vrugt et al., 2013). Parada and Liang (2004) developed a new spatial 22 

data assimilation framework, an extension of the multiscale Kalman Smoother-based (MKS-23 

based) framework (Chou et al., 1994; Fieguth et al., 1995; Luettgen and Willsky, 1995; 24 

Kumar, 1999). This framework is innovative in the way it accounts for error propagation, 25 

dissimilar spatial resolutions, and the spatial structure within which the distribution of the data 26 

is considered. Concepts from this framework have been adopted in several other data 27 

assimilation studies (e.g. Parada and Liang, 2008; Pan et al., 2009; Lannoy et al., 2010).  28 

Techniques for data assimilation are thus an active research area. To an even greater extent 29 

than is the case for model evaluation and benchmarking, however, the routine use of data 30 

assimilation is far from being common practice. It has been stated a number of times that data 31 

assimilation should be a standard part of model development. More work is needed to develop 32 
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generic schemes that would allow data assimilation to be applied to any model, and to set up 1 

data sets and protocols for doing so. 2 

Data assimilation, when used to optimize parameter values in a model, is valuable above all 3 

because it can potentially reveal whether or not a particular model structure is capable of 4 

generating the observed patterns. In normal practice, if a model fails a benchmark test, this 5 

does not necessarily indicate that the model is incorrectly specified; it could simply mean that 6 

the parameter values in the model are incorrect. If the model fails after assimilation of the 7 

relevant data set, however, this may be a strong indication that some structural aspect of the 8 

model needs improvement. 9 

Data assimilation confronts a number of practical difficulties. Here we identify three issues 10 

that require further research for their satisfactory resolution.  11 

(1) High computational demand. Investigators have to choose between gradient-based 12 

methods and ‘brute-force’ ensemble simulation (Wang et al., 2009). Ensemble simulations 13 

are computationally extremely intensive and can easily become infeasible for global 14 

LSMs with several hundred parameters. Gradient-based methods use adjoint codes or 15 

finite-difference methods to compute the gradients that are required for optimization 16 

(Rayner et al., 2005). The gradient-based approach is many times more eefficient than 17 

ensembles whenever a large number of parameters are to be optimized. However, adjoint 18 

code needs to be generated afresh whenever the model code is modified (Kaminski et al., 19 

2013). 20 

(2) Maintaining mass and and energy  conservation in state assimilation. Compared to 21 

empiricaloffline ecosystem models, one of the advantages of global LSMs is that they 22 

enforce the conservation of masswater and , energy and carbon. However many state 23 

assimilation techniques do not automatically conserve enforce mass and 24 

energyconservation laws, and therefore need to be modified accordingly to include 25 

conservation constraints. It has yet to be fully explored how thissuch modification affects 26 

the parameter estimation process. 27 

(3) Quantifying uncertainties in multiple datasets for parameter estimation. Because state-of-28 

the-art LSMs typically include processes with time constants ranging from hours to 29 

decades or beyond, multiple datasets with different characteristic temporal and spatial 30 

scales are needed to constrain all the model parameters. However the uncertainites of 31 
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multiple datasets and how those uncertainties vary in space and time are poorly quantified 1 

in many cases –- introducing an element of subjectivity into the analysis. This problem 2 

has been discussed by Raupach et al. (2005) and Wang et al. (2009). A general solution 3 

has yet to be found. 4 

   5 

 6 

Data assimilation confronts a number of practical difficulties. Computational demand is an 7 

issue. Investigators have usually to choose between gradient-based methods and ‘brute force’ 8 

ensemble simulation (see Wang et al. 2009). Gradient-based methods use adjoint codes or 9 

finite-difference methods to compute the gradients that are required for optimization (Rayner 10 

et al., 2005). The gradient-based approach is much more efficient than ensembles of 11 

simulations whenever a large number of parameters are to be optimized. However, adjoint 12 

code needs to be generated afresh whenever the model code is modified (Kaminski et al., 13 

2013). Ensemble simulations are much more computationally intensive than the gradient-14 

based method, and become impractical for global land surface models with several hundred 15 

parameters. Other issues include the need for state variables to maintain mass conservation 16 

during data assimilation, and the quantification of data and model uncertainties. Multiple data 17 

sets are recommended for constraining model parameters, but the uncertainties of multiple 18 

datasets and how those uncertainties vary in space and time are poorly quantified in many 19 

cases – introducing an element of subjectivity into the analysis. 20 

7.  Concluding remarks 21 

Substantial progress has been made in the development of LSMs since Manabe’s pioneering 22 

work. The models will continue to evolve. They are already complex. They will become 23 

inevitably more complex as they come to represent (a) a more complete description of the set 24 

of key processes that determines the exchanges of materials and energy between the 25 

atmosphere and the underlying surface and subsurface, for example including surface and 26 

groundwater interactions, sediment transport, and biogeochemical interactions of the carbon, 27 

nitrogen and phosphorus cycles; (b) sub-grid scale spatial variability, reflecting the natural 28 

diversity of ecosystems and landscapes; and (c) processes requiring high temporal resolution: 29 

notably flooding, a key issue in a changing climate.   30 
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Process understanding continues to evolve, both in biology and in hydrology. At any one 1 

time, different models may reasonably differ in the explicit assumptions they make about key 2 

processes. This is unavoidable. We suggest that it is also desirable. Global models should 3 

incorporate explicit hypotheses about processes, and they are the tool that should allow these 4 

hypotheses at the process level to be tested against large-scale observations. Realization of 5 

this vision, however, will require teamwork: people with different disciplinary knowledge 6 

will need to work together with increased intensity. This is a pre-requisite for LSMs to come 7 

into their own, as tools for discovery and improved quantitative understanding of the 8 

fundamental laws that control energy, water and carbon cycling between the atmosphere and 9 

land.  10 

Observational data sets originating in different disciplines, including remote sensing, 11 

atmospheric chemistry, ecophysiology and hydrology, will need to be brought to bear 12 

routinely to benchmark models and thereby establish their reliability. Robustness will be 13 

achieved through the discovery of general regularities that obviate the need to specify large 14 

numbers of poorly known or ill- conditioned parameters, such as (non-existent) universal 15 

Vcmax values for PFTs, and evaluated over time as a community enterprise facilitated by the 16 

open publication and sharing of code. Realism will be assessed not as an over-riding 17 

requirement to include every known process, but rather by models’ ability to give consistent 18 

answers to scientific questions, such as the influence of different aspects of climate, 19 

environment and land use on global NPP.  20 

 Moreover, tThe widening field of applications of models to project the consequences of a 21 

changing atmospheric and human environments calls for LSMs to be simultaneously reliable, 22 

robust and realistic (the three R’s of the title) so that they can be used confidently, in new 23 

interdisciplinary contexts, to project consequences and potential policy implications of 24 

environmental change for agriculture, biodiversity, public health and human security (AR5 25 

TS). A new level of reliability is unlikely to be achieved through ‘business-as-usual’- model 26 

development. More robust ways to model key processes are within reach, but will require 27 

both further scientific development and new code to be written. Several proposals now exist 28 

in the literature for possible community-wide benchmark standards, but progress on this front 29 

will require community adoption of such standards. A technical facility will be required to 30 

help make comprehensive LSM benchmarking and data assimilation a routine process. It will 31 

be challenging, but with determination and collaboration, it can be done. 32 
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 11 

Figure 1. Schematic of ‘Generation 2A’ LSMs. The energy budget is represented by 12 

shortwave radiation (Rs), longwave radiation (Rl), latent heat flux (LH), sensible heat flux 13 

(SH) and ground heat flux (G).  The water budget is represented by P (precipitation), E (bare 14 

ground evaporation), Et (transpiration), Ec (evaporation from canopy interception) and surface 15 

runoff (R). The water budget is coupled with the energy budget, but hydrological processes 16 

are represented very simply; for example, subsurface runoff is represented only by vertical 17 

drainage (q). Precipitation, vegetation type and soil properties are treated as constant within 18 

each grid cell. 19 
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  9 

 Figure 2. Schematic of ‘Generation 2B’ LSMs. See Figure 1 for basic symbols. In addition, 10 

subgrid variabilities of precipitation, vegetation type, soil properties and topography are 11 

represented statistically (μ represents the variable precipitation-covered area) and 12 

hydrological processes are represented more explicitly. Thus surface and subsurface runoff 13 
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(Qb and q) are distinguished, and diffusion (D), lateral flow in the subsurface (Qb), and 1 
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Figure 1. Schematic of ‘generation 2A’ LSMs.  13 
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 1 

Figure 2. Schematic of ‘generation 2B’ LSMs. 2 
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Figure 3. Schematic of third-generation LSMs. 15 
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 1 

Figure 3. Schematic of ‘third-generation’ LSMs, which are similar to Generation 2A (Figure 2 

1) except that now the carbon budget is coupled to the calculation of the water and energy 3 

budgets through parameterizations of stomatal behaviour. However, these models do not 4 

incorporate the improved treatments of subgrid spatial variability and hydrological processes 5 

developed in Generation 2B (Figure 2). 6 
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 1 

Figure 4. Simulated land carbon uptake to 2100 under a ‘high-end’ global warming scenario, 2 

as projected by global models in the three most recent IPCC Assessment Reports (Third 3 

Assessment Report (TAR), Fourth Assessment Report (AR4) and Fifth Assessment Report 4 

(AR5). The cross represents the mean of the models for included in each assessment. 5 
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Figure 5. Mean annual gross primary production (Pg C a
-1

) and evapotranspiration (mm a
-1

) 14 

from the global land surface during 1901-2010, as simulated by 12 Earth system models in the 15 
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IPCC Fifth Assessment Report. The grey lines represent upper and lower limits based on 1 

observations. 2 
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 7 

 Figure 6. Hypothetical schematic of ‘next-generation’ LSMs that will combine the desirable 8 

features of previous models, with the addition of surface and subsurface hydrological routing 9 

schemes and representations of vegetation dynamics. Model-data fusion and data assimilation 10 

will allow effective use of observations from different platforms. Experience suggests that it 11 

will be a major challenge to achieve such a complex, realistic representation of land-surface 12 

biology and hydrology without loss of reliability and robustness. The application of multiple 13 

physical and biological constraints, and the judicious use of stochastic parameterization for 14 
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sub-grid scale processes, are advocated here as important tools for next-generation model 1 

development. 2 
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Figure 6. Schematic of next-generation LSMs. 11 
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 8 

Figure 7. How co-ordinated processes canThe computational representation of transpiration 9 

and assimilationsoil-plant-atmosphere water and carbon fluxes in the VIC+ model.. 10 

Consistency between carbon and water exchanges across the leaf surface, and between water 11 

transport from the soil, through plant transport tissues and into the boundary layer, are 12 

enforced by means of an iterative algorithm. Plant hydraulic properties (via the Ohm’s law 13 

analogy) and stomatal responses thus simultaneously constrain both transpiration and 14 

assimilation.  Rectangles indicate calculation processes; parallelograms represent variables. 15 

From Luo et al. (2013).   16 
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Table 1. Comparison of hourly and daily Nash-Sutcliffe model efficiency values between 1 

observed and modelled streamflow in three river basins, using a deterministic (Guo et al., 2 

2004) and a new stochastic parameterization of river routing. From Wen et al. (2012). 3 

Method 

Deterministic Stochastic 

Hourly Daily Hourly Daily 

Blue River −2.05 0.47 0.60 0.61 

0.67 

0.74 

Illinois River near Watts −5.50 0.59 0.56 

Elk River −16.68 0.52 0.68 
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