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Abstract 1 

Despite the developments in the global modelling of chemistry and of the parameterization of 2 

the physical processes, carbon monoxide (CO) concentrations remain underestimated during 3 

Northern Hemispheric (NH) winter by most state-of-the-art chemistry transport models. The 4 

consequential model bias can in principle originate from either an underestimation of CO 5 

sources or an overestimation of its sinks. We address both the role of surface sources and 6 

sinks with a series of MOZART model sensitivity studies for the year 2008 and compare our 7 

results to observational data from ground-based stations, satellite observations, and vertical 8 

profiles from measurements on passenger aircraft. In our base case simulation using 9 

MACCity anthropogenic emissions, the near-surface CO mixing ratios are underestimated in 10 

the Northern Hemisphere by more than 20 ppb from December to April with the largest bias 11 

of up to 75 ppb over Europe in January. An increase in global biomass burning or biogenic 12 

emissions of CO or volatile organic compounds (VOC) is not able to reduce the annual course 13 

of the model bias and yields concentrations over the Southern Hemisphere which are too high. 14 

Raising global annual anthropogenic emissions with a simple scaling factor results in 15 

overestimations of surface mixing ratios in most regions all-year-round. Instead, our results 16 

indicate that anthropogenic CO, and, possibly VOC emissions in the MACCity inventory are 17 

too low for the industrialized countries only during winter and spring. Reasonable agreement 18 

with observations can only be achieved if the CO emissions are adjusted seasonally with 19 

regionally varying scaling factors. A part of the model bias could also be eliminated by 20 

exchanging the original resistance-type dry deposition scheme with a parameterization for CO 21 

uptake by oxidation from soil bacteria and microbes, which reduces the boreal winter dry 22 

deposition fluxes. The best match to surface observations, satellite retrievals, and aircraft 23 

observations was achieved when the modified dry deposition scheme was combined with 24 

increased wintertime road traffic emissions over Europe and North America (factors up to 4.5 25 

and 2, respectively). One reason for the apparent underestimation of emissions may be an 26 

exaggerated downward trend in the Representative Concentration Pathway (RCP) 8.5 27 

scenario in these regions between 2000 and 2010, as this scenario was used to extrapolate the 28 

MACCity emissions from their base year 2000. This factor is potentially amplified by a lack 29 

of knowledge about the seasonality of emissions. A methane lifetime of 9.7 y for our basic 30 

model and 9.8 y for the optimized simulation agrees well with current estimates of global OH, 31 

but we cannot fully exclude a potential effect from errors in the geographical and seasonal 32 

distribution of OH concentrations on the modelled CO.  33 
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 1 

1 Introduction 2 

Carbon monoxide (CO) is a product of incomplete combustion and is also produced from 3 

oxidation of volatile organic compounds (VOC) in the atmosphere. It is of interest as an 4 

indirect greenhouse gas and acts as a major sink for the OH radical. The resulting inverse 5 

relationship between CO and OH is a reason for its important indirect control function on the 6 

global atmospheric chemical composition (Novelli et al., 1998). CO is also a precursor for 7 

tropospheric ozone and thus affects regional air quality.  8 

Due to its mean tropospheric lifetime of about two months, CO can be transported globally 9 

and is often used as a tracer for long-range pollution transport (e.g. Li et al., 2002; Liu et al., 10 

2003; Duncan and Bey, 2004; Law and Stohl, 2007; Shindell et al., 2008; Drori et al., 2012; 11 

Cristofanelli et al., 2013). Tropospheric CO builds up over the Northern Hemisphere (NH) 12 

during wintertime, when emissions are high and photochemical activity is low. The surface 13 

CO mixing ratios peak around March with typical values measured at background stations of 14 

around 150 ppb. Above and downwind of strongly polluted areas in East Asia, North 15 

America, or Europe, wintertime mixing ratios are significantly higher. Values above 1000 ppb 16 

have been reported over Eastern China (e.g., Wang et al., 2004; Gao et al., 2005). 17 

Summertime mixing ratios are significantly lower with NH background values going down to 18 

100 ppb due to the faster photochemical depletion of CO. In some regions, the highest mixing 19 

ratios are measured from August to October, largely influenced by emissions from biomass 20 

burning (Worden et al., 2013). Tropical and Southern Hemispheric mixing ratios are generally 21 

lower (values as low as 35-40 ppb have been observed in remote areas) due to the lower 22 

amount of anthropogenic emissions and the large ocean surface (Novelli et al., 1998; Duncan 23 

et al., 2007).  24 

The main sources of CO are from anthropogenic and natural direct emissions and from the 25 

oxidation of methane and other VOCs. Dominant emissions are from road traffic, fossil fuel 26 

and biomass burning together with smaller contributions from vegetation and the oceans. 27 

Automobile traffic contributes about 85% of the 2008 emissions of CO from fossil fuels in the 28 

USA (http://www.epa.gov/air/emissions/) but only 26% of the 2011 anthropogenic emissions 29 

for the European Union (EEA, 2013). In developing countries, residential burning of coal and 30 

biomass constitutes a large fraction of CO emissions. Reaction with OH radicals acts as the 31 

major CO sink (Prather et al., 2001; Duncan et al., 2007), while deposition in soils contributes 32 
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about 10-15% to the global atmospheric CO losses (Conrad, 1996; Sanhueza et al., 1998; 1 

King, 1999). A schematic overview of the global CO budget is given in Fig. 1. 2 

In spite of more than 15 years of research, there are still considerable uncertainties about the 3 

global budget of CO for both, its sources and sinks. Table 1 lists anthropogenic CO emission 4 

totals from recent global and regional emission inventories. The inventories report global 5 

anthropogenic emissions of 494-611 Tg CO y-1 for the period 2000-2005. Emission 6 

reductions in the industrialized countries since the late 1990s (e.g. EEA, 2013) have been 7 

largely compensated by an increase in the developing countries, particularly in Asia 8 

(Kurokawa et al., 2013).    9 

The second most important direct CO emission source is biomass burning. Observations of 10 

burned area, active fires and fire radiative power from various satellite instruments have been 11 

used to constrain these emissions on the global scale. Global and regional totals for the year 12 

2005 from the most recent emission inventories GFEDv2 (van der Werf et al., 2006), 13 

GFEDv3 (van der Werf et al., 2010), and GFASv1 (Kaiser et al., 2012) are displayed in Table 14 

2. Note the large differences in continental-scale emissions between the inventories and the 15 

large interannual variability in the datasets. Biogenic emissions of CO generally contribute 16 

less than 10% to the global total emissions. Estimates derived from MEGAN-v2 (Guenther et 17 

al., 2006) and the totals from the MEGAN-MACC inventory (Guenther et al., 2012) are also 18 

listed in Table 2. 19 

Global in-situ production of CO from methane oxidation is estimated at about 800 Tg y-1 20 

(Prather et al., 2001). The ensemble model simulations performed for the year 2000 in 21 

Shindell et al. (2006) yielded 578 to 999 Tg y-1 of CO from this source with a multi-model 22 

mean of 766 Tg y-1. Since methane had been prescribed as a uniform mixing ratio at the 23 

surface for all models, this variability reflects the differences in the OH radical distribution 24 

among the models. The chemical production of CO from oxidation of other VOCs is even 25 

more uncertain. These emissions are dominated by biogenic sources, notably from isoprene, 26 

methanol and terpenes. While Prather et al. (2001) reported 430 Tg y-1 of CO, Duncan et al. 27 

(2007) calculated a range of 501-542 Tg y-1 for the period 1988-1997 with the GEOS-Chem 28 

model. The global simulations reported by Shindell et al. (2006) yielded 547-1198 Tg y-1 with 29 

a multi-model mean of 730 Tg y-1, pointing to large differences among the VOC emission 30 

schemes and again the OH distribution in the various models. 31 
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The global annual loss rate of CO by oxidation with OH roughly balances the total sources 1 

and is estimated as 1500-2700 Tg y-1 (Prather et al., 2001). Other model studies derived a 2 

range of 2231-2618 Tg y-1 (Duncan et al., 2007 and references therein). This important CO 3 

sink depends on an accurate calculation of the global OH distribution, which itself cannot be 4 

measured directly. Instead, the global annual average CO loss term can be quantified by the 5 

methane lifetime. Prinn et al. (2005) estimated a methane lifetime due to tropospheric OH loss 6 

of 10.2 (9.5-11.1) years, while Prather et al. (2012) determined a present-day methane lifetime 7 

of 11.2 (±1.3) y from a systematic exploration of known greenhouse gas budgets and its 8 

uncertainties. Shindell et al. (2006) calculated a multimodel mean of 9.7 (±1.7) y, which is in 9 

line with results from the Atmospheric Chemistry and Climate Model Intercomparison Project 10 

(ACCMIP) (Voulgarakis et al., 2013; Naik et al., 2013). 11 

The only other known loss process of CO besides reaction with OH is dry deposition. 12 

Reported CO dry deposition velocities for vegetated surfaces based on measurements are 13 

relatively low compared with other substances and reach from 0 to 0.004 m/s with most 14 

values below 0.001 m/s (King, 1999; Castellanos et al., 2011 and references therein). Prather 15 

et al. (2001) reported the global sink to be as high as 250-640 Tg y-1. King (1999) confirmed 16 

the 190-580 Tg y-1 range proposed by Conrad and Seiler (1985) derived from empirical 17 

approaches but with a higher probability for lower values. Based on a constant dry deposition 18 

velocity of 0.03 cm/s Sanhueza et al. (1998) estimated the global gross uptake to be 115 to 19 

230 Tg y-1. Bergamaschi et al. (2000) derived annual deposition fluxes of about 300 Tg y-1 20 

using the same constant deposition velocity, but setting the deposition velocity to zero in 21 

deserts and areas with monthly mean temperatures below 0°C. 22 

Little focus has been placed so far on the role of CO dry deposition in global modelling. Most 23 

models apply a dry deposition scheme based on the resistance model of Wesely (1989). Often, 24 

the resistance values for O3 and SO2 are scaled to derive parameterizations for CO and other 25 

substances (Wesely and Hicks, 2000). Such schemes give quite variable dry deposition 26 

velocities (Stevenson et al., 2006) but there has not been a systematic intercomparison among 27 

the different models yet except for the study of Dentener et al. (2006), where the focus was on 28 

wet deposition of NOx and SO2. Other models assume that the CO dry deposition losses are to 29 

some degree counterbalanced by the plant emissions (e.g. Arellano et al., 2004, 2006; Duncan 30 

et al., 2007) and therefore neglect both the soil sink and the biogenic emissions. Only a few 31 

models (Emmons et al., 2010; Lamarque et al., 2012) have extended their dry deposition 32 
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scheme with a parameterization for CO and H2 uptake by oxidation from soil bacteria and 1 

microbes following the work of Sanderson et al. (2003) which itself was based on extensive 2 

measurements from Yonemura et al. (2000). In this case, CO and H2 deposition velocities 3 

depend on the soil moisture content of the specific land cover type and on snow cover. Ehhalt 4 

and Rohrer (2009) evaluated existing parameterizations of H2 uptake by soils. They found that 5 

none of the existing model studies accounted fully for the essential dependencies of dry 6 

deposition velocities on snow cover, soil moisture and vegetation type that are found in the 7 

field experiments, the only exception being the work from Sanderson et al. (2003). 8 

As there have been only modestly decreasing trends observed in the concentrations of CO 9 

after the 1990s (Fortems-Cheiney et al., 2011; Worden et al., 2013), the sources and sinks of 10 

CO must be approximately in balance, except for some seasonal and interannual variations in 11 

the CO budget (Duncan and Logan, 2008). The few published estimates of the  atmospheric 12 

CO burden date back to the 1990s with 365-410 Tg (Granier et al., 1996), 380-470 Tg 13 

(Reichle and Connors, 1999) and 360 Tg (Prather et al., 2001).  14 

For a long time, global models have underestimated carbon monoxide mixing ratios in the NH 15 

as is comprehensively shown in the task force hemispheric transport of air pollution 16 

(TFHTAP) model intercomparison study by Shindell et al. (2006). Their multimodel mean 17 

from 26 global models exhibited large underestimates of NH extratropical CO, particularly 18 

during winter and spring when compared to NOAA GMD station measurements. Such a bias 19 

is still existent in more recent model studies, cf. Elguindi et al. (2010), Huijnen et al. (2010), 20 

Fisher et al. (2010) and Williams et al. (2013). 21 

With the growing availability of atmospheric CO observation data from surface and in-situ 22 

observations as well as from satellites, a number of global model inversions have been 23 

performed to derive optimized CO sources from these observations (Bergamaschi et al., 2000; 24 

Pétron et al., 2002, 2004; Arellano et al., 2004, 2006; Müller and Stavrakou, 2005; Duncan et 25 

al., 2007; Pison et al., 2009; Kopacz et al., 2010; Fortems-Cheiney et al., 2011; Hooghiemstra 26 

et al., 2011, 2012; Miyazaki et al., 2012). Most of these studies found a significant 27 

underestimation of CO sources in their a-priori estimates and assigned those to missing 28 

emissions in the current inventories. The additional total CO sources needed were as high as 29 

392 Tg y-1 (Fortems-Cheiney et al., 2011), 492 Tg y-1 (Kopacz et al., 2010) and 530 Tg y-1 30 

(Hooghiemstra et al., 2012, including indirect CO sources from VOC oxidation). From both 31 

forward and inverse model studies, a major part of the missing source was attributed to NH 32 
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anthropogenic emissions (e.g. Shindell et al., 2006; Müller and Stavrakou, 2005; Kopacz et 1 

al., 2010; Hooghiemstra et al., 2012). 2 

In the Monitoring Atmospheric Composition and Climate (MACC) project, the technique of 3 

variational data assimilation has been employed to perform a global reanalysis simulation for 4 

the years 2003-2010 (Inness et al., 2013), including a detailed chemistry scheme from the 5 

global chemistry transport model MOZART-3 (Model for Ozone And Related Tracers, 6 

version 3; Kinnison et al., 2007; Flemming et al., 2009). Total and partial columns as well as 7 

vertically resolved observations of O3, CO, and NO2 from multiple satellite sensors have been 8 

assimilated (Stein et al., 2012). A MOZART control simulation without data assimilation 9 

exhibited negative biases of NH CO mixing ratios as large as 35% on average in the lower 10 

troposphere when compared to vertical profile measurements at airports north of 30°N (A. 11 

Inness, pers. comm., 2013). This bias could be reduced by the assimilation of CO total 12 

columns. Directly at the surface however, where the influence of the surface fluxes is most 13 

important, the assimilation of CO satellite total columns had only a small effect on the 14 

modelled mixing ratios. The remaining model bias in the lower troposphere was attributed to 15 

an underestimation of emission fluxes in the MACCity inventory (Inness et al., 2013). 16 

Motivated by the discrepancy that is often found between simulated and observed CO 17 

concentrations, particularly near the surface in the NH during winter, we have conducted a set 18 

of sensitivity simulations to shed further light on the uncertainties in the global CO budget. 19 

Specifically, this study addresses the following questions:  20 

1. To what extent could direct or precursor CO emissions be underestimated in current 21 
global inventories? 22 

2. What is the impact of uncertainties in the dry deposition parameterisation of CO on the 23 
global burden and surface mixing ratios of CO? 24 

3. To what extent are the modelled CO concentrations controlled by global levels and 25 
distribution of the OH radical? 26 

Based on a series of global chemistry transport model simulations we analyze the response of 27 

tropospheric CO concentrations to different sets of trace gas surface boundary conditions 28 

spanning the uncertainties in our current knowledge about CO emission and deposition.  29 

The outline of the paper is as follows: In Sect. 2 we will describe the model setup for our 30 

simulations. Section 3 summarizes the data sets used for evaluation and Sect. 4 describes the 31 

model sensitivity simulations. The results from the sensitivity studies on surface emissions 32 

and dry deposition are presented in Sect. 5, followed by our conclusions in Sect. 6. 33 
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2 Model description 1 

2.1 MOZART 2 

The version of MOZART as employed in this work is based on the MOZART-3 model code 3 

(Kinnison et al., 2007) which itself is an extension of the tropospheric chemical transport 4 

model MOZART-2 (Horowitz et al., 2003) to the stratosphere and mesosphere. Some features 5 

have been added from MOZART-4 (Emmons et al., 2010): most notably a reasonably detailed 6 

isoprene degradation scheme as described in Pfister et al. (2008) and a description of SOx and 7 

the nitrogen cycle. Other improvements have been introduced with the model version used in 8 

this paper including an update of chemical rate constants as well as improvements in the 9 

photolysis lookup-table approach and the parameterization of polar stratospheric clouds.  10 

The MOZART global model simulations presented here are driven by meteorological fields 11 

from the ECMWF ERA INTERIM reanalysis (Dee et al., 2011) and run at a horizontal 12 

resolution of 1.875° x 1.875° with 60 hybrid vertical levels from the surface to the 13 

mesosphere (resolution T63L60) and a time step of 15 minutes. The MOZART chemical 14 

mechanism consists of 115 species, 71 photolysis reactions, 223 gas phase reactions and 21 15 

heterogeneous reactions. Reaction rates have been updated to JPL-06 (Sander et al., 2006) 16 

wherever applicable. Output for tracer mixing ratios and other model fields are available with 17 

a temporal resolution of three hours. 18 

2.2 Surface Boundary Conditions 19 

A new inventory of global anthropogenic emissions for trace gases and aerosols has been 20 

developed in the MACC and CITYZEN projects (Granier et al., 2011), which provides up-to-21 

date estimates for use in global model simulations (MACCity; Table 1). These emission 22 

estimates are based on the ACCMIP emissions for the year 2000 (Lamarque et al., 2010). The 23 

2000-2010 MACCity emissions were obtained by using the 2005 and 2010 emissions from 24 

the future scenario RCP8.5 (Representative Concentration Pathway): a linear interpolation 25 

was applied to obtain the yearly MACCity emissions, here for the year 2008. RCP8.5 26 

corresponds to a radiative forcing of 8.5 W m-2 in the year 2100 given the respective 27 

emissions (Moss et al., 2010; van Vuuren et al., 2011; Riahi et al., 2011). A source-specific 28 

seasonality developed for the RETRO project (Schultz et al., 2007; http://retro.enes.org/) was 29 

applied to the emissions. MACCity also includes ship emissions based on Eyring et al. 30 
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(2010). Natural emissions are not included in the MACCity inventory. Here they are based on 1 

MEGAN-v2 (Table 2) and other natural emissions were taken from the POET project 2 

(Granier et al., 2005) and from the Global Emissions Initiative (GEIA). These emissions are 3 

meant to be representative for the year 2000. The MACCity anthropogenic emissions and the 4 

additional natural emissions are used as reference emissions for our MOZART 2008 5 

sensitivity simulations which will be presented in the Sect. 4 and have also been used in the 6 

MACC reanalysis.  7 

Biomass burning emissions were generated from a preliminary version of the Global Fire 8 

Assimilation System (GFAS) developed in the MACC project (GFASv0, Kaiser et al., 2011). 9 

This version is very similar to the published inventory GFASv1.0 (Table 2; Kaiser et al., 10 

2012), but with somewhat smaller totals (CO annual mass flux deviations for global and 11 

regional totals are less than 0.5%). All biomass burning emissions are available with a daily 12 

resolution and have been injected into MOZART’s lowest model level where they are 13 

diffused rapidly within the mixing layer by the boundary layer diffusion scheme. NOx from 14 

lightning in MOZART is dependent on the distribution of convective clouds, following a 15 

parameterization of Price et al. (1997). Aircraft emissions of NOx and CO are also included in 16 

the model (Horowitz et al., 2003). 17 

MOZART contains a detailed representation of both wet and dry deposition. Monthly means 18 

of dry deposition velocities for 35 species used in MOZART-3 were pre-calculated offline. 19 

For MACC the dry deposition fields originate from a monthly climatology derived from a 10-20 

year nudged simulation with the global chemistry climate model ECHAM5/MOZ (Richter 21 

and Schultz, 2011) where an interactive dry deposition scheme was implemented according to 22 

the resistance model of Ganzeveld and Lelieveld (1995) and Ganzeveld et al. (1998). For 23 

some of our sensitivity simulations the CO dry deposition velocity input fields have been 24 

exchanged by monthly mean velocity data for the year 2008 following the parameterization of 25 

Sanderson et al. (2003) and calculated with the TM5 chemical transport model (Huijnen et al., 26 

2010). This parameterization assumes a strong dependence of the dry deposition on the soil 27 

moisture content (see Sect. 1) and the resulting global patterns look strikingly different from 28 

those of the original scheme. Figure 2 compares January and July dry deposition fields from 29 

both schemes. Deposition velocities according to the ECHAM5/MOZ scheme are dependent 30 

on air temperature, humidity and vegetation types, while the Sanderson scheme is most 31 

sensitive to soil wetness and generates highest deposition fluxes over the tropics during the 32 
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rainfall season and for some wet regions in the mid latitudes. Although dry deposition fluxes 1 

for CO are generally low compared to other species, it can be expected that the differences in 2 

magnitude and variability affect the CO concentrations, particularly for low-emission regions 3 

and during wintertime, when photochemical loss of CO is reduced. 4 

 Wet deposition in MOZART is represented as a first-order loss process, with additional in-5 

cloud scavenging and below cloud washout for soluble species (Horowitz et al., 2003). 6 

Mixing ratios at the surface are prescribed based on observations for several longer-lived 7 

species including methane. 8 

3 Data sets used for evaluation 9 

3.1 Surface station data  10 

Long term measurements of key atmospheric species from surface observation sites around 11 

the globe are collected at the World Data Centre for Greenhouse Gases (WDCGG) operated 12 

by the WMO Global Atmospheric Watch (GAW) programme 13 

(http://ds.data.jma.go.jp/gmd/wdcgg/). We used monthly means of CO mixing ratios 14 

measured from 67 surface stations which provided data for all months in 2008, their positions 15 

on the globe are shown in Fig. 3 (red diamonds). The observation sites are operated by 16 

NOAA/ESRL (USA), CSIRO (Australia), Environment Canada, JMA (Japan), CHMI (Czech 17 

Republic), UBA (Germany), EMPA (Switzerland), RIVM (Netherlands), and SAWS (South 18 

Africa). We discarded mountain stations and stations which did not provide monthly means 19 

for all months in 2008. Data was averaged over large-scale areas as depicted in Fig. 3 to 20 

minimize the influence from local pollution or meteorology for single stations. For evaluation 21 

we calculated area-averaged monthly means from all NH and SH stations as well as from 22 

those inside the regions defined in Fig. 3 (blue boxes). 23 

3.2 MOZAIC profiles 24 

The MOZAIC (Measurements of OZone and water vapor by Airbus In-service airCraft) 25 

program collects ozone, CO, odd nitrogen (NOy) and water vapor data, using automatic 26 

equipment installed on-board several long-range passenger airliners flying regularly all over 27 

the world (Marenco et al., 1998). MOZAIC  products are available through the Ether French 28 

atmospheric database website: www.pole-ether.fr. Here we use CO data from vertical 29 

tropospheric transects taken in the vicinity of airports during ascent and descent. For more 30 
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details of the data processing see Elguindi et al. (2010). In 2008, only three aircraft were 1 

operating with the MOZAIC instrumentation and therefore only a limited number of airports 2 

were visited regularly (13 airports with a total of 935 profiles). For the evaluation of the 2008 3 

model simulations over Europe, we chose tropospheric data from the European airports of 4 

Frankfurt (Germany), London (UK), where 300 (80) profiles were available.  Furthermore we 5 

analyzed an area average composed of the airports of Atlanta, Dallas, Philadelphia, Portland 6 

(OR) in the United States and Toronto and Vancouver in Canada with 219 profiles altogether. 7 

This area average is meant to be representative for the North American Area limited by the 8 

blue box in Fig. 3. There were no data over East Asia in 2008. We marked all airports used 9 

for evaluation with turquoise triangles in Fig. 3. The 3-hourly model results were interpolated 10 

to the times and locations of the MOZAIC observations, afterwards the profiles of each 11 

airport were combined to monthly means. 12 

3.3 MOPITT atmospheric columns 13 

The MOPITT (Measurement Of Pollution In The Troposphere) instrument on board the EOS-14 

Terra spacecraft provides tropospheric CO measurements on a global scale (Drummond and 15 

Mand, 1996; Deeter et al., 2004). At nadir view, MOPITT offers a horizontal resolution of 22 16 

x 22 km2 and achieves global coverage in 2-3 days. MOPITT data used in this study 17 

correspond to the daytime CO total columns from the version 5 (V5) level 2 (L2) product 18 

(http://www2.acd.ucar.edu/mopitt/products), which is based on both near-infrared (NIR) and 19 

thermal-infrared (TIR) radiances (Deeter et al., 2013). Exploiting TIR and NIR radiances 20 

together increases the sensitivity for CO in the lowermost troposphere (Worden et al., 2010; 21 

Deeter et al., 2011). The observations used here are area-averaged monthly means from the 22 

regions defined in Fig. 3 (blue boxes). The modelled CO total columns were calculated by 23 

applying the MOPITT averaging kernels. Details about the method of calculation are given in 24 

Deeter et al. (2004) and Rodgers (2000). 25 

3.4 IASI atmospheric columns 26 

IASI (Infrared Atmospheric Sounding Interferometer) is a nadir looking Fourier Transform 27 

Spectrometer (FTS), launched in 2006 on the polar orbiting MetOp-A satellite. Its spectral 28 

resolution of 0.5 cm−1 (apodized), along with continuous spectral coverage from 645 to 2760 29 

cm−1 allows the column and profile retrievals of several trace gases, twice daily at any 30 

location (Clerbaux et al., 2009).  For carbon monoxide, profiles are retrieved using an optimal 31 
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estimation approach, implemented in the Fast Optimal Retrievals on Layers for IASI (FORLI) 1 

software (Hurtmans et al., 2012). The spectra are processed in near real time and the CO 2 

profiles are distributed with error covariance, averaging kernels and quality flags information 3 

(www.pole-ether.fr). The IASI CO product was validated against ground based observations 4 

(Kerzenmacher et al., 2012), aircraft data (De Wachter et al., 2012) and satellite 5 

measurements (George et al., 2009). The FORLI-CO column (v20100815) values used here 6 

are daytime data. For this study area-averaged monthly means from the regions defined in 7 

Fig. 3 (blue boxes) are used.   8 

4 MOZART sensitivity simulations 9 

For the purpose of analyzing the model sensitivity to CO emission and dry deposition fluxes, 10 

we conducted seven MOZART simulations for the year 2008 as summarized in Table 3. Our 11 

basic simulation MI is based on the surface boundary condition data presented in Sect. 2. 12 

Following the findings from the MACC reanalysis and from previous global studies, the 13 

negative model bias in boreal winter and spring CO concentrations could be explained by 14 

either missing sources from surface emissions or by an overestimation of the surface dry 15 

deposition sink. Thus we expanded our basic model simulation for the year 2008 with a suite 16 

of six sensitivity simulations covering the potential sources of uncertainty in the surface 17 

fluxes. These sensitivity simulations differ in their specific perturbation of the emission 18 

inventories and dry deposition velocities. 19 

NH CO concentrations in winter and spring are mostly controlled by anthropogenic emissions 20 

from traffic and energy consumption. MI+AN tests for the hypothesis that anthropogenic CO 21 

emissions are underestimated significantly. To incorporate also the anthropogenic VOC 22 

precursors, we added simulation MI+VOC with doubled anthropogenic VOC emissions. With 23 

respect to natural sources we performed simulation MI+BIO where both biogenic CO and 24 

VOC emissions have been doubled. To conclude the sensitivities on the CO emission sources, 25 

simulation MI+BB used doubled CO biomass burning emissions from GFAS. Although these 26 

scenarios look quite extreme, they are useful to illustrate the various effects of the emission 27 

sectors on the global and regional CO concentrations and their annual variations. 28 

Furthermore, uncertainty levels of emissions, particularly for less developed countries and for 29 

natural emissions, are still high (e.g. Lamarque et al., 2010). 30 

Simulation MI-DEP tests for the alternative dry deposition velocity scheme from Sanderson et 31 

al. (2003). Finally, our simulation MI-OPT applied a modified CO traffic emission scaling for 32 
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North America and Europe only which exhibits a seasonal variation as shown in Table 4. This 1 

simulation utilized the same dry deposition parameterization as in MI-DEP. The details of the 2 

optimization are described in Sect. 5.4 below. 3 

All model simulations were analyzed for the year 2008 but started at July 1, 2007 to allow for 4 

a spin-up period. Tracer initial conditions were taken from the MACC reanalysis which 5 

included assimilation of CO, O3, and NO2 satellite information. It should be noted that 2008 6 

was within the three years with lowest atmospheric CO concentrations out of the 13 years 7 

2000-2012 where satellite observations were available (Worden et al., 2013). Modelled 8 

tropospheric CO mixing ratios and total column densities are evaluated with the observational 9 

data introduced in Sect. 3. Impacts from uncertainties in the modelling of OH on the CO 10 

budget will be discussed in Sect. 6. 11 

5      Results 12 

5.1    MACCity emissions 13 

First we compare our base case simulation (MI), using MACCity anthropogenic and natural 14 

emissions, to GAW observations gathered from the WDCGG database. Figure 4 shows 15 

monthly means of surface station CO mixing ratios and of near-surface model mixing ratios.  16 

Modelled monthly means from 3-hourly values were interpolated to the station location for 67 17 

stations ordered by latitude.  18 

The station data exhibits the highest values and also the largest variability at northern mid 19 

latitudes (30°-60°N) during wintertime with mean January mixing ratios of more than 300 20 

ppb for three stations, namely Hegyhatsal (Hungary), Payerne (Switzerland) and Black Sea 21 

(Romania). In addition, Payerne exceeded this threshold in February 2008 and the station 22 

Tae-ahn (South Korea) reached monthly mean mixing ratios of more than 300 ppb for March 23 

to May 2008 (not shown). NH mixing ratios are generally higher in winter (and spring) than 24 

in summer. The station observations in the Southern Hemisphere (SH) show a relatively 25 

uniform distribution both in winter and summer with background mixing ratios of about 40-26 

70 ppb. Modelled NH CO mixing ratios are mostly lower than the observations, particularly 27 

during wintertime. In January, the model underestimates the mixing ratios for the arctic 28 

stations by about 50 ppb. In the SH, model and observations match better, with an 29 

overestimation of up to 10 ppb being typically seen. The global distributions of atmospheric 30 

CO can be derived with high spatial resolution from the satellite total column observations. 31 
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As shown in Fig. 5, the MOPITT and IASI products agree well for most regions. MOPITT 1 

total columns are somewhat higher than IASI for several NH regions in January, but IASI 2 

attains a better spatial coverage. The MI simulation is able to reproduce the general features 3 

and levels of the satellite CO distribution, but calculates higher CO columns over India, and 4 

slightly lower columns for other polluted regions like Europe, North America and East Asia 5 

(see relative difference panels in Fig. 5). The North African biomass burning regions in 6 

January are less pronounced in the model than in the satellite data, while there seems to be an 7 

overestimation from the model over SH tropical West Africa in July. 8 

5.2 Sensitivity to emissions 9 

The comparison of monthly means from near-surface model mixing ratios with monthly mean 10 

surface station data from the WDCGG is shown in Fig. 6. The data is averaged over the 11 

Northern and Southern Hemisphere as well as for the regions Europe, North America and 12 

East Asia. The model bias is given for the base simulation MI and for the sensitivity 13 

simulations MI+AN, MI+BIO, and MI+BB.  14 

The simulation with MACCity emissions (MI) underestimates the observed surface mixing 15 

ratios in the NH in all seasons except summer, with low biases exceeding 20 ppb from 16 

December to April and exceeding 40 ppb in January. The largest underestimation of about 75 17 

ppb is found over Europe. During summer, the modelled CO mixing ratios match the 18 

observations on average, with a slight underestimation for Europe and overestimation for 19 

North America. As biogenic and biomass burning emissions peak in the NH summertime, 20 

their influence on NH mixing ratios is greatest during this season. Generally, the lifetime of 21 

CO is much shorter during summer, because of the greater abundance of the OH radical 22 

(Novelli et al., 1998). This will reduce the influence of direct CO emissions relative to the 23 

oxidation source from methane and other VOCs. 24 

East Asian observed mixing ratios agree relatively well with the MI simulation for the whole 25 

year, at least for the four surface stations which could be taken into account here. This 26 

reasonable model performance is probably due to the recently updated regional emission 27 

information and to the better emission predictions for China in the MACCity inventory (Riahi 28 

et al., 2011). For the sake of completeness we also report here the good agreement between 29 

simulated and observed SH mixing ratios, only a small positive model bias of 5 to 10 ppb is 30 

found all year round in all our simulations.  31 
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Similarly to the surface mixing ratios, the modelled CO total columns are compared with the 1 

observed total columns from MOPITTv5 and IASI (Fig. 7). The satellite observations are 2 

more representative for the free troposphere and accomplish a substantial coverage over the 3 

regions of interest. Due to the differences in spatial sampling between the two instruments, 4 

and the different methods (based on different a priori assumptions) used to obtain the CO total 5 

column product, a spread between the two satellite products of up to 9% averaged over the 6 

NH exists (see also Worden et al., 2013). Over the NH, IASI observed lower total columns 7 

than MOPITT from October to March and higher total columns in July/August. The findings 8 

from the surface station evaluation of the MI simulation generally hold true also for the total 9 

columns with a few differences: MI always underestimated NH MOPITT total columns as 10 

well as the IASI columns from January to October. Largest biases occur for MOPITT-MI in 11 

March with 18% (NH), 24% (Europe) and 22% (North America).  12 

As expected, in the sensitivity simulation with doubled anthropogenic emissions (MI+AN, see 13 

Figs. 6 and 7), the modelled CO total columns overestimated the observed values in all 14 

regions. However, deviations from the observations are smaller than in the MI simulation in 15 

January and February over the NH which can mostly be attributed to the North American and 16 

European regions. The overestimation is less pronounced during the summer months, when 17 

the CO loss due to reaction with OH gains more importance. 18 

 The simulation MI+BIO (doubled biogenic CO and VOC emissions) enhanced the modelled 19 

surface CO mixing ratios by 20 to 40 ppb for all regions. Since the biogenic emissions mainly 20 

occur in the tropics and on the NH landmasses with a summer maximum, doubling of 21 

biogenic emissions leads to an overestimation over the whole NH with a maximum in 22 

summer. SH concentrations are biased high during all months for both surface mixing ratios 23 

and total columns. The MI+BB simulation (doubled CO biomass burning emissions) leads to 24 

overestimation of the peak surface mixing ratios during NH spring and summer, as can be 25 

noticed in the wildfire-influenced regions of North America and East Asia (Fig. 6). When 26 

compared with satellite total columns, the MI+BB simulation is able to follow the annual 27 

course of IASI observations better than the other runs and also better than the MOPITT 28 

seasonality (Fig. 7). As pointed out by Worden et al. (2013), IASI is more sensitive to 29 

transient biomass burning events than MOPITT. Such events are also included in our 30 

simulations through application of daily GFAS emissions (Kaiser et al., 2012) with enhanced 31 

emission intensity for MI+BB. Neither of the simulations with enhanced biogenic (MI+BIO) 32 
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or wildfire emissions (MI+BB) are able to improve the negative bias seen by the models in 1 

NH winter without introducing significant overestimations during boreal summer and over the 2 

SH. Thus a bias in the biogenic or biomass burning emission inventories is not likely to 3 

explain the modelled underestimation of CO during NH winter.    4 

To account for the uncertainties in the emissions of anthropogenic CO precursors, we also ran 5 

MOZART using MACCity emissions together with doubled VOC anthropogenic emissions 6 

(MI+VOC). These increased emissions are able to enhance wintertime and spring surface CO 7 

mixing ratios by 5 to 15 ppb (Fig. 8, grey lines). Although the improvement with added VOC 8 

emissions is small, it does not lead to a CO overestimate in summer and could therefore add a 9 

small portion to the missing NH CO concentrations, primarily in spring. 10 

5.3 Sensitivity to dry deposition 11 

Surface layer mixing ratios from the sensitivity simulation MI-DEP, which used the 12 

parameterization by Sanderson et al. (2003) for deposition velocities, together with the 13 

MACCity emissions, are displayed in Fig. 8. When compared with MI, the reduced deposition 14 

fluxes over the NH landmasses result in higher mixing ratios of around 10 ppb in summer and 15 

20 ppb in winter when OH concentrations are low and the planetary boundary layer is usually 16 

more shallow. Over Europe, where the differences between the two schemes are quite large, 17 

wintertime mixing ratios are higher by 30 ppb whereas from May to September, values match 18 

the observations very well. Mixing ratios over East Asia are moderately increased (less than 19 

20 ppb all-year-round), while over North America the summer and autumn values of MI-DEP 20 

are biased high compared with the observations. Over the SH, this simulation decreases the 21 

tropospheric mixing ratios of CO by up to 5 ppb (August – October) which may be due to the 22 

increased deposition fluxes over Africa and South America (see Fig. 8). Overall the use of the 23 

parameterization by Sanderson et al. (2003) improved the model results significantly but is 24 

not able fill the gap to boreal wintertime CO observations, particularly over Europe, without 25 

additional modifications to the (anthropogenic) emissions. 26 

5.4 Optimized approach 27 

As indicated in Sect. 2, the MACCity inventory is based on the ACCMIP emissions for the 28 

year 2000. Lamarque et al. (2010) pointed out that for USA, Europe, and East Asia published 29 

regional inventories have been given preference, notably EPA data for USA, EMEP data for 30 
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Europe and REAS data for East Asia. EPA reported on air pollution trends of US cities 1 

between 1990 and 2008 and found maximal decadal decreases in CO pollution of 60 to 80% 2 

for 1990 to 2008 (Riahi et al., 2011). Consequently, in the RCP8.5 scenario an exposure-3 

driven spatial algorithm for the downscaling of the regional emission projection has been 4 

employed. This lead to the highest emission reduction of up to 80% per decade in those grid 5 

cells with the highest exposure for regions where emissions are reduced due to the 6 

implementation of air pollution control measures, e.g. USA and Europe. For regions with 7 

increasing emissions, (e.g. in Asia) emissions increase proportionally to the acceleration of 8 

the economic activity (Riahi et al., 2011).  In Fig. 9, the regionally aggregated development of 9 

CO anthropogenic emissions from 2000-2050 under the RCP8.5 scenario is shown. Although 10 

RCP8.5, which is used in MACCity, is a scenario with relatively high greenhouse gas 11 

emissions, the CO anthropogenic emissions decrease slowly in the first decade 2000-2010, 12 

mostly driven by strong emission reductions in the OECD countries. Road traffic contributes 13 

a major part of the anthropogenic CO emissions in the industrialized countries. Pouliot et al. 14 

(2012) compared regional emission inventories for Europe and North America for 2005 and 15 

reported 85% of North American anthropogenic CO emissions and 43% of European 16 

emissions to origin from mobile sources. The discrepancy could be explained partly by 17 

different methods to derive the inventories for the domains and partly by the higher fraction 18 

of gasoline vehicles in North America. Traffic emissions in the OECD countries decrease in 19 

MACCity by 46% (from 119 Tg y-1 to 44 Tg y-1) for the period 2000 to 2010. For Asia, total 20 

emissions are estimated to increase by 10% until 2020 with the largest growth rate from 21 

industrial emissions and with other emission sectors stagnating. 22 

Our simulation MI-OPT tests for the hypothesis that CO emissions from cars (or other sources 23 

that largely follow the same spatial allocation as traffic emissions) are not considered 24 

adequately in the MACCity estimate: Estimates of automobile emissions are based on defined 25 

driving cycles which do not include short trips, when much more CO is emitted under cold 26 

engine conditions (Parrish, 2006; Kopacz et al., 2010; Klemp et al., 2012). This could induce 27 

a significant underestimation of traffic CO emissions in the emission inventory, in particular 28 

during winter. This effect is potentially amplified by an unrealistic reduction in emissions 29 

from 2000-2010 in MACCity. We note that our simulations don’t allow the attribution of the 30 

missing CO source to the traffic sector, although (as indicated above) there are reasons to 31 

believe that this sector contributes to the problem. In reality it may well be a combination of 32 

underestimates from various sectors, many of which are poorly constrained. One such sector, 33 
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which is particularly relevant during winter, is household wood-burning (H. Denier van der 1 

Gon, pers. comm., 2012). Clearly, a more systematic assessment of emission uncertainties 2 

would be helpful.  3 

Our first sensitivity simulations using globally or regionally increased traffic emissions, 4 

resulted in CO mixing ratios that were too high in summer, and in certain regions, particularly 5 

over Asia (not shown). Based on these initial results and after two more iterations, we defined 6 

refined scaling factors for the CO road traffic emissions in simulation MI-OPT to account for 7 

missing emissions like under cold-start conditions with monthly scaling factors for Europe 8 

and North America only as described in Table 4. The total added emissions from this 9 

simulation are only 19 Tg y-1 globally, compared to 586 Tg y-1 of additional emissions in the 10 

simulation MI+AN (Table 3). Applying the modified scaling factors enhances wintertime CO 11 

emissions only for the European and the North American domain and also accounts for 12 

realistic CO concentrations from long-range transport. Simultaneously, MI-OPT takes into 13 

account the improved dry deposition parameterization by Sanderson et al. (2003) as in MI-14 

DEP. 15 

The simulation MI-OPT is compared with surface observation as shown in Fig. 8. The 16 

simulation is able to shift effectively wintertime CO mixing ratios to higher values for Europe 17 

and North America without significantly increasing the CO mixing ratios in East Asia. 18 

Applying the scaling factors given in Table 4, results in an almost perfect match to the GAW 19 

station observations for Europe and on the NH average. The same holds true over North 20 

America for the months December to May. Where mixing ratios with the MI emissions were 21 

already biased high, as for North America in summer or for East Asia in spring and autumn, 22 

these overestimations can likely be attributed mostly to natural emissions. This can be 23 

deduced from the MI+BB and MI+BIO simulations, where mixing ratios for these regions are 24 

enhanced similarly (Fig. 6). 25 

The comparison of total CO columns from MI-OPT to MOPITT and IASI satellite 26 

observations is shown in Fig. 10. NH mean columns are enhanced by 6-9% with respect to the 27 

MI simulation, but not enough to match the values from the satellite observations, which are 28 

still higher except during October to December 2008. Similar changes can be seen for the 29 

regional averages, with largest increase over Europe (8-12%) and somewhat lower differences 30 

for North America (7-10%) and East Asia (7-9%). In summer and autumn, most of the 31 

enhancement is due to the changes in the dry deposition parameterization, while in winter and 32 
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spring the increased emissions dominate the optimization (not shown). CO total columns over 1 

the SH remain mostly unchanged with respect to the simulation MI.  2 

The evaluation results from surface stations and satellite observations are complemented by 3 

the comparison with MOZAIC profiles over the airports of Frankfurt (Germany) and London 4 

(U.K.) and a composite of 6 airports over North America (Fig. 11). In January 2008 the 5 

simulation MI is biased low with maximal differences in the lowest model level (ca. 100 ppb 6 

over Frankfurt, 55 ppb over London and 80 ppb for North American airports). The model 7 

underestimates CO up to the tropopause with smaller biases as the upper troposphere is 8 

approached. In July, MI shows a negative bias of 20-40 ppb throughout the lower 9 

troposphere. CO mixing ratios from the simulation MI-OPT are generally higher than those 10 

from MI, thus reducing the bias with respect to the observations. In January, the negative bias 11 

is reduced to 5-30 ppb near the surface, but may still reach up to 40 ppb in some parts of the 12 

free troposphere, whereas in July, MI-OPT mixing ratios are consistently 10-15 ppb higher 13 

than those from MI. We speculate that the continued underestimation of free tropospheric CO 14 

results from a low bias in vertical transport mass fluxes or from the MOZART 15 

parameterisation of surface emissions which are all injected into the lowest model layer, 16 

whereas some fraction of the emissions (smoke stacks, fires) might in reality be released at 17 

higher altitudes.  18 

How the modification of wintertime NH CO emissions affects other trace gases is shown for 19 

simulation MI-OPT in Fig. 12. First we show the differences in the CO distributions 20 

compared with the simulation MI-DEP (top left panel): European and North American surface 21 

mixing ratios are enhanced by up to 160 ppb in January. Long-range transport of the 22 

additional emissions is confined to the NH with little effect on Asia and the Pacific.  23 

The regionally scaled emissions have only a small impact on the simulated near-surface ozone 24 

mixing ratios and on the free-tropospheric OH fields. Surface ozone increases almost 25 

globally, but nowhere more than 0.5 ppb (Fig. 12, top right panel).  This change is smaller 26 

than the model bias usually found when MACC results are evaluated with ozone observations 27 

(Inness et al., 2013). The OH radical surface mixing ratios are also evaluated in Fig. 12. As 28 

expected, OH is reduced in the simulation with scaled MACCity emissions due to the 29 

increased sink term by CO oxidation. Differences are up to 3 % in the mid latitudes during 30 

winter (bottom left panel), where OH mixing ratios are very small (bottom right panel).  31 
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We assess the global annual mean OH concentration in the MOZART model, as this would 1 

influence the CO budget both for the source term via the chemical conversion of 2 

hydrocarbons and for the chemical loss term. OH in the model cannot be evaluated directly, 3 

as atmospheric measurements are lacking. A widely used measure for the integrated 4 

tropospheric OH concentrations is the methane lifetime τ[CH4]. In this study, the methane 5 

lifetime is 9.7 y for the MI simulation and 9.8 y for our simulation MI-OPT. These values are 6 

both very close to the mean lifetime calculated from the models in Shindell et al. (2006) 7 

(τ[CH4] = 9.72 y (6.91-12.38)) as well as in Voulgarakis et al. (τ[CH4] = 9.7 y (±0.6)). As 8 

already pointed out by Naik et al. (2013), our modelled methane lifetime suggests that the 9 

mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties 10 

of observational evidence. From the evaluation with MOPITT and IASI total columns and 11 

MOZAIC profiles however, a prevalent underestimation of free tropospheric model CO 12 

concentrations could be deduced. If and how such an underestimation is connected to 13 

unrealistic OH distributions or vertical exchange processes in the model, cannot be addressed 14 

further without additional observational constraints. Modifications to the chemistry 15 

mechanism, which are able to affect global OH and its spatial distribution, such as proposed 16 

by Mao et al. (2013), could also result in higher CO concentrations. However, this is not yet 17 

well established, as there are large uncertainties related to the magnitude of proposed reaction 18 

pathways. Therefore these changes are not considered here. 19 

Finally, the global CO burden calculated from our basic simulation MI is 351 Tg, which is 20 

slightly lower than the range of the few estimated values for the 1990s (360-470 Tg, see Sect. 21 

1).  For MI-OPT the burden increased to 369 Tg. 14 Tg out of this 18 Tg increase can be 22 

appointed to the reduced dry deposition fluxes in the Sanderson scheme. Also the interannual 23 

variability of the CO burden has been calculated with a similar range (Duncan and Logan, 24 

2008). 25 

6  Conclusions 26 

The uncertainties in the global budget of carbon monoxide (CO) have been assessed to 27 

explain causes for the long-standing issue of Northern Hemispheric wintertime 28 

underestimation of CO concentrations in global chemistry transport models. With a series of 29 

MOZART sensitivity simulations for the year 2008, the impacts from changing a variety of 30 

surface sources and sinks were analysed.  31 
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Our basic simulation employed the global emission inventories MACCity, GFASv0 and 1 

MEGANv2.  Surface CO mixing ratios as measured by GAW stations averaged over the NH 2 

were underestimated by more than 20 ppb from December to April with a maximal bias of 40 3 

ppb in January from this simulation. The bias was strongest for the European region (75 ppb 4 

in January) but also apparent over North America, suggesting that wintertime emissions for 5 

these regions are missing in the inventories. Modelled mixing ratios over East Asia were in 6 

better agreement with the surface observations, probably reflecting the efforts which were 7 

made to update the CO emissions to the recent economic developments, namely in China. 8 

Negative biases were also found for total CO columns when evaluated against MOPITT and 9 

IASI observational data. Our comparison showed significantly lower NH modelled columns 10 

for almost the whole year. MOPITT and IASI products themselves differed by up to 9 % 11 

averaged over the NH so a quantification of the total column model bias remains uncertain. 12 

As pointed out by Worden et al. (2013) the spread in CO column values across the satellite 13 

instruments is partly due to spatial sampling differences. The use of different a priori 14 

assumptions in the retrieval algorithms also induces differences. The modelled CO was 15 

additionally evaluated with MOZAIC profiles over several airports in Europe and North 16 

America. Tropospheric CO mixing ratios were mostly underestimated from the model with 17 

largest biases for NH winter near the surface.  18 

Four sensitivity simulations, defined by doubling one of the original CO sources helped us to 19 

identify major sectors which could lead to the underestimation of CO Doubling the global 20 

anthropogenic CO emissions increased the concentrations all year round but predominately 21 

during NH wintertime. Mixing ratios and total columns simulated with this extreme scenario 22 

were always too high when compared with the surface observations and also for regions 23 

where the bias of the original simulation was already small. A sensitivity study accounting for 24 

missing anthropogenic VOC emissions showed that although these indirect emissions 25 

contribute only about 8% to the CO sources, their relative impact is higher in winter when 26 

biogenic emissions are low. Doubling these emissions increased NH wintertime near-surface 27 

mixing ratios by 5 to 15 ppb on the global and regional scale, hence biases in anthropogenic 28 

VOC emissions can account for a part of the missing model CO. A simulation with doubled 29 

biogenic emissions, both from CO and the VOCs, led to unrealistically high concentrations 30 

during boreal summer and early autumn while SH tropospheric CO was greatly 31 

overestimated. Similarly, doubling the direct CO emissions from biomass burning led to CO 32 
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overestimation peaks during the major NH wildfire seasons in late spring and summer, hence 1 

also excluding biomass burning as the major contributor to the wintertime NH CO bias. 2 

The influence of the dry deposition sink on the global CO budget has been neglected so far by 3 

most of the studies on model inter-comparison and source inversion. Although this sink is 4 

small compared with the photochemical sink on the global, annual average, it becomes more 5 

important over the continents and during the winter months when OH concentrations are low. 6 

A sensitivity simulation with a modified CO deposition scheme following Sanderson et al. 7 

(2003) reduced the global CO sink by 68 Tg y-1 with strongest reductions over Europe in 8 

wintertime. The resulting NH surface CO mixing ratios were enhanced by 20-30 ppb in 9 

winter and by 10-15 ppb in summer with largest increase over wintertime Europe. 10 

Nevertheless, the reduced dry deposition alone was not able to explain the total CO bias.  11 

A simulation which optimally reflects the surface observations was constructed through 12 

application of the modified dry deposition together with a seasonally depending scaling of CO 13 

traffic emissions for Europe and North America only. With this simulation we tested for a 14 

possible underestimation of CO emissions from the traffic sector in the industrialized 15 

countries, which could originate from vehicle engines under cold start conditions. While the 16 

resulting surface mixing ratios were very close to the global station observations, a 17 

considerable improvement was also reached in comparison with satellite observations and 18 

MOZAIC profiles.  19 

Our optimization approach illustrates that regionally missing anthropogenic emissions 20 

together with modifications in the dry deposition parameterization could explain the observed 21 

biases with respect to American and European GAW station observations. Total CO column 22 

densities and tropospheric profiles of CO mixing ratios were also improved. The optimization 23 

approach goes some way to addressing the underestimation of the CO mixing ratios evident at 24 

the MOZAIC airports. The remaining biases point to some model deficiencies in vertical 25 

exchange or the OH distribution and may also be due to the coarse resolution of the model 26 

being unable to represent strong local sources of pollution at the airport locations. The strong 27 

seasonality in the emission scaling factors used for MI-OPT and its regional differences 28 

(Table 4) indicate that a more detailed approach is needed to account for the seasonality in 29 

global emission inventories, particularly for emissions of anthropogenic origin.  30 

In conclusion, our simulations have shown that the mismatch between observed and modelled 31 

concentrations of CO during NH wintertime, can be explained by a combination of errors in 32 
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the dry deposition parameterisation and the following limitations in the emission inventories: 1 

(i) missing anthropogenic CO emissions from traffic or other combustion processes, (ii) 2 

missing anthropogenic VOC emissions, (iii) a poorly established seasonality in the emissions, 3 

(iv) a too optimistic emission reduction in the RCP8.5 scenario underlying the MACCity 4 

inventory. There is no indication that our results were greatly influenced by unrealistic global 5 

OH levels, but modelled CO concentrations depend on the modelled OH distributions, which 6 

are themselves subject to limitations in the chemical mechanisms and the lack of knowledge 7 

on seasonality and global patterns of OH.   8 

Taking into account that other recently developed global and regional anthropogenic emission 9 

inventories (EDGARv4.2, EMEP, EPA) estimate similar low CO emissions for Europe and 10 

North America it remains necessary to question the inventory building process, particularly 11 

for the important traffic sector. Furthermore, research efforts are also needed to improve the 12 

estimates for the seasonal variability of anthropogenic emissions. Finally, in future model 13 

studies on the inversion of atmospheric CO observations the dry deposition parameterization 14 

and its global sink term should be more explicitly documented. 15 
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Table 1: Global and regional CO anthropogenic emission totals from recent bottom-up 1 

inventories in Tg y-1. All data except from EPA and Environmental Canada are available 2 

online from the Emissions of atmospheric Compounds & Compilation of Ancillary Data 3 

(ECCAD) database (http://eccad.sedoo.fr/).  4 

 5 
 ACCMIPa RETRO/REASb MACCityc EDGARv4.2d EMEPe TNO-MACCf EPA + Env. Canadag REASv1h  

Release year 2010 2008 2010 2011 2007 2009 2013 2007 
Reference year 2000 2000/2003 2005 / 2008 2005 2005 2005 2005 2003 / 2005 

 
Global 611 577 583 / 586 494     
Europe 59 49 49 / 43 46 51 50   
North America 118 70 70 / 62 82   82  
Asia 320 362 341 / 352 256    338 / 345 
 - China 121 158 138 / 146 90    158 / 162 
Africa 83 69 95 / 101 61     
South America 22 24 24 / 24 46     
Oceania 6 3 3 / 3 4     
aLamarque et al. (2010) 6 
bSchultz et al. (2007) 7 
cGranier et al. (2011) 8 
dJanssens-Maenhout et al. (2010) 9 
eAmann et al. (2005) 10 
fDenier van der Gon et al. (2011) 11 
ghttp://www.epa.gov/ttn/chief/eiinformation.html; http://www.ec.gc.ca/indicateurs-indicators/ 12 
hOhara et al. (2007) 13 
 14 
 15 
 16 
Table 2: Global and regional 2005 CO emission totals from recent biomass burning and 17 
biogenic emission inventories in Tg y-1. Data are available from the ECCAD database. 18 
 19 
 Biomass burning Biogenic 
 GFEDv2 GFEDv3 GFASv1 MEGANv2 MEGAN-MACC 
Release year 2006 2010 2012 2009 2012 
Reference year 2005 2008 2008  2000 2008 
Global 416 277 325 76 84 
global range 369-599a 252-595b 305-404c  83-93d 

Europe 19 38 66 5 4 
North America 19 16 20 9 7 
Asia 82 22 41 18 15 
Africa 183 152 140 18 27 
South America 101 37 48 19 22 
Oceania 11 11 12 7 8 
a1997-2005 20 
b1997-2010 21 
c2003-2011 22 
d2000-2010 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
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Table 3: Description of MOZART 2008 sensitivity simulations 1 
 2 

 3 
 4 
 5 
 6 
Table 4: Monthly scaling factors for CO traffic emissions over North America and Europe as 7 
applied in simulation MI-OPT 8 
 9 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

North America 1.25 1.5 2 1.33 1 1 1 1 1 1 1 1 

Europe 4.5 3.33 3.33 3 1.5 1 1 1.25 1.5 2 2.5 2.5 

10 

simulation Anthropogenic emissions Biogenic emissions Biomass burning 
emissions 

Dry deposition Global total CO 
source added to 
MI in Tg y-1 

MI 
 

MACCity MEGANv2.0 GFASv1 ECHAM5/MOZ - 

MI+AN MACCity, anthropogenic CO 
emissions doubled 

MEGANv2.0 GFASv1 ECHAM5/MOZ 586 

MI+VOC MACCity, anthropogenic VOC 
emissions doubled 

MEGANv2.0 GFASv1 ECHAM5/MOZ 84 

MI+BIO MACCity MEGANv2.0, biogenic CO 
and VOC emissions doubled 

GFASv1 ECHAM5/MOZ 535 

MI+BB MACCity  MEGANv2.0 GFASv1, CO biomass 
burning emissions doubled 

ECHAM5/MOZ 323 

MI-DEP MACCity MEGANv2.0 GFASv1 Sanderson et al. 
(2003) 

68 

MI-OPT  MACCity, refined traffic CO scaling 
for North America and Europe only 

MEGANv2.0 GFASv1 Sanderson et al. 
(2003) 

87 
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 1 

 2 
Figure 1: The global CO budget: sources and sinks. Numbers are in Tg y-1 as estimated from 3 
this study using MACCity /MEGAN /GFAS emissions for the year 2008. 4 
 5 
 6 
 7 
 8 
 9 
 10 

11 
Figure 2: Monthly mean dry deposition velocities in m/s for January (left) and July (right). 12 
Top panels: data derived with the ECHAM5/MOZ parameterization, bottom panels: data 13 
derived with the parameterization from Sanderson et al. (2003). 14 
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 1 
 2 
Figure 3: Locations of the surface stations (red diamonds) and MOZAIC airports (turquoise 3 
triangles) used for the model evaluation. Selected evaluation regions are marked with blue 4 
boxes. 5 
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 1 

 2 
 3 
Figure 4: Monthly mean CO mixing ratios from the 67 surface stations available in WDCGG 4 
used for this study sorted for geographical latitude (black rhombi) and modelled near-surface 5 
mixing ratios from simulation MI for the same locations (red triangles). Upper panel: January 6 
2008; Lower panel: July 2008. 7 
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 1 
Figure 5: Monthly mean CO total column densities for January and July 2008 as observed 2 
from IASI and MOPITT, and calculated from simulation MI smoothed by MOPITT averaging 3 
kernels. The relative difference between the model simulations and MOPITT observations 4 
(100 x (MOPITT - MOZART) / MOPITT) is seen in the bottom panels. 5 
 6 
 7 
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 3 
 4 
Figure 6: Bias of modelled 2008 monthly mean surface level mixing ratios from the 5 
MOZART simulations MI, MI+AN, MI+BIO, and MI+BB compared to observations from 6 
WDCGG. n denotes the number of stations used. 7 
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 3 
 4 
Figure 7: CO total columns from MOPITT and IASI satellite observations compared to 2008 5 
monthly modelled columns from the MOZART simulations MI, MI+AN, MI+BIO, and 6 
MI+BB. 7 
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 4 
 5 
Figure 8: As Figure 6, but simulations MI (red), MI+VOC (grey), MI-DEP (light blue), and 6 
MI-OPT (dark blue). 7 
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 1 
 2 
Figure 9: Annual CO anthropogenic emissions 2000-2050 from different sectors in the 3 
RCP8.5 scenario, world-wide, for OECD countries and for Asia. 4 
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Figure 10: As Figure 7, but simulations MI (red) and MI-OPT (dark blue). 4 
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 1 
 2 
Figure 11: Monthly averaged CO profiles from MOZAIC ascents and descents at selected 3 
airports evaluated at model levels (black solid lines). North_America is composed of 6 4 
airports in the United States and Canada, n is the total number of flights. The coloured lines 5 
depict model results interpolated to the same time and position from the simulations MI (red) 6 
and MI-OPT (blue). Black dotted lines indicate the range of the MOZAIC observations within 7 
the month, horizontal lines give the corresponding range of the model results. 8 
 9 
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 1 
Figure 12: Difference (MI-OPT – MI-DEP) of monthly mean surface level mixing ratios for 2 
January 2008. Top panels: CO (left) and ozone (right) absolute bias in ppb. Bottom panels: 3 
OH relative bias in % and absolute MI-DEP zonal mean OH mixing ratios in ppt.  4 


