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Abstract 13 

Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) 14 

regulatory modeling. Past studies have separately used satellite-observed clouds to correct the 15 

model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify 16 

and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple 17 

satellite-derived model inputs to improve O3 State Implementation Plan (SIP) modeling has 18 

rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) 19 

observations of clouds are applied to derive the photolysis rates, replacing those used in Texas 20 

SIP modeling. This changes modeled O3 concentrations by up to 80ppb and improves O3 21 

simulations by reducing modeled normalized mean bias (NMB) and normalized mean error 22 

(NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is 23 

incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-Decoupled 24 
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Direct Method (DDM) model to adjust Texas NOx emissions using a high resolution Ozone 1 

Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 2 

vertical column densities (VCD) is further reduced by increasing modeled NOx lifetime and 3 

adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion 4 

suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model 5 

performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to 6 

scale down area and non-road NOx emissions by 50%, leading to a 2-5ppb decrease in ground 8-7 

h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using 8 

sector-based inversion constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 9 

0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and 10 

OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05 and 11 

increases the model correlation with ground measurement in O3 simulations and makes O3 more 12 

sensitive to NOx emissions in the O3 non-attainment areas.    13 

1. Introduction 14 

Tropospheric O3 is a secondary air pollutant formed via the reactions between nitrogen oxides 15 

(NOx = NO + NO2) and volatile organic compounds (VOCs) with heat and sunlight (Seinfeld and 16 

Pandis, 2006). Eastern Texas is one of the most populous areas in the United States and has been 17 

suffering from O3 pollution for decades due to large anthropogenic emission sources such as 18 

motor vehicles, petrochemical facilities, and coal-burning power plants with unique 19 

meteorological conditions of extended heat and humidity and intense solar radiation (Kleinman 20 

et al., 2002; Ryerson et al., 2003; Daum et al., 2004; Rappenglück et al., 2008; Kim et al., 2011; 21 

Zhou et al., 2014).   22 
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             In eastern Texas, several regions require careful air quality planning for O3 reductions. 1 

First and foremost, the Houston-Galveston-Brazoria (HGB) region and the Dallas-Fort Worth 2 

(DFW) region exceed the 2008 O3 National Ambient Air Quality Standard (NAAQS) of 75 ppb 3 

and thus are both classified by US Environmental Protection Agency (US EPA) as O3 non-4 

attainment areas. Next, Beaumont-Port Arthur (BPA), Northeast Texas (NE Texas), and Austin 5 

and San Antonio regions require attention for closely approaching that standard (Gonzales and 6 

Williamson, 2011).  7 

          To comply with the O3 NAAQS, the U.S. EPA requires the Texas Commission on 8 

Environmental Quality (TCEQ) to identify regulatory strategies using photochemical air quality 9 

models for attaining the O3 standard in non-attainment areas. However, model uncertainties may 10 

impair the accuracy of model performance and potentially misdirect emission control strategies 11 

(Fine et al., 2003; Digar and Cohan, 2010; Simon et al., 2012). Recent studies show that 12 

uncertain bottom-up emission inventories and modeled photolysis rates are two leading 13 

uncertainties in O3 modeling (Deguilaume et al., 2007; Digar et al., 2011) and can significantly 14 

impact simulated O3 concentrations and their sensitivities in Texas (Cohan et al., 2010; Xiao et 15 

al., 2010). Hence, identifying and reducing these uncertainties are essential to ensuring the 16 

reliability of regulatory decision making.  17 

             Direct measurements of emissions and photolysis rates are spatially limited and 18 

impractical to perform covering the entire modeling domain. However, satellite-based 19 

measurements provide a valuable opportunity to observe some atmospheric parameters and air 20 

pollutants from space and generate a rich measurement dataset with great spatial coverage. Pour-21 

Biazar et al. (2007) used the GOES-based cloud information to reproduce photolysis rates in the 22 
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Community Multiscale Air Quality (CMAQ) model. Results showed large differences between 1 

model-predicted and satellite-derived photolysis rates, leading to significant changes in modeled 2 

O3 concentrations. Guenther et al. (2012) found that the Weather Research and Forecasting 3 

(WRF) and MM5 models, which are usually used to generate meteorological fields for CAMx or 4 

CMAQ, underpredict cloud fractions, leading to more modeled solar radiation reaching the 5 

ground and overestimations of modeled photolysis rates and sunlight-sensitive biogenic 6 

emissions. 7 

         Studies using satellite NO2 measurements to create top-down NOx emissions for 8 

atmospheric modeling have also shown promising results (Streets et al., 2013; Martin et al., 2003; 9 

Müller and Stavrakou, 2005; Jaeglé et al., 2005; Lin et al., 2010; Konovalov et al., 2006, 2008; 10 

Napelenok et al., 2008; Kurokawa et al., 2009; Zhao and Wang, 2009; Chai et al., 2009; 11 

Zyrichidou et al., 2015). Most recently, Tang et al. (2013) performed region-based DKF 12 

inversions using OMI NO2 data to adjust NOx emission inventory used in Texas SIP modeling; 13 

however, results showed that the region-based DKF inversions with National Aeronautics and 14 

Space Administration (NASA) OMI NO2 standard product, version 2, tended to scale up the NOx 15 

emission inventory by factors of 1.02 to 1.84 and deteriorated model performance as evaluated 16 

by ground NO2 and O3 monitors.  17 

         A challenge of using satellite data for inverse modeling is that atmospheric models are 18 

primarily evaluated based on ground-level data, and may not accurately simulate pollutants aloft. 19 

Several studies (Hudman et al., 2007; Henderson et al., 2011; Allen et al., 2012; ENVIRON, 20 

2013) have demonstrated that models tend to underestimate upper tropospheric NO2 level even 21 

after lightning and aviation NOx sources are included. Though the reason is unclear, 22 
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underestimation could result from errors in the chemical mechanism in simulating NOx sinks 1 

(Mollner et al., 2010; Henderson et al., 2012, Lin et al., 2012, Stavrakou et al., 2013). Efforts to 2 

eliminate low bias for upper tropospheric NO2 simulations over Texas have been unsuccessful to 3 

date (ENVIRON 2013). Another discrepancy often noted between models and satellite data is a 4 

narrower spread between urban and rural NO2 in satellite observations (Streets et al., 2013). 5 

Recently developed high resolution OMI NO2 retrievals increase the rural-urban spread, which 6 

may decrease the difference between models and satellite observations.  7 

           In this work, first, GOES-derived photolysis rates are applied to the CAMx model, and 8 

the influence on the modeled NO2 and O3 is investigated. Second, the model shortcomings of 9 

underestimating upper tropospheric and rural NO2 demonstrated in Tang et al. (2013) are further 10 

addressed by comparing with aircraft measurements and reducing the reaction rate constant of 11 

the reaction OH + NO2 to increase modeled NOx lifetime. Third, the sector-based DKF inversion 12 

using the recently developed NASA high resolution OMI NO2 product to Texas NOx emissions 13 

is explored and compared to the region-based DKF inversion. In addition, inverse modeling is 14 

extended to adjust Texas VOC emissions via directly comparing modeled VOC concentrations 15 

with ground observations (Supplement, Sect. 4). 16 

2. Methodology 17 

2.1 CAMx modeling 18 

CAMx version 5.3 (ENVIRON, 2010) with the Carbon Bond version 2005 (CB-05) chemical 19 

mechanism was used to simulate a SIP modeling episode developed by TCEQ for the HGB O3 20 

attainment demonstration (Fig. 1) from 13 August to 15 September 2006, coinciding with the 21 

intensive measurement campaign TexAQS 2006. The meteorology fields were modeled by the 22 
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NCAR/Penn State (National Center for Atmospheric Research/Pennsylvania State University) 1 

Mesoscale Model, Version 5, release 3.7.3 (MM5v.3.7.3) (Grell et al., 1994), and the boundary 2 

conditions were taken from the Model for Ozone and Related Chemical Tracers (MOZART) 3 

global model (ENVIRON, 2008). The base case emission inventory for HGB SIP modeling was 4 

provided by TCEQ (TCEQ, 2010). Lightning and aviation NOx emissions were added into the 5 

base emission inventory. The lightning NOx emission is developed based on the measured 6 

National Lightning Detection Network (NLDN) data with intra-cloud flashes assumed to be three 7 

times of cloud-to-ground flashes and 500 moles NO emissions per flash (Kaynak et al., 2008), 8 

and the aviation NOx emissions, obtained from the Emission Database for Global Atmospheric 9 

Research (EDGAR), were placed at the model height of 9km. The soil NOx emission was 10 

doubled from its base value because the Yienger and Levy method (YL95) (Yienger and Levy, 11 

1995) has been found to underpredict soil NOx by around a factor of 2 over the United States 12 

(Hudman et al., 2010). More details about the model inputs and configurations, the emission 13 

inventory development, and evaluations of model meteorological inputs can be found in Tang et 14 

al. (2013). 15 

2.2 GOES-derived photolysis rates 16 

The photolysis rate calculations in CAMx include two steps (ENVIRON, 2010). First, a 17 

Tropospheric Ultraviolet and Visible (TUV) Radiation Model developed by the National Center 18 

for Atmospheric Research (NCAR) is used to generate a multi-dimensional table of clear sky 19 

photolysis rates (Madronich, 1987; NCAR, 2014) as inputs for the CAMx model as shown in Eq. 20 

(1).  21 

Clear sky photolysis rates (s-1) are calculated as: 22 
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where σ(λ) (m2/molecule) is the absorption cross-section, λ is the wavelength (µm), ϕ(λ) is the 2 

quantum yield (molecules/photon), and F(λ) is the actinic flux (photons/m2/s/µm). 3 

           Second, the tabular clear sky photolysis rates are interpolated into each grid cell in the 4 

modeling domain and adjusted based on cloud information generated by the meteorology model 5 

in standard operational procedure, as shown in Eqs. (2) and (3). Below the cloud, photolysis rates 6 

are adjusted as (Chang et al., 1987): 7 

[ ]1 (1.6 cos( ) 1)below clear c cJ J f tr θ= + −                                                                 (2) 8 

Above the cloud, photolysis rates are modified as: 9 

[ ])1)(cos(1 ccclearabove trfJJ −+= θ                                                                       (3) 10 

where fc is the cloud fraction for a grid cell, trc is cloud transmissivity at each model grid layer, 11 

and θ  is the solar zenith angle.     12 

In CAMx, trc is calculated using Eq. (4) (Stephens, 1978),
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14 

where cτ  is the cloud optical depth simulated in the model and β is the scattering phase-function 15 

asymmetry factor assumed to be 0.86 (Chang et al., 1987). The fc in each grid cell is predicted by 16 

the MM5 model.    17 



8 

 

            GOES-observed cloud properties recover fc and broadband trc, which can be used directly 1 

in Eqs. (2) and (3) to adjust photolysis rates below and above the clouds, bypassing the need for 2 

estimating those values in the model. Within the cloud, the photolysis rates are adjusted via the 3 

interpolation of calculated values between satellite-retrieved cloud top and model-estimated 4 

cloud base. GOES is capable of measuring cloud properties with spatial resolution down to 1-km 5 

and temporal resolution down to an hour or less (Haines et al., 2004), ensuring the sufficient 6 

spatial and temporal data coverage for the modeling episode. In this study, hourly GOES 7 

observations with integrated 12km cloud properties from sub-pixels have been used. However, 8 

due to the satellite data availability, satellite-retrieved fc and broadband trc may not be available 9 

in the early morning and late afternoon. In such cases, the fc and trc generated by standard 10 

operational procedures in CAMx will be used. More details regarding satellite retrievals of fc and 11 

trc can be found at Pour-Biazar, et al. 2007.   12 

2.3 Emission regions and sectors for the inversion 13 

As in Tang et al. (2013), an inversion region inside the 12km model domain is designed for both 14 

region-based and sector-based DKF inversions, including five urban areas HGB, DFW, BPA, NE 15 

Texas, and Austin and San Antonio, surrounded by a north rural area (N rural) and a south rural 16 

area (S rural) (Fig. 1). 17 

            Six separate NOx emission sectors, area, non-road mobile, on-road mobile, biogenic, 18 

electric generating units (EGU) and non-EGU point sources are provided by TCEQ. Lightning 19 

and aviation NOx emission sectors were developed in Tang et al. (2013) and added into base 20 

emission inventory as independent elevated sources (Table 1). Area sources, including small-21 

scale industry and residential sources such as oil and gas production, gas stations and restaurants, 22 
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contribute 10% of total emissions in the entire inversion region and 25% in NE Texas in the base 1 

inventory. Non-road sources, including construction equipment, locomotives and commercial 2 

marine, contribute 14% overall. Mobile source emissions by on-road vehicles contribute 27% of 3 

total NOx emissions and dominate in the cities such as HGB and DFW. The biogenic NOx source 4 

is from soil emissions, which contribute 16% of total NOx emissions but dominate in remote 5 

regions. Lightning and aviation sources contribute 8% and 6% to the total emission, respectively. 6 

Non-EGU point sources such as refineries, big boilers and flares, contribute 40% of NOx 7 

emissions in BPA and 21% in HGB, the two regions with most of the petrochemical industries. 8 

EGU point emissions are from major power plants with the hourly NOx emissions measured by 9 

continuous emissions monitoring (CEM) systems, which are considered the most accurate NOx 10 

emission source in the bottom-up emission inventory. Thus, in this study, EGU NOx emissions 11 

are assumed to be correct and are not adjusted by DKF inversions.  12 

NO2 sensitivities to NOx emission in each emission sector used in the following sector-13 

based DKF inversions are calculated through DDM (Fig. 5). The biogenic, lightning, and non-14 

EGU point sources have their own spatial patterns that differ from the other emission sectors. For 15 

example, the aviation source shows strong sensitivity centered from the DFW and HGB regions 16 

and slowly spreading elsewhere. The sensitivities from the area, non-road and on-road sources 17 

have similar spatial patterns concentrated in urban areas due to strong anthropogenic activities, 18 

while the on-road source can be distinguished by the strong highway emissions. Previous studies 19 

(Rodgers, 2000; Curci et al., 2010) indicated that the inversion results would be ill-conditioned 20 

to estimate strongly overlapped sources. Therefore, in this study, the area and non-road sources 21 

are grouped as a single sector in the DKF inversions.                22 
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2.4 DKF Inversion 1 

Two DKF inversion approaches, region-based and sector-based, are applied in this study to 2 

create top-down NOx emissions for Texas. The procedure of incorporating DKF method into the 3 

CAMx-DDM model was described in detail in Tang et al. (2013).   4 

        The DKF inversion process (Prinn 2000), driven by the difference between the measured 5 

NO2 ( 2

observed
NOC ) and the modeled NO2 ( 2

predicted
NOC ), seeks the optimal emission perturbation factors 6 

( x̂ ) (a posteriori) by adjusting NOx emissions in each designated emission region or sector 7 

iteratively until each a priori emission perturbation factor ( -x ) converges within a prescribed 8 

criterion, 0.01. 9 

x x x x 2 2 xNO NO OMI
observed predicted

NO NO NO NO NOˆ − −- - T - T -1 -x = x + P S (S P S + R ) (C C S x )              (5) 10 

        S in Eq. (5), calculated via DDM in this study, is the first-order semi-normalized 11 

sensitivity matrix of NO2 concentrations to either region-based or sector-based NOx emissions. 12 

The uncertainty value in the measurement error covariance matrix (R) for the OMI observed 13 

NO2 is set to 30% (Bucsela et al., 2013) for all diagonal elements. The uncertainties adopted 14 

from Hanna et al. (2001) provide the values for each of the diagonal elements in the emission 15 

error covariance matrix (P). A value of 100% is assigned to each emission region, and to the area, 16 

non-road, aviation, on-road, and biogenic emission sectors, but a value of 50% is assigned to the 17 

non-EGU point emission sector. The uncertainty of lightning NOx emissions was estimated in 18 

recent studies, ranging from 30% (Martin et al., 2007) to 60% (Schumann and Huntrieser, 2007) 19 

on a global scale; thus, the uncertainty value in the lightning sector is set to 50% here. The off-20 
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diagonal elements in P are set to zero since each emission component is assumed to be 1 

independent.  2 

2.5 NO2 observations 3 

2.5.1 Satellite NO2 observations 4 

The Dutch-Finnish OMI aboard the NASA Aura satellite measures daily NO2 at around 13:40 5 

local time (LT) with the highest spatial resolution of 13×24 km2 at nadir viewpoint (Levelt et al., 6 

2006a, b; Boersma et al., 2007). Tang et al. (2013) used the NASA OMI standard, version 2.1 7 

(Bucsela et al., 2013; Lamsal et al., 2014) NO2 retrieval with an a priori profile generated from 8 

the Global Modeling Initiative (GMI) model to conduct inverse modeling, and reported an 9 

overestimation of NO2 levels in rural areas. More recently, a high resolution OMI NO2 retrieval 10 

was developed based on the NASA standard product, version 2.1, but using an a priori NO2 11 

profile generated from nested GEOS-Chem simulations (0.5°×0.666°) with a 2005 emission 12 

inventory. Because the emission inventory used in GEOS-Chem simulations includes lightning 13 

and other elevated sources, it may better represent the upper tropospheric NO2 in the retrieval; 14 

hence, in this study, the high resolution NASA retrieval is chosen for the DKF inversions. In the 15 

high resolution NASA product, only the OMI pixels with sizes less than 16×40km2 (scan 16 

position 10-50) in the clear-sky condition (cloud radiance fraction < 0.5) are selected in creating 17 

the gridded data at 0.1°×0.1° resolution and then mapped to the 12km CAMx modeling domain. 18 

Since applying OMI averaging kernels (Eskes and Boersma, 2003) may introduce more 19 

uncertainties to the CAMx-derived NO2 VCD in this case (Supplement, Sect. 1), the CAMx 20 

modeled NO2 are compared to the OMI NO2 directly (Supplement, Sect. 1). 21 
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2.5.2 Ground and P-3 aircraft NO2 observations 1 

The CAMx simulated NO2 is evaluated by both ground and aircraft measurements. The ground-2 

level NO2 measurements data are taken from the U.S. EPA Air Quality System (AQS) NO2 3 

ground monitoring network (Fig. 1) (http://www.epa.gov/ttn/airs/airsaqs/). The correction factors 4 

(Lamsal et al., 2008; Tang et al., 2013) are applied to the ground measured NO2 before 5 

comparing with the modeled results due to the measurement artifacts in the heated molybdenum 6 

catalytic converter used by AQS NO2 monitors.  7 

           The NOAA P-3 aircraft measurements 8 

(http://www.esrl.noaa.gov/csd/tropchem/2006TexAQS/) are available on 31 August, 11 9 

September, 13 September, and 15 September 2006 in our modeling period. The NO2 was 10 

measured by UV photolysis converter-chemiluminescence (Ryerson et al., 2000), and NOy was 11 

measured by Au converter-chemiluminescence (Ryerson et al., 1999) aboard the P-3 aircraft, 12 

from ground to approximately 5km aloft and with a time resolution of 1-second; thus, hourly 13 

averaged P-3 NO2 and NOy are calculated to compare with the modeled data at corresponding 14 

time and grid cells. 15 

2.5.3 NASA DC-8 flight NO2 observations 16 

The NO2 measured by NASA DC-8 flights (http://www-air.larc.nasa.gov/cgi-bin/arcstat) during 17 

the Intercontinental Chemical Transport Experiment-North America (INTEX-NA) field 18 

campaign in 2004 (Singh et al., 2006) is used in this study to evaluate the modeled NO2 vertical 19 

profile, especially in the upper troposphere. The DC-8 flight NO2 measurements were made on a 20 

total of 18 days from 1 July to 14 August 2004, spanning from 7:00 to 20:00 CST with 1-second 21 

resolution. The NO2 was measured by the Thermal Dissociation-Laser Induced Fluorescence 22 

(TD-LIF) instrument. TD-LIF measurements of NO2 can be impacted by methyl peroxy nitrate 23 

http://www.epa.gov/ttn/airs/airsaqs/�
http://www.esrl.noaa.gov/csd/tropchem/2006TexAQS/�
http://www-air.larc.nasa.gov/cgi-bin/arcstat�
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(CH3O2NO2) and HO2NO2 in a temperature-dependent manner; thus, corrections based on the 1 

method of Browne et al., (2011) are applied before comparing with the modeled profile. The 2 

modeled NO2 in grid cells within the 36km domain are used to match the measurement data in 3 

space, and then all measurement data at each model layer are averaged over all measurement 4 

time to compare with the monthly 12-h (7:00-20:00LT) averaged modeled data at the 5 

corresponding layer. Although the measurements took place in 2004 and our modeling period is 6 

in 2006, we assume the inter-annual variation is insignificant because the upper tropospheric 7 

NO2 is mainly contributed by natural sources and cross-tropopause transport. 8 

3. Results and Discussion 9 

3.1 Impact of GOES-derived photolysis rates on modeled NO2 and O3 10 

The GOES-retrieved cloud fractions and broadband transmissivity as described in section 2.2 are 11 

used to adjust the photolysis rates in CAMx. To investigate the impact from GOES-derived 12 

photolysis rates, the differences of modeled ground-level NO2 photolysis rate (JNO2), NO2, and O3 13 

between CAMx modeling with and without the GOES-retrieved cloud fractions and 14 

transmissivity are calculated.  15 

             Using GOES-observed clouds corrects the cloud underprediction issue in the current 16 

meteorological models (Pour-Biazar et al., 2007; Guenther et al., 2012; ENVIRON 2012), 17 

making JNO2 decreases over most of the domain in this study. While on the average there is a 18 

domain-wide reduction in JNO2, the impact on O3 production is not uniform (Figs. 2 and 3), 19 

mostly paired with the NOx emission distributions. The general impact of using GOES 20 

observations is that where the JNO2 decreases, modeled NO2 increases, and O3 decreases (Figs. 2 21 

and 3), indicating that slower photochemical activity inhibits O3 formation and thus consumes 22 
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less NO2, and vice versa. However, an exception occurs at places close to the Houston Ship 1 

Channel, showing that although the JNO2 decreases, modeled NO2 still decreases (Fig. 3b) and O3 2 

slightly increases (Fig. 3c). This is probably caused by the availability of other pathways for 3 

consuming NOx in the VOC-rich environment, and the inhibition of NO regeneration due to 4 

reduction in photochemical activity. The largest discrepancy of 80ppb in modeled O3 occurs at 5 

13:00 on 2 September 2006 over the DFW region during the modeling period. At that time, 6 

GOES-based modeling showed up to 6 times higher JNO2 (reaching approximately 36s-1), and 7 

10ppb lower NO2 in this region (Fig. 2). However, the differences in modeled JNO2, NO2, and O3 8 

are much more moderate on a monthly 8-h (10:00-18:00) averaged basis, reaching only up to 3s-1 9 

for JNO2, 0.6ppb for NO2, and 3ppb for O3, with largest discrepancies in the HGB region (Fig. 3). 10 

For the changes in O3 sensitivities, approximately 6% less JNO2 on a domain-wide makes 11 

modeled O3 overall less sensitive to NOx emissions (Fig. 3d) and more sensitive to VOC 12 

emissions (Fig. 3e).   13 

        The modeled daily 8-h (10:00-18:00LT) NO2 and O3 using either satellite-derived or base 14 

model photolysis rates are evaluated by AQS measured data for the entire modeling period. The 15 

positive changes in spatiotemporal correlation (R2) and negative changes in NMB and NME 16 

indicate that satellite-derived photolysis rates improved model performance (Fig. 4). For O3 17 

simulations (Fig. 4 right), the difference in R2 increases 1% on average and reaches up to 7% on 18 

26 August, while the differences in NMBs and NMEs decrease 1% on average and  reach up to 19 

10% on 11 September, suggesting the satellite-corrected photolysis rates improve the model 20 

performance in simulating ground O3. However, NMB and NME for NO2 simulations (Fig. 4 left) 21 

do not improve despite an increase in R2, probably because other uncertainties in the model and 22 

measurements may have a larger impact on NO2 performance.   23 
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3.2 Pseudodata test for the sector-based DKF inversion  1 

A controlled pseudodata test was performed in Tang et al. (2013) to test the applicability of the 2 

DKF inversion to adjust the NOx emission in each inversion region with the CAMx-DDM model. 3 

This showed that the DKF method adjusted the perturbed NOx emission in each region 4 

accurately back to its base case. In this study, a similar controlled pseudodata test is conducted to 5 

test the applicability of the sector-based DKF inversion with CAMx-DDM. 6 

          The pseudodata test for the sector-based DKF inversion is conducted on 10 modeling 7 

days (13 August to 22 August), but the modeling results from the first 3 days are discarded to 8 

eliminate the model initialization error. A 7-day (16 August to 22 August) averaged modeled 9 

NO2 VCD at 13:00-14:00LT with the base case NOx emission inventory is treated as a pseudo-10 

observation, and the one using perturbed NOx emissions in six emission sectors with known 11 

perturbation factors ranging from 0.5 to 2.0 (Fig. 6) is used as a priori case. As described in 12 

section 2.3, the area and non-road emission sources are considered as one sector (ARNR), and 13 

EGU point source is excluded from the inversion. The emission uncertainties are set to 50% for 14 

the non-EGU and lightning sectors and to 100% for the others. The measurement error for the 15 

pseudo-observation is set to 30%. 16 

         The pseudodata test results (Fig. 6 top) show that the a posteriori modeled NO2 closely 17 

matches the base case modeled value, indicating the DKF inversion is capable of correcting the 18 

perturbed NOx emissions in each emission sector. The sensitivity analysis results (Fig. 6 bottom) 19 

illustrate that the inversions are insensitive to both emission and observation error covariance 20 

matrices for the pseudo-cases.        21 
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3.3 A priori NO2 VCD 1 

The a priori NOx emission inventory used in this study is based on the TCEQ base case emission 2 

inventory with added lightning and aviation and doubled soil NOx emissions (Tang et al., 2013). 3 

The reaction rate constant of the reaction NO2 + OH in CB05 chemical mechanism is reduced by 4 

25% based on Mollner et al. (2010); this tends to increase NOx lifetime and transport to rural 5 

regions.  6 

          To evaluate the extent to which the addition of lightning and aviation NOx closes the 7 

gap between observed and modeled NO2 in the upper troposphere noticed by Napelenok et al. 8 

(2008), the modeled NO2 vertical profile is compared with INTEX-NA DC-8 measured NO2 9 

profiles from the ground to the free troposphere. The comparison (Fig. 7 left) shows that CAMx 10 

with the a priori emission inventory strongly overestimates NO2 near the ground, reasonably 11 

agrees with DC-8 NO2 measurements from 1km to 5km, slightly overestimates NO2 from 6km to 12 

9km, and slightly underestimates NO2 from 10km to 15km. The modeled NO2 profile is further 13 

evaluated by the P-3 measured NO2 from ground to 5km (Fig. 7 right), showing the same pattern 14 

of the overestimated surface NO2 and good agreement with aircraft observations from 1km-5km. 15 

The injection of the aviation NOx into a single model layer at altitude 6km to 9km rather than 16 

more broadly distributed vertically probably causes the overestimation of modeled NO2 17 

compared to DC-8 at that altitude (ENVIRON, 2013). A low bias of modeled NO2, 18 

approximately 40ppt, exists in the upper troposphere, from 10km to 15km altitude, which is the 19 

CAMx model top layer. Similar low bias of the modeled NO2 in the upper troposphere compared 20 

to the DC-8 measurement also has been found in Allen et al. (2012). Because the low bias in the 21 

upper troposphere may arise from model uncertainties other than those associated with emissions 22 

(Henderson et al., 2011; 2012), we follow the adjustment approach of Napelenok et al. (2008) 23 
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and add 40ppt NO2 homogeneously to the top layer (10-15km) of the model results when 1 

computing the CAMx NO2 VCD. 2 

              Although the revised CB05 chemical mechanism and artificially added upper 3 

tropospheric NO2 increase modeled NO2 VCD in the inversion region by an average of 13% 4 

(Supplement, Sect. 2), CAMx modeled NO2 VCD remain an average of 2×1014 molecules/cm2 5 

less than OMI observations in rural regions (Fig. 8c).         6 

3.4 Top-down NOx emissions constrained by DKF inversions 7 

The DKF inversions with OMI NO2 are performed to constrain NOx emissions in each 8 

designated emission region and emission sector. To ensure sufficient spatial coverage, a monthly 9 

averaged OMI NO2 VCD (13 August to 15 September) is calculated and paired with the 10 

corresponding modeled NO2 VCD at satellite passing time (13:00-14:00LT). The DKF 11 

inversions are then conducted with 2116 data points covering every grid cell in the inversion 12 

region, and the hourly a priori NOx emissions are adjusted iteratively until the inversion process 13 

converges.  14 

3.4.1 Region-based DKF inversion 15 

The region-based DKF inversion is conducted to adjust the NOx emissions in each inversion 16 

region. The inversion results suggest to moderately adjust the a priori NOx emissions in most 17 

regions with scaling factors ranging from 0.97 to 1.49 (Table 2) and increases NO2 VCD by 8% 18 

toward OMI measurement over the inversion region (Fig. 8d). Because this inversion is based on 19 

a new OMI-retrieved and an improved a priori NO2 VCD, the required adjustments in each 20 

inversion region are much lower compared to the results in Tang et al. (2013) with scaling 21 

factors ranging from 0.56 to 1.98 and 30% increased NO2 VCD.   22 
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            The model performance is then evaluated by the ground and aircraft measurements. The 1 

DKF inversion adjusts DFW NOx emissions by only 3%, while it adds 49% to BPA emissions 2 

and less than 15% to other urban regions. The NMB and NME of the a posteriori modeled NO2 3 

VCD decrease in every urban area and are reduced from -0.11 to -0.05 and from 0.17 to 0.16 4 

overall compared to OMI. The spatial correlations between monthly averaged OMI and CAMx 5 

NO2 VCD (R2) are improved only in the BPA and Austin and San Antonio areas, but the overall 6 

region-wide performance is improved (Table 3). The modeled NO2 with a priori NOx emissions 7 

overpredicts ground-level NO2 (Table 4); hence, the increase in NOx emissions at most urban 8 

places suggested by the inversion actually deteriorates the ground-level NO2 simulations in all 9 

urban areas except in the DFW region. The modeled NMB and NME of ground O3 are reduced 10 

in the HGB and BPA regions, but not in DFW, probably because the increased NOx in the first 11 

two regions titrates more ground O3 at night and inhibits O3 formation during the day, decreasing 12 

the O3 concentrations which are already overestimated in the a priori simulation (Table 6). No 13 

improvements of model performance are found in simulating P-3 observed NO2 and NOy using 14 

the inverted NOx emissions. 15 

                Applying a single scaling factor to an entire inversion region may not well capture the 16 

NOx spatial distributions (Tang et al., 2013). Since DDM can also track the spatial relationship 17 

between modeled NO2 concentrations and NOx emissions in each emission sector, a sector-based 18 

DKF inversion can potentially serve as an alternative approach to constrain NOx emissions in 19 

order to have more heterogeneous adjustments in each inversion region. 20 
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3.4.2 Sector-based DKF inversion 1 

The sector-based DKF inversion is first conducted on six NOx emission sectors: area and 2 

nonroad (ARNR), on-road, biogenic, aviation, lightning, and non-EGU points (Case I). The 3 

scaling factors generated by the inversion ranges from 0.54 to 4.10, with the largest scale-down 4 

in the ARNR sector and the largest scale-up in the aviation sector. The inversion reduces NOx 5 

emission in the biogenic sector by 30% from the a priori inventory which had doubled soil NOx 6 

from the base model. The inversion leaves on-road, lightning, and non-EGU points sectors nearly 7 

unchanged, applying less than 4% adjustments (Table 2). The NO2 VCD is increased by only 6% 8 

toward OMI measurement over the inversion region in this case. Most of the increase in NO2 9 

VCD occurs in rural areas, and some declines occur in urban areas (Fig 8e).  10 

             The NOx emission in each inversion region is recalculated after applying adjustments to 11 

each emission sector, and model performance is evaluated by the ground and aircraft 12 

measurements. The scaling factors in each region now are different and closer to 1 than those 13 

generated by the region-based inversion, ranging from 0.86 in NE TX to 1.17 in DFW. The 14 

modeled NMB and NME in simulating OMI NO2 are all decreased in five urban areas. Within 15 

the inversion region, the overall modeled NMB and NME are reduced from -0.11 to -0.04 and 16 

from 0.17 to 0.14, respectively using inverted NOx emissions (Table 3). The 50% cut in the 17 

ARNR sector helps to improve the model performance in simulating ground-level NO2 and O3 18 

which had been overestimated using a priori NOx emissions. The inverted NOx emissions 19 

decrease modeled NMB and NME in all five urban areas and overall decrease NMB by 0.25 and 20 

0.04, and NME by 0.13 and 0.04 in simulating ground-level NO2 and O3, respectively (Table 4 21 

and Table 6). The model performance is also improved compared against P-3 measurements. For 22 

NO2, NMB is reduced from 0.09 to -0.02, and NME is reduced by 0.09. For NOy, NMB is 23 
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reduced by 0.16 and NME is reduced by 0.11 (Table 5). The scaled-down ground NOx emissions 1 

lead to a 2-5 ppb lower modeled 8-h (10:00-18:00LT) ground O3 and make O3 formation 2 

chemistry less sensitive to the VOC emissions, with reduction of 1-3ppb sensitivity coefficients 3 

over the inversion region. The O3 sensitivity to NOx emissions also decreases by approximately 4 

1-2ppb over most of the inversion region; however, the O3 formation chemistry in the urban 5 

cores of the DFW, HGB, and Austin and San Antonio regions shifts toward being more NOx-6 

limited, leading to a 1-3 ppb increase of O3 sensitivity to NOx emissions (Fig. 9). 7 

             Although the inversion improves the model performance, the sensitivity analysis 8 

(Supplement, Sect. 3) shows that the aviation and ARNR sectors are relatively responsive to the 9 

emission uncertainty values and offset each other (Fig. S2), indicating the DKF inversion may 10 

not be capable of fully distinguishing these two emission sectors. Therefore, the aviation source 11 

is then merged with ARNR and the DKF inversion is re-conducted on five emission sectors: area, 12 

nonroad, and aviation (ARNRAV), on-road, biogenic, lightning, and non-EGU points (Case II). 13 

In case II, the inversion results are more stable and insensitive to the emission uncertainties in 14 

each emission sector (Fig. S2). However, the inversion tends to scale up all three source 15 

categories in the ARNRAV sector together by 50% to compensate for the rural NO2 gap. The 16 

inversion reduces on-road and biogenic NOx emissions by 12% and 16%, respectively. The 17 

adjustments for the lightning and non-EGU points sectors are still less than 4% (Table 2). On the 18 

region basis, the inversion tends to increase NOx emissions in all regions with increments 19 

ranging from 1% in the Austin and San Antonio region to 18% in the NE TX region; it thus 20 

increases the modeled NO2 VCD by 7% on average. The inversed NO2 VCD in this case is very 21 

similar to that from the region-based inversion (Fig. 8f). The model performance of simulating 22 

OMI NO2 VCD is improved and similar to the results from case I (Table 3). However, unlike 23 
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case I, no improvements are found in simulating ground measured NO2 and O3 and P-3-1 

measured NO2 and NOy using the inverted NOx emissions in case II (Table 4-6). Because the 2 

ground NOx emissions are increased in this case, the inversion impacts the O3 simulations in the 3 

opposite direction than in case I. The modeled 8-h ground O3 increases by around 2ppb and 4 

becomes more sensitive to both NOx and VOC emissions over most of the inversion region; 5 

however, the O3 formation chemistry shifts toward being more VOC-limited in DFW and HGB 6 

(Fig. 9). 7 

 8 

4. Conclusions 9 

Satellite-derived photolysis rates and NOx emissions are both applied to a Texas SIP modeling 10 

episode to investigate the capabilities of using satellite data to enhance state-level O3 regulatory 11 

modeling. Results show that the ground-level O3 simulations are improved with reductions of 12 

modeled NMB from 0.42 to 0.37 and modeled NME from 0.50 to 0.45 by using GOES-derived 13 

photolysis rates and sector-based DKF (case I) with OMI NO2 inverted NOx emission inventory 14 

(Table 6). The GOES-derived photolysis rates and OMI-constrained NOx emissions decrease 15 

monthly averaged 8-h O3 concentrations by 2-5ppb over the entire inversion region and turn O3 16 

formation chemistry toward being less sensitive to NOx and VOC emissions over most of 17 

inversion areas, while being more NOx sensitive in the two O3 nonattainment areas, DFW and 18 

HGB (Fig. 10).    19 

            Applying GOES-retrieved cloud coverage and transmissivity reduce the modeled 20 

photolysis rates over most of the domain, leading to less photochemical activity and O3 21 

production and shifting O3 formation chemistry toward being less sensitive to NOx emissions, 22 
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except in the DFW region where modeled photolysis rates are increased by the GOES retrieval, 1 

leading to impacts in the opposite direction. In comparing with the AQS ground measurements, 2 

the GOES-derived photolysis rates improve the ground-level O3 simulations but not the NO2 3 

simulations, indicating other model errors may dominate the accuracy of model performance in 4 

simulating ground-level NO2. The GOES-retrieved clouds applied here adjusted only the 5 

modeled photolysis rates, while modeled clouds continued to drive the dynamics and aqueous 6 

phase chemistry. This inconsistency in the placement of clouds is similar to the approach of a 7 

previous study (Pour-Biazar et al., 2007). Thus, this work demonstrates a sensitivity study of 8 

using satellite-derived photolysis rates on model performance rather than a full integration of 9 

satellite-observed clouds into all aspects of the model. Future work could extend the use of 10 

GOES-retrieved clouds to also correct model dynamics and aqueous phase chemistry and 11 

investigate their impacts on NOx and O3 modeling.     12 

             The DKF inversion approach has been successfully incorporated with the CAMx-DDM 13 

model and was conducted on both region-based and sector-based NOx emissions. A controlled 14 

pseudodata test conducted on the sector-based DKF inversion confirmed that it accurately 15 

captures known perturbations in NOx emission sectors. In addition to implementing lightning and 16 

aviation NOx emissions in the upper troposphere and doubling soil NOx emissions from the 17 

ground, the NOx lifetime is increased by reducing 25% the reaction rate constant of the reaction 18 

OH + NO2. The upper tropospheric NO2 underestimation is further eliminated by adding a 40ppt 19 

homogenous NO2 layer in the model top. On the other hand, the high resolution OMI retrieval 20 

with a priori profile from the nested GEOS-Chem simulation further enhances NO2 in urban 21 

areas and reduces NO2 in rural. However, the comparison still shows that the OMI has higher 22 

NO2 VCD than CAMx in rural areas, by around 2×1014 molecules/cm2. It is not clear that the 23 
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discrepancy between OMI and CAMx in rural areas is caused by uncertainties in NOx emission 1 

inventory or errors in OMI retrieval and other model uncertainties. The OMI NO2 retrieval can 2 

be further improved by using the finer resolution terrain and albedo data (Russell et al., 2011) 3 

and observed vertical profiles from aircraft spiral measurements in the recent DISCOVER-AQ 4 

Houston measurement campaign (Crawford et al., 2014). The accuracy of CAMx modeled NO2 5 

VCD can benefit from further improving the modeled chemical and transport processes 6 

(ENVIRON 2013), such as updating NOx recycling process to increase NOx lifetime, or adding 7 

cross-tropopause transport processes to allow more stratospheric NO2 penetrate to upper 8 

troposphere. This may obtain better spatial distribution of modeled NO2 rather than adding a 9 

homogeneous layer at top to compensate the model deficiency. 10 

             The region-based DKF inversion still over scales NOx emissions in urban areas to 11 

compensate for the rural NO2 differences because the NO2 VCD gap in rural areas is not 12 

eliminated, leading to 10-50% increase of NOx emissions at most regions and worsening the 13 

ground-level O3 simulations; however, the scaling factors generated in this study are much more 14 

moderate than those were found in Tang et al. (2013). The sector-based DKF inversion (case I) 15 

takes the aviation source to compensate the NO2 gap in rural area, probably because its relatively 16 

spread-out emission pattern over rural area corresponds with the NO2 discrepancy distributions, 17 

leading to appropriate adjustments in the ground emissions and improving both ground-level 18 

NO2 and O3 simulations; however, the aviation source is unrealistically adjusted by applying a 19 

suggested factor of 4 to its base value, and the adjustments offset the area and nonroad sector 20 

with varying emission uncertainties in the sensitivity analysis. Although merging the aviation 21 

source into the area and nonroad emission sector makes the inversion (case II) more stable, the 22 

large scaling factor for the aviation sector is now shared with area and nonroad emissions, 23 
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leading to area and nonroad NOx emissions being scaled up by 50%. Thus, the model 1 

performance in ground-level NO2 and O3 simulations is deteriorated and is even worse than the 2 

results generated from the region-based inversion. The lightning NOx emissions seem to be well 3 

estimated and are adjusted little by the inversion. However, it may also indicate that the OMI 4 

retrieved NO2 is insensitive to the lightning source, most probably due to the NOx partitioning 5 

predominantly to NO in the upper troposphere and the clear-sky cloud screening criterion used in 6 

the OMI data processing. The NO2 discrepancy between OMI and CAMx drives the DKF 7 

inversion and is assumed to be mostly contributed by the uncertainties in the NOx emission 8 

inventory. However, findings from this study indicate that if the uncertainty in the a priori NOx 9 

emissions is low, errors in the satellite retrieval and model itself cannot be neglected, making the 10 

inversion less capable of reducing the uncertainties in the bottom-up NOx emission inventory. 11 

              The region-based DKF inversion applies a single scaling factor to each inversion region, 12 

and assumes the a priori emission pattern in each inversion region is correct, causing 13 

deterioration of the model performance in this case. While the sector-based DKF inversion 14 

applies a single scaling factor to each emission sector, that leads to more heterogeneous 15 

adjustments in each inversion region and relatively better modeling results than those from the 16 

region-based inversion. However, the sector-based inversion assumes the spatial distribution of 17 

NOx emissions in each sector is accurately estimated in the bottom-up NOx emission inventory, 18 

which is also a simplification. For example, TCEQ recently developed a single-day aviation 19 

emission inventory using the Advanced Emission Model (AEM3) for the new Rider 8 modeling 20 

domain, which has more accurate flight profile and distributes emissions more broadly in the 21 

vertical direction, leading to the spatial pattern of NOx emissions somewhat different than that 22 

obtained from EDGAR (ENVIRON 2013). In addition, the newly developed Berkeley-Dalhousie 23 



25 

 

Soil NOx Parameterization (BDSNP) scheme (Hudman et al., 2012) recently was implemented 1 

into the CMAQ model to estimate soil NOx emissions, showing large spatial and temporal 2 

differences compared to those estimated by the YL95 scheme over eastern Texas. All these 3 

changes described above in the a priori NOx emission inventory may have significant impact on 4 

the sector-based inversion results.      5 

             The direct scaling inversion (Supplement, Sect. 4) using PAMS measured VOCs 6 

improves the model performance in simulating five chosen VOC species and indicates the TCEQ 7 

VOC emission inventory used in HGB SIP modeling is now much better than the previous 8 

reported emissions with values off by an order of magnitude. However, the inverted VOC 9 

emissions have insignificant impact on the ground-level NO2 and O3 simulations, probably 10 

because of the limited spatial coverage of the PAMS measurement sites and most VOC-saturated 11 

conditions in the inversion region. Future work could explore the capabilities of using satellite-12 

observed formaldehyde data to constrain the Texas isoprene or even other anthropogenic VOC 13 

emissions (Defour et al., 2009; Curci et al., 2010). 14 

             The statistical results show that although the modeled NMB and NME are reduced, 15 

OMI-constrained NOx emissions barely improve the spatiotemporal correlations (R2) with 16 

ground-measured NO2 and O3, indicating that either applying the scaling factors generated at the 17 

OMI passing time is unable to reduce the emission uncertainty at each hour or the current OMI 18 

resolution is insufficient to capture the spatial distributions of the NOx emission pattern. The 19 

future launch of NASA Tropospheric Emission: Monitoring of Pollution (TEMPO) geostationary 20 

satellite (Streets et al., 2013) could help address these shortcomings by providing a temporal 21 

resolution down to an hour and a spatial resolution down to 4km×4km measurement. 22 
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Table 1. NOx emission rates for seven sectors in seven inversion regions (tons/day). 1 

Source Region Area On-road Non-road Biogenic Aviation Lightning Non-EGU 
points EGU Total 

HGB 28 (6%) 159 (36%) 71 (16%) 10 (2%) 28 (6%) 21 (5%) 92 (21%) 29 (7%) 438 
DFW 35 (8%) 152 (37%) 77 (19%) 60 (14%) 44 (11%) 23 (6%) 19 (5%) 6 (1%) 416 
BPA 8 (8%) 24 (24%) 7 (7%) 2 (2%) 3 (3%) 8 (8%) 40 (40%) 8 (8%) 101 

NE Texas 43 (25%) 34 (20%) 28 (16%) 2 (1%) 3 (2%) 14 (8%) 9 (5%) 41 (24%) 174 
Austin and San 

Antonio 9 (3%) 113 (37%) 37 (12%) 72 (24%) 12 (4%) 5 (2%) 21 (7%) 34 (11%) 303 

N Rural 82 (11%) 161 (21%) 103 (13%) 142 (19%) 51 (7%) 94 (12%) 39 (5%) 91 (12%) 763 
S Rural 85 (13%) 123 (18%) 79 (12%) 176 (26%) 30 (4%) 61 (9%) 61 (9%) 57 (8%) 672 
Total 290 (10%) 766 (27%) 402 (14%) 464 (16%) 171 (6%) 226 (8%) 281 (10%) 266 (9%) 2866 

Note: percentage indicates the apportionment of each emission sector to the regional total. 2 

 3 

Table 2. Scaling factors of region-based and sector-based inversions. 4 

Region-based inversion Sector-based inversion I Sector-based inversion II 

Emission region 
Scaling factor 

(unitless) 
Emission sector 

Scaling factor 
(unitless) 

Emission sector 
Scaling factor 

(unitless) 

HGB 1.11 Area 0.54 Area 1.49 

DFW 0.97 Non-road 0.54 Non-road 1.49 

BPA 1.49 On-road 1.03 On-road 0.88 

NE Texas 1.10 Biogenic 0.71 Biogenic 0.84 

Austin and San 
Antonio 

1.15 Aviation 4.10 Aviation 1.49 

N rural 1.24 Lightning 0.98 Lightning 1.03 

S rural 0.98 Non-EGU points 0.96 Non-EGU points 0.96 

 5 

 6 

 7 

 8 

 9 

 10 
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Table 3. Evaluation of CAMx modeled NO2 using OMI NO2. 1 

Inversion 
region 

Priori 
Posteriori: region-based 

inversion 
Posteriori: sector-based 

inversion I 
Posteriori: sector-based 

inversion II 

R2 NMBb NMEc R2 NMB NME R2 NMB NME R2 NMB NME 

HGB 0.57 -0.25 0.36 0.57 -0.17 0.35 0.57 -0.21 0.32 0.57 -0.18 0.34 

DFW 0.74 -0.21 0.29 0.72 -0.21 0.28 0.70 -0.12 0.25 0.75 -0.13 0.30 

BPA 0.40 -0.46 0.47 0.45 -0.33 0.43 0.37 -0.42 0.43 0.39 -0.43 0.44 

NE 
Texas 

0.24 -0.40 0.44 0.24 -0.36 0.43 0.21 -0.39 0.43 0.25 -0.31 0.42 

Austin 
and San 
Antonio 

0.45 -0.25 0.35 0.47 -0.18 0.35 0.43 -0.23 0.33 0.44 -0.23 0.34 

Overalla 0.74 -0.11 0.17 0.75 -0.05 0.16 0.75 -0.04 0.14 0.75 -0.04 0.16 

a. Compared to OMI observations in all inversion regions 2 
b. Normalized mean bias: Σ(Mod-Obs)/Σ(Obs) 3 
c. Normalized mean error: Σ|(Mod-Obs)|/Σ|(Obs)| 4 
 5 

Table 4. Evaluation of CAMx modeled NO2 using hourly AQS ground-measured NO2. 6 

Inversion 
region 

Priori 
Posteriori: region-based 

inversion 
Posteriori: sector-based 

inversion I 
Posteriori: sector-based 

inversion II 

R2 NMB NME R2 NMB NME R2 NMB NME R2 NMB NME 

HGB 0.51 0.46 0.67 0.51 0.61 0.77 0.50 0.26 0.56 0.51 0.59 0.76 

DFW 0.49 0.43 0.66 0.49 0.40 0.65 0.48 0.14 0.53 0.50 0.55 0.74 

BPA 0.45 0.92 1.02 0.45 1.74 1.77 0.45 0.72 0.86 0.45 0.99 1.08 

NE 
Texas 

0.70 0.86 0.93 0.70 1.07 1.12 0.70 0.33 0.52 0.70 1.36 1.40 

Austin 
and San 
Antonio 

0.46 0.60 0.87 0.47 0.80 1.01 0.48 0.37 0.73 0.47 0.58 0.86 

Overalla 0.51 0.51 0.72 0.48 0.67 0.85 0.50 0.26 0.59 0.51 0.63 0.81 

a. Compared to all ground sites 7 

 8 
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Table 5. Evaluation of CAMx modeled NO2 using P-3 aircraft-measured NO2 and NOy.
 1 

Statistical 
parameters 

NO2
a NOy

a 

Priori 

Posteriori: 
region-
based 

inversion 

Posteriori: 
sector-
based 

inversion I 

Posteriori: 
sector-
based 

inversion II 

Priori 

Posteriori: 
region-
based 

inversion 

Posteriori: 
sector-
based 

inversion I 

Posteriori: 
sector-
based 

inversion II 

R2 0.22 0.23 0.24 0.21 0.34 0.35 0.35 0.34 

NMB 0.09 0.15 -0.02 0.17 0.70 0.76 0.54 0.79 

NME 0.99 1.03 0.90 1.06 0.98 1.03 0.87 1.04 

a. Comparison available for only four days (August 31, September 11, September 13, and September 15, 2006).  2 

 3 

Table 6. Evaluation of CAMx modeled O3 using hourly AQS ground-measured O3. 4 

Source 
region 

Priori 
Posteriori: region-

based inversion 
Posteriori: sector-
based inversion I 

Posteriori: sector-
based inversion II 

Sector-I inversed 
NOx emissions & 
GOES photolysis 

R2 NMB NME R2 NMB NME R2 NMB NME R2 NMB NME R2 NMB NME 

HGB 0.46 0.68 0.75 0.47 0.67 0.74 0.46 0.65 0.72 0.45 0.70 0.76 0.54 0.62 0.69 

DFW 0.64 0.21 0.32 0.64 0.23 0.33 0.64 0.18 0.29 0.64 0.21 0.33 0.66 0.18 0.28 

BPA 0.47 0.66 0.70 0.47 0.59 0.66 0.49 0.60 0.64 0.45 0.69 0.73 0.52 0.59 0.63 

NE 
Texas 

0.49 0.36 0.43 0.49 0.38 0.44 0.50 0.32 0.40 0.48 0.37 0.45 0.55 0.30 0.38 

Austin 
and San 
Antonio 

0.52 0.40 0.46 0.52 0.40 0.46 0.52 0.35 0.43 0.52 0.42 0.48 0.57 0.34 0.41 

Overalla 0.50 0.42 0.50 0.51 0.42 0.50 0.50 0.38 0.46 0.49 0.43 0.51 0.55 0.37 0.45 

a. Compared to all ground sites 5 
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 8 
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 1 

        2 

Figure 1. Seven designated inversion regions in eastern Texas (shaded) within 12-km CAMx 3 
modeling domain (black square) covered by ground NO2 monitoring sites (blue triangles), VOC 4 
monitoring sites (green circles), and O3 monitoring sites (red circles). 5 
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      1 

Figure 2. Differences between satellite-derived (GOES) and model predicted (MOD) JNO2 (left) 2 
in simulating NO2 (middle) and O3 (right) at 13:00 on 2 September 2006. 3 

(a)                                                (b)                                               (c) 4 

 5 

(d)                                               (e) 6 

 7 

Figure 3. Monthly 8-h (10:00-18:00LT) averaged differences between satellite-derived (GOES) 8 
and model predicted (MOD) (a) JNO2 in simulating (b) NO2, (c) O3, and O3 sensitivities to (d) 9 
NOx and (e) VOC. 10 
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Figure 4. Change in model performance (R2, NMB, and NME) in simulating daily 8 hours 2 
(10:00-18:00LT) NO2 (left) and O3 (right) caused by satellite-derived photolysis rates.  3 

 4 

(a)                              (b)                                (c)                                (d) 5 

 6 

      (e)                              (f)                                (g) 7 

 8 

Figure 5. Vertical column densities of NO2 sensitivities to NOx emissions of (a) area, (b) non-9 
road, (c) on-road, (d) biogenic, (e) lightning, (f) aviation, and (g) non-EGU points source sectors.  10 
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Figure 6. Pseudodata analysis for the sector-based DKF inversion (top), and its sensitivities to 3 
varied uncertainties in emissions (UE) (bottom left) with 30% uncertainty in observation (UO) 4 
and in observations (bottom right) with 100% uncertainty in emissions. 5 
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Figure 7. Comparisons of modeled NO2 vertical distributions with INTEX NASA DC-8 flight 3 
(left) and TexAQS 2006 NOAA P-3 aircraft (right) measurements. 4 
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(a)                                                        (b)                                              (c) 1 

   2 

(d)                                                        (e)                                              (f) 3 

         4 

Figure 8. Monthly averaged (16 August to 15 September) tropospheric NO2 VCD at 13:00-5 
14:00LT from (a) OMI, (b) a priori simulation, (c) difference between OMI and a priori 6 
simulation, and simulations using a posteriori NOx emissions generated by (d) region-based DKF 7 
inversion, and sector-based DKF inversion (e) case I and (f) case II.  8 
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 3 

Figure 9. Monthly 8-h (10:00-18:00LT) averaged ground O3 concentrations (top), O3 sensitivity 4 
to NOx (middle), and O3 sensitivity to VOC (bottom) for the a priori case (left), and differences 5 
between a posteriori and a priori for the sector-based DKF inversions case I (middle) and case II 6 
(right). 7 
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(a)                                                   (b)                                                     (c) 1 

    2 

Figure 10. Monthly 8-h (10:00-18:00LT) averaged differences in modeled (a) ground O3 3 
concentrations, (b) O3 sensitivity to NOx, and (c) O3 sensitivity to VOC resulting from use of 4 
both satellite-derived photolysis rates and NOx emissions in place of a priori data. 5 
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